forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_huggingface_classification.py
84 lines (74 loc) · 2.82 KB
/
launch_huggingface_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Example for how to fine-tune a DistilBERT model on the IMDB sentiment classification task using the Hugging Face SageMaker Framework.
"""
import logging
from pathlib import Path
from sagemaker.huggingface import HuggingFace
import syne_tune
from syne_tune.backend import SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
get_execution_role,
default_sagemaker_session,
)
from syne_tune.optimizer.baselines import RandomSearch
from syne_tune import Tuner, StoppingCriterion
from benchmarking.definitions.definition_distilbert_on_imdb import (
distilbert_imdb_benchmark,
distilbert_imdb_default_params,
)
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
# We pick the DistilBERT on IMDB benchmark
# The 'benchmark' dict contains arguments needed by scheduler and
# searcher (e.g., 'mode', 'metric'), along with suggested default values
# for other arguments (which you are free to override)
random_seed = 31415927
n_workers = 4
default_params = distilbert_imdb_default_params()
benchmark = distilbert_imdb_benchmark(default_params)
mode = benchmark["mode"]
metric = benchmark["metric"]
config_space = benchmark["config_space"]
# Define Hugging Face SageMaker estimator
root = Path(syne_tune.__path__[0]).parent
huggingface_estimator = HuggingFace(
entry_point=benchmark["script"],
base_job_name="hpo-transformer",
instance_type=default_params["instance_type"],
instance_count=1,
transformers_version="4.4",
pytorch_version="1.6",
py_version="py36",
role=get_execution_role(),
dependencies=[root / "benchmarking"],
sagemaker_session=default_sagemaker_session(),
)
# SageMaker backend
trial_backend = SageMakerBackend(
sm_estimator=huggingface_estimator,
metrics_names=[metric],
)
# Random search without stopping
scheduler = RandomSearch(
config_space, mode=mode, metric=metric, random_seed=random_seed
)
stop_criterion = StoppingCriterion(max_wallclock_time=3600)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
)
tuner.run()