-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathConvolutional Neural Network.cpp
82 lines (71 loc) · 2.31 KB
/
Convolutional Neural Network.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include "Matrix.h"
#include "Layer.h"
#include "Network.h"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <fstream>
using namespace cv;
using namespace std;
int main()
{
char name[1];
char data_1_red[1024];
char data_1_green[1024];
char data_1_blue[1024];
ifstream data_set_1("data_batch_1.bin");
data_set_1.read(name, 1);
data_set_1.read(data_1_red, 1024);
data_set_1.read(data_1_green, 1024);
data_set_1.read(data_1_blue, 1024);
Mat blue(32, 32, CV_8UC1, data_1_blue);
Mat green(32, 32, CV_8UC1, data_1_green);
Mat red(32, 32, CV_8UC1, data_1_red);
Mat planes[] = { blue, green, red };
Mat img1;
merge(planes,3, img1);
srand(1);
float input[10][10] = {
{ 1, -1, -1, -1, 1, 1, -1, -1, -1, -1},
{-1, 1, -1, 1, -1,-1, 1, -1, 1, -1},
{-1, -1, 1, -1, -1,-1, -1, 1, -1,-1},
{-1, 1, -1, 1, -1,-1, 1, -1, 1,-1},
{ 1, -1, -1, -1, 1, 1, -1, -1, -1,-1},
{ 1, -1, -1, -1, 1, 1, -1, -1, -1,-1},
{-1, 1, -1, 1, -1, -1, 1, -1, 1,-1},
{-1, -1, 1, -1, -1, -1, -1, 1, -1,-1},
{-1, 1, -1, 1, -1, -1, 1, -1, 1,-1},
{-1, 1, -1, 1, -1, -1, 1, -1, 1,-1} };
//inputing the regular 2d array to the pointer format
//and import into the Matrix class to turn it into matrx.
float** ary;
ary = new float* [sizeof(input) / sizeof(input[0])];
for (int i = 0; i < sizeof(input) / sizeof(input[0]); i++)
{
ary[i] = new float[sizeof(input[0]) / sizeof(float)];
for (int j = 0; j < sizeof(input[0]) / sizeof(float); j++)
ary[i][j] = input[i][j];
}
Matrix img = Matrix(ary, 10, 10);
Layer trial = Layer(img, 3);
trial.input.printGrid();
trial.Conv2D("edge", "relu");
trial.MaxPool(2);
trial.flatten();
trial.Dense(128, "sigmoid");
trial.result.printGrid();
trial.Dense(64, "sigmoid");
trial.result.printGrid();
trial.Dense(10, "softmax");
trial.result.printGrid();
cout << "size of output" << trial.result.row << "x" << trial.result.col << endl;
cout << "blue = " << endl << " " << blue << endl << endl;
cout << "green = " << endl << " " << green << endl << endl;
cout << "red = " << endl << " " << red << endl << endl;
cout << "image = " << endl << " " << img1 << endl << endl;
cout << "name = " << name[0] << endl;
cout << data_1_red[0] << endl;
imshow("3 channel", img1);
data_set_1.close();
waitKey(0);
return 0;
}