-
Notifications
You must be signed in to change notification settings - Fork 18
/
train_teacher.py
136 lines (117 loc) · 5.83 KB
/
train_teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import print_function
import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import network
from dataloader import get_dataloader
import random
import numpy as np
import os
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if args.verbose and batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(args, model, device, test_loader, cur_epoch):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.cross_entropy(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nEpoch {} Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.4f}%)\n'.format(
cur_epoch, test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
return correct/len(test_loader.dataset)
def get_model(args):
if args.model.lower()=='lenet5':
return network.lenet.LeNet5()
elif args.model.lower()=='resnet34':
return torchvision.models.resnet34(num_classes=args.num_classes, pretrained=args.pretrained)
elif args.model.lower()=='resnet34_8x':
return network.resnet.resnet34(num_classes=args.num_classes)
def main():
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--num_classes', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=256, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test_batch_size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--data_root', type=str, default='data')
parser.add_argument('--epochs', type=int, default=30, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--dataset', type=str, default='mnist', choices=['mnist', 'svhn', 'cifar10', 'caltech101', 'nyuv2'],
help='dataset name (default: mnist)')
parser.add_argument('--model', type=str, default='lenet5', choices=['lenet5', 'resnet34', 'resnet34_8x'],
help='model name (default: mnist)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--step_size', type=int, default=50, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--ckpt', type=str, default=None)
parser.add_argument('--log_interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--test_only', action='store_true', default=False)
parser.add_argument('--download', action='store_true', default=False)
parser.add_argument('--pretrained', action='store_true', default=False)
parser.add_argument('--scheduler', action='store_true', default=False)
parser.add_argument('--verbose', action='store_true', default=False)
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if use_cuda else "cpu")
os.makedirs('checkpoint/teacher', exist_ok=True)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
print(args)
train_loader, test_loader = get_dataloader(args)
model = get_model(args)
if args.ckpt is not None:
model.load_state_dict( torch.load( args.ckpt ) )
model = model.to(device)
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.weight_decay, momentum=args.momentum)
best_acc = 0
if args.scheduler:
scheduler = optim.lr_scheduler.StepLR(optimizer, args.step_size, 0.1)
if args.test_only:
acc = test(args, model, device, test_loader, 0)
return
for epoch in range(1, args.epochs + 1):
if args.scheduler:
scheduler.step()
#print("Lr = %.6f"%(optimizer.param_groups[0]['lr']))
train(args, model, device, train_loader, optimizer, epoch)
acc = test(args, model, device, test_loader, epoch)
if acc>best_acc:
best_acc = acc
torch.save(model.state_dict(),"checkpoint/teacher/%s-%s.pt"%(args.dataset, args.model))
print("Best Acc=%.6f"%best_acc)
if __name__ == '__main__':
main()