-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsondovac_part_a.sh
executable file
·764 lines (685 loc) · 29.2 KB
/
sondovac_part_a.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
#!/bin/bash
# Determine script's directory
SCRIPTDIR=$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )
# Load functions shared by both parts, introductory message
source "${SCRIPTDIR}"/sondovac_functions || {
echo
echo "Fatal error! Unable to load file \"sondovac_functions\" with required functions! It must be in same directory as \"$0\" Check it and, if needed, download again whole script from https://github.com/V-Z/sondovac/"
echo
exit 1
}
echo "This is part A of the pipeline."
echo
echo "This part is for filtering of raw data and their preparation for assembly in Geneious. Results of Geneious assembly are processed in part B to get the final list of low-copy nuclear probe sequences. See README.md and/or manual for details."
# Default values
# flash -M maximum overlap length expected in approximately 90% of read pairs
FLASHM='65'
# BLAT -minIdentity between the unique transcripts and the genome skim data
BLATIDENT='85'
# Remove transcripts with >1000 BLAT scores (or another value selected by user)
BLATSCORE='1000'
# Default name of output files
OUTPUTFILENAME=$(realpath "output")
# Usage of genome skim (22) or transcript sequences (23, parameter "-g")
PSLXCUT='22'
# Create empty variables for file names
INPUTFILE=''
INPUTFILE0=''
INPUTFILE1=''
REFERENCECP=''
REFERENCECP0=''
INPUTFQ1=''
INPUTFQ2=''
REFERENCEMT=''
REFERENCEMT0=''
# Parse initial arguments
while getopts "hvlrpeo:f:c:m:t:q:a:y:s:g" START; do
case "${START}" in
h|v)
generaloptions
echo
echo -e "\tIf options -f, -c, -m, -t and/or -q are used and the script is running in interactive mode, those values will be used as defaults, but may later be overwritten."
echo
echo -e "\tOptions required for running in non-interactive mode:"
echo -e "\t-f\tTranscriptome input file in FASTA format."
echo -e "\t-c\tPlastome reference sequence input file in FASTA format."
echo -e "\t-m\tMitochondriome reference sequence input file in FASTA format. This file is optional. In interactive mode you will each time be asked if you wish to use it."
echo -e "\t-t\tPaired-end genome skim input file in FASTQ format (first file)."
echo -e "\t-q\tPaired-end genome skim input file in FASTQ format (second file)."
echo
echo -e "\tOther optional arguments (if not provided, default values are used):"
echo -e "\t-a\tMaximum overlap length expected in approximately 90% of read pairs (parameter \"-M\" of FLASH, see its manual for details). Default value: 65 (integer ranging from 10 to 300)"
echo -e "\t-y\tSequence similarity between unique transcripts and the filtered, combined genome skim reads (parameter \"-minIdentity\" of BLAT, see its manual for details). Default value: 85 (integer ranging from 70 to 100; the default value of 85% minimum sequence similarity suggests gene orthology)"
echo -e "\t-s\tNumber of BLAT hits per transcript when matching unique transcripts and the filtered, combined genome skim reads. Default value: 1000 (integer ranging from 100 to 10000)"
echo -e "\t-g\tUse genome skim sequences instead of transcripts for making the probes. Default is usage of genome skim sequences (no parameter)."
echo -e "\tWARNING! If parameters -a, -y, -s or -g are not provided, default values are taken, and it is not possible to change them later (not even in interactive mode)."
