-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_fs.py
222 lines (180 loc) · 8.24 KB
/
train_fs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import datetime
import os
import time
import numpy as np
import torch
import torch.optim as optim
import util.utils as utils
from checkpoint import align_and_update_state_dicts, checkpoint, strip_prefix_if_present
from criterion_fs import FSInstSetCriterion
from datasets.scannetv2_fs_inst import FSInstDataset
from model.geoformer.geoformer_fs import GeoFormerFS
from tensorboardX import SummaryWriter
from util.config import cfg
from util.dataloader_util import get_rank
from util.log import create_logger
from util.utils_scheduler import adjust_learning_rate
def init():
os.makedirs(cfg.exp_path, exist_ok=True)
# log the config
global logger
logger = create_logger()
logger.info(cfg)
# summary writer
global writer
writer = SummaryWriter(cfg.exp_path)
def train_one_epoch(epoch, train_loader, model, criterion, optimizer):
iter_time = utils.AverageMeter()
data_time = utils.AverageMeter()
am_dict = {}
model.train()
# model.set_eval()
net_device = next(model.parameters()).device
num_iter = len(train_loader)
max_iter = cfg.epochs * num_iter
start_time = time.time()
check_time = time.time()
for iteration, batch in enumerate(train_loader):
data_time.update(time.time() - check_time)
torch.cuda.empty_cache()
current_iter = (epoch - 1) * num_iter + iteration + 1
remain_iter = max_iter - current_iter
curr_lr = adjust_learning_rate(optimizer, current_iter / max_iter, cfg.epochs)
support_dict, query_dict, scene_infos = batch
for key in support_dict:
if torch.is_tensor(support_dict[key]):
support_dict[key] = support_dict[key].to(net_device)
for key in query_dict:
if torch.is_tensor(query_dict[key]):
query_dict[key] = query_dict[key].to(net_device)
outputs = model(support_dict, query_dict, remember=False, training=True)
if "mask_predictions" not in outputs.keys() or outputs["mask_predictions"] is None:
continue
loss, loss_dict = criterion(outputs, query_dict, epoch)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter_time.update(time.time() - check_time)
check_time = time.time()
remain_time = remain_iter * iter_time.avg
remain_time = str(datetime.timedelta(seconds=int(remain_time)))
mem_mb = torch.cuda.max_memory_allocated() / (1024**2)
for k, v in loss_dict.items():
if k not in am_dict.keys():
am_dict[k] = utils.AverageMeter()
am_dict[k].update(v[0], v[1])
writer.add_scalar("Loss/" + k, v[0], iteration)
del loss, outputs, loss_dict
if iteration % 10 == 0:
if epoch < cfg.prepare_epochs:
logger.info(
"Epoch: {}/{}, iter: {}/{} | lr: {:.6f} | loss: {:.4f}({:.4f}) | Focal loss: {:.4f}({:.4f}) | Dice loss: {:.4f}({:.4f}) | Mem: {:.2f} | iter_t: {:.2f} | remain_t: {remain_time}\n".format(
epoch,
cfg.epochs,
iteration + 1,
num_iter,
curr_lr,
am_dict["loss"].val,
am_dict["loss"].avg,
am_dict["focal_loss"].val,
am_dict["focal_loss"].avg,
am_dict["dice_loss"].val,
am_dict["dice_loss"].avg,
mem_mb,
iter_time.val,
remain_time=remain_time,
)
)
else:
# logger.info("Epoch: {}/{}, iter: {}/{} | lr: {:.6f} | loss: {:.4f}({:.4f}) | Sim loss: {:.4f}({:.4f}) | Focal loss: {:.4f}({:.4f}) | Dice loss: {:.4f}({:.4f}) | Mem: {:.2f} | iter_t: {:.2f} | remain_t: {remain_time}\n".format
# (epoch, cfg.epochs, iteration + 1, num_iter, curr_lr,
# am_dict['loss'].val, am_dict['loss'].avg,
# am_dict['sim_loss'].val, am_dict['sim_loss'].avg,
# am_dict['focal_loss'].val, am_dict['focal_loss'].avg,
# am_dict['dice_loss'].val, am_dict['dice_loss'].avg,
# mem_mb,
# iter_time.val, remain_time=remain_time))
logger.info(
