forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm_wikitext2.py
514 lines (445 loc) · 19.1 KB
/
lstm_wikitext2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Example that reproduces the LSTM on WikiText2 benchmark from AutoGluonExperiments repo
"""
import os
import argparse
import logging
import time
import math
from syne_tune import Reporter
from syne_tune.config_space import randint, uniform, loguniform, add_to_argparse
from benchmarking.utils import (
resume_from_checkpointed_model,
checkpoint_model_at_rung_level,
add_checkpointing_to_argparse,
pytorch_load_save_functions,
parse_bool,
)
BATCH_SIZE_LOWER = 8
BATCH_SIZE_UPPER = 256
BATCH_SIZE_KEY = "batch_size"
METRIC_NAME = "objective"
RESOURCE_ATTR = "epoch"
ELAPSED_TIME_ATTR = "elapsed_time"
_config_space = {
"lr": loguniform(1, 50),
"dropout": uniform(0, 0.99),
BATCH_SIZE_KEY: randint(BATCH_SIZE_LOWER, BATCH_SIZE_UPPER),
"clip": uniform(0.1, 2),
"lr_factor": loguniform(1, 100),
}
DATASET_PATH = "https://raw.githubusercontent.com/pytorch/examples/master/word_language_model/data/wikitext-2/"
def download_data(root):
import urllib
path = os.path.join(root, "wikitext-2")
for fname in ("train.txt", "valid.txt"):
fh = os.path.join(path, fname)
if not os.path.exists(fh):
os.makedirs(path, exist_ok=True)
urllib.request.urlretrieve(DATASET_PATH + fname, fh)
class Dictionary:
def __init__(self):
self.word2idx = {}
self.idx2word = []
def add_word(self, word):
if word not in self.word2idx:
self.idx2word.append(word)
self.word2idx[word] = len(self.idx2word) - 1
return self.word2idx[word]
def __len__(self):
return len(self.idx2word)
class Corpus:
def __init__(self, root):
self.dictionary = Dictionary()
# Make sure files are present locally
download_data(root)
path = os.path.join(root, "wikitext-2")
self.train = self.tokenize(path, "train.txt")
self.valid = self.tokenize(path, "valid.txt")
# self.test = self.tokenize(path, 'test.txt')
def tokenize(self, path, fname):
"""Tokenizes a text file."""
assert fname in {"train.txt", "valid.txt", "test.txt"}
fh = os.path.join(path, fname)
# Add words to the dictionary
with open(fh, "r", encoding="utf8") as f:
for line in f:
words = line.split() + ["<eos>"]
for word in words:
self.dictionary.add_word(word)
# Tokenize file content
with open(fh, "r", encoding="utf8") as f:
idss = []
for line in f:
words = line.split() + ["<eos>"]
ids = []
for word in words:
ids.append(self.dictionary.word2idx[word])
idss.append(torch.tensor(ids).type(torch.int64))
ids = torch.cat(idss)
return ids
def repackage_hidden(h):
"""Wraps hidden states in new Tensors, to detach them from their history."""