echo
echo "Examples:"
echo "Basic and the most simple usage:"
echo "$0 -i"
echo "Specify some of required input files, otherwise run interactively:"
echo "$0 -i -f input.fa -t reads1.fastq -q reads2.fastq"
echo "Running in non-interactive, automated mode:"
echo "$0 -n -f input.fa -c referencecp.fa -m referencemt.fa -t reads1.fastq -q reads2.fastq"
echo "Modify parameter -a, otherwise run interactively:"
echo "$0 -i -a 300"
echo "Run in non-interactive mode (parameter -n) - in such case user must specify all required input files (parameters -f, -c, -m, -t and -q). Moreover, parameter -y is modified:"
echo "$0 -n -f input.fa -c referencecp.fa -m referencemt.fa -t reads1.fastq -q reads2.fastq -y 90"
echo "Modifying parameter -s. Note interactive mode -i is implicit and does not need to be specified explicitly:"
echo "$0 -s 950"
echo
exit 2
;;
l)
licenser
;;
r)
readmeview
;;
p)
installview
;;
e)
citationreference
;;
o)
OUTPUTFILENAME=$(realpath "${OPTARG}")
echo "Output files will start name with ${OUTPUTFILENAME}"
;;
f)
INPUTFILE1="${OPTARG}"
echo "Transcriptome file: ${INPUTFILE1}"
;;
c)
REFERENCECP0="${OPTARG}"
echo "Plastome reference: ${REFERENCECP0}"
;;
m)
REFERENCEMT0="${OPTARG}"
echo "Mitochondriome reference: ${REFERENCEMT0}"
;;
t)
INPUTFQ1="${OPTARG}"
echo "FASTQ reads 1: ${INPUTFQ1}"
;;
q)
INPUTFQ2="${OPTARG}"
echo "FASTQ reads 2: ${INPUTFQ2}"
;;
a)
FLASHM="${OPTARG}"
# Check if provided value makes sense
if [[ "${FLASHM}" =~ ^[0-9]+$ ]] && [ "${FLASHM}" -ge 10 ] && [ "${FLASHM}" -le 300 ]; then
echo "Maximum overlap length expected in approximately 90% of read pairs: ${FLASHM}"
else
echo "Error! For parameter \"-a\" you did not provide an integer ranging from 10 to 300!"
echo
exit 1
fi
;;
y)
BLATIDENT="${OPTARG}"
# Check if provided value makes sense
if [[ "${BLATIDENT}" =~ ^[0-9]+$ ]] && [ "${BLATIDENT}" -ge 70 ] && [ "${BLATIDENT}" -le 100 ]; then
echo "BLAT score for identity between unique transcripts and genome skim data: ${BLATIDENT}"
else
echo
echo "Error! For parameter \"-y\" you did not provide an integer of range from 70 to 100!"
echo
exit 1
fi
;;
s)
BLATSCORE="${OPTARG}"
# Check if provided value makes sense
if [[ "${BLATSCORE}" =~ ^[0-9]+$ ]] && [ "${BLATSCORE}" -ge 100 ] && [ "${BLATSCORE}" -le 10000 ]; then
echo "BLAT score: ${BLATSCORE}"
else
echo
echo "Error! For parameter \"-s\" you did not provide an integer ranging from 100 to 10000!"
echo
exit 1
fi
;;
g)
PSLXCUT='23'
echo "The script will use transcript sequences instead of genome skim sequences."
;;
*)
echo
echo "Invalid option(s)! See \"$0 -h\" for usage options."
echo
exit 1
;;
esac
done
# Set variables for working directory and PATH
workdirpath
# Check availability of all needed binaries
# Check if realpath is available
checktools realpath
# Check if paste is available
checktools paste
# Check if cut is available
checktools cut
# Check if uniq is available
checktools uniq
# Check if awk is available
checktools awk
# Check if sort is available
checktools sort
# Check if join is available
checktools join
# Check if sed is available
checktools sed
# Check if grep is available
checktools grep
# Check if cat is available
checktools cat
# Check if perl is available
checktools perl
# Check if ls is available
checktools ls
# Check if cp is available
checktools cp
# Check if mkdir is available
checktools mkdir
# Check if tr is available
checktools tr
# Check if BLAT is available
checkblat
# Check if Bowtie2 is available
{ command -v bowtie2 >/dev/null 2>&1 &&
command -v bowtie2-align-l >/dev/null 2>&1 &&
command -v bowtie2-align-s >/dev/null 2>&1 &&
command -v bowtie2-build >/dev/null 2>&1 &&
command -v bowtie2-build-l >/dev/null 2>&1 &&
command -v bowtie2-build-s >/dev/null 2>&1 &&
echo "\"bowtie2\", \"bowtie-align-l\", \"bowtie-align-s\", \"bowtie2-build\", \"bowtie2-build-l\" and \"bowtie2-build-s\" are available. OK."
