-
Notifications
You must be signed in to change notification settings - Fork 1
/
run.py
148 lines (123 loc) · 6.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import warnings
warnings.filterwarnings('ignore')
import argparse, torch, random
from exp.exp_forecasting import Exp_Forecast
from exp.config import DataConfig
import numpy as np
from datetime import datetime
def initial_setup(args):
# set random seed
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
# setup gpu devices
use_gpu = True if torch.cuda.is_available() and not args.no_gpu else False
if use_gpu and args.use_multi_gpu:
args.devices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
# setup feature numbers
args.n_features = len(set(DataConfig.static_reals+DataConfig.observed_reals+DataConfig.targets))
args.enc_in = args.dec_in = args.c_out = args.n_features
args.n_targets = len(DataConfig.targets)
def main(args):
start = datetime.now()
print(f'Experiment started at {start}')
initial_setup(args)
print('Args in experiment:')
print(args)
setting = stringify_setting(args)
exp = Exp_Forecast(args, setting)
if args.test:
print(f'>>>>>>> testing : {setting} <<<<<<<<')
exp.test(setting, load_model=True, flag='test')
exp.test(setting, flag='val')
exp.test(setting, flag='train')
else:
# setting record of experiments
print(f'>>>>>>> training : {setting} >>>>>>>>>')
exp.train(setting)
print(f'>>>>>>> testing : {setting} <<<<<<<<')
exp.test(setting, flag='test')
exp.test(setting, flag='val')
exp.test(setting, flag='train')
torch.cuda.empty_cache()
print(f'Experiment ended at {datetime.now()}, runtime {datetime.now() - start}')
def stringify_setting(args):
setting = f"{args.model}_{args.data_path.split('.')[0]}"
if args.des and args.des != '':
setting += '_des_' + args.des
return setting
def get_parser():
parser = argparse.ArgumentParser(
description='Run Timeseries Models',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# basic config
parser.add_argument('--test', action='store_true', help='test the checkpointed best model, train otherwise')
parser.add_argument('--model', type=str, required=True, default='DLinear',
choices=(Exp_Forecast.model_dict.keys()), help='model name')
parser.add_argument('--seed', default=7, help='random seed')
# data loader
parser.add_argument('--root_path', type=str, default='./dataset/processed/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='Top_20.csv', help='data file')
parser.add_argument('--result_path', type=str, default='results', help='result folder')
parser.add_argument('--freq', type=str, default='d', choices=['s', 't', 'h', 'd', 'b', 'w', 'm'],
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, \
b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--no-scale', action='store_true', help='do not scale the dataset')
# forecasting task
parser.add_argument('--seq_len', type=int, default=14, help='input sequence length')
parser.add_argument('--label_len', type=int, default=7, help='start token length')
parser.add_argument('--pred_len', type=int, default=14, help='prediction sequence length')
# model define
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock')
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception')
# parser.add_argument('--enc_in', type=int, default=10, help='encoder input size, equal to number of past fetures.')
# parser.add_argument('--dec_in', type=int, default=10, help='decoder input size, same as enc_in')
# parser.add_argument('--c_out', type=int, default=10, help='output size, same as enc_in')
parser.add_argument('--d_model', type=int, default=64, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=4, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=256, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=7, help='window size of moving average')
parser.add_argument('--factor', type=int, default=3, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
)
parser.add_argument('--dropout', type=float, default=0.1, help='dropout')
parser.add_argument('--embed', type=str, default='timeF', choices=['timeF', 'fixed', 'learned'],
help='time features encoding')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
# optimization
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='', help='exp description')
parser.add_argument('--loss', type=str, default='MSE', help='loss function')
parser.add_argument('--lradj', choices=['type1', 'type2'], default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training')
# GPU
parser.add_argument('--no_gpu', action='store_true', help='do not use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus')
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
# de-stationary projector params
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[64, 64],
help='hidden layer dimensions of projector (List)')
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector')
parser.add_argument('--disable_progress', action='store_true', help='disable progress bar')
return parser
def set_random_seed(seed):
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args)