-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdataloader.py
134 lines (130 loc) · 7.17 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from torchvision import datasets, transforms
import torch
from dataset.caltech import Caltech101
from dataset.camvid import CamVid
from dataset.nyu import NYUv2, NYUv2Depth
from utils import ext_transforms
def get_dataloader(args):
if args.dataset.lower()=='mnist':
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.data_root, train=True, download=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.data_root, train=False, download=True,
transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
elif args.dataset.lower()=='cifar10':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.data_root, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(args.data_root, train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
elif args.dataset.lower()=='cifar100':
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.data_root, train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(args.data_root, train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
elif args.dataset.lower()=='caltech101':
train_loader = torch.utils.data.DataLoader(
Caltech101(args.data_root, train=True, download=args.download,
transform=transforms.Compose([
transforms.Resize(128),
transforms.RandomCrop(128),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
Caltech101(args.data_root, train=False, download=args.download,
transform=transforms.Compose([
transforms.Resize(128),
transforms.CenterCrop(128),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])),
batch_size=args.test_batch_size, shuffle=False, num_workers=2)
elif args.dataset.lower()=='imagenet':
train_loader = None # not required
test_loader = torch.utils.data.DataLoader(
datasets.ImageNet(args.data_root, split='val', download=True,
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])),
batch_size=args.batch_size, shuffle=True, num_workers=4) # shuffle for visualization
############ Segmentation
elif args.dataset.lower()=='camvid':
train_loader = torch.utils.data.DataLoader(
CamVid(args.data_root, split='train',
transform=ext_transforms.ExtCompose([
ext_transforms.ExtResize(256),
ext_transforms.ExtRandomCrop(128, pad_if_needed=True),
ext_transforms.ExtRandomHorizontalFlip(),
ext_transforms.ExtToTensor(),
ext_transforms.ExtNormalize((0.5,), (0.5,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
CamVid(args.data_root, split='test',
transform=ext_transforms.ExtCompose([
ext_transforms.ExtResize(256),
ext_transforms.ExtToTensor(),
ext_transforms.ExtNormalize((0.5,), (0.5,))
])),
batch_size=args.test_batch_size, shuffle=False, num_workers=2)
elif args.dataset.lower() in ['nyuv2']:
train_loader = torch.utils.data.DataLoader(
NYUv2(args.data_root, split='train',
transform=ext_transforms.ExtCompose([
ext_transforms.ExtResize(256),
ext_transforms.ExtRandomCrop(128, pad_if_needed=True),
ext_transforms.ExtRandomHorizontalFlip(),
ext_transforms.ExtToTensor(),
ext_transforms.ExtNormalize((0.5,), (0.5,))
])),
batch_size=args.batch_size, shuffle=True, num_workers=2)
test_loader = torch.utils.data.DataLoader(
NYUv2(args.data_root, split='test',
transform=ext_transforms.ExtCompose([
ext_transforms.ExtResize(256),
ext_transforms.ExtToTensor(),
ext_transforms.ExtNormalize((0.5,), (0.5,))
])),
batch_size=args.test_batch_size, shuffle=False, num_workers=2)
return train_loader, test_loader