-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathburstingBubble.c
executable file
·289 lines (247 loc) · 14.4 KB
/
burstingBubble.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/**
* Version 2.5
* Author: Vatsal Sanjay
* Last updated: Dec 10, 2024
# Changelog Dec 10, 2024 v2.5
* Fixed: ``Adaptation based on curvature is only triggered after the kink in the initial condition disappears." Now adaptation based on curvature is triggered from the start.
# Changelog Sep 29, 2024 v2.0
* Removed adapt_wavelet_limited.h and replaced it with adapt_wavelet (in built in Basilisk)
* Removed omega adaption based on vorticity as it does not work anymore ...
* Adaptation based on curvature is only triggered after the kink in the initial condition disappears.
This repository contains the codes used for simulating the cases discussed in the manuscript: Bursting bubble in a viscoplastic medium. The results presented here are currently under review in Journal of Fluid Mechanics. The preprint of the article is available [here](https://arxiv.org/abs/2101.07744).
The supplementary videos are available [here](https://youtube.com/playlist?list=PLf5C5HCrvhLFETl6iaRr21pzr5Xab1OCM)
# Introduction:
We investigate the classical problem of bubble bursting at a liquid-gas interface, but now in the presence of a viscoplastic liquid medium. Here are the schematics of the problem. This simualtion will start from Figure 1(c).
<p align="center">
<img src="schematic.png" width="30%">
<caption><p align="center">Schematics for the process of a bursting bubble: (a) A gas bubble in bulk. (b) The bubble approaches the free surface forming a liquid film (thickness $\delta$) between itself and the free surface. (c) A bubble cavity forms when the thin liquid film disappears.</caption>
</p>
# Numerical code
Id 1 is for the Viscoplastic liquid pool, and Id 2 is Newtonian gas.
*/
#include "axi.h"
#include "navier-stokes/centered.h"
#define FILTERED // Smear density and viscosity jumps
/**
To model Viscoplastic liquids, we use a modified version of [two-phase.h](http://basilisk.fr/src/two-phase.h). [two-phaseVP.h](two-phaseVP.h) contains these modifications.
*/
#include "two-phaseAxiVP.h"
/**
You can use: conserving.h as well. Even without it, I was still able to conserve the total energy (also momentum?) of the system if I adapt based on curvature and vorticity/deformation tensor norm (see the adapt even). I had to smear the density and viscosity anyhow because of the sharp ratios in liquid (Bingham) and the gas.
*/
#include "navier-stokes/conserving.h"
#include "tension.h"
#include "reduced.h"
#include "distance.h"
/**
We use a modified adapt-wavelet algorithm available [(here)](http://basilisk.fr/sandbox/pairetti/bag_mode/adapt_wavelet_limited.h). It is written by *César Pairetti* (Thanks :)).
*/
// #include "adapt_wavelet_limited.h" // removing adapt_wavelet_limited as this code has been giving issues with latest production runs. See a part of this problem: https://github.com/Computational-Multiphase-Physics/adapt-wavelet-limited -- marked #remove_lim in rest of the code.
#define tsnap (0.001)
// Error tolerancs
#define fErr (1e-3) // error tolerance in f1 VOF
#define KErr (1e-3) // error tolerance in VoF curvature calculated using heigh function method (see adapt event)
#define VelErr (1e-2) // error tolerances in velocity -- Use 1e-2 for low Oh and 1e-3 to 5e-3 for high Oh/moderate to high J
#define D2Err (1e-3)
// Numbers!
