-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreranker.py
26 lines (22 loc) · 1.33 KB
/
reranker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# def re_ranker(user_question = "", response_list = []):
# rerank_msmarco_model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
# rerank_msmarco_tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
# features = rerank_msmarco_tokenizer([user_question] * len(response_list), response_list, padding=True, truncation=True, return_tensors="pt")
# rerank_msmarco_model.eval()
# with torch.no_grad():
# scores = rerank_msmarco_model(**features).logits
# return scores
class re_ranker():
def __init__(self,device):
super(re_ranker,self).__init__()
self.device = device
self.model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2').to(self.device)
self.model.eval()
self.tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-6-v2')
def rank(self,user_question:str = "", response_list = [] ):
features = self.tokenizer([user_question] * len(response_list), response_list, padding=True, truncation=True, return_tensors="pt").to(self.device)
with torch.no_grad():
scores = self.model(**features).logits.to("cpu")
return scores