-
Notifications
You must be signed in to change notification settings - Fork 0
/
ms_ssim.py
99 lines (75 loc) · 3.59 KB
/
ms_ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
def type_trans(window, img):
if img.is_cuda:
window = window.cuda(img.get_device())
return window.type_as(img)
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
# print(mu1.shape,mu2.shape)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
mcs_map = (2.0 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
# print(ssim_map.shape)
if size_average:
return ssim_map.mean(), mcs_map.mean()
# else:
# return ssim_map.mean(1).mean(1).mean(1)
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
def forward(self, img1, img2):
_, channel, _, _ = img1.size()
window = create_window(self.window_size, channel)
window = type_trans(window, img1)
ssim_map, mcs_map = _ssim(img1, img2, window, self.window_size, channel, self.size_average)
return ssim_map
class MS_SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True):
super(MS_SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
# self.channel = 3
def forward(self, img1, img2, levels=5):
weight = Variable(torch.Tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]))
msssim = Variable(torch.Tensor(levels, ))
mcs = Variable(torch.Tensor(levels, ))
if torch.cuda.is_available():
weight = weight.cuda()
msssim = msssim.cuda()
mcs = mcs.cuda()
_, channel, _, _ = img1.size()
window = create_window(self.window_size, channel)
window = type_trans(window, img1)
for i in range(levels): # 5 levels
ssim_map, mcs_map = _ssim(img1, img2, window, self.window_size, channel, self.size_average)
msssim[i] = ssim_map
mcs[i] = mcs_map
# print(img1.shape)
filtered_im1 = F.avg_pool2d(img1, kernel_size=2, stride=2)
filtered_im2 = F.avg_pool2d(img2, kernel_size=2, stride=2)
img1 = filtered_im1 # refresh img
img2 = filtered_im2
return torch.prod((msssim[levels - 1] ** weight[levels - 1] * mcs[0:levels - 1] ** weight[0:levels - 1]))
# return torch.prod((msssim[levels-1] * mcs[0:levels-1]))
# torch.prod: Returns the product of all elements in the input tensor