-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbibliography.bib
1026 lines (940 loc) · 41.8 KB
/
bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{abs181207958,
author = {Pei Cao, Jiong Tang},
title = {A Reinforcement Learning Hyper-Heuristic in Multi-Objective Single
Point Search with Application to Structural Fault Identification},
journal = {CoRR},
volume = {abs/1812.07958},
year = {2018},
url = {http://arxiv.org/abs/1812.07958},
archiveprefix = {arXiv},
eprint = {1812.07958},
timestamp = {Wed, 02 Jan 2019 14:40:18 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1812-07958},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{Audet2018PerformanceII,
title = {Performance indicators in multiobjective optimization},
author = {Charles Audet and S{\'e}bastien Le Digabel and Dominique Cartier and Jean Bigeon and Ludovic Salomon},
year = {2018}
}
@inproceedings{autosklearn:feurer2015efficient,
title = {Efficient and robust automated machine learning},
author = {Feurer, Matthias and Klein, Aaron and Eggensperger, Katharina and Springenberg, Jost and Blum, Manuel and Hutter, Frank},
booktitle = {Advances in neural information processing systems},
pages = {2962--2970},
year = {2015}
}
@misc{benitezhidalgo2019jmetalpy,
title = {jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics},
author = {Antonio Benitez-Hidalgo and Antonio J. Nebro and Jose Garcia-Nieto and Izaskun Oregi and Javier Del Ser},
year = {2019},
eprint = {1903.02915},
archiveprefix = {arXiv},
primaryclass = {cs.NE}
}
@misc{bodin2019modulating,
title = {Modulating Surrogates for Bayesian Optimization},
author = {Erik Bodin and Markus Kaiser and Ieva Kazlauskaite and Zhenwen Dai and Neill D. F. Campbell and Carl Henrik Ek},
year = {2019},
eprint = {1906.11152},
archiveprefix = {arXiv},
primaryclass = {stat.ML}
}
@misc{buitinck2013api,
title = {API design for machine learning software: experiences from the scikit-learn project},
author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and Fabian Pedregosa and Andreas Mueller and Olivier Grisel and Vlad Niculae and Peter Prettenhofer and Alexandre Gramfort and Jaques Grobler and Robert Layton and Jake Vanderplas and Arnaud Joly and Brian Holt and Gaël Varoquaux},
year = {2013},
eprint = {1309.0238},
archiveprefix = {arXiv},
primaryclass = {cs.LG}
}
@article{ChafekarSRX05,
author = {Deepti Chafekar and
Liang Shi and
Khaled Rasheed and
Jiang Xuan},
title = {Multiobjective {GA} optimization using reduced models},
journal = {{IEEE} Trans. Systems, Man, and Cybernetics, Part {C}},
volume = {35},
number = {2},
pages = {261--265},
year = {2005},
url = {https://doi.org/10.1109/TSMCC.2004.841905},
doi = {10.1109/TSMCC.2004.841905},
timestamp = {Wed, 17 May 2017 10:55:49 +0200},
biburl = {https://dblp.org/rec/bib/journals/tsmc/ChafekarSRX05},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{CustodioMVV11,
author = {A. L. Cust{\'{o}}dio and
J. F. Aguilar Madeira and
A. Ismael F. Vaz and
Lu{\'{\i}}s Nunes Vicente},
title = {Direct Multisearch for Multiobjective Optimization},
journal = {{SIAM} Journal on Optimization},
volume = {21},
number = {3},
pages = {1109--1140},
year = {2011},
url = {https://doi.org/10.1137/10079731X},
doi = {10.1137/10079731X},
timestamp = {Wed, 15 Jan 2020 18:09:46 +0100},
biburl = {https://dblp.org/rec/bib/journals/siamjo/CustodioMVV11},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@incollection{DebN07,
author = {Kalyanmoy Deb and
Pawan K. S. Nain},
title = {An Evolutionary Multi-objective Adaptive Meta-modeling Procedure Using
Artificial Neural Networks},
booktitle = {Evolutionary Computation in Dynamic and Uncertain Environments},
pages = {297--322},
year = {2007},
url = {https://doi.org/10.1007/978-3-540-49774-5\_13},
doi = {10.1007/978-3-540-49774-5\_13},
timestamp = {Tue, 16 May 2017 14:24:31 +0200},
biburl = {https://dblp.org/rec/bib/series/sci/DebN07},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@incollection{DebTLZ05,
author = {Kalyanmoy Deb and
Lothar Thiele and
Marco Laumanns and
Eckart Zitzler},
title = {Scalable Test Problems for Evolutionary Multiobjective Optimization},
booktitle = {Evolutionary Multiobjective Optimization},
pages = {105--145},
year = {2005},
url = {https://doi.org/10.1007/1-84628-137-7\_6},
doi = {10.1007/1-84628-137-7\_6},
timestamp = {Thu, 25 Jul 2019 18:49:32 +0200},
biburl = {https://dblp.org/rec/bib/books/sp/05/DebTLZ05},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{EmmerichD18,
author = {Michael T. M. Emmerich and
Andr{\'{e}} H. Deutz},
