forked from deepakn97/relationPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
369 lines (274 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import torch
from models import SpKBGATModified, SpKBGATConvOnly
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from copy import deepcopy
from preprocess import read_entity_from_id, read_relation_from_id, init_embeddings, build_data
from create_batch import Corpus
from utils import save_model
import random
import argparse
import os
import sys
import logging
import time
import pickle
# %%
# %%from torchviz import make_dot, make_dot_from_trace
def parse_args():
args = argparse.ArgumentParser()
# network arguments
args.add_argument("-data", "--data",
default="./data/WN18RR", help="data directory")
args.add_argument("-e_g", "--epochs_gat", type=int,
default=3600, help="Number of epochs")
args.add_argument("-e_c", "--epochs_conv", type=int,
default=200, help="Number of epochs")
args.add_argument("-w_gat", "--weight_decay_gat", type=float,
default=5e-6, help="L2 reglarization for gat")
args.add_argument("-w_conv", "--weight_decay_conv", type=float,
default=1e-5, help="L2 reglarization for conv")
args.add_argument("-pre_emb", "--pretrained_emb", type=bool,
default=True, help="Use pretrained embeddings")
args.add_argument("-emb_size", "--embedding_size", type=int,
default=50, help="Size of embeddings (if pretrained not used)")
args.add_argument("-l", "--lr", type=float, default=1e-3)
args.add_argument("-g2hop", "--get_2hop", type=bool, default=False)
args.add_argument("-u2hop", "--use_2hop", type=bool, default=True)
args.add_argument("-p2hop", "--partial_2hop", type=bool, default=False)
args.add_argument("-outfolder", "--output_folder",
default="./checkpoints/wn/out/", help="Folder name to save the models.")
# arguments for GAT
args.add_argument("-b_gat", "--batch_size_gat", type=int,
default=86835, help="Batch size for GAT")
args.add_argument("-neg_s_gat", "--valid_invalid_ratio_gat", type=int,
default=2, help="Ratio of valid to invalid triples for GAT training")
args.add_argument("-drop_GAT", "--drop_GAT", type=float,
default=0.3, help="Dropout probability for SpGAT layer")
args.add_argument("-alpha", "--alpha", type=float,
default=0.2, help="LeakyRelu alphs for SpGAT layer")
args.add_argument("-out_dim", "--entity_out_dim", type=int, nargs='+',
default=[100, 200], help="Entity output embedding dimensions")
args.add_argument("-h_gat", "--nheads_GAT", type=int, nargs='+',
default=[2, 2], help="Multihead attention SpGAT")
args.add_argument("-margin", "--margin", type=float,
default=5, help="Margin used in hinge loss")
# arguments for convolution network
args.add_argument("-b_conv", "--batch_size_conv", type=int,
default=128, help="Batch size for conv")
args.add_argument("-alpha_conv", "--alpha_conv", type=float,
default=0.2, help="LeakyRelu alphas for conv layer")
args.add_argument("-neg_s_conv", "--valid_invalid_ratio_conv", type=int, default=40,
help="Ratio of valid to invalid triples for convolution training")
args.add_argument("-o", "--out_channels", type=int, default=500,
help="Number of output channels in conv layer")
args.add_argument("-drop_conv", "--drop_conv", type=float,
default=0.0, help="Dropout probability for convolution layer")
args = args.parse_args()
return args
args = parse_args()
# %%
def load_data(args):
train_data, validation_data, test_data, entity2id, relation2id, headTailSelector, unique_entities_train = build_data(
args.data, is_unweigted=False, directed=True)
if args.pretrained_emb:
entity_embeddings, relation_embeddings = init_embeddings(os.path.join(args.data, 'entity2vec.txt'),
os.path.join(args.data, 'relation2vec.txt'))
print("Initialised relations and entities from TransE")
else:
entity_embeddings = np.random.randn(
len(entity2id), args.embedding_size)
relation_embeddings = np.random.randn(
len(relation2id), args.embedding_size)
print("Initialised relations and entities randomly")
corpus = Corpus(args, train_data, validation_data, test_data, entity2id, relation2id, headTailSelector,
args.batch_size_gat, args.valid_invalid_ratio_gat, unique_entities_train, args.get_2hop)
return corpus, torch.FloatTensor(entity_embeddings), torch.FloatTensor(relation_embeddings)
Corpus_, entity_embeddings, relation_embeddings = load_data(args)
if(args.get_2hop):
