-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess_imagenette.py
51 lines (43 loc) · 1.35 KB
/
preprocess_imagenette.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
from PIL import Image
from tqdm import tqdm
import cv2
data_fldf_path = os.path.join(os.getcwd(), 'data/imagenette2-320')
train_path = os.path.join(data_fldf_path, 'train')
test_path = os.path.join(data_fldf_path, 'val')
train_folders = os.listdir(train_path)
test_folders = os.listdir(test_path)
'''
for folder in train_folders:
files_path = os.path.join(train_path, folder)
image_files = os.listdir(files_path)
for f in image_files:
fp = os.path.join(files_path, f)
new_path = os.path.join(train_path, f)
os.rename(fp, new_path)
for folder in test_folders:
files_path = os.path.join(test_path, folder)
image_files = os.listdir(files_path)
for f in image_files:
fp = os.path.join(files_path, f)
new_path = os.path.join(test_path, f)
os.rename(fp, new_path)
'''
train_imgs = os.listdir(train_path)
test_imgs = os.listdir(test_path)
print('Start processing images...\n')
'''
for fl in tqdm(train_imgs, desc = 'Processing image folder'):
#print(fl)
fp = os.path.join(train_path, fl)
im = cv2.imread(fp)
im = cv2.resize(im, (300,300))
cv2.imwrite(fp, im)
del im
'''
for fl in tqdm(test_imgs, desc = 'Processing image folder'):
fp = os.path.join(test_path, fl)
im = cv2.imread(fp)
im = cv2.resize(im, (300,300))
cv2.imwrite(fp, im)
del im