-
Notifications
You must be signed in to change notification settings - Fork 0
/
PriorityQueue.py
289 lines (253 loc) · 10.8 KB
/
PriorityQueue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
def get_parent_position(position: int) -> int:
# helper function get the position of the parent of the current node
return (position - 1) // 2
def get_child_left_position(position: int) -> int:
# helper function get the position of the left child of the current node
return (2 * position) + 1
def get_child_right_position(position: int) -> int:
# helper function get the position of the right child of the current node
return (2 * position) + 2
class MinPriorityQueue:
"""
Minimum Priority Queue Class
Functions:
is_empty: function to check if the priority queue is empty
push: function to add an element with given priority to the queue
peek_min: function to get the element with lowest weight (highest priority) without
removing it from the queue
extract_min: function to remove and return the element with lowest weight (highest
priority)
get_priority: function to get the priority of the given key
update_key: function to update the weight of the given key
_bubble_up: helper function to place a node at the proper position (upward
movement)
_bubble_down: helper function to place a node at the proper position (downward
movement)
_swap_nodes: helper function to swap the nodes at the given positions
"""
def __init__(self) -> None:
self.heap = []
self.position_map = {}
self.elements = 0
def __len__(self) -> int:
return self.elements
def __repr__(self) -> str:
return str(self.heap)
def __contains__(self, key: int) -> bool:
return key in self.position_map
def is_empty(self) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def push(self, elem: int, weight: int) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight))
self.position_map[elem] = self.elements
self.elements += 1
self._bubble_up(elem)
def peek_min(self):
if self.elements == 0:
raise RuntimeError("Queue is empty")
elem, _ = self.heap[0]
return elem
def extract_min(self) -> int:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0, self.elements - 1)
elem, _ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
bubble_down_elem, _ = self.heap[0]
self._bubble_down(bubble_down_elem)
return elem
def get_priority(self, key: int) -> int:
if key not in self:
raise ValueError(f"{key} not found")
_, weight = self.heap[self.position_map[key]]
return weight
def update_key(self, elem: int, weight: int) -> None:
# Update the weight of the given key
position = self.position_map[elem]
self.heap[position] = (elem, weight)
if position > 0:
parent_position = get_parent_position(position)
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(elem)
else:
self._bubble_down(elem)
else:
self._bubble_down(elem)
def _bubble_up(self, elem: int) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
curr_pos = self.position_map[elem]
if curr_pos == 0:
return
parent_position = get_parent_position(curr_pos)
_, weight = self.heap[curr_pos]
_, parent_weight = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(parent_position, curr_pos)
return self._bubble_up(elem)
return
def _bubble_down(self, elem: int) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
curr_pos = self.position_map[elem]
_, weight = self.heap[curr_pos]
child_left_position = get_child_left_position(curr_pos)
child_right_position = get_child_right_position(curr_pos)
if child_left_position < self.elements and child_right_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < child_left_weight:
if child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
if child_left_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(child_left_position, curr_pos)
return self._bubble_down(elem)
else:
return
if child_right_position < self.elements:
_, child_right_weight = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
else:
return
def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None:
# Swap the nodes at the given positions
node1_elem = self.heap[node1_pos][0]
node2_elem = self.heap[node2_pos][0]
self.heap[node1_pos], self.heap[node2_pos] = (
self.heap[node2_pos],
self.heap[node1_pos],
)
self.position_map[node1_elem] = node2_pos
self.position_map[node2_elem] = node1_pos
class MaxPriorityQueue:
"""
Maximum Priority Queue Class
Functions:
is_empty: function to check if the priority queue is empty
push: function to add an element with given priority to the queue
peek_max: function to get the element with highest weight (highest priority)
without removing it from the queue
extract_max: function to remove and return the element with highest weight (highest
priority)
get_priority: function to get the priority of the given key
update_key: function to update the weight of the given key
_bubble_up: helper function to place a node at the proper position (upward
movement)
_bubble_down: helper function to place a node at the proper position (downward
movement)
_swap_nodes: helper function to swap the nodes at the given positions
"""
def __init__(self) -> None:
self.heap = []
self.position_map = {}
self.elements = 0
def __len__(self) -> int:
return self.elements
def __repr__(self) -> str:
return str(self.heap)
def __contains__(self, key: int) -> bool:
return key in self.position_map
def is_empty(self) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def push(self, elem: int, weight: int) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight))
self.position_map[elem] = self.elements
self.elements += 1
self._bubble_up(elem)
def peek_max(self):
if self.elements == 0:
raise RuntimeError("Queue is empty")
elem, _ = self.heap[0]
return elem
def extract_max(self) -> int:
# Remove and return the element with highest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0, self.elements - 1)
elem, _ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
bubble_down_elem, _ = self.heap[0]
self._bubble_down(bubble_down_elem)
return elem
def get_priority(self, key: int) -> int:
if key not in self:
raise ValueError(f"{key} not found")
_, weight = self.heap[self.position_map[key]]
return weight
def update_key(self, elem: int, weight: int) -> None:
# Update the weight of the given key
position = self.position_map[elem]
self.heap[position] = (elem, weight)
if position > 0:
parent_position = get_parent_position(position)
_, parent_weight = self.heap[parent_position]
if parent_weight < weight:
self._bubble_up(elem)
else:
self._bubble_down(elem)
else:
self._bubble_down(elem)
def _bubble_up(self, elem: int) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
curr_pos = self.position_map[elem]
if curr_pos == 0:
return
parent_position = get_parent_position(curr_pos)
_, weight = self.heap[curr_pos]
_, parent_weight = self.heap[parent_position]
if parent_weight < weight:
self._swap_nodes(parent_position, curr_pos)
return self._bubble_up(elem)
return
def _bubble_down(self, elem: int) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
curr_pos = self.position_map[elem]
_, weight = self.heap[curr_pos]
child_left_position = get_child_left_position(curr_pos)
child_right_position = get_child_right_position(curr_pos)
if child_left_position < self.elements and child_right_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
_, child_right_weight = self.heap[child_right_position]
if child_right_weight > child_left_weight:
if child_right_weight > weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
if child_left_position < self.elements:
_, child_left_weight = self.heap[child_left_position]
if child_left_weight > weight:
self._swap_nodes(child_left_position, curr_pos)
return self._bubble_down(elem)
else:
return
if child_right_position < self.elements:
_, child_right_weight = self.heap[child_right_position]
if child_right_weight > weight:
self._swap_nodes(child_right_position, curr_pos)
return self._bubble_down(elem)
else:
return
def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None:
# Swap the nodes at the given positions
node1_elem = self.heap[node1_pos][0]
node2_elem = self.heap[node2_pos][0]
self.heap[node1_pos], self.heap[node2_pos] = (
self.heap[node2_pos],
self.heap[node1_pos],
)
self.position_map[node1_elem] = node2_pos
self.position_map[node2_elem] = node1_pos