"Epoch: {}/{}, iter: {}/{} | lr: {:.6f} | loss: {:.4f}({:.4f}) | Sim loss: {:.4f}({:.4f}) | Focal loss: {:.4f}({:.4f}) | Dice loss: {:.4f}({:.4f}) | Mem: {:.2f} | iter_t: {:.2f} | remain_t: {remain_time}\n".format(
epoch,
cfg.epochs,
iteration + 1,
num_iter,
curr_lr,
am_dict["loss"].val,
am_dict["loss"].avg,
am_dict['sim_loss'].val, am_dict['sim_loss'].avg,
am_dict["focal_loss"].val,
am_dict["focal_loss"].avg,
am_dict["dice_loss"].val,
am_dict["dice_loss"].avg,
mem_mb,
iter_time.val,
remain_time=remain_time,
)
)
if epoch % cfg.save_freq == 0 or iteration == cfg.epochs:
checkpoint(model, optimizer, epoch, cfg.output_path, None, None)
checkpoint(model, optimizer, epoch, cfg.output_path, None, None, last=True)
for k in am_dict.keys():
writer.add_scalar(k + "_train", am_dict[k].avg, epoch)
logger.info(
"epoch: {}/{}, train loss: {:.4f}, time: {}s".format(
epoch, cfg.epochs, am_dict["loss"].avg, time.time() - start_time
)
)
logger.info("=========================================")
if __name__ == "__main__":
# init
init()
torch.cuda.set_device(0)
np.random.seed(cfg.manual_seed + get_rank())
torch.manual_seed(cfg.manual_seed + get_rank())
torch.cuda.manual_seed_all(cfg.manual_seed + get_rank())
# model
logger.info("=> creating model ...")
model = GeoFormerFS()
model = model.cuda()
logger.info("# training parameters: {}".format(sum([x.nelement() for x in model.parameters() if x.requires_grad])))
criterion = FSInstSetCriterion()
criterion = criterion.cuda()
# optimizer
if cfg.optim == "Adam":
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=cfg.lr)
elif cfg.optim == "SGD":
optimizer = optim.SGD(
filter(lambda p: p.requires_grad, model.parameters()),
lr=cfg.lr,
momentum=cfg.momentum,
weight_decay=cfg.weight_decay,
)
logger.info(f"Learning rate: {cfg.lr}")
start_epoch = -1
if cfg.pretrain:
logger.info("=> loading checkpoint '{}'".format(cfg.pretrain))
loaded = torch.load(cfg.pretrain, map_location=torch.device("cpu"))["state_dict"]
model_state_dict = model.state_dict()
loaded_state_dict = strip_prefix_if_present(loaded, prefix="module.")
align_and_update_state_dicts(model_state_dict, loaded_state_dict)
model.load_state_dict(model_state_dict)
logger.info("=> done loading pretrain")
if cfg.resume:
checkpoint_fn = cfg.resume
if os.path.isfile(checkpoint_fn):
logger.info("=> loading checkpoint '{}'".format(checkpoint_fn))
state = torch.load(checkpoint_fn, map_location=torch.device("cpu"))
start_epoch = state["epoch"] + 1
model_state_dict = model.state_dict()
loaded_state_dict = strip_prefix_if_present(state["state_dict"], prefix="module.")
align_and_update_state_dicts(model_state_dict, loaded_state_dict)
model.load_state_dict(model_state_dict)
logger.info("=> loaded checkpoint '{}' (start_epoch {})".format(checkpoint_fn, start_epoch))
else:
raise ValueError("=> no checkpoint found at '{}'".format(checkpoint_fn))
dataset = FSInstDataset(split_set="train")
train_loader = dataset.trainLoader()
if start_epoch == -1:
start_epoch = 1
for epoch in range(start_epoch, cfg.epochs + 1):
train_one_epoch(epoch, train_loader, model, criterion, optimizer)