if isinstance(h, torch.Tensor):
return h.detach()
else:
return tuple(repackage_hidden(v) for v in h)
def objective(config):
# print(args)
model_type = "rnn"
emsize = 200
nhid = emsize
nlayers = 2
eval_batch_size = 10
bptt = 35
tied = True
seed = np.random.randint(10000)
# log_interval = 200
# save = "./model.pt"
nhead = 2
dropout = config["dropout"]
batch_size = config["batch_size"]
clip = config["clip"]
lr_factor = config["lr_factor"]
report_current_best = parse_bool(config["report_current_best"])
trial_id = config.get("trial_id")
debug_log = trial_id is not None
if debug_log:
print("Trial {}: Starting evaluation".format(trial_id), flush=True)
torch.manual_seed(seed)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
#######################################################################
# Load data
#######################################################################
path = config["dataset_path"]
os.makedirs(path, exist_ok=True)
# Lock protection is needed for backends which run multiple worker
# processes on the same instance
lock_path = os.path.join(path, "lock")
lock = SoftFileLock(lock_path)
try:
with lock.acquire(timeout=120, poll_intervall=1):
corpus = Corpus(config["dataset_path"])
except Timeout:
print(
"WARNING: Could not obtain lock for dataset files. Trying anyway...",
flush=True,
)
corpus = Corpus(config["dataset_path"])
# Do not want to count the time to download the dataset, which can be
# substantial the first time
ts_start = time.time()
report = Reporter()
def batchify(data, bsz):
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
return data.to(device)
train_data = batchify(corpus.train, batch_size)
val_data = batchify(corpus.valid, eval_batch_size)
# test_data = batchify(corpus.test, eval_batch_size)
#######################################################################
# Build the model
#######################################################################
ntokens = len(corpus.dictionary)
if model_type == "transformer":
model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(
device
)
else:
model = RNNModel("LSTM", ntokens, emsize, nhid, nlayers, dropout, tied).to(
device
)
criterion = nn.CrossEntropyLoss()
def get_batch(source, i):
seq_len = min(bptt, len(source) - 1 - i)
data = source[i : i + seq_len]
target = source[i + 1 : i + 1 + seq_len].view(-1)
return data, target
def evaluate(model, corpus, criterion, data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.0
ntokens = len(corpus.dictionary)
if model_type != "transformer":
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, bptt):
data, targets = get_batch(data_source, i)
if model_type == "transformer":
output = model(data)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
def train(model, corpus, criterion, train_data, lr, batch_size, clip):
# Turn on training mode which enables dropout.
model.train()
# total_loss = 0.
# start_time = time.time()
ntokens = len(corpus.dictionary)
if model_type != "transformer":
hidden = model.init_hidden(batch_size)
for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)):
data, targets = get_batch(train_data, i)
# Starting each batch, we detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
model.zero_grad()
if model_type == "transformer":
output = model(data)
else:
hidden = repackage_hidden(hidden)
output, hidden = model(data, hidden)
loss = criterion(output.view(-1, ntokens), targets)
loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
for p in model.parameters():
p.data.add_(p.grad.data, alpha=-lr)
# total_loss += loss.item()
# if batch % log_interval == 0 and batch > 0:
# cur_loss = total_loss / log_interval
# elapsed = time.time() - start_time
# print('| {:5d}/{:5d} batches | lr {:02.5f} | ms/batch {:5.2f} | '
# 'loss {:5.4f} | ppl {:8.2f}'.format(
# batch, len(train_data) // bptt, lr,
# elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss)))
# total_loss = 0
# start_time = time.time()
# Checkpointing
# Note that `lr` and `best_val_loss` are also part of the state to be
# checkpointed. In order for things to work out, we keep them in a
# dict (otherwise, they'd not be mutable in `load_model_fn`,
# `save_model_fn`.
mutable_state = {"lr": config["lr"], "best_val_loss": None}
load_model_fn, save_model_fn = pytorch_load_save_functions(
{"model": model}, mutable_state
)
# Resume from checkpoint (optional)
resume_from = resume_from_checkpointed_model(config, load_model_fn)
# Loop over epochs.
for epoch in range(resume_from + 1, config["epochs"] + 1):
train(
model, corpus, criterion, train_data, mutable_state["lr"], batch_size, clip
)
val_loss = evaluate(model, corpus, criterion, val_data)
val_loss = np.clip(val_loss, 1e-10, 10)
# print('-' * 89)
# print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | '
# 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
# val_loss, math.exp(val_loss)))
# print('-' * 89)
elapsed_time = time.time() - ts_start
if not np.isfinite(val_loss):
val_loss = 7
best_val_loss = mutable_state["best_val_loss"]
if not best_val_loss or val_loss < best_val_loss:
best_val_loss = val_loss
mutable_state["best_val_loss"] = val_loss
else:
# Anneal the learning rate if no improvement has been seen in the validation dataset.
mutable_state["lr"] /= lr_factor
# Feed the score back back to Tune.
_loss = best_val_loss if report_current_best else val_loss
objective = -math.exp(_loss)
report_kwargs = {
RESOURCE_ATTR: epoch,
METRIC_NAME: objective,
ELAPSED_TIME_ATTR: elapsed_time,
}
report(**report_kwargs)
# Write checkpoint (optional)
checkpoint_model_at_rung_level(config, save_model_fn, epoch)
if debug_log:
print(
"Trial {}: epoch = {}, objective = {:.3f}, elapsed_time = {:.2f}".format(
trial_id, epoch, objective, elapsed_time
),
flush=True,
)
if __name__ == "__main__":
# Benchmark-specific imports are done here, in order to avoid import
# errors if the dependencies are not installed (such errors should happen
# only when the code is really called)
from io import open
import numpy as np
from filelock import SoftFileLock, Timeout
import torch
import torch.nn as nn
import torch.nn.functional as F
# References to superclasses require torch and torch.nn to be defined here
# Temporarily leave PositionalEncoding module here. Will be moved somewhere else.
class PositionalEncoding(nn.Module):
r"""Inject some information about the relative or absolute position of the tokens
in the sequence. The positional encodings have the same dimension as
the embeddings, so that the two can be summed. Here, we use sine and cosine
functions of different frequencies.
.. math::
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
\text{where pos is the word position and i is the embed idx)
Args:
d_model: the embed dim (required).
dropout: the dropout value (default=0.1).
max_len: the max. length of the incoming sequence (default=5000).
Examples:
>>> pos_encoder = PositionalEncoding(d_model)
"""
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
r"""Inputs of forward function
Args:
x: the sequence fed to the positional encoder model (required).
Shape:
x: [sequence length, batch size, embed dim]
output: [sequence length, batch size, embed dim]
Examples:
>>> output = pos_encoder(x)
"""
x = x + self.pe[: x.size(0), :]
return self.dropout(x)
class TransformerModel(nn.Module):
"""Container module with an encoder, a recurrent or transformer module, and a decoder."""
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
try:
from torch.nn import TransformerEncoder, TransformerEncoderLayer
except:
raise ImportError(
"TransformerEncoder module does not exist in PyTorch 1.1 or lower."
)
self.model_type = "Transformer"
self.src_mask = None
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, ntoken)
self.init_weights()
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = (
mask.float()
.masked_fill(mask == 0, float("-inf"))
.masked_fill(mask == 1, float(0.0))
)
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, has_mask=True):
if has_mask:
device = src.device
if self.src_mask is None or self.src_mask.size(0) != len(src):
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
else:
self.src_mask = None
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, self.src_mask)
output = self.decoder(output)
return F.log_softmax(output, dim=-1)
class RNNModel(nn.Module):
"""Container module with an encoder, a recurrent module, and a decoder."""
def __init__(
self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False
):
super(RNNModel, self).__init__()
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
if rnn_type in ["LSTM", "GRU"]:
self.rnn = getattr(nn, rnn_type)(ninp, nhid, nlayers, dropout=dropout)
else:
try:
nonlinearity = {"RNN_TANH": "tanh", "RNN_RELU": "relu"}[rnn_type]
except KeyError:
raise ValueError(
"""An invalid option for `--model` was supplied,
options are ['LSTM', 'GRU', 'RNN_TANH' or 'RNN_RELU']"""
)
self.rnn = nn.RNN(
ninp, nhid, nlayers, nonlinearity=nonlinearity, dropout=dropout
)
self.decoder = nn.Linear(nhid, ntoken)
# Optionally tie weights as in:
# "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016)
# https://arxiv.org/abs/1608.05859
# and
# "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016)
# https://arxiv.org/abs/1611.01462
if tie_weights:
if nhid != ninp:
raise ValueError(
"When using the tied flag, nhid must be equal to emsize"
)
self.decoder.weight = self.encoder.weight
self.init_weights()
self.rnn_type = rnn_type
self.nhid = nhid
self.nlayers = nlayers
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, input, hidden):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(output)
return decoded, hidden
def init_hidden(self, bsz):
weight = next(self.parameters())
if self.rnn_type == "LSTM":
return (
weight.new_zeros(self.nlayers, bsz, self.nhid),
weight.new_zeros(self.nlayers, bsz, self.nhid),
)
else:
return weight.new_zeros(self.nlayers, bsz, self.nhid)
root = logging.getLogger()
root.setLevel(logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, required=True)
parser.add_argument("--dataset_path", type=str, required=True)
parser.add_argument("--report_current_best", type=str, default="False")
parser.add_argument("--trial_id", type=str)
add_to_argparse(parser, _config_space)
add_checkpointing_to_argparse(parser)
args, _ = parser.parse_known_args()
objective(config=vars(args))