title = {A tutorial on multiobjective optimization: fundamentals and evolutionary
methods},
journal = {Natural Computing},
volume = {17},
number = {3},
pages = {585--609},
year = {2018},
url = {https://doi.org/10.1007/s11047-018-9685-y},
doi = {10.1007/s11047-018-9685-y},
timestamp = {Wed, 03 Oct 2018 12:54:55 +0200},
biburl = {https://dblp.org/rec/bib/journals/nc/EmmerichD18},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{EmmerichGN06,
author = {Michael T. M. Emmerich and
Kyriakos C. Giannakoglou and
Boris Naujoks},
title = {Single- and multiobjective evolutionary optimization assisted by Gaussian
random field metamodels},
journal = {{IEEE} Trans. Evolutionary Computation},
volume = {10},
number = {4},
pages = {421--439},
year = {2006},
url = {https://doi.org/10.1109/TEVC.2005.859463},
doi = {10.1109/TEVC.2005.859463},
timestamp = {Wed, 17 May 2017 14:25:39 +0200},
biburl = {https://dblp.org/rec/bib/journals/tec/EmmerichGN06},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{EngSurMod,
added-at = {2011-03-15T00:00:00.000+0100},
author = {Forrester, Alexander I. J. and Sobester, Andras and Keane, Andy J.},
biburl = {https://www.bibsonomy.org/bibtex/2e50e273c544b70923fd89bf1798f28cf/dblp},
ee = {http://onlinelibrary.wiley.com/book/10.1002/9780470770801},
interhash = {19127ebd3e6c7ddd1ea4b8614978ab3d},
intrahash = {e50e273c544b70923fd89bf1798f28cf},
isbn = {978-0-470-06068-1},
keywords = {dblp},
pages = {I-XVIII, 1-210},
publisher = {Wiley},
timestamp = {2011-04-29T15:26:06.000+0200},
title = {Engineering Design via Surrogate Modelling - A Practical Guide.},
year = 2008
}
@software{francesco_biscani_2019,
author = {Francesco Biscani and
Dario Izzo and
Wenzel Jakob and
GiacomoAcciarini and
Marcus Märtens and
Micky C and
Alessio Mereta and
Cord Kaldemeyer and
Sergey Lyskov and
Giacomo Acciarini and
Sylvain Corlay and
acxz and
Benjamin Pritchard and
Kishan Manani and
Johan Mabille and
Axel Huebl and
Manuel López-Ibáñez and
jakirkham and
Jeongseok Lee and
hulucc and
polygon and
Luka Čehovin Zajc and
Jonas Adler and
John Travers and
Jakob Jordan and
Ivan Smirnov and
Huu Nguyen and
Felipe Lema and
Erik O'Leary and
Andrea Mambrini},
title = {esa/pagmo2: pagmo 2.12.0},
month = dec,
year = 2019,
publisher = {Zenodo},
version = {v2.12.0},
doi = {10.5281/zenodo.3582877},
url = {https://doi.org/10.5281/zenodo.3582877}
}
@article{art-scikit-learn,
title={{Scikit-learn: Machine Learning in Python }},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@article{Grierson1993,
author = {Grierson, D. E.
and Pak, W. H.},
title = {Optimal sizing, geometrical and topological design using a genetic algorithm},
journal = {Structural optimization},
year = {1993},
month = {Sep},
day = {01},
volume = {6},
number = {3},
pages = {151--159},
abstract = {A genetic algorithm is applied for the optimal design of skeletal building structures accounting for discrete sizing, geometrical and topological variables. An approximate designfitness evaluation technique is investigated with the aim to improve the numerical efficiency of the genetic search. Two design examples are presented to illustrate the principles involved.},
issn = {1615-1488},
doi = {10.1007/BF01743506},
url = {https://doi.org/10.1007/BF01743506}
}
@article{Jin05,
author = {Yaochu Jin},
title = {A comprehensive survey of fitness approximation in evolutionary computation},
journal = {Soft Comput.},
volume = {9},
number = {1},
pages = {3--12},
year = {2005},
url = {https://doi.org/10.1007/s00500-003-0328-5},
doi = {10.1007/s00500-003-0328-5},
timestamp = {Sat, 20 May 2017 00:25:41 +0200},
biburl = {https://dblp.org/rec/bib/journals/soco/Jin05},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@misc{kouwe2018benchmarking,
title = {Benchmarking Crimes: An Emerging Threat in Systems Security},
author = {Erik van der Kouwe and Dennis Andriesse and Herbert Bos and Cristiano Giuffrida and Gernot Heiser},
year = {2018},
eprint = {1801.02381},
archiveprefix = {arXiv},
primaryclass = {cs.CR}
}
@article{KrallMD15,
author = {Joseph Krall and
Tim Menzies and
Misty Davies},
title = {{GALE:} Geometric Active Learning for Search-Based Software Engineering},
journal = {{IEEE} Trans. Software Eng.},
volume = {41},
number = {10},
pages = {1001--1018},
year = {2015},
url = {https://doi.org/10.1109/TSE.2015.2432024},
doi = {10.1109/TSE.2015.2432024},
timestamp = {Wed, 14 Nov 2018 10:49:20 +0100},
biburl = {https://dblp.org/rec/bib/journals/tse/KrallMD15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{Li2009,
author = {Li, G.