#define RHO21 (1e-3)
#define MU21 (2e-2)
#define Ldomain 8
// boundary conditions
u.n[right] = neumann(0.);
p[right] = dirichlet(0.);
int MAXlevel;
double Oh, Bond, tmax;
char nameOut[80], dumpFile[80];
int main(int argc, char const *argv[]) {
L0 = Ldomain;
origin (-L0/2., 0.);
init_grid (1 << 6);
// Values taken from the terminal
MAXlevel = atoi(argv[1]);
tauy = atof(argv[2]);
Bond = atof(argv[3]);
Oh = atof(argv[4]);
tmax = atof(argv[5]);
// Ensure that all the variables were transferred properly from the terminal or job script.
if (argc < 6){
fprintf(ferr, "Lack of command line arguments. Check! Need %d more arguments\n",6-argc);
return 1;
}
fprintf(ferr, "Level %d, Oh %2.1e, Tauy %4.3f, Bo %4.3f\n", MAXlevel, Oh, tauy, Bond);
// Create a folder named intermediate where all the simulation snapshots are stored.
char comm[80];
sprintf (comm, "mkdir -p intermediate");
system(comm);
// Name of the restart file. See writingFiles event.
sprintf (dumpFile, "dump");
/**
We consider the burst of a small axisymmetric bubble at a surface of an incompressible Bingham fluid. To nondimensionalise the governing equations, we use the initial bubble radius $R_0$, and inertia-capillary velocity $V_\gamma = \sqrt{\gamma/(\rho_lR_0)}$, respectively. Pressure and stresses are scaled with the characteristic capillary pressure, $\gamma/R_0$. The dimensionless equations for mass and momentum conservation, for the liquid phase, then read
$$
\nabla \cdot \boldsymbol{u} = 0
$$
$$
\frac{\partial\boldsymbol{u}}{\partial t} + \nabla\boldsymbol{\cdot}\left(\boldsymbol{uu}\right) = -\nabla p + \nabla\boldsymbol{\cdot}\boldsymbol{\tau} - \mathcal{B}o\,\hat{\boldsymbol{e}}_{\boldsymbol{\mathcal{Z}}},
$$
where $\boldsymbol{u}$ is the velocity vector, $t$ is time, $p$ is the pressure and $\boldsymbol{\tau}$ represents the deviatoric stress tensor. We use the regularized Bingham model with
$$
\boldsymbol{\tau} = 2\,\text{min}\left(\frac{\mathcal{J}}{2\|\boldsymbol{\mathcal{D}}\|} + \mathcal{O}h, \mathcal{O}h_\text{max}\right)\boldsymbol{\mathcal{D}}
$$
where $\|\boldsymbol{\mathcal{D}}\|$ is the second invariant of the deformation rate tensor, $\boldsymbol{\mathcal{D}}$, and $\mathcal{O}h_{max}$ is the viscous regularisation parameter. The three dimensionless numbers controlling the equations above are the capillary-Bingham number $\left(\mathcal{J}\right)$, which accounts for the competition between the capillary and yield stresses, the Ohnesorge number $\left(\mathcal{O}h\right)$ that compares the inertial-capillary to inertial-viscous time scales, and the Bond number $\left(\mathcal{B}o\right)$, which compares gravity and surface tension forces:
$$
\mathcal{J} = \frac{\tau_yR_0}{\gamma},\,\,\mathcal{O}h = \frac{\mu_l}{\sqrt{\rho_l\gamma R_0}},\,\,\mathcal{B}o = \frac{\rho_l gR_o^2}{\gamma}.
$$
Here, $\gamma$ is the liquid-gas surface tension coefficient, and $\tau_y$ and $\rho_l$ are the liquid's yield stress and density, respectively. Next, $\mu_l$ is the constant viscosity in the Bingham model. Note that in our simulations, we also solve the fluid's motion in the gas phase, using a similar set of equations (Newtonian). Hence, the further relevant non-dimensional groups in addition to those above are the ratios of density $\left(\rho_r = \rho_g/\rho_l\right)$ and viscosity $\left(\mu_r = \mu_g/\mu_l\right)$. In the present study, these ratios are kept fixed at $10^{-3}$ and $2 \times 10^{-2}$, respectively (see above).
*/
mumax = 1e8*Oh; // The regularisation value of viscosity
rho1 = 1., rho2 = RHO21;
mu1 = Oh, mu2 = MU21*Oh;
f.sigma = 1.0;
G.x = -Bond;
TOLERANCE=1e-4;
CFL = 1e-1;
run();
}
/**
This event is specific to César's adapt_wavelet_limited.