} || {
echo "Error! Bowtie2 (commands \"bowtie2\", \"bowtie-align-l\", \"bowtie-align-s\", \"bowtie2-build\", \"bowtie2-build-l\" and \"bowtie2-build-s\") are required but not installed or available in PATH."
echo "See http://bowtie-bio.sourceforge.net/bowtie2/index.shtml for installation of Bowtie2."
echo
exit 1
}
# Check if SAMtools is available
{ command -v samtools >/dev/null 2>&1 && echo "\"samtools\" is available. OK."; } || {
echo "Error! \"samtools\" is required but not installed or available in PATH. See https://www.htslib.org/ for installation of SAMtools."
echo
exit 1
}
# Check if FLASH is available
{ command -v flash >/dev/null 2>&1 && echo "\"flash\" is available. OK."; } || {
echo "Error! FLASH is required but not installed or available in PATH. See https://sourceforge.net/projects/flashpage/ for installation of FLASH."
echo
exit 1
}
# Notify user if mitochondriome is missing
if [ -z "${REFERENCEMT0}" ]; then
echo
echo "Warning! There is no mitochondriome reference sequence."
echo
REFERENCEMT=''
REFERENCEMT0=''
else
# Test if input file is readable
if [[ -f ${REFERENCEMT0} && -r ${REFERENCEMT0} && -s ${REFERENCEMT0} ]]; then
echo
echo "Input file \"${REFERENCEMT0}\" exists and is readable. Proceeding..."
else
echo "Error! File \"${REFERENCEMT0}\" does not exist, is empty or is not readable!"
echo
exit 1
fi
echo
fi
# Input file in FASTA format
echo "Input file: ${INPUTFILE1}"
# Input file in FASTA format - checked not to be interleaved - temporary file - will be deleted
INPUTFILE0="${INPUTFILE1%.*}_non-interleaved.fasta"
# Input file in FASTA format - checked and renamed labels
INPUTFILE="${INPUTFILE1%.*}_renamed.fasta"
# List of old and new names of the transcriptome FASTA sequences
TRANSCRIPTOMEFASTANAMES="${INPUTFILE1%.*}_old_and_new_names.tsv"
# Output of BLAT (removal of transcripts sharing ≥90% sequence similarity)
BLATOUT="${OUTPUTFILENAME%.*}_blat_unique_transcripts.psl"
# List of unique transcripts - temporary file - will be deleted
UNIQUELIST="${OUTPUTFILENAME%.*}_trans-trans_unique_transcripts_sorted.txt"
# Input file converted into TXT - temporary file - will be deleted
INPUTTAB="${OUTPUTFILENAME%.*}.txt"
# Sorted input file in TXT - temporary file - will be deleted
SORTEDINPUT="${OUTPUTFILENAME%.*}_sorted.txt"
# Joined unique transcripts - temporary file - will be deleted
JOINEDTS="${OUTPUTFILENAME%.*}_unique_transcripts_trans-trans_plus_sequence.txt"
# Joined unique transcripts in tabular format - temporary file - will be deleted
JOINEDTABS="${OUTPUTFILENAME%.*}_tabs.txt"
# Joined unique transcripts in FASTA format
JOINEDFA="${OUTPUTFILENAME%.*}_unique_transcripts.fasta"
# Input - reference genome - cpDNA
echo "Input file: ${REFERENCECP0}"
# Input - reference genome - cpDNA - temporary file - will be deleted
REFERENCECP="${REFERENCECP0%.*}_non-interleaved.fasta"
# Reference genome - plastome index - temporary file - will be deleted
REFERENCECP2="${OUTPUTFILENAME%.*}.cp"
# Input reads in FASTQ
echo "Input file: ${INPUTFQ1}"
echo "Input file: ${INPUTFQ2}"
# cpDNA reads mapped to reference - temporary file - will be deleted
BOWTIE2CP="${OUTPUTFILENAME%.*}_genome_skim_data_no_cp_reads.sam"
# Genome skim data without cpDNA reads
FASTQNOCP="${OUTPUTFILENAME%.*}_genome_skim_data_no_cp_reads"
# Input - reference genome - mtDNA
if [ -n "${REFERENCEMT0}" ]; then
echo "Input file: ${REFERENCEMT0}"
# Input - reference genome - mtDNA - temporary file - will be deleted
REFERENCEMT="${REFERENCEMT0%.*}_non-interleaved.fasta"
# Reference genome - mitochondriome index - temporary file - will be deleted
REFERENCEMT2="${OUTPUTFILENAME%.*}.mt"
# mtDNA reads mapped to reference - temporary file - will be deleted
BOWTIE2MT="${OUTPUTFILENAME%.*}_genome_skim_data_no_cp_no_mt_reads.sam"
# Genome skim data without mtDNA reads
FASTQNOMT="${OUTPUTFILENAME%.*}_genome_skim_data_no_cp_no_mt_reads"
