forked from WenqinSHAO/rtt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabeller_evaluation.py
142 lines (120 loc) · 5.44 KB
/
labeller_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
evaluate human labeller, along with change detection method on an artificial dataset
"""
import pandas as pd
import os
from localutils import changedetect as dc, benchmark as bch
import logging
import ConfigParser
import argparse
METHOD = ['cpt_normal', 'cpt_poisson', 'cpt_poisson_naive', 'cpt_np']
PENALTY = ["BIC", "MBIC", "Hannan-Quinn"]
WINDOW = 2 # perform evaluation with window size equaling 2
MINSEGLEN = 3
def worker(f, fact_dir, human_dir):
"""evaluate human detector along with cpt methods
Args:
f (string): the file name in both fact dir and human dir
fact_dir (string): directory containing facts
human_dir (string): directory containing human labeller detections
Return:
list of tuple
"""
r = []
logging.info("handling %s" % f)
# read csv with same name f from both directory
fact_trace = pd.read_csv(os.path.join(fact_dir, f), sep=';')
if type(fact_trace['rtt'][0]) is str:
fact_trace = pd.read_csv(os.path.join(fact_dir, f), sep=';', decimal=',')
human_trace = pd.read_csv(os.path.join(human_dir, f), sep=';')
if type(human_trace['rtt'][0]) is str:
human_trace = pd.read_csv(os.path.join(human_dir, f), sep=';', decimal=',')
# check if the two traces are the same
if len(fact_trace['rtt']) != len(human_trace['rtt']):
logging.error("trace %s length differs in human (%d) and fact directory (%d)!" % (f, len(human_trace['rtt']),
len(fact_trace['rtt'])))
return []
else:
eq = [fact_trace['rtt'][i] == human_trace['rtt'][i] for i in range(len(fact_trace['rtt']))]
if not all(eq):
logging.error("trace %s value differs in human and fact directory!" % f)
return []
fact = fact_trace['cp']
fact = [i for i, v in enumerate(fact) if v == 1] # fact in format of data index
logging.debug("%s : change counts %d" % (f, len(fact)))
human_detect = human_trace['cp']
human_detect = [i for i, v in enumerate(human_detect) if v == 1]
logging.debug("%s : human detections counts %d" % (f, len(human_detect)))
b = bch.evaluation_window_weighted(fact_trace['rtt'], fact, human_detect, WINDOW)
logging.debug('%r' % b)
r.append((f, len(fact_trace), len(fact),
b['tp'], b['fp'], b['fn'],
b['precision'], b['recall'], b['score'], b['dis'], 'human', 'human'))
for m, p in [(x, y) for x in METHOD for y in PENALTY]:
logging.info("%s: evaluating %s with %s" % (f, m, p))
method_caller = getattr(dc, m)
detect = method_caller(fact_trace['rtt'], p, MINSEGLEN)
b = bch.evaluation_window_weighted(fact_trace['rtt'], fact, detect, WINDOW)
r.append((f, len(fact_trace), len(fact),
b['tp'], b['fp'], b['fn'],
b['precision'], b['recall'], b['score'], b['dis'], m, p))
logging.debug('%r' % b)
return r
def main():
# logging setting
logging.basicConfig(filename='cpt_evaluation.log', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %z')
# load data collection configuration from config file in the same folder
config = ConfigParser.ConfigParser()
if not config.read('./config'):
logging.critical("Config file ./config is missing.")
return
# load the configured directory where collected data shall be saved
try:
data_dir = config.get("dir", "data")
except (ConfigParser.NoSectionError, ConfigParser.NoOptionError):
logging.critical("config for data storage is not right.")
return
# check if the directory is there
if not os.path.exists(data_dir):
logging.critical("data folder %s does not exisit." % data_dir)
return
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--fact",
help="directory storing ground fact.",
action="store")
parser.add_argument("-l", "--labeller",
help="directory storing the detections of human labeller.",
action="store")
parser.add_argument("-o", "--output",
help="filename storing the output result.",
action="store")
args = parser.parse_args()
# all the three inputs are required
if not args.fact or not args.labeller or not args.output:
print args.help
return
else:
fact_dir = args.fact
human_dir = args.labeller
outfile = args.output
if not os.path.exists(fact_dir):
print "%s doesn't exist." % fact_dir
if not os.path.exists(human_dir):
print "%s doesn't exist." % human_dir
files = []
fact_files = os.listdir(fact_dir)
for f in os.listdir(human_dir):
if f.endswith('.csv') and (not f.startswith('~')) and f in fact_files:
files.append(f)
logging.info("%d traces to be considered:\n %s" % (len(files), str(files)))
res = [worker(f, fact_dir, human_dir) for f in files]
with open(os.path.join(data_dir, outfile), 'w') as fp:
fp.write(';'.join(
['file', 'len', 'changes', 'tp', 'fp', 'fn', 'precision', 'recall', 'score', 'dis', 'method', 'penalty']) + '\n')
for ck in res:
for line in ck:
fp.write(";".join([str(i) for i in line]) + '\n')
if __name__ == '__main__':
main()