-
页面总数:59
-总字数:68874
+
页面总数:60
+总字数:77726
代码块行数:13873
网站运行时间:
访客总人数:人
diff --git a/links/index.html b/links/index.html
index 83a58159..2765d1c0 100644
--- a/links/index.html
+++ b/links/index.html
@@ -538,6 +538,13 @@
-
+
+
+ Computer Vision
+
+
+
+-
Image Classification-Data-driven Approach, k-Nearest Neighbor, train_val_test splits
diff --git a/search/search_index.json b/search/search_index.json
index 6c1ff228..0e4d70c7 100644
--- a/search/search_index.json
+++ b/search/search_index.json
@@ -1 +1 @@
-{"config":{"lang":["en"],"separator":"[\\s\\u200b\\u3000\\-\u3001\u3002\uff0c\uff0e\uff1f\uff01\uff1b]+","pipeline":["stemmer"]},"docs":[{"location":"","title":"Welcome to wnc's note!","text":"
\u7ea6 153 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
\u670b\u53cb\u4eec! / \u7ad9\u70b9\u7edf\u8ba1
\u9875\u9762\u603b\u6570\uff1a59 \u603b\u5b57\u6570\uff1a68874 \u4ee3\u7801\u5757\u884c\u6570\uff1a13873 \u7f51\u7ad9\u8fd0\u884c\u65f6\u95f4\uff1a \u8bbf\u5ba2\u603b\u4eba\u6570\uff1a\u4eba \u603b\u8bbf\u95ee\u6b21\u6570\uff1a\u6b21"},{"location":"links/","title":"\u53cb\u94fe","text":"
Abstract
\u670b\u53cb\u4eec\uff01
Wnc \u7684\u5496\u5561\u9986 \u6211\u81ea\u5df1\uff01 donotknow DoNotKnow"},{"location":"AI/","title":"Index","text":" \u7ea6 15 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- EECS 498-007
- \u7edf\u8ba1\u5b66\u4e60\u65b9\u6cd5
- \u52a8\u624b\u5b66\u6df1\u5ea6\u5b66\u4e60
"},{"location":"AI/Dive%20into%20Deep%20Learning/","title":"Dive into Deep Learning","text":" \u7ea6 1547 \u4e2a\u5b57 387 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 10 \u5206\u949f
"},{"location":"AI/Dive%20into%20Deep%20Learning/#1","title":"1 \u5f15\u8a00","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#2","title":"2 \u9884\u5907\u77e5\u8bc6","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#21","title":"2.1 \u6570\u636e\u64cd\u4f5c","text":" - tensor
- ndarray (MXNet)
- Tensor (TensorFlow)
Pythonx = torch.arrange(12)\nx.shape\nx.numel()\nx.reshape(3, 4)\ntorch.zeros((2, 3, 4))\ntorch.ones((2, 3, 4))\ntorch.randn(3, 4)\n
- elementwise\uff1a
- concatenate
Pythontorch.cat((X, Y), dim = 0) # \u7ad6\u7740\u52a0\ntorch.cat((X, Y), dim = 1) # \u6a2a\u7740\u52a0\nx.sum()\n
- broadcasting mechanism
- \u590d\u5236\u62d3\u5c55\u5230\u5f62\u72b6\u4e00\u81f4\u540e\u76f8\u52a0
- \u7d22\u5f15+\u5207\u7247
- \u5207\u7247\u4fdd\u6301\u5730\u5740\u4e0d\u53d8\uff1a\u8282\u7701\u5185\u5b58
- ndarry <-> Tensor
- item ()
"},{"location":"AI/Dive%20into%20Deep%20Learning/#22","title":"2.2 \u6570\u636e\u9884\u5904\u7406","text":" - pandas
- read_csv ()
- NaN
- fillna (inputs.mean ())
- np.array (inputs. to_numpy (dtype = float))
"},{"location":"AI/Dive%20into%20Deep%20Learning/#23","title":"2.3 \u7ebf\u6027\u4ee3\u6570","text":" - scalar
- variable
- space
- element / component
- dimension
- square matrix
