Skip to content

Commit d2e5e31

Browse files
authored
The sum of the reciprocals of the triangular numbers is 2 (#1665)
Completes #1606, the 42nd of the list of 100 theorems.
1 parent 90e19de commit d2e5e31

15 files changed

+536
-42
lines changed

src/analysis/convergent-series-metric-abelian-groups.lagda.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -39,6 +39,15 @@ module _
3939
{l1 l2 : Level} (G : Metric-Ab l1 l2) (σ : series-Metric-Ab G)
4040
where
4141
42+
is-sum-prop-series-Metric-Ab : type-Metric-Ab G → Prop l2
43+
is-sum-prop-series-Metric-Ab =
44+
is-limit-prop-sequence-Metric-Space
45+
( metric-space-Metric-Ab G)
46+
( partial-sum-series-Metric-Ab G σ)
47+
48+
is-sum-series-Metric-Ab : type-Metric-Ab G → UU l2
49+
is-sum-series-Metric-Ab s = type-Prop (is-sum-prop-series-Metric-Ab s)
50+
4251
is-convergent-prop-series-Metric-Ab : Prop (l1 ⊔ l2)
4352
is-convergent-prop-series-Metric-Ab =
4453
subtype-convergent-sequence-Metric-Space

src/elementary-number-theory.lagda.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -122,6 +122,7 @@ open import elementary-number-theory.maximum-rational-numbers public
122122
open import elementary-number-theory.maximum-standard-finite-types public
123123
open import elementary-number-theory.mediant-integer-fractions public
124124
open import elementary-number-theory.mersenne-primes public
125+
open import elementary-number-theory.metric-additive-group-of-rational-numbers public
125126
open import elementary-number-theory.minima-and-maxima-rational-numbers public
126127
open import elementary-number-theory.minimum-natural-numbers public
127128
open import elementary-number-theory.minimum-positive-rational-numbers public

src/elementary-number-theory/addition-rational-numbers.lagda.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -325,9 +325,9 @@ abstract
325325

326326
```agda
327327
abstract
328-
succ-rational-int-ℕ :
329-
(n : ℕ) → succ-ℚ (rational-ℤ (int-ℕ n)) = rational-ℤ (int-ℕ (succ-ℕ n))
330-
succ-rational-int-ℕ n = succ-rational-ℤ _ ∙ ap rational-ℤ (succ-int-ℕ n)
328+
succ-rational-ℕ :
329+
(n : ℕ) → succ-ℚ (rational-ℕ n) = rational-ℕ (succ-ℕ n)
330+
succ-rational-ℕ n = succ-rational-ℤ _ ∙ ap rational-ℤ (succ-int-ℕ n)
331331
```
332332

333333
## See also

src/elementary-number-theory/arithmetic-sequences-positive-rational-numbers.lagda.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ module _
153153
compute-standard-arithmetic-sequence-ℚ⁺ (succ-ℕ n) =
154154
( ap
155155
( add-ℚ (rational-ℚ⁺ a))
156-
( ( ap (mul-ℚ' (rational-ℚ⁺ d)) (inv (succ-rational-int-ℕ n))) ∙
156+
( ( ap (mul-ℚ' (rational-ℚ⁺ d)) (inv (succ-rational-ℕ n))) ∙
157157
( mul-left-succ-ℚ (rational-ℕ n) (rational-ℚ⁺ d)) ∙
158158
( commutative-add-ℚ
159159
( rational-ℚ⁺ d)

src/elementary-number-theory/difference-rational-numbers.lagda.md

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -187,3 +187,19 @@ abstract
187187
= rational-ℤ (x -ℤ y)
188188
by add-rational-ℤ x (neg-ℤ y)
189189
```
190+
191+
### The difference of the successor of a rational number and the rational number is one
192+
193+
```agda
194+
abstract
195+
diff-succ-ℚ : (q : ℚ) → succ-ℚ q -ℚ q = one-ℚ
196+
diff-succ-ℚ q =
197+
equational-reasoning
198+
(one-ℚ +ℚ q) -ℚ q
199+
= one-ℚ +ℚ (q -ℚ q)
200+
by associative-add-ℚ _ _ _
201+
= one-ℚ +ℚ zero-ℚ
202+
by ap-add-ℚ refl (right-inverse-law-add-ℚ q)
203+
= one-ℚ
204+
by right-unit-law-add-ℚ _
205+
```

src/elementary-number-theory/distance-rational-numbers.lagda.md

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -64,6 +64,22 @@ abstract
6464
inv (abs-neg-ℚ _) ∙ ap abs-ℚ (distributive-neg-diff-ℚ _ _)
6565
```
6666

67+
### Negation preserves distance
68+
69+
```agda
70+
abstract
71+
dist-neg-ℚ : (p q : ℚ) → dist-ℚ (neg-ℚ p) (neg-ℚ q) = dist-ℚ p q
72+
dist-neg-ℚ p q =
73+
equational-reasoning
74+
abs-ℚ (neg-ℚ p -ℚ neg-ℚ q)
75+
= abs-ℚ (neg-ℚ p +ℚ q)
76+
by ap abs-ℚ (ap-add-ℚ refl (neg-neg-ℚ q))
77+
= abs-ℚ (q -ℚ p)
78+
by ap abs-ℚ (commutative-add-ℚ _ _)
79+
= dist-ℚ p q
80+
by commutative-dist-ℚ q p
81+
```
82+
6783
### A rational number's distance from itself is zero
6884