file = args.data + "/2hop.pickle"
with open(file, 'wb') as handle:
pickle.dump(Corpus_.node_neighbors_2hop, handle,
protocol=pickle.HIGHEST_PROTOCOL)
if(args.use_2hop):
print("Opening node_neighbors pickle object")
file = args.data + "/2hop.pickle"
with open(file, 'rb') as handle:
node_neighbors_2hop = pickle.load(handle)
entity_embeddings_copied = deepcopy(entity_embeddings)
relation_embeddings_copied = deepcopy(relation_embeddings)
print("Initial entity dimensions {} , relation dimensions {}".format(
entity_embeddings.size(), relation_embeddings.size()))
# %%
CUDA = torch.cuda.is_available()
def batch_gat_loss(gat_loss_func, train_indices, entity_embed, relation_embed):
len_pos_triples = int(
train_indices.shape[0] / (int(args.valid_invalid_ratio_gat) + 1))
pos_triples = train_indices[:len_pos_triples]
neg_triples = train_indices[len_pos_triples:]
pos_triples = pos_triples.repeat(int(args.valid_invalid_ratio_gat), 1)
source_embeds = entity_embed[pos_triples[:, 0]]
relation_embeds = relation_embed[pos_triples[:, 1]]
tail_embeds = entity_embed[pos_triples[:, 2]]
x = source_embeds + relation_embeds - tail_embeds
pos_norm = torch.norm(x, p=1, dim=1)
source_embeds = entity_embed[neg_triples[:, 0]]
relation_embeds = relation_embed[neg_triples[:, 1]]
tail_embeds = entity_embed[neg_triples[:, 2]]
x = source_embeds + relation_embeds - tail_embeds
neg_norm = torch.norm(x, p=1, dim=1)
y = -torch.ones(int(args.valid_invalid_ratio_gat) * len_pos_triples).cuda()
loss = gat_loss_func(pos_norm, neg_norm, y)
return loss
def train_gat(args):
# Creating the gat model here.
####################################
print("Defining model")
print(
"\nModel type -> GAT layer with {} heads used , Initital Embeddings training".format(args.nheads_GAT[0]))
model_gat = SpKBGATModified(entity_embeddings, relation_embeddings, args.entity_out_dim, args.entity_out_dim,
args.drop_GAT, args.alpha, args.nheads_GAT)
if CUDA:
model_gat.cuda()
optimizer = torch.optim.Adam(
model_gat.parameters(), lr=args.lr, weight_decay=args.weight_decay_gat)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=500, gamma=0.5, last_epoch=-1)
gat_loss_func = nn.MarginRankingLoss(margin=args.margin)
current_batch_2hop_indices = torch.tensor([])
if(args.use_2hop):
current_batch_2hop_indices = Corpus_.get_batch_nhop_neighbors_all(args,
Corpus_.unique_entities_train, node_neighbors_2hop)
if CUDA:
current_batch_2hop_indices = Variable(
torch.LongTensor(current_batch_2hop_indices)).cuda()
else:
current_batch_2hop_indices = Variable(
torch.LongTensor(current_batch_2hop_indices))
epoch_losses = [] # losses of all epochs
print("Number of epochs {}".format(args.epochs_gat))
for epoch in range(args.epochs_gat):
print("\nepoch-> ", epoch)
random.shuffle(Corpus_.train_triples)
Corpus_.train_indices = np.array(
list(Corpus_.train_triples)).astype(np.int32)
model_gat.train() # getting in training mode
start_time = time.time()
epoch_loss = []
if len(Corpus_.train_indices) % args.batch_size_gat == 0:
num_iters_per_epoch = len(
Corpus_.train_indices) // args.batch_size_gat
else:
num_iters_per_epoch = (
len(Corpus_.train_indices) // args.batch_size_gat) + 1
for iters in range(num_iters_per_epoch):
start_time_iter = time.time()
train_indices, train_values = Corpus_.get_iteration_batch(iters)
if CUDA:
train_indices = Variable(
torch.LongTensor(train_indices)).cuda()
train_values = Variable(torch.FloatTensor(train_values)).cuda()
else:
train_indices = Variable(torch.LongTensor(train_indices))
train_values = Variable(torch.FloatTensor(train_values))
# forward pass
entity_embed, relation_embed = model_gat(
Corpus_, Corpus_.train_adj_matrix, train_indices, current_batch_2hop_indices)
optimizer.zero_grad()
loss = batch_gat_loss(
gat_loss_func, train_indices, entity_embed, relation_embed)
loss.backward()
optimizer.step()
epoch_loss.append(loss.data.item())
end_time_iter = time.time()
print("Iteration-> {0} , Iteration_time-> {1:.4f} , Iteration_loss {2:.4f}".format(
iters, end_time_iter - start_time_iter, loss.data.item()))
scheduler.step()
print("Epoch {} , average loss {} , epoch_time {}".format(
epoch, sum(epoch_loss) / len(epoch_loss), time.time() - start_time))
epoch_losses.append(sum(epoch_loss) / len(epoch_loss))
save_model(model_gat, args.data, epoch,
args.output_folder)
def train_conv(args):
