forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_height_moasha.py
65 lines (57 loc) · 1.81 KB
/
launch_height_moasha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Example showing how to tune multiple objectives at once of an artificial function.
"""
import logging
from pathlib import Path
import numpy as np
from syne_tune.backend import LocalBackend
from syne_tune.optimizer.schedulers.multiobjective import MOASHA
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import uniform
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
np.random.seed(0)
max_steps = 27
n_workers = 4
config_space = {
"steps": max_steps,
"theta": uniform(0, np.pi / 2),
"sleep_time": 0.01,
}
entry_point = (
Path(__file__).parent
/ "training_scripts"
/ "mo_artificial"
/ "mo_artificial.py"
)
mode = "min"
np.random.seed(0)
scheduler = MOASHA(
max_t=max_steps,
time_attr="step",
mode=mode,
metrics=["y1", "y2"],
config_space=config_space,
)
trial_backend = LocalBackend(entry_point=str(entry_point))
stop_criterion = StoppingCriterion(max_wallclock_time=30)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
sleep_time=0.5,
)
tuner.run()