forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_nasbench201_simulated.py
91 lines (83 loc) · 3.42 KB
/
launch_nasbench201_simulated.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
Example for running the simulator back-end on a tabulated benchmark
"""
import logging
from benchmarking.definitions.definition_nasbench201 import (
nasbench201_default_params,
nasbench201_benchmark,
)
from syne_tune.blackbox_repository import BlackboxRepositoryBackend
from syne_tune.backend.simulator_backend.simulator_callback import SimulatorCallback
from syne_tune.optimizer.schedulers import HyperbandScheduler
from syne_tune import Tuner, StoppingCriterion
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
random_seed = 31415927
n_workers = 4
default_params = nasbench201_default_params({"backend": "simulated"})
benchmark = nasbench201_benchmark(default_params)
# Benchmark must be tabulated to support simulation:
assert benchmark.get("supports_simulated", False)
mode = benchmark["mode"]
metric = benchmark["metric"]
blackbox_name = benchmark.get("blackbox_name")
# NASBench201 is a blackbox from the repository
assert blackbox_name is not None
dataset_name = "cifar100"
# If you don't like the default config_space, change it here. But let
# us use the default
config_space = benchmark["config_space"]
# Simulator back-end specialized to tabulated blackboxes
trial_backend = BlackboxRepositoryBackend(
blackbox_name=blackbox_name,
elapsed_time_attr=benchmark["elapsed_time_attr"],
dataset=dataset_name,
)
searcher = "random"
# Hyperband (or successive halving) scheduler of the stopping type.
scheduler = HyperbandScheduler(
config_space,
searcher=searcher,
max_t=default_params["max_resource_level"],
grace_period=default_params["grace_period"],
reduction_factor=default_params["reduction_factor"],
resource_attr=benchmark["resource_attr"],
mode=mode,
metric=metric,
random_seed=random_seed,
)
max_wallclock_time = 600
stop_criterion = StoppingCriterion(max_wallclock_time=max_wallclock_time)
# Printing the status during tuning takes a lot of time, and so does
# storing results.
print_update_interval = 700
results_update_interval = 300
# It is important to set `sleep_time` to 0 here (mandatory for simulator
# backend)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
stop_criterion=stop_criterion,
n_workers=n_workers,
sleep_time=0,
results_update_interval=results_update_interval,
print_update_interval=print_update_interval,
# This callback is required in order to make things work with the
# simulator callback. It makes sure that results are stored with
# simulated time (rather than real time), and that the time_keeper
# is advanced properly whenever the tuner loop sleeps
callbacks=[SimulatorCallback()],
)
tuner.run()