and Li, M.
and Azarm, S.
and Al Hashimi, S.
and Al Ameri, T.
and Al Qasas, N.},
title = {Improving multi-objective genetic algorithms with adaptive design of experiments and online metamodeling},
journal = {Structural and Multidisciplinary Optimization},
year = {2009},
month = {Feb},
day = {01},
volume = {37},
number = {5},
pages = {447--461},
abstract = {Applications of multi-objective genetic algorithms (MOGAs) in engineering optimization problems often require numerous function calls. One way to reduce the number of function calls is to use an approximation in lieu of function calls. An approximation involves two steps: design of experiments (DOE) and metamodeling. This paper presents a new approach where both DOE and metamodeling are integrated with a MOGA. In particular, the DOE method reduces the number of generations in a MOGA, while the metamodeling reduces the number of function calls in each generation. In the present approach, the DOE locates a subset of design points that is estimated to better sample the design space, while the metamodeling assists in estimating the fitness of design points. Several numerical and engineering examples are used to demonstrate the applicability of this new approach. The results from these examples show that the proposed improved approach requires significantly fewer function calls and obtains similar solutions compared to a conventional MOGA and a recently developed metamodeling-assisted MOGA.},
issn = {1615-1488},
doi = {10.1007/s00158-008-0251-6},
url = {https://doi.org/10.1007/s00158-008-0251-6}
}
@article{MlakarPTF15,
author = {Miha Mlakar and
Dejan Petelin and
Tea Tusar and
Bogdan Filipic},
title = {{GP-DEMO:} Differential Evolution for Multiobjective Optimization
based on Gaussian Process models},
journal = {European Journal of Operational Research},
volume = {243},
number = {2},
pages = {347--361},
year = {2015},
url = {https://doi.org/10.1016/j.ejor.2014.04.011},
doi = {10.1016/j.ejor.2014.04.011},
timestamp = {Sat, 27 May 2017 14:25:14 +0200},
biburl = {https://dblp.org/rec/bib/journals/eor/MlakarPTF15},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{Nakayama05,
author = {Hirotaka Nakayama},
title = {Multi-objective Optimization and its Engineering Applications},
booktitle = {Practical Approaches to Multi-Objective Optimization, 7.-12. November 2004},
year = {2005},
url = {http://drops.dagstuhl.de/opus/volltexte/2005/234},
timestamp = {Thu, 23 Aug 2018 15:56:31 +0200},
biburl = {https://dblp.org/rec/bib/conf/dagstuhl/Nakayama05},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{odugod2013,
author = {Odu, Godwin},
year = {2013},
month = {10},
pages = {01-14},
title = {Review of Multi-criteria Optimization Methods – Theory and Applications},
volume = {3},
journal = {IOSR Journal of Engineering},
doi = {10.9790/3021-031020114}
}
@inproceedings{OlsonGECCO2016,
author = {Olson, Randal S. and Bartley, Nathan and Urbanowicz, Ryan J. and Moore, Jason H.},
title = {Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science},
booktitle = {Proceedings of the Genetic and Evolutionary Computation Conference 2016},
series = {GECCO '16},
year = {2016},
isbn = {978-1-4503-4206-3},
location = {Denver, Colorado, USA},
pages = {485--492},
numpages = {8},
url = {http://doi.acm.org/10.1145/2908812.2908918},
doi = {10.1145/2908812.2908918},
acmid = {2908918},
publisher = {ACM},
address = {New York, NY, USA}
}
@inproceedings{PilatN12,
author = {Martin Pil{\'{a}}t and
Roman Neruda},
title = {An Evolutionary Strategy for Surrogate-Based Multiobjective Optimization},
booktitle = {Proceedings of the {IEEE} Congress on Evolutionary Computation, {CEC}
2012, Brisbane, Australia, June 10-15, 2012},
pages = {1--7},
year = {2012},
url = {https://doi.org/10.1109/CEC.2012.6256450},
doi = {10.1109/CEC.2012.6256450},
timestamp = {Wed, 16 Oct 2019 14:14:52 +0200},
biburl = {https://dblp.org/rec/bib/conf/cec/PilatN12},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{TianPlatEMO,
title = {{PlatEMO}: A {MATLAB} platform for evolutionary multi-objective optimization},
author = {Tian, Ye and Cheng, Ran and Zhang, Xingyi and Jin, Yaochu},
journal = {IEEE Computational Intelligence Magazine},
volume = {12},
number = {4},
pages = {73--87},
year = {2017}
}
@inbook{Rasmussen2004,
author = {Rasmussen, Carl Edward},
editor = {Bousquet, Olivier
and von Luxburg, Ulrike
and R{\"a}tsch, Gunnar},
title = {Gaussian Processes in Machine Learning},
booktitle = {Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, T{\"u}bingen, Germany, August 4 - 16, 2003, Revised Lectures},
year = {2004},
publisher = {Springer Berlin Heidelberg},
address = {Berlin, Heidelberg},
pages = {63--71},
abstract = {We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.},