# Combined paired-end genome skim reads
fi
FLASHOUT="${OUTPUTFILENAME%.*}_combined_reads_no_cp_no_mt_reads"
# Output of BLAT (matching of the unique transcripts and the filtered, combined genome skim reads sharing ≥85% sequence similarity)
BLATOUTFIN="${OUTPUTFILENAME%.*}_blat_unique_transcripts_versus_genome_skim_data.pslx"
# Matching sequences in FASTA
BLATOUTFIN2="${OUTPUTFILENAME%.*}_blat_unique_transcripts_versus_genome_skim_data.fasta"
# FASTA converted into TSV - temporary file - will be deleted
TAB="${OUTPUTFILENAME%.*}_final.tab"
# Number of times each transcript hit a genome skim read - will be deleted
TABLIST="${OUTPUTFILENAME%.*}_transcript_hits.txt"
# Listed transcripts with >1000 BLAT score - will be deleted
TABBLAT="${OUTPUTFILENAME%.*}_1k_transcripts"
# Transcripts without >1000 BLAT score - will be deleted
TABREMOVED="${OUTPUTFILENAME%.*}_1k_transcripts-removed.tab"
# Final FASTA sequences for usage in Geneious
FINALA="${OUTPUTFILENAME%.*}_blat_unique_transcripts_versus_genome_skim_data-no_missing_fin.fsa"
# Check EOL of input files
echo
eolcheck "${INPUTFILE1}"
eolcheck "${REFERENCECP0}"
eolcheck "${INPUTFQ1}"
eolcheck "${INPUTFQ2}"
if [ -n "${REFERENCEMT0}" ]; then
eolcheck "${REFERENCEMT0}"
fi
# Check if FASTA input files are non-interleaved (required) - if not, FASTA input file converted
echo
echo "Checking if input FASTA files are non-interleaved (required) - interleaved FASTA files are converted not to be interleaved"
echo
noninterleavedfasta "${INPUTFILE1}" "${INPUTFILE0}"
noninterleavedfasta "${REFERENCECP0}" "${REFERENCECP}"
if [ -n "${REFERENCEMT0}" ]; then
noninterleavedfasta "${REFERENCEMT0}" "${REFERENCEMT}"
fi
# Transcriptome input file has required labeling scheme - only unique numbers
echo "FASTA sequence names in input file ${INPUTFILE0} must be renamed to be correctly handled in part A. New file with correct labels (only increasing unique numbers) will be created. Depending on size of your transcriptome file it can take longer time."
while read -r LINE; do
N=$((++N)) &&
echo "${LINE}" | sed -e 's/^>.*$/>'"${N}"'/'
done < "${INPUTFILE0}" > "${INPUTFILE}" || {
echo "Error! Renaming failed. Aborting. Ensure ${INPUTFILE0} has as labels of sequences only unique numbers (nothing else)."
echo
exit 1
}
# Giving to user list of old and new labels
grep '^>' "${INPUTFILE0}" > transcript_fasta_labels_old
grep '^>' "${INPUTFILE}" > transcript_fasta_labels_new
echo -e "Old FASTA labels\tNew FASTA labels" > "${TRANSCRIPTOMEFASTANAMES}"
paste transcript_fasta_labels_old transcript_fasta_labels_new >> "${TRANSCRIPTOMEFASTANAMES}"
sed -i 's/>//g' "${TRANSCRIPTOMEFASTANAMES}"
rm transcript_fasta_labels_old transcript_fasta_labels_new
echo
echo "File ${TRANSCRIPTOMEFASTANAMES} contains two columns:"
echo " 1) Old labels in original ${INPUTFILE0} and"
echo " 2) New labels in required format as in ${INPUTFILE}"
echo " The sequences remain intact. This might be needed to trace back some sequences."
echo
# Step 1: Obtain unique transcripts.
echo
echo "Step 1 of the pipeline - removal of transcripts sharing ≥90% sequence similarity."
# BLAT between the transcriptome itself
echo
echo "Launching BLAT between the transcriptome itself"
blat -t=dna -q=dna -noHead -out=psl "${INPUTFILE}" "${INPUTFILE}" "${BLATOUT}" || {
echo
echo "Error! BLAT failed. Aborting. Check if ${INPUTFILE} is correct."
echo
exit 1
}
# Filtering for unique transcripts
echo
echo "Filtering for unique transcripts:"
{ cut -f 10 "${BLATOUT}" | uniq -c | awk '{print$1}' | sort | uniq -c; } || {
echo
echo "Error! Filtering of BLAT output failed. Aborting. Check if files ${INPUTFILE} and ${BLATOUT} are correct."
echo
exit 1
}
echo
echo "Filtered transcripts saved for possible later usage as ${BLATOUT} for possible later usage."
