forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_bayesopt_constrained.py
74 lines (64 loc) · 2.15 KB
/
launch_bayesopt_constrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Example for running constrained Bayesian optimization on a toy example
"""
import logging
from pathlib import Path
from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers import FIFOScheduler
from syne_tune.config_space import uniform
from syne_tune import StoppingCriterion, Tuner
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
random_seed = 31415927
n_workers = 2
config_space = {
"x1": uniform(-5, 10),
"x2": uniform(0, 15),
"constraint_offset": 1.0, # the lower, the stricter
}
entry_point = str(
Path(__file__).parent
/ "training_scripts"
/ "constrained_hpo"
/ "train_constrained_example.py"
)
mode = "max"
metric = "objective"
constraint_attr = "my_constraint_metric"
# Local back-end
trial_backend = LocalBackend(entry_point=entry_point)
# Bayesian constrained optimization:
# max_x f(x) s.t. c(x) <= 0
# Here, `metric` represents f(x), `constraint_attr` represents c(x).
search_options = {
"num_init_random": n_workers,
"constraint_attr": constraint_attr,
}
scheduler = FIFOScheduler(
config_space,
searcher="bayesopt_constrained",
search_options=search_options,
mode=mode,
metric=metric,
random_seed=random_seed,
)
stop_criterion = StoppingCriterion(max_wallclock_time=30)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
)
tuner.run()