forked from open-mmlab/mmyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppyoloe_to_mmyolo.py
184 lines (169 loc) · 7.56 KB
/
ppyoloe_to_mmyolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
import pickle
from collections import OrderedDict
import torch
def convert_bn(k: str):
name = k.replace('._mean',
'.running_mean').replace('._variance', '.running_var')
return name
def convert_repvgg(k: str):
if '.conv2.conv1.' in k:
name = k.replace('.conv2.conv1.', '.conv2.rbr_dense.')
return name
elif '.conv2.conv2.' in k:
name = k.replace('.conv2.conv2.', '.conv2.rbr_1x1.')
return name
else:
return k
def convert(src: str, dst: str, imagenet_pretrain: bool = False):
with open(src, 'rb') as f:
model = pickle.load(f)
new_state_dict = OrderedDict()
if imagenet_pretrain:
for k, v in model.items():
if '@@' in k:
continue
if 'stem.' in k:
# backbone.stem.conv1.conv.weight
# -> backbone.stem.0.conv.weight
org_ind = k.split('.')[1][-1]
new_ind = str(int(org_ind) - 1)
name = k.replace('stem.conv%s.' % org_ind,
'stem.%s.' % new_ind)
else:
# backbone.stages.1.conv2.bn._variance
# -> backbone.stage2.0.conv2.bn.running_var
org_stage_ind = k.split('.')[1]
new_stage_ind = str(int(org_stage_ind) + 1)
name = k.replace('stages.%s.' % org_stage_ind,
'stage%s.0.' % new_stage_ind)
name = convert_repvgg(name)
if '.attn.' in k:
name = name.replace('.attn.fc.', '.attn.fc.conv.')
name = convert_bn(name)
name = 'backbone.' + name
new_state_dict[name] = torch.from_numpy(v)
else:
for k, v in model.items():
name = k
if k.startswith('backbone.'):
if '.stem.' in k:
# backbone.stem.conv1.conv.weight
# -> backbone.stem.0.conv.weight
org_ind = k.split('.')[2][-1]
new_ind = str(int(org_ind) - 1)
name = k.replace('.stem.conv%s.' % org_ind,
'.stem.%s.' % new_ind)
else:
# backbone.stages.1.conv2.bn._variance
# -> backbone.stage2.0.conv2.bn.running_var
org_stage_ind = k.split('.')[2]
new_stage_ind = str(int(org_stage_ind) + 1)
name = k.replace('.stages.%s.' % org_stage_ind,
'.stage%s.0.' % new_stage_ind)
name = convert_repvgg(name)
if '.attn.' in k:
name = name.replace('.attn.fc.', '.attn.fc.conv.')
name = convert_bn(name)
elif k.startswith('neck.'):
# fpn_stages
if k.startswith('neck.fpn_stages.'):
# neck.fpn_stages.0.0.conv1.conv.weight
# -> neck.reduce_layers.2.0.conv1.conv.weight
if k.startswith('neck.fpn_stages.0.0.'):
name = k.replace('neck.fpn_stages.0.0.',
'neck.reduce_layers.2.0.')
if '.spp.' in name:
name = name.replace('.spp.conv.', '.spp.conv2.')
# neck.fpn_stages.1.0.conv1.conv.weight
# -> neck.top_down_layers.0.0.conv1.conv.weight
elif k.startswith('neck.fpn_stages.1.0.'):
name = k.replace('neck.fpn_stages.1.0.',
'neck.top_down_layers.0.0.')
elif k.startswith('neck.fpn_stages.2.0.'):
name = k.replace('neck.fpn_stages.2.0.',
'neck.top_down_layers.1.0.')
else:
raise NotImplementedError('Not implemented.')
name = name.replace('.0.convs.', '.0.blocks.')
elif k.startswith('neck.fpn_routes.'):
# neck.fpn_routes.0.conv.weight
# -> neck.upsample_layers.0.0.conv.weight
index = k.split('.')[2]
name = 'neck.upsample_layers.' + index + '.0.' + '.'.join(
k.split('.')[-2:])
name = name.replace('.0.convs.', '.0.blocks.')
elif k.startswith('neck.pan_stages.'):
# neck.pan_stages.0.0.conv1.conv.weight
# -> neck.bottom_up_layers.1.0.conv1.conv.weight
ind = k.split('.')[2]
name = k.replace(
'neck.pan_stages.' + ind, 'neck.bottom_up_layers.' +
('0' if ind == '1' else '1'))
name = name.replace('.0.convs.', '.0.blocks.')
elif k.startswith('neck.pan_routes.'):
# neck.pan_routes.0.conv.weight
# -> neck.downsample_layers.0.conv.weight
ind = k.split('.')[2]
name = k.replace(
'neck.pan_routes.' + ind, 'neck.downsample_layers.' +
('0' if ind == '1' else '1'))
name = name.replace('.0.convs.', '.0.blocks.')
else:
raise NotImplementedError('Not implement.')
name = convert_repvgg(name)
name = convert_bn(name)
elif k.startswith('yolo_head.'):
if ('anchor_points' in k) or ('stride_tensor' in k):
continue
if 'proj_conv' in k:
name = k.replace('yolo_head.proj_conv.',
'bbox_head.head_module.proj_conv.')
else:
for org_key, rep_key in [
[
'yolo_head.stem_cls.',
'bbox_head.head_module.cls_stems.'
],
[
'yolo_head.stem_reg.',
'bbox_head.head_module.reg_stems.'
],
[
'yolo_head.pred_cls.',
'bbox_head.head_module.cls_preds.'
],
[
'yolo_head.pred_reg.',
'bbox_head.head_module.reg_preds.'
]
]:
name = name.replace(org_key, rep_key)
name = name.split('.')
ind = name[3]
name[3] = str(2 - int(ind))
name = '.'.join(name)
name = convert_bn(name)
else:
continue
new_state_dict[name] = torch.from_numpy(v)
data = {'state_dict': new_state_dict}
torch.save(data, dst)
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument(
'--src',
default='ppyoloe_plus_crn_s_80e_coco.pdparams',
help='src ppyoloe model path')
parser.add_argument(
'--dst', default='mmppyoloe_plus_s.pt', help='save path')
parser.add_argument(
'--imagenet-pretrain',
action='store_true',
default=False,
help='Load model pretrained on imagenet dataset which only '
'have weight for backbone.')
args = parser.parse_args()
convert(args.src, args.dst, args.imagenet_pretrain)
if __name__ == '__main__':
main()