-
Notifications
You must be signed in to change notification settings - Fork 20
/
utils.py
63 lines (52 loc) · 1.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import random
from warnings import warn
import numpy as np
import torch
import yaml
from texttable import Texttable
def print_args(args):
_dict = vars(args)
_key = sorted(_dict.items(), key=lambda x: x[0])
t = Texttable()
t.add_row(["Parameter", "Value"])
for k, _ in _key:
t.add_row([k, _dict[k]])
print(t.draw())
def set_seed(args):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.cuda and not torch.cuda.is_available(): # cuda is not available
args.cuda = False
if args.cuda:
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.cuda_num)
torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)
random.seed(args.random_seed)
def AcontainsB(A, listB):
# A: string; listB: list of strings
for s in listB:
if s in A: return True
return False
def yaml_parser(model):
filename = os.path.join('options/configs', f'{model}.yml')
if os.path.exists(filename):
with open(filename, 'r') as yaml_f:
configs = yaml.load(yaml_f, Loader=yaml.FullLoader)
return configs
else:
warn(f'configs of {model} not found, use the default setting instead')
return {}
def overwrite_with_yaml(args, model, dataset):
configs = yaml_parser(model)
if dataset not in configs.keys():
warn(f'{model} have no specific settings on {dataset}. Use the default setting instead.')
return args
for k, v in configs[dataset].items():
if k in args.__dict__:
args.__dict__[k] = v
else:
warn(f"Ignored unknown parameter {k} in yaml.")
return args