isbn = {978-3-540-28650-9},
doi = {10.1007/978-3-540-28650-9_4},
url = {https://doi.org/10.1007/978-3-540-28650-9_4}
}
@article{RasmussenN10,
author = {Carl Edward Rasmussen and
Hannes Nickisch},
title = {Gaussian Processes for Machine Learning {(GPML)} Toolbox},
journal = {J. Mach. Learn. Res.},
volume = {11},
pages = {3011--3015},
year = {2010},
url = {http://portal.acm.org/citation.cfm?id=1953029},
timestamp = {Wed, 10 Jul 2019 15:27:55 +0200},
biburl = {https://dblp.org/rec/bib/journals/jmlr/RasmussenN10},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{RasmussenW06,
author = {Carl Edward Rasmussen and
Christopher K. I. Williams},
title = {Gaussian processes for machine learning},
series = {Adaptive computation and machine learning},
publisher = {{MIT} Press},
year = {2006},
url = {http://www.worldcat.org/oclc/61285753},
isbn = {026218253X},
timestamp = {Wed, 26 Apr 2017 17:48:08 +0200},
biburl = {https://dblp.org/rec/bib/books/lib/RasmussenW06},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{ResponseSurface,
author = {Myers, Raymond H. and Montgomery, Douglas C.},
title = {Response Surface Methodology: Process and Product in Optimization Using Designed Experiments},
year = {1995},
isbn = {0471581003},
publisher = {John Wiley and Sons, Inc.},
address = {USA},
edition = {1st}
}
@inproceedings{Schott1995FaultTD,
title = {Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization.},
author = {Jason R. Schott},
year = {1995}
}
@article{TaboadaBCW07,
author = {Heidi A. Taboada and
Fatema Baheranwala and
David W. Coit and
Naruemon Wattanapongsakorn},
title = {Practical solutions for multi-objective optimization: An application
to system reliability design problems},
journal = {Rel. Eng. and Sys. Safety},
volume = {92},
number = {3},
pages = {314--322},
year = {2007},
url = {https://doi.org/10.1016/j.ress.2006.04.014},
doi = {10.1016/j.ress.2006.04.014},
timestamp = {Sat, 27 May 2017 14:25:20 +0200},
biburl = {https://dblp.org/rec/bib/journals/ress/TaboadaBCW07},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{WFGref,
author = {S. {Huband} and P. {Hingston} and L. {Barone} and L. {While}},
journal = {IEEE Transactions on Evolutionary Computation},
title = {A review of multiobjective test problems and a scalable test problem toolkit},
year = {2006},
volume = {10},
number = {5},
pages = {477-506},
keywords = {evolutionary computation;multiobjective test problems;scalable test problem toolkit;multiobjective evolutionary algorithm;test problem criteria;Evolutionary computation;Design optimization;Australia;Algorithm design and analysis;System testing;Turbines;Combustion;Product design;Petroleum;Pipelines;Evolutionary algorithms (EAs);multiobjective evolutionary algorithms;multiobjective optimization;multiobjective test problems},
doi = {10.1109/TEVC.2005.861417},
issn = {1941-0026},
month = {Oct}
}
@article{Woodard00,
author = {Roger Woodard},
title = {Interpolation of Spatial Data: Some Theory for Kriging},
journal = {Technometrics},
volume = {42},
number = {4},
pages = {436--437},
year = {2000},
url = {https://doi.org/10.1080/00401706.2000.10485731},
doi = {10.1080/00401706.2000.10485731},
timestamp = {Sat, 27 May 2017 14:25:18 +0200},
biburl = {https://dblp.org/rec/bib/journals/technometrics/Woodard00},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{ZhangL07,
author = {Qingfu Zhang and
Hui Li},
title = {{MOEA/D:} {A} Multiobjective Evolutionary Algorithm Based on Decomposition},
journal = {{IEEE} Trans. Evolutionary Computation},
volume = {11},
number = {6},
pages = {712--731},
year = {2007},
url = {https://doi.org/10.1109/TEVC.2007.892759},
doi = {10.1109/TEVC.2007.892759},
timestamp = {Sun, 23 Sep 2018 19:44:31 +0200},
biburl = {https://dblp.org/rec/bib/journals/tec/ZhangL07},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{ZitzlerDT00,
author = {Eckart Zitzler and
Kalyanmoy Deb and
Lothar Thiele},
title = {Comparison of Multiobjective Evolutionary Algorithms: Empirical Results},
journal = {Evolutionary Computation},
volume = {8},
number = {2},
pages = {173--195},
year = {2000},
url = {https://doi.org/10.1162/106365600568202},
doi = {10.1162/106365600568202},
timestamp = {Wed, 14 Nov 2018 10:13:00 +0100},
biburl = {https://dblp.org/rec/bib/journals/ec/ZitzlerDT00},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{SoftSurvey,
author = {Chugh, Tinkle and Sindhya, Karthik and Hakanen, Jussi and Miettinen, Kaisa},
year = {2017},
month = {12},
pages = {},
title = {A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms},
journal = {Soft Computing},
doi = {10.1007/s00500-017-2965-0}
}
@InProceedings{DistrSurr,
author="Isaacs, Amitay
and Ray, Tapabrata
and Smith, Warren",
editor="Randall, Marcus
and Abbass, Hussein A.