echo
# Make a list of these unique transcripts (names and sequences) and convert this file to FASTA
echo "Making list of unique transcripts"
cut -f 10 "${BLATOUT}" | uniq -c | awk '{if($1==1){print $0}}' | awk '{print $2}' | awk '{printf "%012d\n", $0;}' > "${UNIQUELIST}" || {
echo
echo "Error! Making list of unique transcripts failed. Aborting. Check if files ${BLATOUT} and ${INPUTFILE} are correct."
echo
exit 1
}
# In order to use the join command, the original transcriptome file has to be converted to TXT, the transcript numbers have to be adjusted and the file sorted
echo
echo "Converting original data into TXT for subsequent joining"
fasta2tab "${INPUTFILE}" "${INPUTTAB}" || {
echo
echo "Error! Conversion of ${INPUTFILE} failed. Aborting. Check if ${INPUTFILE} is valid FASTA file."
echo
exit 1
}
echo
echo "Sorting unique transcripts"
{ awk '{$1=sprintf("%012d", $1); print $0}' "${INPUTTAB}" | sort > "${SORTEDINPUT}"; } || {
echo
echo "Error! Sorting of unique transcripts failed. Aborting. Check if ${INPUTFILE} is correct FASTA file and check if file ${INPUTTAB} is correct."
echo
exit 1
}
# Apply the join command
join -j 1 "${UNIQUELIST}" "${SORTEDINPUT}" > "${JOINEDTS}" || {
echo
echo "Error! Joining failed. Aborting. Check files ${UNIQUELIST} and ${SORTEDINPUT} if they have same number of lines."
echo
exit 1
}
# Convert to FASTA
echo
echo "Converting to FASTA"
sed 's/ /\t/g' "${JOINEDTS}" > "${JOINEDTABS}" || {
echo
echo "Error! Conversion of ${JOINEDTS} to FASTA failed. Aborting. Check if file ${JOINEDTS} is correct."
echo
exit 1
}
echo
awk '{print ">"$1"\n"$2}' "${JOINEDTABS}" > "${JOINEDFA}" || {
echo
echo "Error! Conversion of ${JOINEDTS} to FASTA failed. Aborting. Check if file ${JOINEDTABS} is correct."
echo
exit 1
}
echo "Joined transcripts written in FASTA format as ${JOINEDFA} for possible later usage."
echo
# Step 2: Find genome skim data (only nuclear reads), which align to the unique transcripts
echo "Step 2 of the pipeline - removal of reads of plastid origin."
# Get rid of the chloroplast and mitochondrial reads in the genome skim data
# Chloroplast reads
# Create a reference plastome index with bowtie2-build
echo
echo "Creating a reference plastome index"
echo
bowtie2-build "${REFERENCECP}" "${REFERENCECP2}" || {
echo
echo "Error! Creating a reference plastome index with bowtie2-build failed. Aborting. Check if file ${REFERENCECP} is correct."
echo
exit 1
}
echo
# Map the cpDNA reads to the reference plastome with Bowtie2
echo "Mapping cpDNA reads to the reference plastome. This may take longer time."
echo
bowtie2 -x "${REFERENCECP2}" -1 "${INPUTFQ1}" -2 "${INPUTFQ2}" -S "${BOWTIE2CP}" || {
echo
echo "Error! Mapping cpDNA reads to the reference plastome with bowtie2 failed. Aborting. Check if files ${REFERENCECP}, ${REFERENCECP2}, ${INPUTFQ1} and ${INPUTFQ2} are correct."
echo
exit 1
}
echo
echo "Mapping finished"
# Convert SAM to FASTQ with SAMtools
echo
echo "Converting SAM to FASTQ. This may take longer time."
samtools view -b -T "${REFERENCECP}" "${BOWTIE2CP}" | samtools fastq -n - -1 "${FASTQNOCP}".1.fq -2 "${FASTQNOCP}."2.fq || {
echo
echo "Error! Conversion of SAM to FASTQ with SAMtools failed. Aborting. Check if files ${REFERENCECP} and ${BOWTIE2CP} are correct."
echo
exit 1
}
echo
echo
echo "Removed reads saved for possible later usage as"
ls -1 "${FASTQNOCP}"*
echo
# Mitochondrial reads - optional step
if [[ -n "${REFERENCEMT}" && -n "${REFERENCEMT0}" ]]; then
echo "Step 3 of the pipeline - removal of reads of mitochondrial origin (optional)."
