forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_standalone_bayesian_optimization.py
71 lines (63 loc) · 2.4 KB
/
launch_standalone_bayesian_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
import logging
from syne_tune.config_space import uniform, randint, choice
from syne_tune.optimizer.schedulers.searchers.bayesopt.datatypes.common import (
dictionarize_objective,
)
from syne_tune.optimizer.schedulers.searchers.utils.hp_ranges_factory import (
make_hyperparameter_ranges,
)
from syne_tune.optimizer.schedulers.searchers.bayesopt.utils.test_objects import (
create_tuning_job_state,
)
from syne_tune.optimizer.schedulers.searchers.gp_fifo_searcher import GPFIFOSearcher
from syne_tune.optimizer.schedulers.searchers.gp_searcher_utils import encode_state
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
random_seed = 31415927
# toy example of 3 hp's
config_space = {
"hp_1": uniform(-5.0, 5.0),
"hp_2": randint(-5, 5),
"hp_3": choice(["a", "b", "c"]),
}
hp_ranges = make_hyperparameter_ranges(config_space)
batch_size = 16
num_init_candidates_for_batch = 10
state = create_tuning_job_state(
hp_ranges=hp_ranges,
cand_tuples=[
(-3.0, -4, "a"),
(2.2, -3, "b"),
(-4.9, -1, "b"),
(-1.9, -1, "c"),
(-3.5, 3, "a"),
],
metrics=[dictionarize_objective(x) for x in (15.0, 27.0, 13.0, 39.0, 35.0)],
)
gp_searcher = GPFIFOSearcher(
state.hp_ranges.config_space,
points_to_evaluate=None,
random_seed=random_seed,
metric="objective",
debug_log=False,
)
gp_searcher_state = gp_searcher.get_state()
gp_searcher_state["state"] = encode_state(state)
gp_searcher = gp_searcher.clone_from_state(gp_searcher_state)
next_candidate_list = gp_searcher.get_batch_configs(
batch_size=batch_size,
num_init_candidates_for_batch=num_init_candidates_for_batch,
)
assert len(next_candidate_list) == batch_size