forked from syne-tune/syne-tune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlaunch_tuning_gluonts.py
104 lines (90 loc) · 3.64 KB
/
launch_tuning_gluonts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License").
# You may not use this file except in compliance with the License.
# A copy of the License is located at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# or in the "license" file accompanying this file. This file is distributed
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
# express or implied. See the License for the specific language governing
# permissions and limitations under the License.
"""
This launches an HPO tuning several hyperparameters of a gluonts model.
To run this example locally, you need to have installed dependencies in `requirements.txt` in your current interpreter.
"""
import logging
from pathlib import Path
import numpy as np
from sagemaker.mxnet import MXNet
from syne_tune.backend import LocalBackend, SageMakerBackend
from syne_tune.backend.sagemaker_backend.sagemaker_utils import (
get_execution_role,
default_sagemaker_session,
)
from syne_tune.optimizer.baselines import ASHA
from syne_tune import Tuner, StoppingCriterion
from syne_tune.config_space import loguniform, lograndint
if __name__ == "__main__":
logging.getLogger().setLevel(logging.INFO)
np.random.seed(0)
epochs = 50
config_space = {
"lr": loguniform(1e-4, 1e-1),
"epochs": epochs,
"num_cells": lograndint(lower=1, upper=80),
"num_layers": lograndint(lower=1, upper=10),
"dataset": "electricity"
# "dataset": "m4_hourly"
}
mode = "min"
metric = "mean_wQuantileLoss"
entry_point = (
Path(__file__).parent / "training_scripts" / "gluonts" / "train_gluonts.py"
)
evaluate_trials_on_sagemaker = False
if evaluate_trials_on_sagemaker:
# evaluate trials on Sagemaker
trial_backend = SageMakerBackend(
sm_estimator=MXNet(
entry_point=entry_point.name,
source_dir=str(entry_point.parent),
instance_type="ml.c5.2xlarge",
instance_count=1,
role=get_execution_role(),
max_run=10 * 60,
framework_version="1.7",
py_version="py3",
base_job_name="hpo-gluonts",
sagemaker_session=default_sagemaker_session(),
disable_profiler=True,
debugger_hook_config=False,
),
# names of metrics to track. Each metric will be detected by Sagemaker if it is written in the
# following form: "[RMSE]: 1.2", see in train_main_example how metrics are logged for an example
metrics_names=[metric],
)
else:
# evaluate trials locally, replace with SageMakerBackend to evaluate trials on Sagemaker
trial_backend = LocalBackend(entry_point=str(entry_point))
# see examples to see other schedulers, mobster, Raytune, multiobjective, etc...
scheduler = ASHA(
config_space, max_t=epochs, resource_attr="epoch_no", mode="min", metric=metric
)
wallclock_time_budget = 3600 if evaluate_trials_on_sagemaker else 600
dollar_cost_budget = 20.0
tuner = Tuner(
trial_backend=trial_backend,
scheduler=scheduler,
# stops if wallclock time or dollar-cost exceeds budget,
# dollar-cost is only available when running on Sagemaker
stop_criterion=StoppingCriterion(
max_wallclock_time=wallclock_time_budget, max_cost=dollar_cost_budget
),
n_workers=4,
# some failures may happen when SGD diverges with NaNs
max_failures=10,
)
# launch the tuning
tuner.run()