Our dataloader follows Detectron2 that contains:
(1) A dataset registrator
(2) A dataset mapper
We modify the dataset registration and mapper for custom datasets.
We assume all the datasets are stored under:
.xdecoder_data
# Prepare panoptic_train2017, panoptic_semseg_train2017 exactly the same as [Mask2Fomer](https://github.com/facebookresearch/Mask2Former/tree/main/datasets)
# (SEEM & X-Decoder) Download additional logistic and custom annotation files to .xdecoder_data/coco/annotations
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/caption_class_similarity.pth
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/captions_train2017_filtrefgumdval_filtvlp.json
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/grounding_train2017_filtrefgumdval_filtvlp.json
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/panoptic_train2017_filtrefgumdval_filtvlp.json
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/refcocog_umd_val.json
wget https://github.com/peteanderson80/coco-caption/blob/master/annotations/captions_val2014.json
# (SEEM) Download LVIS annotations for mask preparation
wget https://huggingface.co/xdecoder/SEEM/resolve/main/coco_train2017_filtrefgumdval_lvis.json
After dataset preparation, the dataset structure would be:
.xdecoder_data
└── coco/
├── train2017/
├── val2017/
├── panoptic_train2017/
├── panoptic_semseg_train2017/
├── panoptic_val2017/
├── panoptic_semseg_val2017/
└── annotations/
├── refcocog_umd_val.json
├── captions_val2014.json
├── panoptic_val2017.json
├── caption_class_similarity.pth
├── panoptic_train2017_filtrefgumdval_filtvlp.json
└── grounding_train2017_filtrefgumdval_filtvlp.json
└── lvis/
└── coco_train2017_filtrefgumdval_lvis.json
We follow the exact data preparation for the image text pairs data with ViLT.
# The pretrained arrow file are put under .xdecoder_data/pretrain_arrows_code224 with the following list of files.
["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] + ["code224_vg.arrow"] + [f"code224_sbu_{i}.arrow" for i in range(9)] + [f"code224_conceptual_caption_train_{i}.arrow" for i in range(31)]
# ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] are originated from ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] with deletion of coco val2017 overlapped images to avoid information leakage.
To get quick started:
# Download coco karparthy test set (we hack the training data to be coco_caption_karpathy_test.arrow only for quick start in the codebase)
wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/coco_caption_karpathy_test.arrow
After dataset preparation, the dataset structure would be:
.xdecoder_data
└── pretrain_arrows_code224/
├── coco_caption_karpathy_test.arrow
├── *filtcoco2017val_caption_karpathy_train.arrow
├── ...
├── *code224_vg.arrow
├── *code224_sbu_0.arrow
├── ...
├── *code224_conceptual_caption_train_0.arrow
└── ...
* Those datasets are optional for debugging the pipeline. ! NEED to add back when you are training the model.
NOTE:
There are overlap between COCO2017, COCO-Karpathy and REF-COCO dataset, and ref-coco is all overlapped with the COCO2017 training data, we have exclude the refcocog-umd validation, coco-karpathy test split during training.Please refer to COCO Preparation on line.
Please Refer to Mask2Former.
Please download the 10k split of BDD100k at https://doc.bdd100k.com/download.html#id1
Please follow the instruction on RITM
After dataset preparation, the dataset structure would be:
.xdecoder_data
└── PascalVOC/
├── Annotations/
├── ImageSets
├── JPEGImages/
├── SegmentationClass/
└── SegmentationObject/