-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathilqr_utils.py
executable file
·299 lines (249 loc) · 10.6 KB
/
ilqr_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib.animation import FuncAnimation, writers
np.random.seed(0)
def cost_dz(R_z, z, z_goal):
# compute the first-order deravative of latent cost w.r.t z
z_diff = np.expand_dims(z - z_goal, axis=-1)
return np.squeeze(2 * np.matmul(R_z, z_diff))
def cost_du(R_u, u):
# compute the first-order deravative of latent cost w.r.t u
return np.atleast_1d(np.squeeze(2 * np.matmul(R_u, np.expand_dims(u, axis=-1))))
def cost_dzz(R_z):
# compute the second-order deravative of latent cost w.r.t z
return 2 * R_z
def cost_duu(R_u):
# compute the second-order deravative of latent cost w.r.t u
return 2 * R_u
def cost_duz(z, u):
# compute the second-order deravative of latent cost w.r.t uz
return np.zeros((u.shape[-1], z.shape[-1]))
def latent_cost(R_z, R_u, z_seq, z_goal, u_seq):
z_diff = np.expand_dims(z_seq - z_goal, axis=-1)
cost_z = np.squeeze(np.matmul(np.matmul(z_diff.transpose((0, 2, 1)), R_z), z_diff))
u_seq_reshaped = np.expand_dims(u_seq, axis=-1)
cost_u = np.squeeze(np.matmul(np.matmul(u_seq_reshaped.transpose((0, 2, 1)), R_u), u_seq_reshaped))
return np.sum(cost_z) + np.sum(cost_u)
def one_step_back(R_z, R_u, z, u, z_goal, A, B, V_prime_next_z, V_prime_next_zz, mu_inv_regulator):
"""
V_prime_next_z: first order derivative of the value function at time step t+1
V_prime_next_zz: second order derivative of the value function at time tep t+1
A: derivative of F(z, u) w.r.t z at z_bar_t, u_bar_t
B: derivative of F(z, u) w.r.t u at z_bar_t, u_bar_t
"""
# compute Q_z, Q_u, Q_zz, Q_uu, Q_uz using cost function, A, B and V
Q_z = cost_dz(R_z, z, z_goal) + np.matmul(A.transpose(), V_prime_next_z)
Q_u = cost_du(R_u, u) + np.matmul(B.transpose(), V_prime_next_z)
Q_zz = cost_dzz(R_z) + np.matmul(np.matmul(A.transpose(), V_prime_next_zz), A)
Q_uz = cost_duz(z, u) + np.matmul(np.matmul(B.transpose(), V_prime_next_zz), A)
Q_uu = cost_duu(R_u) + np.matmul(np.matmul(B.transpose(), V_prime_next_zz), B)
# compute k and K matrix, add regularization to Q_uu
Q_uu_regularized = Q_uu + mu_inv_regulator * np.eye(Q_uu.shape[0])
Q_uu_in = np.linalg.inv(Q_uu_regularized)
k = -np.matmul(Q_uu_in, Q_u)
K = -np.matmul(Q_uu_in, Q_uz)
# compute V_z and V_zz using k and K
V_prime_z = Q_z + np.matmul(Q_uz.transpose(), k)
V_prime_zz = Q_zz + np.matmul(Q_uz.transpose(), K)
return k, K, V_prime_z, V_prime_zz
def backward(R_z, R_u, z_seq, u_seq, z_goal, A_seq, B_seq, inv_regulator):
"""
do the backward pass
return a sequence of k and K matrices
"""
# first and second order derivative of the value function at the last time step
V_prime_next_z = cost_dz(R_z, z_seq[-1], z_goal)
V_prime_next_zz = cost_dzz(R_z)
k, K = [], []
act_seq_len = len(u_seq)
for t in reversed(range(act_seq_len)):
k_t, K_t, V_prime_z, V_prime_zz = one_step_back(
R_z, R_u, z_seq[t], u_seq[t], z_goal, A_seq[t], B_seq[t], V_prime_next_z, V_prime_next_zz, inv_regulator
)
k.insert(0, k_t)
K.insert(0, K_t)
V_prime_next_z, V_prime_next_zz = V_prime_z, V_prime_zz
return k, K
def forward(z_seq, u_seq, k, K, dynamics, alpha):
"""
update the trajectory, given k and K
!!!! update using the linearization matricies (A and B), not the learned dynamics
"""
z_seq_new = []
z_seq_new.append(z_seq[0])
u_seq_new = []