and Wiles, Janet",
title="An Evolutionary Algorithm with Spatially Distributed Surrogates for Multiobjective Optimization",
booktitle="Progress in Artificial Life",
year="2007",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="257--268",
abstract="In this paper, an evolutionary algorithm with spatially distributed surrogates (EASDS) for multiobjective optimization is presented. The algorithm performs actual analysis for the initial population and periodically every few generations. An external archive of the unique solutions evaluated using the actual analysis is maintained to train the surrogate models. The data points in the archive are split into multiple partitions using k-Means clustering. A Radial Basis Function (RBF) network surrogate model is built for each partition using a fraction of the points in that partition. The rest of the points in the partition are used as a validation data to decide the prediction accuracy of the surrogate model. Prediction of a new candidate solution is done by the surrogate model with the least prediction error in the neighborhood of that point. Five multiobjective test problems are presented in this study and a comparison with Nondominated Sorting Genetic Algorithm II (NSGA-II) is included to highlight the benefits offered by our approach. EASDS algorithm consistently reported better nondominated solutions for all the test cases for the same number of actual evaluations as compared to a single global surrogate model and NSGA-II.",
isbn="978-3-540-76931-6"
}
@INPROCEEDINGS{HybridSurrRCG,
author={A. {Rosales-Pérez} and C. A. C. {Coello} and J. A. {Gonzalez} and C. A. {Reyes-Garcia} and H. J. {Escalante}},
booktitle={2013 IEEE Congress on Evolutionary Computation},
title={A hybrid surrogate-based approach for evolutionary multi-objective optimization},
year={2013},
volume={},
number={},
pages={2548-2555},
keywords={benchmark testing;evolutionary computation;Pareto optimisation;support vector machines;hybrid surrogate-based approach;evolutionary multiobjective optimization problems;evolutionary algorithms;fitness function evaluations;Pareto front approximation;evolutionary algorithm;surrogate models;support vector machines;SVM;model selection process;hyperparameter values;evolutionary process;surrogate fidelity;NSGA-II;Support vector machines;Sociology;Statistics;Optimization;Linear programming;Computational modeling;Evolutionary computation},
doi={10.1109/CEC.2013.6557876},
ISSN={1941-0026},
month={June},
}
@misc{akhtar2019efficient,
title={Efficient Multi-Objective Optimization through Population-based Parallel Surrogate Search},
author={Taimoor Akhtar and Christine A. Shoemaker},
year={2019},
eprint={1903.02167},
archivePrefix={arXiv},
primaryClass={cs.NE}
}
@article{LuST19,
author = {Xiaofen Lu and
Tao Sun and
Ke Tang},
title = {Evolutionary optimization with hierarchical surrogates},
journal = {Swarm Evol. Comput.},
volume = {47},
pages = {21--32},
year = {2019},
url = {https://doi.org/10.1016/j.swevo.2019.03.005},
doi = {10.1016/j.swevo.2019.03.005},
timestamp = {Sat, 22 Feb 2020 19:26:28 +0100},
biburl = {https://dblp.org/rec/journals/swevo/LuST19.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{nardi2019practical,
title={Practical design space exploration},
author={Nardi, Luigi and Koeplinger, David and Olukotun, Kunle},
booktitle={2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)},
pages={347--358},
year={2019},
organization={IEEE}
}
@misc{smac-2017,
title={SMAC v3: Algorithm Configuration in Python},
author={Marius Lindauer and Katharina Eggensperger and Matthias Feurer and Stefan Falkner and André Biedenkapp and Frank Hutter},
year={2017},
publisher={GitHub},
howpublished={\url{https://github.com/automl/SMAC3}}
}
@inproceedings{HutterHL11,
author = {Frank Hutter and
Holger H. Hoos and
Kevin Leyton{-}Brown},
title = {Sequential Model-Based Optimization for General Algorithm Configuration},
booktitle = {Learning and Intelligent Optimization - 5th International Conference,
{LION} 5, Rome, Italy, January 17-21, 2011. Selected Papers},
pages = {507--523},
year = {2011},
url = {https://doi.org/10.1007/978-3-642-25566-3\_40},
doi = {10.1007/978-3-642-25566-3\_40},
timestamp = {Sun, 02 Jun 2019 21:10:54 +0200},
biburl = {https://dblp.org/rec/conf/lion/HutterHL11.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{BischlmlrMBO,
title = {{{mlrMBO}}: {{A Modular Framework}} for {{Model}}-{{Based Optimization}} of {{Expensive Black}}-{{Box Functions}}},
url = {http://arxiv.org/abs/1703.03373},
shorttitle = {{{mlrMBO}}},
archivePrefix = {arXiv},
eprinttype = {arxiv},
