From 015fd75e0956674de2048becf4880542b950a104 Mon Sep 17 00:00:00 2001 From: star-nox Date: Mon, 25 Mar 2024 12:35:18 -0500 Subject: [PATCH] removed convo log code from beam folder --- ai_ta_backend/beam/nomic_logging.py | 391 ---------------------------- 1 file changed, 391 deletions(-) diff --git a/ai_ta_backend/beam/nomic_logging.py b/ai_ta_backend/beam/nomic_logging.py index 6d325738..0f278f4a 100644 --- a/ai_ta_backend/beam/nomic_logging.py +++ b/ai_ta_backend/beam/nomic_logging.py @@ -1,9 +1,6 @@ import datetime -import json import os -import time -import backoff import nomic import numpy as np import pandas as pd @@ -18,394 +15,6 @@ supabase_url=os.getenv('SUPABASE_URL'), # type: ignore supabase_key=os.getenv('SUPABASE_API_KEY')) # type: ignore -LOCK_EXCEPTIONS = [ - 'Project is locked for state access! Please wait until the project is unlocked to access embeddings.', - 'Project is locked for state access! Please wait until the project is unlocked to access data.', - 'Project is currently indexing and cannot ingest new datums. Try again later.' -] - - -def giveup_hdlr(e): - """ - Function to handle giveup conditions in backoff decorator - Args: - e: Exception raised by the decorated function - Returns: - True if we want to stop retrying, False otherwise - """ - (e_args,) = e.args - e_str = e_args['exception'] - - print("giveup_hdlr() called with exception:", e_str) - if e_str in LOCK_EXCEPTIONS: - return False - else: - sentry_sdk.capture_exception(e) - return True - - -def backoff_hdlr(details): - """ - Function to handle backup conditions in backoff decorator. - Currently just prints the details of the backoff. - """ - print( - "\nBacking off {wait:0.1f} seconds after {tries} tries, calling function {target} with args {args} and kwargs {kwargs}" - .format(**details)) - - -def backoff_strategy(): - """ - Function to define retry strategy. Is usualy defined in the decorator, - but passing parameters to it is giving errors. - """ - return backoff.expo(base=10, factor=1.5) - - -@backoff.on_exception(backoff_strategy, - Exception, - max_tries=5, - raise_on_giveup=False, - giveup=giveup_hdlr, - on_backoff=backoff_hdlr) -def log_convo_to_nomic(course_name: str, conversation) -> str: - nomic.login(os.getenv('NOMIC_API_KEY')) # login during start of flask app - NOMIC_MAP_NAME_PREFIX = 'Conversation Map for ' - """ - Logs conversation to Nomic. - 1. Check if map exists for given course - 2. Check if conversation ID exists - - if yes, delete and add new data point - - if no, add new data point - 3. Keep current logic for map doesn't exist - update metadata - """ - - print(f"in log_convo_to_nomic() for course: {course_name}") - print("type of conversation:", type(conversation)) - #conversation = json.loads(conversation) - messages = conversation['conversation']['messages'] - if 'user_email' not in conversation['conversation']: - user_email = "NULL" - else: - user_email = conversation['conversation']['user_email'] - conversation_id = conversation['conversation']['id'] - - # we have to upload whole conversations - # check what the fetched data looks like - pandas df or pyarrow table - # check if conversation ID exists in Nomic, if yes fetch all data from it and delete it. - # will have current QA and historical QA from Nomic, append new data and add_embeddings() - - project_name = NOMIC_MAP_NAME_PREFIX + course_name - start_time = time.monotonic() - emoji = "" - - try: - # fetch project metadata and embbeddings - project = AtlasProject(name=project_name, add_datums_if_exists=True) - - map_metadata_df = project.maps[1].data.df # type: ignore - map_embeddings_df = project.maps[1].embeddings.latent - # create a function which returns project, data and embeddings df here - map_metadata_df['id'] = map_metadata_df['id'].astype(int) - last_id = map_metadata_df['id'].max() - - if conversation_id in map_metadata_df.values: - # store that convo metadata locally - prev_data = map_metadata_df[map_metadata_df['conversation_id'] == conversation_id] - prev_index = prev_data.index.values[0] - embeddings = map_embeddings_df[prev_index - 1].reshape(1, 1536) - prev_convo = prev_data['conversation'].values[0] - prev_id = prev_data['id'].values[0] - created_at = pd.to_datetime(prev_data['created_at'].values[0]).strftime('%Y-%m-%d %H:%M:%S') - - # delete that convo data point from Nomic, and print result - print("Deleting point from nomic:", project.delete_data([str(prev_id)])) - - # prep for new point - first_message = prev_convo.split("\n")[1].split(": ")[1] - - # select the last 2 messages and append new convo to prev convo - messages_to_be_logged = messages[-2:] - for message in messages_to_be_logged: - if message['role'] == 'user': - emoji = "🙋 " - else: - emoji = "🤖 " - - if isinstance(message['content'], list): - text = message['content'][0]['text'] - else: - text = message['content'] - - prev_convo += "\n>>> " + emoji + message['role'] + ": " + text + "\n" - - # modified timestamp - current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") - - # update metadata - metadata = [{ - "course": course_name, - "conversation": prev_convo, - "conversation_id": conversation_id, - "id": last_id + 1, - "user_email": user_email, - "first_query": first_message, - "created_at": created_at, - "modified_at": current_time - }] - else: - print("conversation_id does not exist") - - # add new data point - user_queries = [] - conversation_string = "" - - first_message = messages[0]['content'] - if isinstance(first_message, list): - first_message = first_message[0]['text'] - user_queries.append(first_message) - - for message in messages: - if message['role'] == 'user': - emoji = "🙋 " - else: - emoji = "🤖 " - - if isinstance(message['content'], list): - text = message['content'][0]['text'] - else: - text = message['content'] - - conversation_string += "\n>>> " + emoji + message['role'] + ": " + text + "\n" - - # modified timestamp - current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") - - metadata = [{ - "course": course_name, - "conversation": conversation_string, - "conversation_id": conversation_id, - "id": last_id + 1, - "user_email": user_email, - "first_query": first_message, - "created_at": current_time, - "modified_at": current_time - }] - - # create embeddings - embeddings_model = OpenAIEmbeddings(openai_api_type=OPENAI_API_TYPE) # type: ignore - embeddings = embeddings_model.embed_documents(user_queries) - - # add embeddings to the project - create a new function for this - project = atlas.AtlasProject(name=project_name, add_datums_if_exists=True) - with project.wait_for_project_lock(): - project.add_embeddings(embeddings=np.array(embeddings), data=pd.DataFrame(metadata)) - project.rebuild_maps() - - print(f"⏰ Nomic logging runtime: {(time.monotonic() - start_time):.2f} seconds") - return f"Successfully logged for {course_name}" - - except Exception as e: - if str(e) == 'You must specify a unique_id_field when creating a new project.': - print("Attempting to create Nomic map...") - result = create_nomic_map(course_name, conversation) - print("result of create_nomic_map():", result) - else: - # raising exception again to trigger backoff and passing parameters to use in create_nomic_map() - raise Exception({"exception": str(e)}) - - - -def get_nomic_map(course_name: str, type: str): - """ - Returns the variables necessary to construct an iframe of the Nomic map given a course name. - We just need the ID and URL. - Example values: - map link: https://atlas.nomic.ai/map/ed222613-97d9-46a9-8755-12bbc8a06e3a/f4967ad7-ff37-4098-ad06-7e1e1a93dd93 - map id: f4967ad7-ff37-4098-ad06-7e1e1a93dd93 - """ - nomic.login(os.getenv('NOMIC_API_KEY')) # login during start of flask app - if type.lower() == 'document': - NOMIC_MAP_NAME_PREFIX = 'Document Map for ' - else: - NOMIC_MAP_NAME_PREFIX = 'Conversation Map for ' - - project_name = NOMIC_MAP_NAME_PREFIX + course_name - start_time = time.monotonic() - - try: - project = atlas.AtlasProject(name=project_name, add_datums_if_exists=True) - map = project.get_map(project_name) - - print(f"⏰ Nomic Full Map Retrieval: {(time.monotonic() - start_time):.2f} seconds") - return {"map_id": f"iframe{map.id}", "map_link": map.map_link} - except Exception as e: - # Error: ValueError: You must specify a unique_id_field when creating a new project. - if str(e) == 'You must specify a unique_id_field when creating a new project.': # type: ignore - print("Nomic map does not exist yet, probably because you have less than 20 queries/documents on your project: ", e) - else: - print("ERROR in get_nomic_map():", e) - sentry_sdk.capture_exception(e) - return {"map_id": None, "map_link": None} - - -def create_nomic_map(course_name: str, log_data: list): - """ - Creates a Nomic map for new courses and those which previously had < 20 queries. - 1. fetches supabase conversations for course - 2. appends current embeddings and metadata to it - 2. creates map if there are at least 20 queries - """ - nomic.login(os.getenv('NOMIC_API_KEY')) # login during start of flask app - NOMIC_MAP_NAME_PREFIX = 'Conversation Map for ' - - print(f"in create_nomic_map() for {course_name}") - # initialize supabase - supabase_client = supabase.create_client( # type: ignore - supabase_url=os.getenv('SUPABASE_URL'), # type: ignore - supabase_key=os.getenv('SUPABASE_API_KEY')) # type: ignore - - try: - # fetch all conversations with this new course (we expect <=20 conversations, because otherwise the map should be made already) - response = supabase_client.table("llm-convo-monitor").select("*").eq("course_name", course_name).execute() - data = response.data - df = pd.DataFrame(data) - - if len(data) < 19: - return None - else: - # get all queries for course and create metadata - user_queries = [] - metadata = [] - i = 1 - conversation_exists = False - - # current log details - log_messages = log_data['conversation']['messages'] # type: ignore - log_user_email = log_data['conversation']['user_email'] # type: ignore - log_conversation_id = log_data['conversation']['id'] # type: ignore - - for _index, row in df.iterrows(): - user_email = row['user_email'] - created_at = pd.to_datetime(row['created_at']).strftime('%Y-%m-%d %H:%M:%S') - convo = row['convo'] - messages = convo['messages'] - - first_message = messages[0]['content'] - if isinstance(first_message, list): - first_message = first_message[0]['text'] - - user_queries.append(first_message) - - # create metadata for multi-turn conversation - conversation = "" - for message in messages: - # string of role: content, role: content, ... - if message['role'] == 'user': # type: ignore - emoji = "🙋 " - else: - emoji = "🤖 " - - if isinstance(message['content'], list): - text = message['content'][0]['text'] - else: - text = message['content'] - - conversation += "\n>>> " + emoji + message['role'] + ": " + text + "\n" - - # append current chat to previous chat if convo already exists - if convo['id'] == log_conversation_id: - conversation_exists = True - - for m in log_messages: - if m['role'] == 'user': # type: ignore - emoji = "🙋 " - else: - emoji = "🤖 " - - if isinstance(m['content'], list): - text = m['content'][0]['text'] - else: - text = m['content'] - conversation += "\n>>> " + emoji + m['role'] + ": " + text + "\n" - - # adding modified timestamp - current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") - - # add to metadata - metadata_row = { - "course": row['course_name'], - "conversation": conversation, - "conversation_id": convo['id'], - "id": i, - "user_email": user_email, - "first_query": first_message, - "created_at": created_at, - "modified_at": current_time - } - metadata.append(metadata_row) - i += 1 - - # add current log as a new data point if convo doesn't exist - if not conversation_exists: - user_queries.append(log_messages[0]['content']) - conversation = "" - for message in log_messages: - if message['role'] == 'user': - emoji = "🙋 " - else: - emoji = "🤖 " - - if isinstance(message['content'], list): - text = message['content'][0]['text'] - else: - text = message['content'] - conversation += "\n>>> " + emoji + message['role'] + ": " + text + "\n" - - # adding timestamp - current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") - - metadata_row = { - "course": course_name, - "conversation": conversation, - "conversation_id": log_conversation_id, - "id": i, - "user_email": log_user_email, - "first_query": log_messages[0]['content'], - "created_at": current_time, - "modified_at": current_time - } - metadata.append(metadata_row) - - metadata = pd.DataFrame(metadata) - embeddings_model = OpenAIEmbeddings(openai_api_type=OPENAI_API_TYPE) # type: ignore - embeddings = embeddings_model.embed_documents(user_queries) - - # create Atlas project - project_name = NOMIC_MAP_NAME_PREFIX + course_name - index_name = course_name + "_convo_index" - project = atlas.map_embeddings( - embeddings=np.array(embeddings), - data=metadata, # type: ignore - this is the correct type, the func signature from Nomic is incomplete - id_field='id', - build_topic_model=True, - topic_label_field='first_query', - name=project_name, - colorable_fields=['conversation_id', 'first_query']) - project.create_index(index_name, build_topic_model=True) - return f"Successfully created Nomic map for {course_name}" - except Exception as e: - # Error: ValueError: You must specify a unique_id_field when creating a new project. - if str(e) == 'You must specify a unique_id_field when creating a new project.': # type: ignore - print("Nomic map does not exist yet, probably because you have less than 20 queries on your project: ", e) - else: - print("ERROR in create_nomic_map():", e) - sentry_sdk.capture_exception(e) - - return "failed" - - - ## -------------------------------- DOCUMENT MAP FUNCTIONS --------------------------------- ## def create_document_map(course_name: str):