diff --git a/WeedsTrainingCode.py b/WeedsTrainingCode.py new file mode 100644 index 00000000..e92f275e --- /dev/null +++ b/WeedsTrainingCode.py @@ -0,0 +1,383 @@ +import os +import torch +import torch.nn as nn +import torchvision.models as models +import torchvision.transforms as transforms +from torch.utils.data import DataLoader, Dataset +from PIL import Image +from sklearn.model_selection import StratifiedKFold +from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay +from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau # Added ReduceLROnPlateau scheduler +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sns +import logging +from torchvision.transforms import RandomApply # RandomApply for augmentations +from torch.optim import Adam # Adam optimizer +from torchvision.models import vgg16, densenet121 + + +# Setup logging +log_format = '%(asctime)s - %(levelname)s - %(message)s' +logging.basicConfig(filename='/Users/kavinjindel2004/Desktop/model_training2222.log', level=logging.INFO, format=log_format) + + +logging.info("Stage 1") +class_labels = { + "BedstrawWeeds": 0, + "Field penny-cressWeeds": 1, + "PlantainWeeds": 2, + "BindweedWeeds": 3, + "HenbitWeeds": 4, + "PurslaneWeeds": 5, + "BlackMedicWeeds": 6, + "HorseweedWeeds": 7, + "RagweedWeeds": 8, + "ChickWeeds": 9, + "KnotweedWeeds": 10, + "Shepherd_sPurseWeeds": 11, + "CloverWeeds": 12, + "KochiaWeeds": 13, + "SpeedwellWeeds": 14, + "CrabgrassWeeds": 15, + "LambsquartersWeeds": 16, + "ThistleWeeds": 17, + "CreepingCharlieWeeds": 18, + "NutgrassWeeds": 19, + "VelvetleafWeeds": 20, + "CurlyDockWeeds": 21, + "NutsedgeWeeds": 22, + "WildVioletsWeeds": 23, + "DandelionWeeds": 24, + "PineappleweedWeeds": 25, + "YellowWoodSorrelWeeds": 26 +} + + +class EarlyStopping: + def __init__(self, patience=20, path='checkpoint.pth', delta=0): + self.patience = patience + self.counter = 0 + self.best_score = None + self.early_stop = False + self.val_loss_min = np.Inf + self.delta = delta + self.path = path + + def __call__(self, val_loss, model): + score = -val_loss + if self.best_score is None: + self.best_score = score + self.save_checkpoint(val_loss, model) + elif score < self.best_score + self.delta: + self.counter += 1 + logging.info(f'EarlyStopping counter: {self.counter} out of {self.patience}') + if self.counter >= self.patience: + self.early_stop = True + else: + self.best_score = score + self.save_checkpoint(val_loss, model) + self.counter = 0 + + def save_checkpoint(self, val_loss, model): + torch.save(model.state_dict(), self.path) + self.val_loss_min = val_loss + +from PIL import ImageEnhance +logging.info("Stage 2") +class BinaryDataset(Dataset): + def __init__(self, root_dir, transform=None): + self.root_dir = root_dir + self.transform = transform + self.classes = list(class_labels.keys()) + self.img_list = [] + for class_name in self.classes: + class_dir = os.path.join(self.root_dir, class_name) + for filename in os.listdir(class_dir): + if filename.endswith(".jpg") and not filename.startswith("._"): + self.img_list.append((os.path.join(class_dir, filename), class_name)) + + + def __len__(self): + return len(self.img_list) + + def __getitem__(self, idx): + img_path, class_name = self.img_list[idx] + img = Image.open(img_path).convert("RGB") + + if self.transform is not None: + img = self.transform(img) + label = torch.tensor(class_labels[class_name], dtype=torch.long) + return img, label +logging.info("Stage 3") +# Path to your dataset +dataset_path = "/Users/kavinjindel2004/Downloads/DatasetSelfMade" +logging.info("Stage 4") + +# Transformations +transform = transforms.Compose([ + transforms.Resize((224, 224)), + RandomApply([ # Randomly applies the list of transforms with a given probability + transforms.RandomHorizontalFlip(), + transforms.RandomVerticalFlip(), + transforms.RandomRotation(15), + transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1) + ], p=0.5), # 50% chance to apply these augmentations + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) +]) + +logging.info("Stage 5") + +# Creating the dataset +dataset = BinaryDataset(dataset_path, transform=transform) +logging.info("Stage 6") + +# Define models to be used +model_names = ["resnet18"] +models = [models.resnet18] + + + +# Create folder for saved models +if not os.path.exists('/Users/kavinjindel2004/Desktop/saved_models'): + os.makedirs('/Users/kavinjindel2004/Desktop/saved_models') + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +batch_size = 16 +num_epochs = 60 +criterion = nn.CrossEntropyLoss() + +# Preparing for k-Fold Cross Validation +k_folds = 2 +kfold = StratifiedKFold(n_splits=k_folds, shuffle=True) +logging.info("Stage 7") + +# Extract labels for stratified splitting +labels = [label for _, label in dataset] + +# Dictionary to store accuracy for each model +model_acc_dict = {model_name: [] for model_name in model_names} +model_f1_dict = {model_name: [] for model_name in model_names} +logging.info("Stage 8") + +# K-Fold Cross Validation +for fold, (train_ids, val_test_ids) in enumerate(kfold.split(np.zeros(len(dataset)), labels)): + # Split validation and test sets + half_split = int(0.5 * len(val_test_ids)) + val_ids = val_test_ids[:half_split] + test_ids = val_test_ids[half_split:] + + # logging.info + logging.info(f'FOLD {fold}') + logging.info('--------------------------------') + + # Sample elements randomly from a given list of ids, no replacement. + train_subsampler = torch.utils.data.SubsetRandomSampler(train_ids) + val_subsampler = torch.utils.data.SubsetRandomSampler(val_ids) + test_subsampler = torch.utils.data.SubsetRandomSampler(test_ids) + + # Define data loaders for training, validation and testing data in this fold + trainloader = torch.utils.data.DataLoader( + dataset, + batch_size=batch_size, sampler=train_subsampler) + valloader = torch.utils.data.DataLoader( + dataset, + batch_size=batch_size, sampler=val_subsampler) + testloader = torch.utils.data.DataLoader( + dataset, + batch_size=batch_size, sampler=test_subsampler) + + # Init the neural network + for model_name, model_func in zip(model_names, models): + model = model_func(pretrained=True) + if model_name == "alexnet": + num_ftrs = model.classifier[6].in_features + model.classifier[6] = nn.Linear(num_ftrs, len(class_labels)) + elif model_name == "efficientnet": + num_ftrs = model._fc.in_features + model._fc = nn.Linear(num_ftrs, len(class_labels)) + elif model_name == "densenet121": + num_ftrs = model.classifier.in_features + model.classifier = nn.Linear(num_ftrs, len(class_labels)) + else: + num_ftrs = model.fc.in_features + model.fc = nn.Linear(num_ftrs, len(class_labels)) + + + + model = model.to(device) + optimizer = Adam(model.parameters(), lr=0.001) # Change SGD to Adam, often performs better + scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True) # Change to ReduceLROnPlateau which is often better for CNNs + + early_stopping = EarlyStopping(patience=20, path=f'/Users/kavinjindel2004/Desktop/saved_models/{model_name}_checkpoint_fold_{fold}.pth') + + # Training Loop + for epoch in range(0, num_epochs): + logging.info(f'Starting epoch {epoch+1} for {model_name}') + current_loss = 0.0 + model.train() + for i, (inputs, labels) in enumerate(trainloader, 0): + inputs = inputs.to(device) + labels = labels.to(device) + optimizer.zero_grad() + outputs = model(inputs) + loss = criterion(outputs, labels) + loss.backward() + optimizer.step() + current_loss += loss.item() + if i % 10 == 9: + logging.info('Loss after mini-batch %5d: %.3f' % (i + 1, current_loss / 10)) + current_loss = 0.0 + logging.info('Training process has finished for epoch.') + # Validate the model + model.eval() + val_correct, val_total = 0, 0 + val_labels = [] + val_predictions = [] + with torch.no_grad(): + for i, (inputs, labels) in enumerate(valloader, 0): + # Put inputs and labels on GPU + inputs = inputs.to(device) + labels = labels.to(device) + + # Generate outputs + outputs = model(inputs) + + # Set total and correct + _, predicted = torch.max(outputs.data, 1) + val_total += labels.size(0) + val_correct += (predicted == labels).sum().item() + + # Append batch prediction results + val_labels += labels.tolist() + val_predictions += predicted.tolist() + + # Compute loss and accuracy + val_loss = criterion(outputs, labels) + val_accuracy = val_correct / val_total + + logging.info(f'Validation Loss: {val_loss:.4f}, Accuracy: {val_accuracy:.4f}') + + # Adjust the learning rate + scheduler.step(val_loss) + + # Early Stopping + early_stopping(val_loss, model) + if early_stopping.early_stop: + logging.info("Early stopping") + # load the last checkpoint with the best model + model.load_state_dict(torch.load(f'/Users/kavinjindel2004/Desktop/saved_models/{model_name}_checkpoint_fold_{fold}.pth')) + + break + + # Evaluation for this fold + correct, total = 0, 0 + all_labels = [] + all_predictions = [] + model.eval() # set the model to evaluation mode + with torch.no_grad(): + + # Iterate over the test data and generate predictions + for i, (inputs, labels) in enumerate(testloader, 0): + + # Put inputs and labels on GPU + inputs = inputs.to(device) + labels = labels.to(device) + + # Generate outputs + outputs = model(inputs) + + # Set total and correct + _, predicted = torch.max(outputs.data, 1) + total += labels.size(0) + correct += (predicted == labels).sum().item() + + # Append batch prediction results + all_labels += labels.tolist() + all_predictions += predicted.tolist() + + # logging.info accuracy + accuracy = correct / total + model_acc_dict[model_name].append(accuracy) + logging.info('Accuracy for fold %d: %.2f %%' % (fold, accuracy*100)) + + # Compute precision, recall, confusion matrix and logging.info + precision = precision_score(all_labels, all_predictions, average='weighted') + recall = recall_score(all_labels, all_predictions, average='weighted') + conf_matrix = confusion_matrix(all_labels, all_predictions) + + logging.info('Precision for fold %d: %.2f' % (fold, precision)) + logging.info('Recall for fold %d: %.2f' % (fold, recall)) + logging.info('Confusion Matrix for fold %d: \n%s' % (fold, str(conf_matrix))) + + + # Compute f1_score and logging.info + f1 = f1_score(all_labels, all_predictions, average='weighted') + model_f1_dict[model_name].append(f1) + logging.info('F1 Score for fold %d: %.2f' % (fold, f1)) + + + logging.info('--------------------------------') + logging.info('--------------------------------') + +# Plotting the accuracies and F1 scores for each model across folds +plt.figure(figsize=(12,6)) +for model_name, acc_list in model_acc_dict.items(): + plt.plot(range(1, k_folds + 1), acc_list, marker='o', markersize=5, label=model_name) +plt.xlabel('Fold Number') +plt.ylabel('Accuracy') +plt.title('Comparison of Model Accuracies Across Folds') +plt.legend() +plt.grid() +plt.savefig('/Users/kavinjindel2004/Desktop/model_accuracies.png') +plt.show() + +plt.figure(figsize=(12,6)) +for model_name, f1_list in model_f1_dict.items(): + plt.plot(range(1, k_folds + 1), f1_list, marker='o', markersize=5, label=model_name) +plt.xlabel('Fold Number') +plt.ylabel('F1 Score') +plt.title('Comparison of Model F1 Scores Across Folds') +plt.legend() +plt.grid() +plt.savefig('/Users/kavinjindel2004/Desktop/model_F1scores.png') +plt.show() + +logging.info('Training, Validation, and Testing finished') + +def predict_image(image_path, model, transform, device): + + model.eval() + + if isinstance(image_path, str): + image_paths = [image_path] + else: + image_paths = image_path + + predictions = [] + for path in image_paths: + img = Image.open(path).convert("RGB") + img = transform(img) + img = img.unsqueeze(0).to(device) + + with torch.no_grad(): + outputs = model(img) + _, predicted = torch.max(outputs, 1) + prediction_label = list(class_labels.keys())[predicted.item()] + predictions.append(prediction_label) + + return predictions + +if __name__ == "__main__": + + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + model.to(device) + + image_path = "/path/to/your/image.jpg" + + prediction = predict_image(image_path, model, transform, device) + print("Predicted class:", prediction) diff --git a/requirements.txt b/requirements.txt index a841d087..223baf3a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -47,6 +47,14 @@ pytesseract==0.3.10 # image OCR openpyxl==3.1.2 # excel networkx==3.2.1 # unused part of excel partitioning :( python-pptx==0.6.23 +torch==1.8.0 +torchvision==0.9.0 +Pillow==8.0.0 +numpy==1.19.2 +pandas==1.1.3 +matplotlib==3.3.2 +seaborn==0.11.0 +scikit-learn==0.23.2 unstructured==0.10.29 # causes huge ~5.3 GB of installs. Probbably from onnx: https://github.com/Unstructured-IO/unstructured/blob/ad14321016533dc03c1782f6ebea00bc9c804846/requirements/extra-pdf-image.in#L4 # unstructured[xlsx,image,pptx]==0.10.29 # causes huge ~5.3 GB of installs. Probbably from onnx: https://github.com/Unstructured-IO/unstructured/blob/ad14321016533dc03c1782f6ebea00bc9c804846/requirements/extra-pdf-image.in#L4 @@ -56,4 +64,4 @@ pydantic==1.10.13 # pydantic v1 works better for ray ray==2.8.1 posthog==3.1.0 sentry-sdk==1.39.1 -# newrelic==9.3.0 \ No newline at end of file +# newrelic==9.3.0