- transpose
- symmetric matrix
- channel
- Hadamard product
\\[ \\begin{split}\\mathbf{A} \\odot \\mathbf{B} = \\begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & \\dots & a_{1n} b_{1n} \\\\ a_{21} b_{21} & a_{22} b_{22} & \\dots & a_{2n} b_{2n} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ a_{m1} b_{m1} & a_{m2} b_{m2} & \\dots & a_{mn} b_{mn} \\end{bmatrix}.\\end{split} \\] - A.sum (axis = 0) # \u7ad6\u7740\u6c42\u548c
- A.sum (axis = [0, 1]) = A.sum ()
- A.mean () = A.sum () / A.size ()
- A.cumsum (axis = 0)
- dot product
- torch.dot (x, y) = torch.sum (x * y)
- weighted average
- matrix-vector product
- matrix-matric multiplication
- norm
- \\(f(\\alpha \\mathbf{x}) = |\\alpha| f(\\mathbf{x}).\\)
- \\((\\mathbf{x} + \\mathbf{y}) \\leq f(\\mathbf{x}) + f(\\mathbf{y}).\\)
- \\(f(\\mathbf{x}) \\geq 0.\\)
"},{"location":"AI/Dive%20into%20Deep%20Learning/#24","title":"2.4 \u5fae\u79ef\u5206","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#241","title":"2.4.1 \u5bfc\u6570\u548c\u5fae\u5206","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#242","title":"2.4.2 \u504f\u5bfc\u6570","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#243","title":"2.4.3 \u68af\u5ea6","text":"\\[ \\nabla_{\\mathbf{x}} f(\\mathbf{x}) = \\bigg[\\frac{\\partial f(\\mathbf{x})}{\\partial x_1}, \\frac{\\partial f(\\mathbf{x})}{\\partial x_2}, \\ldots, \\frac{\\partial f(\\mathbf{x})}{\\partial x_n}\\bigg]^\\top, \\] \\[ \\nabla_{\\mathbf{x}} \\mathbf{A} \\mathbf{x} = \\mathbf{A}^\\top \\] \\[ \\nabla_{\\mathbf{x}} \\mathbf{x}^\\top \\mathbf{A} = \\mathbf{A} \\] \\[ \\nabla_{\\mathbf{x}} \\mathbf{x}^\\top \\mathbf{A} \\mathbf{x} = (\\mathbf{A} + \\mathbf{A}^\\top)\\mathbf{x} \\] \\[ \\nabla_{\\mathbf{x}} \\|\\mathbf{x} \\|^2 = \\nabla_{\\mathbf{x}} \\mathbf{x}^\\top \\mathbf{x} = 2\\mathbf{x} \\] \\[ \\nabla_{\\mathbf{X}} \\|\\mathbf{X} \\|_F^2 = 2\\mathbf{X} \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#244","title":"2.4.4 \u94fe\u5f0f\u6cd5\u5219","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#245","title":"2.4.5 \u5c0f\u7ed3","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#25-automatic-differentiation","title":"2.5 \u81ea\u52a8\u5fae\u5206\uff08automatic differentiation\uff09","text":" - computational graph
- backpropagate
Pythonx.requires_grad_(True) # \u7b49\u4ef7\u4e8ex=torch.arange(4.0,requires_grad=True)\nx.grad # \u9ed8\u8ba4\u503c\u662fNone\ny = 2 * torch.dot(x, x)\ny.backward()\nx.grad\nx.grad == 4 * x\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#251","title":"2.5.1 \u975e\u6807\u91cf\u53d8\u91cf\u7684\u53cd\u5411\u4f20\u64ad","text":"Python# \u5bf9\u975e\u6807\u91cf\u8c03\u7528backward\u9700\u8981\u4f20\u5165\u4e00\u4e2agradient\u53c2\u6570\uff0c\u8be5\u53c2\u6570\u6307\u5b9a\u5fae\u5206\u51fd\u6570\u5173\u4e8eself\u7684\u68af\u5ea6\u3002\n# \u672c\u4f8b\u53ea\u60f3\u6c42\u504f\u5bfc\u6570\u7684\u548c\uff0c\u6240\u4ee5\u4f20\u9012\u4e00\u4e2a1\u7684\u68af\u5ea6\u662f\u5408\u9002\u7684\nx.grad.zero_()\ny = x * x\n# \u7b49\u4ef7\u4e8ey.backward(torch.ones(len(x)))\ny.sum().backward()\nx.grad\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#252","title":"2.5.2 \u5206\u79bb\u8ba1\u7b97","text":"Pythonx.grad.zero_()\ny = x * x\nu = y.detach()\nz = u * x\n\nz.sum().backward()\nx.grad == u\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#26","title":"2.6 \u6982\u7387","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#261","title":"2.6.1 \u57fa\u672c\u6982\u7387\u8bba","text":" - sampling
- distribution
- multinomial distribution
Pythonfair_probs = torch.ones([6]) / 6\nmultinomial.Multinomial(10, fair_probs).sample() # \u591a\u4e2a\u6837\u672c\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#262","title":"2.6.2 \u5904\u7406\u591a\u4e2a\u968f\u673a\u53d8\u91cf","text":" - joint probability
- conditional probability
- Bayes\u2019 theorem
\\[ P(A \\mid B) = \\frac{P(B \\mid A) P(A)}{P(B)}. \\] - \u5176\u4e2d P (A, B) \u662f\u4e00\u4e2a\u8054\u5408\u5206\u5e03 (joint distribution)\uff0c\u00a0P (A\u2223B) \u662f\u4e00\u4e2a\u6761\u4ef6\u5206\u5e03 (conditional distribution)
- marginalization
- marginal probability
- marginal distribution
- conditionally independent
$$ P(A, B \\mid C) = P(A \\mid C)P(B \\mid C) $$
\\[ A \\perp B \\mid C \\] \\[ E[X] = \\sum_{x} x P(X = x). \\] \\[ E_{x \\sim P}[f(x)] = \\sum_x f(x) P(x). \\] \\[ \\mathrm{Var}[X] = E\\left[(X - E[X])^2\\right] = E[X^2] - E[X]^2. \\] \\[ \\mathrm{Var}[f(x)] = E\\left[\\left(f(x) - E[f(x)]\\right)^2\\right]. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#3","title":"3 \u7ebf\u6027\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#31","title":"3.1 \u7ebf\u6027\u56de\u5f52","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#311","title":"3.1.1 \u7ebf\u6027\u56de\u5f52\u7684\u57fa\u672c\u5143\u7d20","text":" - regression
- prediction / inference
- training set
- sample / data point / data instance
- label / target
- feature / covariate
\\[ \\mathrm{price} = w_{\\mathrm{area}} \\cdot \\mathrm{area} + w_{\\mathrm{age}} \\cdot \\mathrm{age} + b. \\] - weight
- bias / offset / intercept
- affine transformation
- linear transformation
- translation
- model parameters
- loss function
\\[ l^{(i)}(\\mathbf{w}, b) = \\frac{1}{2} \\left(\\hat{y}^{(i)} - y^{(i)}\\right)^2. \\] \\[ L(\\mathbf{w}, b) =\\frac{1}{n}\\sum_{i=1}^n l^{(i)}(\\mathbf{w}, b) =\\frac{1}{n} \\sum_{i=1}^n \\frac{1}{2}\\left(\\mathbf{w}^\\top \\mathbf{x}^{(i)} + b - y^{(i)}\\right)^2. \\] \\[ \\mathbf{w}^*, b^* = \\operatorname*{argmin}_{\\mathbf{w}, b}\\ L(\\mathbf{w}, b). \\] \\[ \\mathbf{w}^{*} = (\\mathbf X^\\top \\mathbf X)^{-1}\\mathbf X^\\top \\mathbf{y}. \\] - analytical solution
- gradient descent