# Creating convolution model here.
####################################
print("Defining model")
model_gat = SpKBGATModified(entity_embeddings, relation_embeddings, args.entity_out_dim, args.entity_out_dim,
args.drop_GAT, args.alpha, args.nheads_GAT)
print("Only Conv model trained")
model_conv = SpKBGATConvOnly(entity_embeddings, relation_embeddings, args.entity_out_dim, args.entity_out_dim,
args.drop_GAT, args.drop_conv, args.alpha, args.alpha_conv,
args.nheads_GAT, args.out_channels)
if CUDA:
model_conv.cuda()
model_gat.cuda()
model_gat.load_state_dict(torch.load(
'{}/trained_{}.pth'.format(args.output_folder, args.epochs_gat - 1)), strict=False)
model_conv.final_entity_embeddings = model_gat.final_entity_embeddings
model_conv.final_relation_embeddings = model_gat.final_relation_embeddings
Corpus_.batch_size = args.batch_size_conv
Corpus_.invalid_valid_ratio = int(args.valid_invalid_ratio_conv)
optimizer = torch.optim.Adam(
model_conv.parameters(), lr=args.lr, weight_decay=args.weight_decay_conv)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=25, gamma=0.5, last_epoch=-1)
margin_loss = torch.nn.SoftMarginLoss()
epoch_losses = [] # losses of all epochs
print("Number of epochs {}".format(args.epochs_conv))
for epoch in range(args.epochs_conv):
print("\nepoch-> ", epoch)
random.shuffle(Corpus_.train_triples)
Corpus_.train_indices = np.array(
list(Corpus_.train_triples)).astype(np.int32)
model_conv.train() # getting in training mode
start_time = time.time()
epoch_loss = []
if len(Corpus_.train_indices) % args.batch_size_conv == 0:
num_iters_per_epoch = len(
Corpus_.train_indices) // args.batch_size_conv
else:
num_iters_per_epoch = (
len(Corpus_.train_indices) // args.batch_size_conv) + 1
for iters in range(num_iters_per_epoch):
start_time_iter = time.time()
train_indices, train_values = Corpus_.get_iteration_batch(iters)
if CUDA:
train_indices = Variable(
torch.LongTensor(train_indices)).cuda()
train_values = Variable(torch.FloatTensor(train_values)).cuda()
else:
train_indices = Variable(torch.LongTensor(train_indices))
train_values = Variable(torch.FloatTensor(train_values))
preds = model_conv(
Corpus_, Corpus_.train_adj_matrix, train_indices)
optimizer.zero_grad()
loss = margin_loss(preds.view(-1), train_values.view(-1))
loss.backward()
optimizer.step()
epoch_loss.append(loss.data.item())
end_time_iter = time.time()
print("Iteration-> {0} , Iteration_time-> {1:.4f} , Iteration_loss {2:.4f}".format(
iters, end_time_iter - start_time_iter, loss.data.item()))
scheduler.step()
print("Epoch {} , average loss {} , epoch_time {}".format(
epoch, sum(epoch_loss) / len(epoch_loss), time.time() - start_time))
epoch_losses.append(sum(epoch_loss) / len(epoch_loss))
save_model(model_conv, args.data, epoch,
args.output_folder + "conv/")
def evaluate_conv(args, unique_entities):
model_conv = SpKBGATConvOnly(entity_embeddings, relation_embeddings, args.entity_out_dim, args.entity_out_dim,
args.drop_GAT, args.drop_conv, args.alpha, args.alpha_conv,
args.nheads_GAT, args.out_channels)
model_conv.load_state_dict(torch.load(
'{0}conv/trained_{1}.pth'.format(args.output_folder, args.epochs_conv - 1)), strict=False)
model_conv.cuda()
model_conv.eval()
with torch.no_grad():
Corpus_.get_validation_pred(args, model_conv, unique_entities)
train_gat(args)
train_conv(args)
evaluate_conv(args, Corpus_.unique_entities_train)