-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_features.py
285 lines (245 loc) · 11.9 KB
/
visualize_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copied from DinoV1
import os
import sys
import argparse
import cv2
import random
import colorsys
import requests
from io import BytesIO
import tqdm
import skimage.io
from skimage.measure import find_contours
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms as pth_transforms
import numpy as np
from PIL import Image
import math
from dinov2 import utils
from dinov2.models import vision_transformer as vits
class Visualizer():
def __init__(self, model, patch_size, output_dir, threshold=None, device="cpu"):
self.model = model
self.device = device
self.patch_size = patch_size
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
self.w_featmap = img.shape[-2] // patch_size[0]
self.h_featmap = img.shape[-1] // patch_size[1]
self.threshold = threshold
def _apply_mask(self, image, mask, color, alpha=0.5):
for c in range(3):
image[:, :, c] = image[:, :, c] * (1 - alpha * mask) + alpha * mask * color[c] * 255
return image
def _random_colors(self, N, bright=True):
"""
Generate random colors.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
def _display_instances(self, image, mask, fname="test", figsize=(5, 5), blur=False, contour=True, alpha=0.5):
fig = plt.figure(figsize=figsize, frameon=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
ax = plt.gca()
N = 1
mask = mask[None, :, :]
# Generate random colors
colors = self._random_colors(N)
# Show area outside image boundaries.
height, width = image.shape[:2]
margin = 0
ax.set_ylim(height + margin, -margin)
ax.set_xlim(-margin, width + margin)
ax.axis('off')
masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]
_mask = mask[i]
if blur:
_mask = cv2.blur(_mask,(10,10))
# Mask
masked_image = self._apply_mask(masked_image, _mask, color, alpha)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
if contour:
padded_mask = np.zeros((_mask.shape[0] + 2, _mask.shape[1] + 2))
padded_mask[1:-1, 1:-1] = _mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8), aspect='auto')
fig.savefig(fname)
print(f"{fname} saved.")
return
def visualize_attn(self, img):
attentions = self.model.get_last_self_attention(img.to(device))
nh = attentions.shape[1] # number of head
# we keep only the output patch attention
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
if self.threshold is not None:
# we keep only a certain percentage of the mass
val, idx = torch.sort(attentions)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
th_attn = cumval > (1 - self.threshold)
idx2 = torch.argsort(idx)
for head in range(nh):
th_attn[head] = th_attn[head][idx2[head]]
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
# interpolate
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=self.patch_size, mode="nearest")[0].cpu().numpy()
attentions = attentions.reshape(nh, w_featmap, h_featmap)
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=self.patch_size, mode="nearest")[0].cpu()
# save attentions heatmaps
os.makedirs(self.output_dir, exist_ok=True)
torchvision.utils.save_image(torchvision.utils.make_grid(img, normalize=True, scale_each=True), os.path.join(self.output_dir, "img.png"))
for j in range(nh):
fname = os.path.join(self.output_dir, "attn-head" + str(j) + ".png")
plt.imsave(fname=fname, arr=attentions[j], format='png')
print(f"{fname} saved.")
if self.threshold is not None:
image = skimage.io.imread(os.path.join(self.output_dir, "img.png"))
for j in range(nh):
self._display_instances(image, th_attn[j], fname=os.path.join(self.output_dir, "mask_th" + str(self.threshold) + "_head" + str(j) +".png"), blur=False)
def visualize_pos(self, img):
pos_embed = self.model.get_first_pos_embedding(img.to(device)).to(device)
# pos_embed = pos_embed[0, :-1, :]
pos_embed = pos_embed[:, 1:, :]
pos_embed = pos_embed.reshape(1, self.w_featmap, self.h_featmap, -1)
scores = torch.empty((self.w_featmap, self.h_featmap, self.w_featmap, self.h_featmap)).cpu()
for i in range(0, self.w_featmap):
for j in range(0, self.h_featmap):
curr_embed = pos_embed[0, i, j, :][None][None]
score = torch.cosine_similarity(curr_embed, pos_embed[0, :, :, :], dim=-1)
scores[i, j, :, :] = score.cpu()
self.plot_pos_embed(scores)
def plot_pos_embed(self, data):
# Set up the plot
fig = plt.figure(figsize=(10, 10))
