-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathKDTreeLinkerAlgo.h
273 lines (221 loc) · 6.8 KB
/
KDTreeLinkerAlgo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#ifndef KDTreeLinkerAlgoTemplated_h
#define KDTreeLinkerAlgoTemplated_h
#include "KDTreeLinkerTools.h"
#include <cassert>
#include <vector>
// Class that implements the KDTree partition of 2D space and
// a closest point search algorithme.
template <typename DATA>
class KDTreeLinkerAlgo
{
public:
KDTreeLinkerAlgo();
// Dtor calls clear()
~KDTreeLinkerAlgo();
// Here we build the KD tree from the "eltList" in the space define by "region".
void build(std::vector<KDTreeNodeInfo<DATA> > &eltList,
const KDTreeBox ®ion);
// Here we search in the KDTree for all points that would be
// contained in the given searchbox. The founded points are stored in resRecHitList.
void search(const KDTreeBox &searchBox,
std::vector<DATA> &resRecHitList);
// This reurns true if the tree is empty
bool empty() {return nodePool_.empty();}
// This returns the number of nodes + leaves in the tree
// (nElements should be (size() +1)/2)
int size() { return nodePool_.size();}
// This method clears all allocated structures.
void clear();
private:
// The node pool allow us to do just 1 call to new for each tree building.
KDTreeNodes<DATA> nodePool_;
std::vector<DATA> *closestNeighbour;
std::vector<KDTreeNodeInfo<DATA> > *initialEltList;
private:
//Fast median search with Wirth algorithm in eltList between low and high indexes.
int medianSearch(int low,
int high,
int treeDepth);
// Recursif kdtree builder. Is called by build()
int recBuild(int low,
int hight,
int depth);
// Recursif kdtree search. Is called by search()
void recSearch(int current,
VALUE dimCurrMin, VALUE dimCurrMax,
VALUE dimOtherMin, VALUE dimOtherMax);
// This method frees the KDTree.
void clearTree();
};
//Implementation
template < typename DATA >
void
KDTreeLinkerAlgo<DATA>::build(std::vector<KDTreeNodeInfo<DATA> > &eltList,
const KDTreeBox ®ion)
{
if (eltList.size()) {
initialEltList = &eltList;
size_t size = initialEltList->size();
nodePool_.build(size);
// Here we build the KDTree
int root = recBuild(0, size, 0);
assert(root == 0);
initialEltList = 0;
}
}
//Fast median search with Wirth algorithm in eltList between low and high indexes.
template < typename DATA >
int
KDTreeLinkerAlgo<DATA>::medianSearch(int low,
int high,
int treeDepth)
{
int nbrElts = high - low;
int median = (nbrElts & 1) ? nbrElts / 2
: nbrElts / 2 - 1;
median += low;
int l = low;
int m = high - 1;
while (l < m) {
KDTreeNodeInfo<DATA> elt = (*initialEltList)[median];
int i = l;
int j = m;
do {
// The even depth is associated to dim1 dimension
// The odd one to dim2 dimension
if (treeDepth & 1) {
while ((*initialEltList)[i].dim[1] < elt.dim[1]) i++;
while ((*initialEltList)[j].dim[1] > elt.dim[1]) j--;
} else {
while ((*initialEltList)[i].dim[0] < elt.dim[0]) i++;
while ((*initialEltList)[j].dim[0] > elt.dim[0]) j--;
}
if (i <= j){
std::swap((*initialEltList)[i], (*initialEltList)[j]);
i++;
j--;
}
} while (i <= j);
if (j < median) l = i;
if (i > median) m = j;
}
return median;
}
template < typename DATA >
void
KDTreeLinkerAlgo<DATA>::search(const KDTreeBox &trackBox,
std::vector<DATA> &recHits)
{
if (!empty()) {
closestNeighbour = &recHits;
recSearch(0, trackBox.dim1min, trackBox.dim1max, trackBox.dim2min, trackBox.dim2max);
closestNeighbour = 0;
}
}
template < typename DATA >
void
KDTreeLinkerAlgo<DATA>::recSearch(int current,
VALUE dimCurrMin, VALUE dimCurrMax,
VALUE dimOtherMin, VALUE dimOtherMax)
{
// Iterate until leaf is found, or there are no children in the
// search window. If search has to proceed on both children, proceed
// the search to left child via recursion. Swap search window
// dimension on alternate levels.
while(true) {
int right = nodePool_.right[current];
if(nodePool_.isLeaf(right)) {
VALUE dimCurr = nodePool_.median[current];
// If point inside the rectangle/area
// Use intentionally bit-wise & instead of logical && for better
// performance. It is faster to always do all comparisons than to
// allow use of branches to not do some if any of the first ones
// is false.
if((dimCurr >= dimCurrMin) & (dimCurr <= dimCurrMax)) {
VALUE dimOther = nodePool_.dimOther[current];
if((dimOther >= dimOtherMin) & (dimOther <= dimOtherMax)) {
closestNeighbour->push_back(nodePool_.data[current]);
}
}
break;
}
else {
VALUE median = nodePool_.median[current];
bool goLeft = (dimCurrMin <= median);
bool goRight = (dimCurrMax >= median);
// Swap dimension for the next search level
std::swap(dimCurrMin, dimOtherMin);
std::swap(dimCurrMax, dimOtherMax);
if(goLeft & goRight) {
int left = current+1;
recSearch(left, dimCurrMin, dimCurrMax, dimOtherMin, dimOtherMax);
// continue with right
current = right;
}
else if(goLeft) {
++current;
}
else if(goRight) {
current = right;
}
else {
break;
}
}
}
}
template <typename DATA>
KDTreeLinkerAlgo<DATA>::KDTreeLinkerAlgo()
{
}
template <typename DATA>
KDTreeLinkerAlgo<DATA>::~KDTreeLinkerAlgo()
{
clear();
}
template <typename DATA>
void
KDTreeLinkerAlgo<DATA>::clearTree()
{
nodePool_.clear();
}
template <typename DATA>
void
KDTreeLinkerAlgo<DATA>::clear()
{
clearTree();
}
template <typename DATA>
int
KDTreeLinkerAlgo<DATA>::recBuild(int low,
int high,
int depth)
{
int portionSize = high - low;
int dimIndex = depth&1;
if (portionSize == 1) { // Leaf case
int leaf = nodePool_.getNextNode();
const KDTreeNodeInfo<DATA>& info = (*initialEltList)[low];
nodePool_.right[leaf] = 0;
nodePool_.median[leaf] = info.dim[dimIndex]; // dimCurrent
nodePool_.dimOther[leaf] = info.dim[1-dimIndex];
nodePool_.data[leaf] = info.data;
return leaf;
} else { // Node case
// The even depth is associated to dim1 dimension
// The odd one to dim2 dimension
int medianId = medianSearch(low, high, depth);
VALUE medianVal = (*initialEltList)[medianId].dim[dimIndex];
// We create the node
int nodeInd = nodePool_.getNextNode();
nodePool_.median[nodeInd] = medianVal;
++depth;
++medianId;
// We recursively build the son nodes
int left = recBuild(low, medianId, depth);
assert(nodeInd+1 == left);
nodePool_.right[nodeInd] = recBuild(medianId, high, depth);
return nodeInd;
}
}
#endif