# Create a reference mitochondriome index with bowtie2-build
echo
echo "Creating a reference mitochondriome index"
echo
bowtie2-build "${REFERENCEMT}" "${REFERENCEMT2}" || {
echo
echo "Error! Creating of reference mitochondriome index with bowtie2-build failed. Aborting. Check if files ${REFERENCEMT} and ${REFERENCEMT2} are correct."
echo
exit 1
}
echo
# Map the mtDNA reads to the reference mitochondriome with Bowtie2
echo "Mapping mtDNA reads to reference mitochondriome. This may take longer time."
echo
bowtie2 -x "${REFERENCEMT2}" -1 "${FASTQNOCP}".1.fq -2 "${FASTQNOCP}".2.fq -S "${BOWTIE2MT}" || {
echo
echo "Error! Mapping mtDNA reads to reference mitochondriome with bowtie2 failed. Aborting. Check if files ${REFERENCEMT2}, ${FASTQNOCP}.1.fq and ${FASTQNOCP}.2.fq are correct."
echo
exit 1
}
echo
# Convert SAM to FASTQ with SAMtools
echo "Converting SAM to FASTQ. This may take longer time."
samtools view -b -T "${REFERENCEMT}" "${BOWTIE2MT}" | samtools fastq -n - -1 "${FASTQNOMT}".1.fq -2 "${FASTQNOMT}".2.fq || {
echo
echo "Error! Conversion of SAM to FASTQ with SAMtools failed. Aborting. Check if files ${REFERENCEMT} and ${BOWTIE2MT} are correct."
echo
exit 1
}
echo
# Combine the paired-end reads with FLASH - with mitochondrial reads
# Sanitize output variable for usage by FLASh (it always starts with './', thus absolute URL is not usable)
echo "Step 4 of the pipeline - combination of paired-end reads."
echo
echo "Combining paired-end reads"
echo
flash -o "$(basename "${FLASHOUT}")" -M "${FLASHM}" "${FASTQNOMT}".1.fq "${FASTQNOMT}".2.fq || {
echo
echo "Error! Combining paired-end reads failed. Aborting. Check if files ${REFERENCEMT}, ${FASTQNOMT}.1.fq and ${FASTQNOMT}.2.fq are correct."
echo
exit 1
}
echo
else
# Combine the paired-end reads with FLASH - without mitochondrial reads
echo "Step 4 of the pipeline - combination of paired-end reads."
echo
echo "Combining paired-end reads"
echo
flash -o "$(basename "${FLASHOUT}")" -M "${FLASHM}" "${FASTQNOCP}".1.fq "${FASTQNOCP}".2.fq || {
echo
echo "Error! Combining paired-end reads failed. Aborting. Check if files ${REFERENCECP}, ${FASTQNOCP}.1.fq and ${FASTQNOCP}.2.fq are correct."
echo
exit 1
}
fi
# Step 5 - matching of the unique transcripts and the filtered, combined genome skim reads sharing ≥85% sequence similarity
echo
echo "Step 5 of the pipeline - matching of the unique transcripts and the filtered, combined genome skim reads sharing ≥85% sequence similarity."
# Convert FASTQ file to FASTA
echo
echo "Converting FASTQ to FASTA. This may take longer time."
# print the first and 2nd line of every 4 lines # AWK: cat IN.fq | awk '{if(NR%4==1) {printf(">%s\n",substr($0,2));} else if(NR%4==2) print;}' > OUT.fa
sed -n '1~4s/^@/>/p;2~4p' "${FLASHOUT}".extendedFrags.fastq > "${FLASHOUT}".extendedFrags.fa || {
echo
echo "Error! Conversion of FASTQ to FASTA failed. Aborting. Check if file ${FLASHOUT}.extendedFrags.fastq is correct."
echo
exit 1
}
echo "Converted FASTA saved as ${FLASHOUT}.extendedFrags.fa for possible later usage."
echo
# BLAT between the unique transcripts and the genome skim data
echo "BLAT between the unique transcripts and the genome skim data. This may take longer time."
blat -t=dna -q=dna -minIdentity="${BLATIDENT}" -out=pslx "${JOINEDFA}" "${FLASHOUT}".extendedFrags.fa "${BLATOUTFIN}" || {
echo
echo "Error! BLAT between the unique transcripts and the genome skim data failed. Aborting. Check if files ${JOINEDFA} and ${FLASHOUT}.extendedFrags.fa are correct."
echo
exit 1
}
echo "BLAT output saved as ${BLATOUTFIN} for possible later usage."
echo
# Step 6: Assemble the obtained sequences in contigs
echo "Step 6 of the pipeline - filtering of BLAT output."