*/
// #remove_lim
// int refRegion(double x, double y, double z){
// return (y < 1.28 ? MAXlevel+2 : y < 2.56 ? MAXlevel+1 : y < 5.12 ? MAXlevel : MAXlevel-1);
// }
/**
## Initial Condition
The initial shape of the bubble at the liquid-gas interface can be calculated by solving the Young-Laplace equations ([Lhuissier & Villermaux, 2012](https://doi.org/10.1017/jfm.2011.418)) and it depends on the $\mathcal{B}o$ number.
Resources:
* [Alex Berny's Sandbox](http://www.basilisk.fr/sandbox/aberny/bubble/bubble.c)
* [My Matlab code:](https://github.com/VatsalSy/Bursting-Bubble-In-a-Viscoplastic-Medium/blob/main/InitialCondition.m) Also see the results for different $\mathcal{B}o$ number [here](https://youtu.be/Z_vdsOW5fsg).
<p align="center">
<img src="VillermauxComparision.png" width="25%">
<caption><p align="center">Comparision of the initial shape calculated using the Young-Laplace equations. Ofcourse, for this study, we only need: $\mathcal{B}o = 10^{-3}$. In the figure, $a$ is the capillary length, $a = \sqrt{\gamma/(\rho_lg)}$</caption>
</p>
Since we do not focus on the influence of $\mathcal{B}o$ number in the present study, I am not elaborating on it here. For all the simulations, I use the interfacial shape calculated for $\mathcal{B}o = 10^{-3}$. The resultant data file is available [here](https://raw.githubusercontent.com/VatsalSy/Bursting-Bubble-In-a-Viscoplastic-Medium/main/Bo0.0010.dat).
**Note:** The curvature diverges at the cavity-free surface intersection. We fillet this corner to circumvent this singularity, introducing a rim with a finite curvature that connects the bubble to the free surface. We ensured that the curvature of the rim is high enough such that the subsequent dynamics are independent of its finite value.
*/
event init (t = 0) {
if (!restore (file = dumpFile)){
char filename[60];
sprintf(filename,"Bo%5.4f.dat",Bond);
FILE * fp = fopen(filename,"rb");
if (fp == NULL){
fprintf(ferr, "There is no file named %s\n", filename);
return 1;
}
coord* InitialShape;
InitialShape = input_xy(fp);
fclose (fp);
scalar d[];
distance (d, InitialShape);
// while (adapt_wavelet_limited ((scalar *){f, d}, (double[]){1e-8, 1e-8}, refRegion).nf); #remove_lim
while (adapt_wavelet ((scalar *){f, d}, (double[]){1e-8, 1e-8}, MAXlevel).nf);
/**
The distance function is defined at the center of each cell, we have
to calculate the value of this function at each vertex. */
vertex scalar phi[];
foreach_vertex(){
phi[] = -(d[] + d[-1] + d[0,-1] + d[-1,-1])/4.;
}
/**
We can now initialize the volume fraction of the domain. */
fractions (phi, f);
}
}
/**
## Adaptive Mesh Refinement
*/
event adapt(i++){
/**
We adapt based on curvature, $\kappa$ and vorticity $\omega$.
Adaptation based on $\kappa$ ensures a constant grid resolution across the interface. See [this](http://basilisk.fr/sandbox/Antoonvh/rc.c) for further reading.
We also adapt based on vorticity in the liquid domain. I have noticed that this refinement helps resolve the fake-yield surface accurately (see the black regions in the videos below).
