forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_rl_tuning.py
67 lines (57 loc) · 1.98 KB
/
launch_rl_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
This launches a local HPO tuning the discount factor of PPO on cartpole.
To run this example, you should have installed dependencies in `requirements.txt`.
"""
import logging
from pathlib import Path
import numpy as np
from syne_tune.backend import LocalBackend
from syne_tune.experiments import load_experiment
from syne_tune.optimizer.baselines import ASHA
import syne_tune.config_space as sp
from syne_tune import Tuner, StoppingCriterion
if __name__ == "__main__":
logging.getLogger().setLevel(logging.DEBUG)
np.random.seed(0)
max_steps = 100
trial_backend = LocalBackend(
entry_point=Path(__file__).parent
/ "training_scripts"
/ "rl_cartpole"
/ "train_cartpole.py"
)
scheduler = ASHA(
config_space={
"gamma": sp.uniform(0.5, 0.99),
"lr": sp.loguniform(1e-6, 1e-3),
},
metric="episode_reward_mean",
mode="max",
max_t=100,
resource_attr="training_iter",
search_options={"debug_log": False},
)
stop_criterion = StoppingCriterion(max_wallclock_time=60)
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
# tune for 3 minutes
stop_criterion=stop_criterion,
n_workers=2,
)
tuner.run()
tuning_experiment = load_experiment(tuner.name)
print(f"best result found: {tuning_experiment.best_config()}")
tuning_experiment.plot()