eprint = {1703.03373},
primaryClass = {stat},
author = {Bischl, Bernd and Richter, Jakob and Bossek, Jakob and Horn, Daniel and Thomas, Janek and Lang, Michel},
date = {2017-03-09},
}
@article{Knowles06,
author = {J. Knowles},
title = {ParEGO: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems},
journal = {{IEEE} Trans. Evolutionary Computation},
volume = {10},
number = {1},
pages = {50--66},
year = {2006},
url = {https://doi.org/10.1109/TEVC.2005.851274},
doi = {10.1109/TEVC.2005.851274},
timestamp = {Wed, 17 May 2017 14:25:39 +0200},
biburl = {https://dblp.org/rec/journals/tec/Knowles06.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{FalknerBOHB,
author = {Stefan Falkner and
Aaron Klein and
Frank Hutter},
title = {{BOHB:} Robust and Efficient Hyperparameter Optimization at Scale},
journal = {CoRR},
volume = {abs/1807.01774},
year = {2018},
url = {http://arxiv.org/abs/1807.01774},
archivePrefix = {arXiv},
eprint = {1807.01774},
timestamp = {Mon, 13 Aug 2018 16:47:48 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1807-01774.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{Pukhkaiev19,
author = {Dmytro Pukhkaiev and
Uwe A{\ss}mann},
title = {Parameter Tuning for Self-optimizing Software at Scale},
journal = {CoRR},
volume = {abs/1909.03814},
year = {2019},
url = {http://arxiv.org/abs/1909.03814},
archivePrefix = {arXiv},
eprint = {1909.03814},
timestamp = {Tue, 17 Sep 2019 11:23:44 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1909-03814.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{Sobol1999,
affiliation = {Institute of Mathematical Modelling of the Russian Academy of Sciences 4 Miusskaya SquareMoscow 125047, ⟨sobol#3⟩⟨levitan⟩@imamod.msk.suRussia},
author = {Sobol, I. M. and Levitan, Yu. L.},
journal = {Computers and Mathematics with Applications},
keywords = {Random numbers; Pseudo-random numbers; Monte Carlo methods; Randomness tests; Multiple criteria decision making},
language = {English},
number = {4-5},
pages = {33-40},
title = {A Pseudo-Random Number Generator for Personal Computers},
volume = {37},
year = {1999},
}
@inproceedings{TobiasCV,
author = {Wagner, Tobias},
year = {2010},
month = {01},
pages = {1},
title = {A Subjective Review of the State of the Art in Model-Based Parameter Tuning}
}
@book{HastieFT01,
author = {Trevor Hastie and
Jerome H. Friedman and
Robert Tibshirani},
title = {The Elements of Statistical Learning: Data Mining, Inference, and
Prediction},
series = {Springer Series in Statistics},
publisher = {Springer},
year = {2001},
url = {https://doi.org/10.1007/978-0-387-21606-5},
doi = {10.1007/978-0-387-21606-5},
isbn = {978-1-4899-0519-2},
timestamp = {Mon, 22 Jul 2019 15:00:48 +0200},
biburl = {https://dblp.org/rec/books/sp/HastieFT01.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{TutMOEABrockhoff,
author = {Brockhoff, Dimo and Wagner, Tobias},
title = {Tutorial on Evolutionary Multiobjective Optimization},
year = {2015},
isbn = {9781450334884},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2739482.2756574},
doi = {10.1145/2739482.2756574},
booktitle = {Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation},
pages = {37–63},
numpages = {27},
location = {Madrid, Spain},
series = {GECCO Companion ’15}
}
@article{ChughScal2019,
author = {Tinkle Chugh},
title = {Scalarizing Functions in Bayesian Multiobjective Optimization},
journal = {CoRR},
volume = {abs/1904.05760},
year = {2019},
url = {http://arxiv.org/abs/1904.05760},
archivePrefix = {arXiv},
eprint = {1904.05760},
timestamp = {Thu, 25 Apr 2019 13:55:01 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1904-05760.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{Martens13,
author = {Marcus M{\"{a}}rtens and Dario Izzo},
title = {The asynchronous island model and {NSGA-II:} study of a new migration operator and its performance},
booktitle = {Genetic and Evolutionary Computation Conference, {GECCO} '13, Amsterdam, The Netherlands, July 6-10, 2013},
pages = {1173--1180},
year = {2013},
url = {https://doi.org/10.1145/2463372.2463516},
doi = {10.1145/2463372.2463516},
timestamp = {Tue, 06 Nov 2018 11:06:40 +0100},
biburl = {https://dblp.org/rec/conf/gecco/MartensI13.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{NFL:DolpertM97,
author = {David H. Wolpert and
William G. Macready},
title = {No free lunch theorems for optimization},
journal = {{IEEE} Trans. Evolutionary Computation},
volume = {1},
number = {1},
pages = {67--82},
year = {1997},
url = {https://doi.org/10.1109/4235.585893},
doi = {10.1109/4235.585893},
timestamp = {Tue, 08 May 2018 14:46:40 +0200},