# Modification of the PSLX file is needed: remove headers (first 5 lines), select the field with the transcript (target) sequence names and the field with the query sequences, remove empty sequences
echo
echo "Modifying PSLX BLAT output for usage in Geneious"
{ sed 1,5d "${BLATOUTFIN}" | cut -f 14,"${PSLXCUT}" | awk '{n=split($2,a,",");for(i=1;i<=n;i++)print $1"_"NR"_"i,a[i]}' | grep "[0-9_]\+[[:blank:]][acgtuwsmkrybdhvn\-]\+" > "${TAB}"; } || {
echo
echo "Error! Modifying PSLX BLAT output failed. Aborting. Check if file ${BLATOUTFIN} is correct."
echo
exit 1
}
echo
echo "Modified file saved as ${TAB} for possible later usage."
echo
{ awk '{print $1"\t"length($2)"\t"$2}' "${TAB}" | awk '{sum+=$2}END{print sum}'; } || {
echo
echo "Error! Conversion of FASTA to TAB failed. Aborting. Check if file ${TAB} is correct."
echo
exit 1
}
# Remove transcripts with >1000 BLAT scores (or another value selected by user; very likely that these are repetitive elements)
# Count the number of times each transcript hit a genome skim read
echo
echo "Counting number of times each transcript hit a genom skim read"
{ cut -f 1 -d "_" "${TAB}" | sort | uniq -c | sort -n -r > "${TABLIST}"; } || {
echo
echo "Error! Counting of number of times each transcript hit a genom skim read failed. Aborting. Check if file ${TAB} is correct."
echo
exit 1
}
# List of the transcripts with >1000 BLAT scores (or another value selected by user)
echo
echo "Listing transcripts with >${BLATSCORE} BLAT scores"
{ awk '$1>'"${BLATSCORE}"'' "${TABLIST}" | awk '{print $2}' > "${TABBLAT}"; } || {
echo
echo "Error! Listing of transcripts with >${BLATSCORE} BLAT scores failed. Aborting. Check if file ${TABLIST} is correct."
echo
exit 1
}
# Make a new TAB file without these transcripts
echo
echo "Removing transcripts with >${BLATSCORE} BLAT score"
grep -v -f "${TABBLAT}" "${TAB}" > "${TABREMOVED}" || {
echo
echo "Error! Removing of transcripts with >${BLATSCORE} BLAT score failed. Aborting. Check if files ${TABBLAT} and ${TAB} are correct."
echo
exit 1
}
echo
{ awk '{print $1"\t"length($2)"\t"$2}' "${TABREMOVED}" | awk '{sum+=$2}END{print sum}'; } || {
echo
echo "Error! Removing of transcripts with >${BLATSCORE} BLAT score failed. Aborting."
echo
exit 1
}
# Convert this TAB file to FASTA and remove the sequences with 'n'
echo
echo "Converting TAB to FASTA and removing sequences with \"n\""
{ grep -v n "${TABREMOVED}" | sed 's/^/>/' | sed 's/[[:blank:]]\+/\n/' > "${FINALA}"; } || {
echo
echo "Error! Removing of transcripts with >${BLATSCORE} BLAT score failed. Aborting. Check if file ${TABREMOVED} is correct."
echo
exit 1
}
grep -v n "${TABREMOVED}" | awk '{print $1"\t"length($2)}' | awk '{s+=$2;a++}END{print s}' || {
echo
echo "Error! Removing of transcripts with >${BLATSCORE} BLAT score failed. Aborting. Check if file ${TABREMOVED} is correct."
echo
exit 1
}
# Remove unneeded temporal files - keep only *.pslx, *.fasta and *.bam
echo
echo "Removing unneeded temporal files"
if [ -n "${REFERENCEMT0}" ]; then
rm "${INPUTFILE0}" "${UNIQUELIST}" "${INPUTTAB}" "${SORTEDINPUT}" "${JOINEDTS}" "${REFERENCECP}" "${JOINEDTABS}" "${REFERENCECP2}"* "${BOWTIE2CP}" "${REFERENCEMT2}"* "${REFERENCEMT}" "${BOWTIE2MT}" "${FLASHOUT}".extendedFrags.fastq "${TAB}" "${TABLIST}" "${TABBLAT}" "${TABREMOVED}" || {
echo
echo "Error! Removal of temporal files failed. Remove following files manually: \"${INPUTFILE0}\", \"${UNIQUELIST}\", \"${INPUTTAB}\", \"${SORTEDINPUT}\", \"${REFERENCECP}\", \"${JOINEDTS}\", \"${JOINEDTABS}\", \"${REFERENCECP2}*\", \"${REFERENCEMT}\", \"${BOWTIE2CP}\", \"${REFERENCEMT2}*\", \"${BOWTIE2MT}\", \"${FLASHOUT}.extendedFrags.fastq\", \"${TAB}\", \"${TABLIST}\",, \"${TABBLAT}\" and \"${TABREMOVED}\"."