# Reshape the scores to a square
x_dim = math.ceil(math.sqrt(data.shape[0]))
x_dim_sqrd = x_dim**2
pad_amount = x_dim_sqrd-data.shape[0]
padding1 = torch.full((pad_amount,1,data.shape[0],1), -1, dtype=torch.float32).cpu()
padding2 = torch.full((x_dim_sqrd,1,pad_amount,1), -1, dtype=torch.float32).cpu()
result = torch.cat((data, (padding1)), dim=0)
result = torch.cat((result, padding2), dim=2)
square_data = result.reshape(x_dim, x_dim, x_dim, x_dim)
grid_shape = (x_dim, x_dim)
# Create the main grid
main_grid = fig.add_gridspec(grid_shape[0], grid_shape[1], wspace=0.1, hspace=0.1)
for i in tqdm.trange(grid_shape[0], desc="Creating subplots"):
for j in range(grid_shape[1]):
sub_ax = fig.add_subplot(main_grid[i, j])
im = sub_ax.imshow(square_data[i, j], cmap='viridis', vmin=-1, vmax=1, interpolation='nearest')
sub_ax.set_xticks([])
sub_ax.set_yticks([])
# Add borders
for spine in sub_ax.spines.values():
spine.set_visible(True)
spine.set_color('0.0')
# label y
if main_grid[i,j].is_first_col():
sub_ax.set_ylabel(i, fontsize = 16, rotation=0, labelpad=10)
# label x
if main_grid[i,j].is_last_row():
sub_ax.set_xlabel(j, fontsize = 16, labelpad=10)
# Add colorbar to the right of the subplots
cbar_ax = fig.add_axes([0.92, 0.15, 0.02, 0.7])
cbar = fig.colorbar(im, cax=cbar_ax)
cbar.set_label('Cosine similarity', rotation=270, labelpad=20)
cbar.set_ticks([-1,1])
# Set overall title and labels
fig.suptitle("Position embedding similarity", fontsize=20, y=0.95)
fig.text(0.5, 0.04, 'Patch index', ha='center', va='center', fontsize=18)
fig.text(0.04, 0.5, 'Patch index offset', ha='center', va='center', rotation='vertical', fontsize=18)
fig.savefig(os.path.join(self.output_dir, "pos_embed.png"))
plt.close()
def visualize_feats(self, task, img):
if task == 'attn':
self.visualize_attn(img)
elif task == 'pos':
self.visualize_pos(img)
if __name__ == '__main__':
parser = argparse.ArgumentParser('Visualize Self-Attention maps')
parser.add_argument('--arch', default='vit_small', type=str,
choices=['vit_tiny', 'vit_small', 'vit_base'], help='Architecture (support only ViT atm).')
parser.add_argument('--patch_size', default=1, type=int, help='Patch resolution of the model.')
parser.add_argument('--pretrained_weights', default='', type=str,
help="Path to pretrained weights to load.")
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument("--data_path", default=None, type=str, help="Path of the data to load.")
parser.add_argument("--data_size", default=(186,240), type=int, nargs="+", help="Resize image.")
parser.add_argument('--output_dir', default='.', help='Path where to save visualizations.')
parser.add_argument("--threshold", type=float, default=None, help="""We visualize masks
obtained by thresholding the self-attention maps to keep xx% of the mass.""")
parser.add_argument("--feat_type", choices=['pos', 'attn'], default='pos', help='Feature type to visualize.')
args = parser.parse_args()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# build model
model = vits.__dict__[args.arch](patch_size=args.patch_size, img_size=args.data_size)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.to(device)
if os.path.isfile(args.pretrained_weights):
state_dict = torch.load(args.pretrained_weights, map_location="cpu")
if args.checkpoint_key is not None and args.checkpoint_key in state_dict:
print(f"Take key {args.checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[args.checkpoint_key]
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
else:
print("Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate.")
sys.exit(1)
# open image
if args.data_path is None:
print(f"No data has been provided.")
sys.exit(1)
elif os.path.isfile(args.data_path):
img = np.load(args.data_path)
else:
print(f"Provided image path {args.data_path} is non valid.")
sys.exit(1)
img = torch.from_numpy(img).permute(2,0,1)
# make the image divisible by the patch size
w, h = img.shape[1] - img.shape[1] % args.patch_size, img.shape[2] - img.shape[2] % args.patch_size
img = img[:, :w, :h].unsqueeze(0).float()
w_featmap = img.shape[-3] // args.patch_size
h_featmap = img.shape[-2] // args.patch_size
visualizer = Visualizer(
model,
patch_size=(args.patch_size,240),
output_dir=args.output_dir,
threshold=args.threshold,
device=device
)
visualizer.visualize_feats(args.feat_type, img)