biburl = {https://dblp.org/rec/journals/tec/DolpertM97.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{Kaisa0021267,
author = {Kaisa Miettinen},
title = {Nonlinear multiobjective optimization},
series = {International series in operations research and management science},
volume = {12},
publisher = {Kluwer},
year = {1998},
isbn = {978-0-7923-8278-2},
timestamp = {Mon, 22 Jul 2019 16:40:55 +0200},
biburl = {https://dblp.org/rec/books/daglib/0021267.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{BeumeFLPV09,
author = {Nicola Beume and
Carlos M. Fonseca and
Manuel L{\'{o}}pez{-}Ib{\'{a}}{\~{n}}ez and
Lu{\'{\i}}s Paquete and
Jan Vahrenhold},
title = {On the Complexity of Computing the Hypervolume Indicator},
journal = {{IEEE} Trans. Evolutionary Computation},
volume = {13},
number = {5},
pages = {1075--1082},
year = {2009},
url = {https://doi.org/10.1109/TEVC.2009.2015575},
doi = {10.1109/TEVC.2009.2015575},
timestamp = {Sun, 12 Nov 2017 23:10:48 +0100},
biburl = {https://dblp.org/rec/journals/tec/BeumeFLPV09.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{DerbelBLV14,
author = {Bilel Derbel and
Dimo Brockhoff and
Arnaud Liefooghe and
S{\'{e}}bastien V{\'{e}}rel},
title = {On the Impact of Multiobjective Scalarizing Functions},
journal = {CoRR},
volume = {abs/1409.5752},
year = {2014},
url = {http://arxiv.org/abs/1409.5752},
archivePrefix = {arXiv},
eprint = {1409.5752},
timestamp = {Mon, 13 Aug 2018 16:46:04 +0200},
biburl = {https://dblp.org/rec/journals/corr/DerbelBLV14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@MISC{Andersson00asurvey,
author = {Johan Andersson},
title = {A Survey of Multiobjective Optimization in Engineering Design Johan},
year = {2000}
}
@article{WagEGOe,
author = {Wagner, T.},
title = {Planning and Multi-Objective Optimization of Manufacturing Processes by Means of Empirical Surrogate Models},
journal = {Vulkan Verlag},
year = {2013}
}
@article{RamirezRV19,
author = {Aurora Ram{\'{\i}}rez and Jos{\'{e}} Ra{\'{u}}l Romero and Sebasti{\'{a}}n Ventura},
title = {A survey of many-objective optimisation in search-based software engineering},
journal = {J. Syst. Softw.},
volume = {149},
pages = {382--395},
year = {2019},
url = {https://doi.org/10.1016/j.jss.2018.12.015},
doi = {10.1016/j.jss.2018.12.015},
timestamp = {Mon, 24 Feb 2020 15:58:16 +0100},
biburl = {https://dblp.org/rec/journals/jss/RamirezRV19.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{KOURAKOS201313,
title = "Development of a multi-objective optimization algorithm using surrogate models for coastal aquifer management",
journal = "Journal of Hydrology",
volume = "479",
pages = "13 - 23",
year = "2013",
issn = "0022-1694",
doi = "https://doi.org/10.1016/j.jhydrol.2012.10.050",
url = "http://www.sciencedirect.com/science/article/pii/S0022169412009511",
author = "George Kourakos and Aristotelis Mantoglou",
keywords = "Salt water intrusion, Aquifer management, Coastal aquifers, Multi-objective optimization, Surrogate models, Pumping management",
abstract = "Summary
The demand for fresh water in coastal areas and islands can be very high due to increased local needs and tourism. A multi-objective optimization methodology is developed, involving minimization of economic and environmental costs while satisfying water demand. The methodology considers desalinization of pumped water and injection of treated water into the aquifer. Variable density aquifer models are computationally intractable when integrated in optimization algorithms. In order to alleviate this problem, a multi-objective optimization algorithm is developed combining surrogate models based on Modular Neural Networks [MOSA(MNNs)]. The surrogate models are trained adaptively during optimization based on a genetic algorithm. In the crossover step, each pair of parents generates a pool of offspring which are evaluated using the fast surrogate model. Then, the most promising offspring are evaluated using the exact numerical model. This procedure eliminates errors in Pareto solution due to imprecise predictions of the surrogate model. The method has important advancements compared to previous methods such as precise evaluation of the Pareto set and alleviation of propagation of errors due to surrogate model approximations. The method is applied to an aquifer in the Greek island of Santorini. The results show that the new MOSA(MNN) algorithm offers significant reduction in computational time compared to previous methods (in the case study it requires only 5% of the time required by other methods). Further, the Pareto solution is better than the solution obtained by alternative algorithms."
