forked from WildEval/ZeroEval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask_configs.py
62 lines (59 loc) · 2.48 KB
/
task_configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from datasets import load_dataset
from _TEMPLATES import apply_mc_template, apply_lgp_grid_template, apply_oeqa_template
def mapping_task_names(data_name):
"""
Mapping the task names to the dataset and id name.
"""
id_name = "id"
if data_name == "mmlu-redux":
dataset = load_dataset("yuchenlin/zero-eval", "mmlu-redux", split="test")
elif data_name == "gsm":
dataset = load_dataset("yuchenlin/zero-eval", "gsm", split="test")
elif data_name == "zebra-grid":
dataset = load_dataset("allenai/ZebraLogicBench", "grid_mode", split="test")
elif data_name == "alpaca_eval":
dataset = load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval", split="eval")
elif data_name == "numersense-v2":
dataset = load_dataset("yuchenlin/zero-eval", "numersense-v2", split="test")
elif data_name == "crux":
dataset = load_dataset("flydust/zero-eval", "crux", split="test")
elif data_name == "math-l5":
dataset = load_dataset("AI-MO/aimo-validation-math-level-5", split="train")
else:
raise ValueError(f"Data name {data_name} not supported")
return dataset, id_name
def prompt_generation(data_name, data_item, args):
"""
Generate prompt for different tasks.
"""
if data_name in ["mmlu-redux"]: # and other multiple-choice QA dataset
prompt = apply_mc_template(data_item)
elif data_name in ["alpaca_eval"]:
prompt = data_item["instruction"]
elif data_name in ["zebra-grid"]:
prompt = apply_lgp_grid_template(data_item)
elif data_name in ["gsm", "math-l5"]:
question_key = "question"
if data_name == "math-l5":
question_key = "problem"
prompt = apply_oeqa_template(data_item, question_key = question_key)
elif data_name in ["crux"]:
prompt = apply_oeqa_template(data_item, cot=True) # cot?
elif data_name in ["numersense-v2"]:
if "no_cot" in args.run_name:
prompt = apply_oeqa_template(data_item, cot=False)
prompt = apply_oeqa_template(data_item)
else:
raise ValueError(f"Data name {data_name} not supported")
return prompt
def result_format(output_item, args):
"""
Modify the output format for different tasks if needed.
"""
if args.data_name in ["alpaca_eval"]:
output_item["output"] = output_item["output"][0] # use str instead of list
elif args.data_name in ["zebra-grid"]:
del output_item["solution"]
else:
pass
return output_item