diff --git a/02_activities/assignments/assignment_1.ipynb b/02_activities/assignments/assignment_1.ipynb index 28d4df017..4dab05f2e 100644 --- a/02_activities/assignments/assignment_1.ipynb +++ b/02_activities/assignments/assignment_1.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "4a3485d6-ba58-4660-a983-5680821c5719", "metadata": {}, "outputs": [], @@ -56,10 +56,288 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "a431d282-f9ca-4d5d-8912-71ffc9d8ea19", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
alcoholmalic_acidashalcalinity_of_ashmagnesiumtotal_phenolsflavanoidsnonflavanoid_phenolsproanthocyaninscolor_intensityhueod280/od315_of_diluted_winesprolineclass
014.231.712.4315.6127.02.803.060.282.295.641.043.921065.00
113.201.782.1411.2100.02.652.760.261.284.381.053.401050.00
213.162.362.6718.6101.02.803.240.302.815.681.033.171185.00
314.371.952.5016.8113.03.853.490.242.187.800.863.451480.00
413.242.592.8721.0118.02.802.690.391.824.321.042.93735.00
.............................................
17313.715.652.4520.595.01.680.610.521.067.700.641.74740.02
17413.403.912.4823.0102.01.800.750.431.417.300.701.56750.02
17513.274.282.2620.0120.01.590.690.431.3510.200.591.56835.02
17613.172.592.3720.0120.01.650.680.531.469.300.601.62840.02
17714.134.102.7424.596.02.050.760.561.359.200.611.60560.02
\n", + "

178 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols \\\n", + "0 14.23 1.71 2.43 15.6 127.0 2.80 \n", + "1 13.20 1.78 2.14 11.2 100.0 2.65 \n", + "2 13.16 2.36 2.67 18.6 101.0 2.80 \n", + "3 14.37 1.95 2.50 16.8 113.0 3.85 \n", + "4 13.24 2.59 2.87 21.0 118.0 2.80 \n", + ".. ... ... ... ... ... ... \n", + "173 13.71 5.65 2.45 20.5 95.0 1.68 \n", + "174 13.40 3.91 2.48 23.0 102.0 1.80 \n", + "175 13.27 4.28 2.26 20.0 120.0 1.59 \n", + "176 13.17 2.59 2.37 20.0 120.0 1.65 \n", + "177 14.13 4.10 2.74 24.5 96.0 2.05 \n", + "\n", + " flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \\\n", + "0 3.06 0.28 2.29 5.64 1.04 \n", + "1 2.76 0.26 1.28 4.38 1.05 \n", + "2 3.24 0.30 2.81 5.68 1.03 \n", + "3 3.49 0.24 2.18 7.80 0.86 \n", + "4 2.69 0.39 1.82 4.32 1.04 \n", + ".. ... ... ... ... ... \n", + "173 0.61 0.52 1.06 7.70 0.64 \n", + "174 0.75 0.43 1.41 7.30 0.70 \n", + "175 0.69 0.43 1.35 10.20 0.59 \n", + "176 0.68 0.53 1.46 9.30 0.60 \n", + "177 0.76 0.56 1.35 9.20 0.61 \n", + "\n", + " od280/od315_of_diluted_wines proline class \n", + "0 3.92 1065.0 0 \n", + "1 3.40 1050.0 0 \n", + "2 3.17 1185.0 0 \n", + "3 3.45 1480.0 0 \n", + "4 2.93 735.0 0 \n", + ".. ... ... ... \n", + "173 1.74 740.0 2 \n", + "174 1.56 750.0 2 \n", + "175 1.56 835.0 2 \n", + "176 1.62 840.0 2 \n", + "177 1.60 560.0 2 \n", + "\n", + "[178 rows x 14 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from sklearn.datasets import load_wine\n", "\n", @@ -91,12 +369,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "id": "56916892", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "178\n" + ] + } + ], "source": [ - "# Your answer here" + "# Your answer here\n", + "print(wine_df.shape[0])" ] }, { @@ -109,12 +396,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "id": "df0ef103", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "14\n" + ] + } + ], "source": [ - "# Your answer here" + "# Your answer here\n", + "print(wine_df.shape[1])" ] }, { @@ -127,12 +423,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "id": "47989426", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "int64\n", + "[0 1 2]\n" + ] + } + ], "source": [ - "# Your answer here" + "# Your answer here\n", + "print(wine_df['class'].dtype)\n", + "print(wine_df['class'].unique())" ] }, { @@ -146,12 +453,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "id": "bd7b0910", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "13\n" + ] + } + ], "source": [ - "# Your answer here" + "# Your answer here\n", + "print(wine_df.shape[1] - 1)" ] }, { @@ -178,7 +494,34 @@ "execution_count": null, "id": "cc899b59", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " alcohol malic_acid ash alcalinity_of_ash magnesium \\\n", + "0 1.518613 -0.562250 0.232053 -1.169593 1.913905 \n", + "1 0.246290 -0.499413 -0.827996 -2.490847 0.018145 \n", + "2 0.196879 0.021231 1.109334 -0.268738 0.088358 \n", + "3 1.691550 -0.346811 0.487926 -0.809251 0.930918 \n", + "4 0.295700 0.227694 1.840403 0.451946 1.281985 \n", + "\n", + " total_phenols flavanoids nonflavanoid_phenols proanthocyanins \\\n", + "0 0.808997 1.034819 -0.659563 1.224884 \n", + "1 0.568648 0.733629 -0.820719 -0.544721 \n", + "2 0.808997 1.215533 -0.498407 2.135968 \n", + "3 2.491446 1.466525 -0.981875 1.032155 \n", + "4 0.808997 0.663351 0.226796 0.401404 \n", + "\n", + " color_intensity hue od280/od315_of_diluted_wines proline \n", + "0 0.251717 0.362177 1.847920 1.013009 \n", + "1 -0.293321 0.406051 1.113449 0.965242 \n", + "2 0.269020 0.318304 0.788587 1.395148 \n", + "3 1.186068 -0.427544 1.184071 2.334574 \n", + "4 -0.319276 0.362177 0.449601 -0.037874 \n" + ] + } + ], "source": [ "# Select predictors (excluding the last column)\n", "predictors = wine_df.iloc[:, :-1]\n", @@ -204,7 +547,7 @@ "id": "403ef0bb", "metadata": {}, "source": [ - "> Your answer here..." + "> Your answer here... Standardizing predictor variables is essential when making comparisons between variables with different scales. When the variables are equidistant to one another and on the same scale, it allows for unbiased comparisons without one variable dominating the other variables." ] }, { @@ -220,7 +563,7 @@ "id": "fdee5a15", "metadata": {}, "source": [ - "> Your answer here..." + "> Your answer here... We did not elect to standard our response variable Class because it is a categorical variable." ] }, { @@ -236,7 +579,7 @@ "id": "f0676c21", "metadata": {}, "source": [ - "> Your answer here..." + "> Your answer here... When you set and define a random seed, it ensures that the sequence of random numbers that is generated remains the same. It is important for reproducibility. The particular seed value is not important, but remembering which value was used is to ensure the sequence of numbers used to test remains the same. " ] }, { @@ -251,7 +594,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "id": "72c101f2", "metadata": {}, "outputs": [], @@ -261,7 +604,8 @@ "\n", "# split the data into a training and testing set. hint: use train_test_split !\n", "\n", - "# Your code here ..." + "# Your code here ...\n", + "x_train, x_test, y_train, y_test = train_test_split(predictors_standardized, wine_df['class'], test_size=0.25, random_state=123)" ] }, { @@ -284,12 +628,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "id": "08818c64", "metadata": {}, "outputs": [], "source": [ - "# Your code here..." + "# Your code here...\n", + "knn = KNeighborsClassifier()\n", + "param_grid = {'n_neighbors': range(1, 51)}\n", + "grid_search = GridSearchCV(knn, param_grid, cv=10)\n", + "grid_search.fit(x_train, y_train)\n", + "best_value_n_neighbors = grid_search.best_params_['n_neighbors']" ] }, { @@ -308,9 +657,26 @@ "execution_count": null, "id": "ffefa9f2", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9333333333333333\n" + ] + } + ], "source": [ - "# Your code here..." + "# Your code here..\n", + "best_knn = KNeighborsClassifier(n_neighbors=best_value_n_neighbors)\n", + "\n", + "best_knn.fit(x_train, y_train)\n", + "\n", + "y_pred = best_knn.predict(x_test)\n", + "\n", + "test_accuracy = accuracy_score(y_test, y_pred)\n", + "\n", + "print(test_accuracy) " ] }, { @@ -365,7 +731,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.4", + "display_name": "lcr-env", "language": "python", "name": "python3" }, @@ -379,12 +745,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.19" - }, - "vscode": { - "interpreter": { - "hash": "497a84dc8fec8cf8d24e7e87b6d954c9a18a327edc66feb9b9ea7e9e72cc5c7e" - } + "version": "3.11.7" } }, "nbformat": 4,