}
@article{FigueiraA14,
author = {Gon{\c{c}}alo Figueira and Bernardo Almada{-}Lobo},
title = {Hybrid simulation-optimization methods: {A} taxonomy and discussion},
journal = {Simul. Model. Pract. Theory},
volume = {46},
pages = {118--134},
year = {2014},
url = {https://doi.org/10.1016/j.simpat.2014.03.007},
doi = {10.1016/j.simpat.2014.03.007},
timestamp = {Mon, 24 Feb 2020 15:55:22 +0100},
biburl = {https://dblp.org/rec/journals/simpra/FigueiraA14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{JonesSW98,
author = {Donald R. Jones and
Matthias Schonlau and
William J. Welch},
title = {Efficient Global Optimization of Expensive Black-Box Functions},
journal = {J. Global Optimization},
volume = {13},
number = {4},
pages = {455--492},
year = {1998},
url = {https://doi.org/10.1023/A:1008306431147},
doi = {10.1023/A:1008306431147},
timestamp = {Wed, 17 May 2017 14:25:32 +0200},
biburl = {https://dblp.org/rec/journals/jgo/JonesSW98.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{ZaeffererBNWE13,
author = {Martin Zaefferer and
Thomas Bartz{-}Beielstein and
Boris Naujoks and
Tobias Wagner and
Michael Emmerich},
title = {A Case Study on Multi-Criteria Optimization of an Event Detection
Software under Limited Budgets},
booktitle = {Evolutionary Multi-Criterion Optimization - 7th International Conference,
{EMO} 2013, Sheffield, UK, March 19-22, 2013. Proceedings},
pages = {756--770},
year = {2013},
url = {https://doi.org/10.1007/978-3-642-37140-0\_56},
doi = {10.1007/978-3-642-37140-0\_56},
timestamp = {Tue, 14 May 2019 10:00:47 +0200},
biburl = {https://dblp.org/rec/conf/emo/ZaeffererBNWE13.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{inproceedings,
author = {Ponweiser, Wolfgang and Wagner, Tobias and Biermann, Dirk and Vincze, Markus},
year = {2008},
month = {09},
pages = {784-794},
title = {Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted $\mathcal{S}$ -Metric Selection},
doi = {10.1007/978-3-540-87700-4_78}
}
@inproceedings{WilsonHSX16,
author = {Andrew Gordon Wilson and
Zhiting Hu and
Ruslan Salakhutdinov and
Eric P. Xing},
title = {Deep Kernel Learning},
booktitle = {Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, {AISTATS} 2016, Cadiz, Spain, May 9-11, 2016},
pages = {370--378},
year = {2016},
url = {http://proceedings.mlr.press/v51/wilson16.html},
timestamp = {Wed, 29 May 2019 08:41:44 +0200},
biburl = {https://dblp.org/rec/conf/aistats/WilsonHSX16.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{Deb99,
author = {Kalyanmoy Deb},
title = {Multi-objective Genetic Algorithms: Problem Difficulties and Construction
of Test Problems},
journal = {Evol. Comput.},
volume = {7},
number = {3},
pages = {205--230},
year = {1999},
url = {https://doi.org/10.1162/evco.1999.7.3.205},
doi = {10.1162/evco.1999.7.3.205},
timestamp = {Fri, 13 Mar 2020 14:35:23 +0100},
biburl = {https://dblp.org/rec/journals/ec/Deb99.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{DebAPM00,
author = {Kalyanmoy Deb and
Samir Agrawal and
Amrit Pratap and
T. Meyarivan},
title = {A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimisation: {NSGA-II}},
booktitle = {Parallel Problem Solving from Nature - {PPSN} VI, 6th International
Conference, Paris, France, September 18-20, 2000, Proceedings},
pages = {849--858},
year = {2000},
url = {https://doi.org/10.1007/3-540-45356-3\_83},
doi = {10.1007/3-540-45356-3\_83},
timestamp = {Tue, 14 May 2019 10:00:53 +0200},
biburl = {https://dblp.org/rec/conf/ppsn/DebAPM00.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}