for i in range(0, len(u_seq)):
u_new = u_seq[i] + alpha * k[i] + np.matmul(K[i], z_seq_new[i] - z_seq[i])
u_seq_new.append(u_new)
with torch.no_grad():
z_new = dynamics(torch.from_numpy(z_seq_new[i]).unsqueeze(0), torch.from_numpy(u_new).unsqueeze(0))[0].mean
z_seq_new.append(z_new.squeeze().numpy())
return np.array(z_seq_new), np.array(u_seq_new)
# def forward(u_seq, k_seq, K_seq, A_seq, B_seq, alpha):
# """
# update the trajectory, given k and K
# !!!! update using the linearization matricies (A and B), not the learned dynamics
# """
# u_new_seq = []
# plan_len = len(u_seq)
# z_dim = K_seq[0].shape[1]
# for i in range(0, plan_len):
# if i == 0:
# z_delta = np.zeros(z_dim)
# else:
# z_delta = np.matmul(A_seq[i-1], z_delta) + np.matmul(B_seq[i-1], u_delta)
# u_delta = alpha * (k_seq[i] + np.matmul(K_seq[i], z_delta))
# u_new_seq.append(u_seq[i] + u_delta)
# return np.array(u_new_seq)
def get_x_data(mdp, state, config):
image_data = mdp.render(state).squeeze()
x_dim = config["obs_shape"]
if config["task"] == "plane":
x_dim = np.prod(x_dim)
x_data = torch.from_numpy(image_data).double().view(x_dim).unsqueeze(0)
elif config["task"] in ["swing", "balance"]:
x_dim = np.prod(x_dim)
x_data = np.vstack((image_data, image_data))
x_data = torch.from_numpy(x_data).double().view(x_dim).unsqueeze(0)
elif config["task"] in ["cartpole", "threepole"]:
x_data = torch.zeros(size=(2, 80, 80))
x_data[0, :, :] = torch.from_numpy(image_data)
x_data[1, :, :] = torch.from_numpy(image_data)
x_data = x_data.unsqueeze(0)
return x_data
def update_horizon_start(mdp, s, u, encoder, config):
s_next = mdp.transition_function(s, u)
if config["task"] == "plane":
x_next = get_x_data(mdp, s_next, config)
elif config["task"] in ["swing", "balance"]:
obs = mdp.render(s).squeeze()
obs_next = mdp.render(s_next).squeeze()
obs_stacked = np.vstack((obs, obs_next))
x_dim = np.prod(config["obs_shape"])
x_next = torch.from_numpy(obs_stacked).view(x_dim).unsqueeze(0).double()
elif config["task"] in ["cartpole", "threepole"]:
obs = mdp.render(s).squeeze()
obs_next = mdp.render(s_next).squeeze()
x_next = torch.zeros(size=config["obs_shape"])
x_next[0, :, :] = torch.from_numpy(obs)
x_next[1, :, :] = torch.from_numpy(obs_next)
x_next = x_next.unsqueeze(0)
with torch.no_grad():
z_next = encoder(x_next).mean
return s_next, z_next.squeeze().numpy()
def random_uniform_actions(mdp, plan_len):
# create a trajectory of random actions
random_actions = []
for i in range(plan_len):
action = mdp.sample_random_action()
random_actions.append(action)
return np.array(random_actions)
def random_extreme_actions(mdp, plan_len):
# create a trajectory of extreme actions
extreme_actions = []
for i in range(plan_len):
action = mdp.sample_extreme_action()
extreme_actions.append(action)
return np.array(extreme_actions)
def random_actions_trajs(mdp, num_uniform, num_extreme, plan_len):
actions_trajs = []
for i in range(num_uniform):
actions_trajs.append(random_uniform_actions(mdp, plan_len))
for j in range(num_extreme):
actions_trajs.append(random_extreme_actions(mdp, plan_len))
return actions_trajs
def refresh_actions_trajs(actions_trajs, traj_opt_id, mdp, length, num_uniform, num_extreme):
for traj_id in range(len(actions_trajs)):
if traj_id == traj_opt_id:
actions_trajs[traj_id] = actions_trajs[traj_id][1:]
if len(actions_trajs[traj_id]) < length:
# Duplicate last action.
actions_trajs[traj_id] = np.append(
actions_trajs[traj_id], actions_trajs[traj_id][-1].reshape(1, -1), axis=0
)
continue
if traj_id < num_uniform:
actions_trajs[traj_id] = random_uniform_actions(mdp, length)
else:
actions_trajs[traj_id] = random_extreme_actions(mdp, length)
return actions_trajs
def update_seq_act(z_seq, z_start, u_seq, k, K, dynamics):
"""
update the trajectory, given k and K
"""
z_new = z_start
u_seq_new = []
for i in range(0, len(u_seq)):
u_new = u_seq[i] + k[i] + np.matmul(K[i], (z_new - z_seq[i]))
with torch.no_grad():
z_new = dynamics(torch.from_numpy(z_new).view(1, -1), torch.from_numpy(u_new).view(1, -1))[0].mean
z_new = z_new.squeeze().numpy()
u_seq_new.append(u_new)
return np.array(u_seq_new)
def compute_latent_traj(z_start, u_seq, dynamics):
plan_len = len(u_seq)
z_seq = [z_start]
for i in range(plan_len):
z = torch.from_numpy(z_seq[i]).view(1, -1).double()
u = torch.from_numpy(u_seq[i]).view(1, -1).double()
with torch.no_grad():
z_next = dynamics(z, u)[0].mean
z_seq.append(z_next.squeeze().numpy())
return z_seq
def jacobian(dynamics, z, u):
"""
compute the jacobian of F(z,u) w.r.t z, u
"""
z_dim = z.shape[0]
u_dim = u.shape[0]
z_tensor = torch.from_numpy(z).view(1, -1).double()
u_tensor = torch.from_numpy(u).view(1, -1).double()
if dynamics.armotized:
_, A, B = dynamics(z_tensor, u_tensor)
return A.squeeze().view(z_dim, z_dim).numpy(), B.squeeze().view(z_dim, u_dim).numpy()
z_tensor, u_tensor = z_tensor.squeeze().repeat(z_dim, 1), u_tensor.squeeze().repeat(z_dim, 1)
z_tensor = z_tensor.detach().requires_grad_(True)
u_tensor = u_tensor.detach().requires_grad_(True)
z_next = dynamics(z_tensor, u_tensor)[0].mean
grad_inp = torch.eye(z_dim)
A, B = torch.autograd.grad(z_next, [z_tensor, u_tensor], [grad_inp, grad_inp])
return A.numpy(), B.numpy()
def seq_jacobian(dynamics, z_seq, u_seq):
"""
compute the jacobian w.r.t each pair in the trajectory
"""
A_seq, B_seq = [], []
horizon = len(u_seq)
for i in range(horizon):
z, u = z_seq[i], u_seq[i]
A, B = jacobian(dynamics, z, u)
A_seq.append(A)
B_seq.append(B)
return A_seq, B_seq
def save_traj(images, image_goal, gif_path, task):
# save trajectory as gif file
fig, aa = plt.subplots(1, 2)
m1 = aa[0].matshow(images[0], cmap=plt.cm.gray, vmin=0.0, vmax=1.0)
aa[0].set_title("Time step 0")
aa[0].set_yticklabels([])
aa[0].set_xticklabels([])
m2 = aa[1].matshow(image_goal, cmap=plt.cm.gray, vmin=0.0, vmax=1.0)
aa[1].set_title("goal")
aa[1].set_yticklabels([])
aa[1].set_xticklabels([])
fig.tight_layout()
def updatemat2(t):
m1.set_data(images[t])
aa[0].set_title("Time step " + str(t))
m2.set_data(image_goal)
return m1, m2
frames = len(images)
if task == "plane":
fps = 2
else:
fps = 20
anim = FuncAnimation(fig, updatemat2, frames=frames, interval=200, blit=True, repeat=True)
Writer = writers["imagemagick"] # animation.writers.avail
writer = Writer(fps=fps, metadata=dict(artist="Me"), bitrate=1800)
anim.save(gif_path, writer=writer)