*/
scalar KAPPA[];
curvature(f, KAPPA);
// adapt_wavelet_limited ((scalar *){f, u.x, u.y, KAPPA, omega},
// (double[]){fErr, VelErr, VelErr, KErr, OmegaErr},
// refRegion);
// #remove_lim
// scalar D2c[];
// foreach(){
// D2c[] = f[]*pow(10,D2[]);
// }
adapt_wavelet ((scalar *){f, u.x, u.y, KAPPA},
(double[]){fErr, VelErr, VelErr, KErr},
MAXlevel);
/**
## Alternatively
At higher $\mathcal{O}h$ and $\mathcal{J}$ numbers, vorticities in the liquid cease to be interesting. In that case, one might want to adapt based on the norm of deformation tensor, $\mathbf{\mathcal{D}}$. I already calculate $\|\mathbf{\mathcal{D}}\|$ in [two-phaseAxiVP.h](two-phaseAxiVP.h).
**Note:** $\mathbf{\mathcal{D}}$ based refinement is way more expensive than $\omega$ based refinement.
*/
// adapt_wavelet_limited ((scalar *){f, u.x, u.y, KAPPA, D2},
// (double[]){fErr, VelErr, VelErr, KErr, 1e-3},
// refRegion);
}
/**
## Dumping snapshots
*/
event writingFiles (t = 0; t += tsnap; t <= tmax) {
dump (file = dumpFile);
sprintf (nameOut, "intermediate/snapshot-%5.4f", t);
dump(file=nameOut);
}
/**
## Ending Simulation
*/
event end (t = end) {
fprintf(ferr, "Done: Level %d, Oh %2.1e, Tauy %4.3f, Bo %4.3f\n", MAXlevel, Oh, tauy, Bond);
}
/**
## Log writing
*/
event logWriting (i++) {
double ke = 0.;
foreach (reduction(+:ke)){
ke += (2*pi*y)*(0.5*rho(f[])*(sq(u.x[]) + sq(u.y[])))*sq(Delta);
}
if (pid() == 0){
static FILE * fp;
if (i == 0) {
fprintf (ferr, "i dt t ke\n");
fp = fopen ("log", "w");
fprintf (fp, "i dt t ke\n");
fprintf (fp, "%d %g %g %g\n", i, dt, t, ke);
fclose(fp);
} else {
fp = fopen ("log", "a");
fprintf (fp, "%d %g %g %g\n", i, dt, t, ke);
fclose(fp);
}
fprintf (ferr, "%d %g %g %g\n", i, dt, t, ke);
}
// Ensure that the cut-off Kinetic energy is smaller than or equal to 1e-6 times the maximum kinetic energy of the system.
if (ke > 1e3 || ke < 1e-6){
if (i > 1e2){
return 1;
}
}
}
/**
## Running the code
~~~bash
#!/bin/bash
qcc -fopenmp -Wall -O2 burstingBubble.c -o burstingBubble -lm -disable-dimensions
export OMP_NUM_THREADS=8
./burstingBubble 10 0.25 1e-3 1e-2 5.0
~~~
# Output and Results
The post-processing codes and simulation data are available at: [PostProcess](https://github.com/VatsalSy/Bursting-Bubble-In-a-Viscoplastic-Medium/tree/main/PostProcess)
## Some typical simulations
<div id="wrapper">
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/DY6TpfzZ2fM" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/vYxNehfcKac" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/PJbKsEjIbjQ" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/aJbnD8wAPmQ" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<div class="center-block"></div>
</div>
Bursting bubble dynamics for different capillary-Bingham numbers. (a) $\mathcal{J} = 0.0$: A typical case with a Newtonian liquid medium, (b) $\mathcal{J} =0.1$: A weakly viscoplastic liquid medium in which the process still shows all the major characteristics of the Newtonian liquid, (c) $\mathcal{J} = 0.5$: A case of moderate yield stress whereby the jetting is suppressed, nonetheless the entire cavity still yields, and (d) $\mathcal{J} = 1.0$: A highly viscoplastic liquid medium whereby a part of the cavity never yields. The left part of each video shows the magnitude of the velocity field, and the right part shows the magnitude of the deformation tensor on a $\log_{10}$ scale. The transition to the black region (low strain rates) marks the yield-surface location in the present study. For all the cases in this figure, $\mathcal{O}h = 10^{-2}$.
*/