forked from NaJaeMin92/pytorch-DANN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
136 lines (109 loc) · 5.21 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import numpy as np
from kannata_mnist import KannadaMNISTDataset
from model import Discriminator
from utils import set_model_mode
from torchvision import transforms
from torch.utils.data import DataLoader
base_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
kannada_mnist_test = KannadaMNISTDataset(csv_file='/content/pytorch-DANN/test.py', transform=base_transform)
kannada_mnist_loader = DataLoader(kannada_mnist_test, batch_size=32, shuffle=False)
def unknown_accuracy(outputs, labels):
max_preds = torch.max(torch.softmax(outputs, dim=1), dim=1)
correct_unknowns = (max_preds.values < 0.7).sum().item()
total = labels.size(0)
return correct_unknowns
def test_unknown_accuracy_for_kannada(model, dataloader, encoder, classifier):
model.eval()
correct_unknowns = 0
total = 0
with torch.no_grad():
for inputs, labels in dataloader:
inputs = inputs.cuda()
features = encoder(inputs)
outputs = classifier(features)
correct_unknowns += unknown_accuracy(outputs,labels)
total += inputs.size(0)
unknown_acc = correct_unknowns / total if total > 0 else 0
print(correct_unknowns,total, unknown_acc)
return correct_unknowns,total, unknown_acc
def tester(encoder, classifier, discriminator, source_test_loader, target_test_loader, training_mode):
encoder.cuda()
classifier.cuda()
set_model_mode('eval', [encoder, classifier])
if training_mode == 'DANN':
discriminator.cuda()
set_model_mode('eval', [discriminator])
domain_correct = 0
source_correct = 0
target_correct = 0
correct_kannada,total_kannada, kannada_unknown_accuracy = test_unknown_accuracy_for_kannada(classifier, kannada_mnist_loader,encoder, classifier)
for batch_idx, (source_data, target_data) in enumerate(zip(source_test_loader, target_test_loader)):
p = float(batch_idx) / len(source_test_loader)
alpha = 2. / (1. + np.exp(-10 * p)) - 1
# Process source and target data
source_image, source_label = process_data(source_data, expand_channels=True)
target_image, target_label = process_data(target_data)
# Compute source and target predictions
source_pred = compute_output(encoder, classifier, source_image, alpha=None)
target_pred = compute_output(encoder, classifier, target_image, alpha=None)
# Update correct counts
source_correct += source_pred.eq(source_label.data.view_as(source_pred)).sum().item()
target_correct += target_pred.eq(target_label.data.view_as(target_pred)).sum().item()
if training_mode == 'DANN':
# Process combined images for domain classification
combined_image = torch.cat((source_image, target_image), 0)
domain_labels = torch.cat((torch.zeros(source_label.size(0), dtype=torch.long),
torch.ones(target_label.size(0), dtype=torch.long)), 0).cuda()
# Compute domain predictions
domain_pred = compute_output(encoder, discriminator, combined_image, alpha=alpha)
domain_correct += domain_pred.eq(domain_labels.data.view_as(domain_pred)).sum().item()
source_dataset_len = len(source_test_loader.dataset)
target_dataset_len = len(target_test_loader.dataset)
accuracies = {
"Source": {
"correct": source_correct,
"total": source_dataset_len,
"accuracy": calculate_accuracy(source_correct, source_dataset_len)
},
"Target": {
"correct": target_correct,
"total": target_dataset_len,
"accuracy": calculate_accuracy(target_correct, target_dataset_len)
},
"Kannada Unknown": {
"correct": correct_kannada,
"total": total_kannada,
"accuracy": kannada_unknown_accuracy * 100
}
}
if training_mode == 'DANN':
accuracies["Domain"] = {
"correct": domain_correct,
"total": source_dataset_len + target_dataset_len,
"accuracy": calculate_accuracy(domain_correct, source_dataset_len + target_dataset_len)
}
print_accuracy(training_mode, accuracies)
return accuracies
def process_data(data, expand_channels=False):
images, labels = data
images, labels = images.cuda(), labels.cuda()
if expand_channels:
images = images.repeat(1, 3, 1, 1) # Repeat channels to convert to 3-channel images
return images, labels
def compute_output(encoder, classifier, images, alpha=None):
features = encoder(images)
if isinstance(classifier, Discriminator):
outputs = classifier(features, alpha) # Domain classifier
else:
outputs = classifier(features) # Category classifier
preds = outputs.data.max(1, keepdim=True)[1]
return preds
def calculate_accuracy(correct, total):
return 100. * correct / total
def print_accuracy(training_mode, accuracies):
print(f"Test Results on {training_mode}:")
for key, value in accuracies.items():
print(f"{key} Accuracy: {value['correct']}/{value['total']} ({value['accuracy']:.2f}%)")