-
Notifications
You must be signed in to change notification settings - Fork 0
/
densenet.py
105 lines (83 loc) · 3.46 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
'''DenseNet in PyTorch.
https://github.com/kuangliu/pytorch-cifar
'''
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class Bottleneck(nn.Module):
def __init__(self, in_planes, growth_rate):
super(Bottleneck, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=True)
self.bn2 = nn.BatchNorm2d(4*growth_rate)
self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=True)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(out)))
# out = self.conv1(F.relu(x))
# out = self.conv2(F.relu(out))
out = torch.cat([out,x], 1)
return out
class Transition(nn.Module):
def __init__(self, in_planes, out_planes):
super(Transition, self).__init__()
self.bn = nn.BatchNorm2d(in_planes)
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=True)
def forward(self, x):
out = self.conv(F.relu(self.bn(x)))
out = F.avg_pool2d(out, 2)
return out
class DenseNet(nn.Module):
def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10):
super(DenseNet, self).__init__()
self.growth_rate = growth_rate
num_planes = 2*growth_rate
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=True)
self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0])
num_planes += nblocks[0]*growth_rate
out_planes = int(math.floor(num_planes*reduction))
self.trans1 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1])
num_planes += nblocks[1]*growth_rate
out_planes = int(math.floor(num_planes*reduction))
self.trans2 = Transition(num_planes, out_planes)
num_planes = out_planes
self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2])
num_planes += nblocks[2]*growth_rate
# out_planes = int(math.floor(num_planes*reduction))
# self.trans3 = Transition(num_planes, out_planes)
# num_planes = out_planes
# self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3])
# num_planes += nblocks[3]*growth_rate
self.bn = nn.BatchNorm2d(num_planes)
self.linear1 = nn.Linear(14336, 512)
self.linear2 = nn.Linear(512, num_classes)
def _make_dense_layers(self, block, in_planes, nblock):
layers = []
for i in range(nblock):
layers.append(block(in_planes, self.growth_rate))
in_planes += self.growth_rate
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.dense3(out)
out = F.relu(self.bn(out))
out = torch.flatten(out, 1)
out = F.relu(self.linear1(out))
out = self.linear2(out)
return out
def Densenet_cifar_32(in_ch=3, in_dim=32):
return DenseNet(Bottleneck, [2,4,4], growth_rate=32)
if __name__ == "__main__":
from thop import profile
net = Densenet_cifar_32()
x = torch.randn(1,3,32,32)
y = net(x)
print(net)
macs, params = profile(net, (torch.randn(1, 3, 32, 32),))
print(macs / 1000000, params / 1000000) # 6830M, 7M
print(y)