forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_height_python_backend.py
76 lines (64 loc) · 2.28 KB
/
launch_height_python_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
An example showing to launch a tuning of a python function `train_height`.
"""
from syne_tune import Tuner, StoppingCriterion
from syne_tune.backend.python_backend import PythonBackend
from syne_tune.config_space import randint
from syne_tune.optimizer.baselines import ASHA
def train_height(steps: int, width: float, height: float):
"""
The function to be tuned, note that import must be in PythonBackend and no global variable are allowed,
more details on requirements of tuned functions can be found in `PythonBackend`.
"""
import logging
from syne_tune import Reporter
import time
root = logging.getLogger()
root.setLevel(logging.INFO)
reporter = Reporter()
for step in range(steps):
dummy_score = (0.1 + width * step / 100) ** (-1) + height * 0.1
# Feed the score back to Syne Tune.
reporter(step=step, mean_loss=dummy_score, epoch=step + 1)
time.sleep(0.1)
if __name__ == "__main__":
import logging
root = logging.getLogger()
root.setLevel(logging.DEBUG)
max_steps = 100
n_workers = 4
config_space = {
"steps": max_steps,
"width": randint(0, 20),
"height": randint(-100, 100),
}
scheduler = ASHA(
config_space,
metric="mean_loss",
resource_attr="epoch",
max_t=max_steps,
mode="min",
)
trial_backend = PythonBackend(tune_function=train_height, config_space=config_space)
stop_criterion = StoppingCriterion(
max_wallclock_time=10, min_metric_value={"mean_loss": -6.0}
)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
)
tuner.run()