6985
```agda
Lines changed: 41 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
# The metric additive group of rational numbers
2+
3+
```agda
4+
module elementary-number-theory.metric-additive-group-of-rational-numbers where
5+
```
6+
7+
<details><summary>Imports</summary>
8+
9+
```agda
10+
open import analysis.metric-abelian-groups
11+
12+
open import elementary-number-theory.addition-rational-numbers
13+
open import elementary-number-theory.additive-group-of-rational-numbers
14+
open import elementary-number-theory.rational-numbers
15+
16+
open import foundation.dependent-pair-types
17+
open import foundation.universe-levels
18+
19+
open import metric-spaces.metric-space-of-rational-numbers
20+
open import metric-spaces.metric-spaces
21+
```
22+
23+
</details>
24+
25+
## Idea
26+
27+
[Addition](elementary-number-theory.addition-rational-numbers.md) on the
28+
[rational numbers](elementary-number-theory.rational-numbers.md) forms a
29+
[metric abelian group](analysis.metric-abelian-groups.md).
30+
31+
## Definition
32+
33+
```agda
34+
metric-ab-add-ℚ : Metric-Ab lzero lzero
35+
metric-ab-add-ℚ =
36+
( abelian-group-add-ℚ ,
37+
pseudometric-structure-Metric-Space metric-space-ℚ ,
38+
is-extensional-pseudometric-space-ℚ ,
39+
is-isometry-neg-ℚ ,
40+
is-isometry-add-ℚ)
41+
```

src/elementary-number-theory/multiplication-positive-rational-numbers.lagda.md

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,7 @@ open import elementary-number-theory.strict-inequality-integers
2828
open import elementary-number-theory.strict-inequality-positive-rational-numbers
2929
open import elementary-number-theory.strict-inequality-rational-numbers
3030
31+
open import foundation.action-on-identifications-binary-functions
3132
open import foundation.binary-transport
3233
open import foundation.dependent-pair-types
3334
open import foundation.empty-types
@@ -107,6 +108,10 @@ mul-ℚ⁺ = mul-Submonoid monoid-mul-ℚ submonoid-mul-ℚ⁺
107108
108109
infixl 40 _*ℚ⁺_
109110
_*ℚ⁺_ = mul-ℚ⁺
111+
112+
ap-mul-ℚ⁺ :
113+
{x x' : ℚ⁺} → x = x' → {y y' : ℚ⁺} → y = y' → mul-ℚ⁺ x y = mul-ℚ⁺ x' y'
114+
ap-mul-ℚ⁺ = ap-binary mul-ℚ⁺
110115
```
111116

112117
## Properties
@@ -293,6 +298,14 @@ abstract
293298
( preserves-leq-left-mul-ℚ⁺ p q r q≤r)
294299
```
295300

301+
### `2q = q + q`
302+
303+
```agda
304+
abstract
305+
mul-two-ℚ⁺ : (q : ℚ⁺) → two-ℚ⁺ *ℚ⁺ q = q +ℚ⁺ q
306+
mul-two-ℚ⁺ (q , _) = eq-ℚ⁺ (mul-two-ℚ q)
307+
```
308+
296309
### Multiplication of a positive rational by another positive rational less than 1 is a strictly deflationary map
297310

298311
```agda

src/elementary-number-theory/nonzero-natural-numbers.lagda.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -83,6 +83,9 @@ one-ℕ⁺ = one-nonzero-ℕ
8383
succ-nonzero-ℕ : nonzero-ℕ → nonzero-ℕ
8484
pr1 (succ-nonzero-ℕ (x , _)) = succ-ℕ x
8585
pr2 (succ-nonzero-ℕ (x , _)) = is-nonzero-succ-ℕ x
86+
87+
succ-ℕ⁺ : ℕ⁺ → ℕ⁺
88+
succ-ℕ⁺ = succ-nonzero-ℕ
8689
```
8790

8891
### The successor function from the natural numbers to the nonzero natural numbers
@@ -139,8 +142,7 @@ _+ℕ⁺_ = add-nonzero-ℕ
139142
```agda
140143
mul-nonzero-ℕ : nonzero-ℕ → nonzero-ℕ → nonzero-ℕ
141144
pr1 (mul-nonzero-ℕ (p , p≠0) (q , q≠0)) = p *ℕ q
142-
pr2 (mul-nonzero-ℕ (p , p≠0) (q , q≠0)) pq=0 =
143-
rec-coproduct p≠0 q≠0 (is-zero-summand-is-zero-mul-ℕ p q pq=0)
145+
pr2 (mul-nonzero-ℕ (p , p≠0) (q , q≠0)) = is-nonzero-mul-ℕ p q p≠0 q≠0
144146
145147
infixl 40 _*ℕ⁺_
146148
_*ℕ⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺

src/elementary-number-theory/positive-rational-numbers.lagda.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -190,6 +190,9 @@ abstract
190190
```agda
191191
positive-rational-ℕ⁺ : ℕ⁺ → ℚ⁺
192192
positive-rational-ℕ⁺ n = positive-rational-positive-ℤ (positive-int-ℕ⁺ n)
193+
194+
two-ℚ⁺ : ℚ⁺
195+
two-ℚ⁺ = positive-rational-ℕ⁺ (2 , λ ())
193196
```
194197

195198
### The rational image of a positive integer fraction is positive

0 commit comments

Comments
 (0)