forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_height_sagemaker_remotely.py
95 lines (85 loc) · 3.36 KB
/
launch_height_sagemaker_remotely.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
This example show how to launch a tuning job that will be executed on Sagemaker rather than on your local machine.
"""
import logging
from pathlib import Path
from sagemaker.pytorch import PyTorch
from syne_tune.backend import LocalBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
get_execution_role,
default_sagemaker_session,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune.remote.remote_launcher import RemoteLauncher
from syne_tune.backend import SageMakerBackend
from syne_tune.config_space import randint
from syne_tune import StoppingCriterion, Tuner
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
max_steps = 100
n_workers = 4
config_space = {
"steps": max_steps,
"width": randint(0, 20),
"height": randint(-100, 100),
}
entry_point = str(
Path(__file__).parent
/ "training_scripts"
/ "height_example"
/ "train_height.py"
)
mode = "min"
metric = "mean_loss"
# We can use the local or sagemaker backend when tuning remotely.
# Using the local backend means that the remote instance will evaluate the trials locally.
# Using the sagemaker backend means the remote instance will launch one sagemaker job per trial.
distribute_trials_on_sagemaker = False
if distribute_trials_on_sagemaker:
trial_backend = SageMakerBackend(
# we tune a PyTorch Framework from Sagemaker
sm_estimator=PyTorch(
entry_point=entry_point,
instance_type="ml.m5.xlarge",
instance_count=1,
role=get_execution_role(),
max_run=10 * 60,
framework_version="1.6",
py_version="py3",
base_job_name="hpo-height",
sagemaker_session=default_sagemaker_session(),
),
)
else:
trial_backend = LocalBackend(entry_point=entry_point)
for seed in range(2):
# Random search without stopping
scheduler = RandomSearch(
config_space, mode=mode, metric=metric, random_seed=seed
)
tuner = RemoteLauncher(
tuner=Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
n_workers=n_workers,
tuner_name="height-tuning",
stop_criterion=StoppingCriterion(max_wallclock_time=600),
),
# Extra arguments describing the resource of the remote tuning instance and whether we want to wait
# the tuning to finish. The instance-type where the tuning job runs can be different than the
# instance-type used for evaluating the training jobs.
instance_type="ml.m5.large",
)
tuner.run(wait=False)