echo
}
else
rm "${UNIQUELIST}" "${INPUTTAB}" "${SORTEDINPUT}" "${JOINEDTS}" "${JOINEDTABS}" "${REFERENCECP2}"* "${BOWTIE2CP}" "${FLASHOUT}".extendedFrags.fastq "${TAB}" "${TABLIST}" "${TABBLAT}" "${TABREMOVED}" || {
echo
echo "Error! Removal of temporal files failed. Remove following files manually: \"${INPUTFILE0}\", \"${UNIQUELIST}\", \"${INPUTTAB}\", \"${SORTEDINPUT}\", \"${JOINEDTS}\", \"${JOINEDTABS}\", \"${REFERENCECP}\", \"${REFERENCECP2}*\",\"${BOWTIE2CP}\", \"${FLASHOUT}.extendedFrags.fastq\", \"${TAB}\", \"${TABLIST}\", \"${TABBLAT}\" and \"${TABREMOVED}\"."
echo
}
fi
# List kept files which user can use for another analysis
echo
echo "Following files are kept for possible later usage (see manual for details):"
echo "================================================================================"
if [ -n "${REFERENCEMT}" ]; then
echo "1) List of old names of FASTA sequences in ${INPUTFILE0} and renamed FASTA sequences in ${INPUTFILE}:"
echo "${TRANSCRIPTOMEFASTANAMES}"
echo "2) Output of BLAT (removal of transcripts sharing ≥90% sequence similarity):"
echo "${BLATOUT}"
echo "3) Unique transcripts in FASTA format:"
echo "${JOINEDFA}"
echo "4) Genome skim data without cpDNA reads:"
ls "${FASTQNOCP}"*
echo "5) Genome skim data without mtDNA reads:"
ls "${FASTQNOMT}"*
echo "6) Combined paired-end genome skim reads:"
echo "${FLASHOUT}.extendedFrags.fa"
echo "7) Output of BLAT (matching of the unique transcripts and the filtered, combined genome skim reads sharing ≥85% sequence similarity):"
echo "${BLATOUTFIN}"
echo "8) Matching sequences in FASTA:"
echo "${BLATOUTFIN2}"
echo "9) Final FASTA sequences for usage in Geneious:"
echo "${FINALA}"
else
echo "1) List of old names of FASTA sequences in ${INPUTFILE0} and renamed FASTA sequences in ${INPUTFILE}:"
echo "${TRANSCRIPTOMEFASTANAMES}"
echo "2) Output of BLAT (removal of transcripts sharing ≥90% sequence similarity):"
echo "${BLATOUT}"
echo "3) Unique transcripts in FASTA format:"
echo "${JOINEDFA}"
echo "4) Genome skim data without cpDNA reads:"
ls "${FASTQNOCP}"*
echo "5) Combined paired-end genome skim reads:"
echo "${FLASHOUT}.extendedFrags.fa"
echo "6) Output of BLAT (matching of the unique transcripts and the filtered, combined genome skim reads sharing ≥85% sequence similarity):"
echo "${BLATOUTFIN}"
echo "7) Matching sequences in FASTA:"
echo "${BLATOUTFIN2}"
echo "8) Final FASTA sequences for usage in Geneious:"
echo "${FINALA}"
fi
echo "================================================================================"
echo
echo "Success!"
echo
echo "================================================================================"
echo "Resulting FASTA was saved as"
echo "${FINALA}"
echo "for usage in Geneious (step 7 of the pipeline)."
echo "Use this file in next step of the pipeline. See PDF manual for details."
echo "================================================================================"
echo
echo "================================================================================"
echo "Run Geneious (tested with versions 6-9), see PDf manual for details"
echo
echo "Use exported files from Geneious as input for part B of the Sondovač script:"
echo " \"$0 -h\", see PDF manual for details."
echo "================================================================================"
echo
echo "Script exited successfully..."
echo
exit