- minibatch stochastic gradient descent
\\[ (\\mathbf{w},b) \\leftarrow (\\mathbf{w},b) - \\frac{\\eta}{|\\mathcal{B}|} \\sum_{i \\in \\mathcal{B}} \\partial_{(\\mathbf{w},b)} l^{(i)}(\\mathbf{w},b). \\] - \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\u7684\u503c\uff0c\u5982\u968f\u673a\u521d\u59cb\u5316
- \u4ece\u6570\u636e\u96c6\u4e2d\u968f\u673a\u62bd\u53d6\u5c0f\u6279\u91cf\u6837\u672c\u4e14\u5728\u8d1f\u68af\u5ea6\u7684\u65b9\u5411\u4e0a\u66f4\u65b0\u53c2\u6570\uff0c\u5e76\u4e0d\u65ad\u8fed\u4ee3\u8fd9\u4e00\u6b65\u9aa4 - hyperparameter
- \\(|\\mathcal{B}|\\): batch size
- \\(\\eta\\): learning rate
- hyperparameter tuning
- validationg dataset
- generalization
"},{"location":"AI/Dive%20into%20Deep%20Learning/#312","title":"3.1.2 \u77e2\u91cf\u5316\u52a0\u901f","text":" - \u77e2\u91cf\u5316\u4ee3\u7801
"},{"location":"AI/Dive%20into%20Deep%20Learning/#313","title":"3.1.3 \u6b63\u6001\u5206\u5e03\u4e0e\u5e73\u65b9\u635f\u5931","text":" - normal distribution / Gaussian distribution
\\[ p(x) = \\frac{1}{\\sqrt{2 \\pi \\sigma^2}} \\exp\\left(-\\frac{1}{2 \\sigma^2} (x - \\mu)^2\\right). \\] \\[ y = \\mathbf{w}^\\top \\mathbf{x} + b + \\epsilon, \\] - \u5176\u4e2d \\(\\epsilon \\sim \\mathcal{N}(0, \\sigma^2)\\). \u56e0\u6b64 y \u7684 likelihood:
\\[ P(y \\mid \\mathbf{x}) = \\frac{1}{\\sqrt{2 \\pi \\sigma^2}} \\exp\\left(-\\frac{1}{2 \\sigma^2} (y - \\mathbf{w}^\\top \\mathbf{x} - b)^2\\right). \\] \\[ P(\\mathbf y \\mid \\mathbf X) = \\prod_{i=1}^{n} p(y^{(i)}|\\mathbf{x}^{(i)}). \\] \\[ -\\log P(\\mathbf y \\mid \\mathbf X) = \\sum_{i=1}^n \\frac{1}{2} \\log(2 \\pi \\sigma^2) + \\frac{1}{2 \\sigma^2} \\left(y^{(i)} - \\mathbf{w}^\\top \\mathbf{x}^{(i)} - b\\right)^2. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#314","title":"3.1.4 \u4ece\u7ebf\u6027\u56de\u5f52\u5230\u795e\u7ecf\u7f51\u7edc","text":" - feature dimensionality
- fully-connected layer / dense layer
"},{"location":"AI/Dive%20into%20Deep%20Learning/#32","title":"3.2 \u7ebf\u6027\u56de\u5f52\u7684\u4ece\u96f6\u5f00\u59cb\u5b9e\u73b0","text":"Python%matplotlib inline\nimport random\nimport torch\nfrom d2l import torch as d2l\ndef synthetic_data(w, b, num_examples): #@save\n \"\"\"\u751f\u6210y=Xw+b+\u566a\u58f0\"\"\"\n X = torch.normal(0, 1, (num_examples, len(w)))\n y = torch.matmul(X, w) + b\n y += torch.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\n\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\n\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n # \u8fd9\u4e9b\u6837\u672c\u662f\u968f\u673a\u8bfb\u53d6\u7684\uff0c\u6ca1\u6709\u7279\u5b9a\u7684\u987a\u5e8f\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = torch.tensor(\n indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\n\nw = torch.normal(0, 0.01, size=(2,1), requires_grad=True)\nb = torch.zeros(1, requires_grad=True)\n\ndef linreg(X, w, b): #@save\n \"\"\"\u7ebf\u6027\u56de\u5f52\u6a21\u578b\"\"\"\n return torch.matmul(X, w) + b\n\ndef squared_loss(y_hat, y): #@save\n \"\"\"\u5747\u65b9\u635f\u5931\"\"\"\n return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2\n\ndef sgd(params, lr, batch_size): #@save\n \"\"\"\u5c0f\u6279\u91cf\u968f\u673a\u68af\u5ea6\u4e0b\u964d\"\"\"\n with torch.no_grad():\n for param in params:\n param -= lr * param.grad / batch_size\n param.grad.zero_()\n\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\n\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y) # X\u548cy\u7684\u5c0f\u6279\u91cf\u635f\u5931\n # \u56e0\u4e3al\u5f62\u72b6\u662f(batch_size,1)\uff0c\u800c\u4e0d\u662f\u4e00\u4e2a\u6807\u91cf\u3002l\u4e2d\u7684\u6240\u6709\u5143\u7d20\u88ab\u52a0\u5230\u4e00\u8d77\uff0c\n # \u5e76\u4ee5\u6b64\u8ba1\u7b97\u5173\u4e8e[w,b]\u7684\u68af\u5ea6\n l.sum().backward()\n sgd([w, b], lr, batch_size) # \u4f7f\u7528\u53c2\u6570\u7684\u68af\u5ea6\u66f4\u65b0\u53c2\u6570\n with torch.no_grad():\n train_l = loss(net(features, w, b), labels)\n print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#33","title":"3.3 \u7ebf\u6027\u56de\u5f52\u7684\u7b80\u6d01\u5b9e\u73b0","text":"Pythonimport numpy as np\nimport torch\nfrom torch.utils import data\nfrom d2l import torch as d2l\n\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000) # \u751f\u6210\u6570\u636e\u96c6\n\ndef load_array(data_arrays, batch_size, is_train=True): #@save\n \"\"\"\u6784\u9020\u4e00\u4e2aPyTorch\u6570\u636e\u8fed\u4ee3\u5668\"\"\"\n dataset = data.TensorDataset(*data_arrays)\n return data.DataLoader(dataset, batch_size, shuffle=is_train)\n\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size) # \u8bfb\u53d6\u6570\u636e\u96c6\n\n# nn\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u7f29\u5199\nfrom torch import nn\n\nnet = nn.Sequential(nn.Linear(2, 1)) # \u5b9a\u4e49\u6a21\u578b \uff08\u8f93\u5165\uff0c\u8f93\u51fa\uff09\u7279\u5f81\u5f62\u72b6\nnet[0].weight.data.normal_(0, 0.01)\nnet[0].bias.data.fill_(0) # \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\nloss = nn.MSELoss() # \u5b9a\u4e49\u635f\u5931\u51fd\u6570\ntrainer = torch.optim.SGD(net.parameters(), lr=0.03) # \u5b9a\u4e49\u4f18\u5316\u7b97\u6cd5\n\n# \u8bad\u7ec3\nnum_epochs = 3\nfor epoch in range(num_epochs):\n for X, y in data_iter:\n l = loss(net(X) ,y)\n trainer.zero_grad()\n l.backward()\n trainer.step()\n l = loss(net(features), labels)\n print(f'epoch {epoch + 1}, loss {l:f}')\n\nw = net[0].weight.data\nprint('w\u7684\u4f30\u8ba1\u8bef\u5dee\uff1a', true_w - w.reshape(true_w.shape))\nb = net[0].bias.data\nprint('b\u7684\u4f30\u8ba1\u8bef\u5dee\uff1a', true_b - b)\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#34-softmax","title":"3.4 softmax \u56de\u5f52","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#341","title":"3.4.1 \u5206\u7c7b\u95ee\u9898","text":" \\[ y \\in \\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\\}. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#342","title":"3.4.2 \u7f51\u7edc\u67b6\u6784","text":" \\[ \\begin{split}\\begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\\\\ o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\\\\ o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3. \\end{aligned}\\end{split} \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#343","title":"3.4.3 \u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u5f00\u9500","text":" - \u4e0d\u77e5\u9053\u662f\u4ec0\u4e48\u4e1c\u897f
"},{"location":"AI/Dive%20into%20Deep%20Learning/#344-softmax","title":"3.4.4 softmax \u8fd0\u7b97","text":" \\[ \\hat{\\mathbf{y}} = \\mathrm{softmax}(\\mathbf{o})\\quad \\text{\u5176\u4e2d}\\quad \\hat{y}_j = \\frac{\\exp(o_j)}{\\sum_k \\exp(o_k)} \\] \\[ \\operatorname*{argmax}_j \\hat y_j = \\operatorname*{argmax}_j o_j. \\] "},{"location":"AI/Dive%20into%20Deep%20Learning/#345","title":"3.4.5 \u5c0f\u6279\u6837\u672c\u7684\u77e2\u91cf\u5316","text":"\\[ \\begin{split}\\begin{aligned} \\mathbf{O} &= \\mathbf{X} \\mathbf{W} + \\mathbf{b}, \\\\ \\hat{\\mathbf{Y}} & = \\mathrm{softmax}(\\mathbf{O}). \\end{aligned}\\end{split} \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#346","title":"3.4.6 \u635f\u5931\u51fd\u6570","text":"\\[ P(\\mathbf{Y} \\mid \\mathbf{X}) = \\prod_{i=1}^n P(\\mathbf{y}^{(i)} \\mid \\mathbf{x}^{(i)}). \\] \\[ -\\log P(\\mathbf{Y} \\mid \\mathbf{X}) = \\sum_{i=1}^n -\\log P(\\mathbf{y}^{(i)} \\mid \\mathbf{x}^{(i)}) = \\sum_{i=1}^n l(\\mathbf{y}^{(i)}, \\hat{\\mathbf{y}}^{(i)}), \\] \\[ l(\\mathbf{y}, \\hat{\\mathbf{y}}) = - \\sum_{j=1}^q y_j \\log \\hat{y}_j. \\] \\[ \\begin{split}\\begin{aligned} l(\\mathbf{y}, \\hat{\\mathbf{y}}) &= - \\sum_{j=1}^q y_j \\log \\frac{\\exp(o_j)}{\\sum_{k=1}^q \\exp(o_k)} \\\\ &= \\sum_{j=1}^q y_j \\log \\sum_{k=1}^q \\exp(o_k) - \\sum_{j=1}^q y_j o_j\\\\ &= \\log \\sum_{k=1}^q \\exp(o_k) - \\sum_{j=1}^q y_j o_j. \\end{aligned}\\end{split} \\] \\[ \\partial_{o_j} l(\\mathbf{y}, \\hat{\\mathbf{y}}) = \\frac{\\exp(o_j)}{\\sum_{k=1}^q \\exp(o_k)} - y_j = \\mathrm{softmax}(\\mathbf{o})_j - y_j. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#347","title":"3.4.7 \u4fe1\u606f\u8bba\u57fa\u7840","text":" - information theory
- entropy
\\[ H[P] = \\sum_j - P(j) \\log P(j). \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#348","title":"3.4.8 \u6a21\u578b\u9884\u6d4b\u548c\u8bc4\u4f30","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#35","title":"3.5 \u56fe\u50cf\u5206\u7c7b\u6570\u636e\u96c6","text":"Python%matplotlib inline\nimport torch\nimport torchvision\nfrom torch.utils import data\nfrom torchvision import transforms\nfrom d2l import torch as d2l\n\nd2l.use_svg_display()\n\n# \u901a\u8fc7ToTensor\u5b9e\u4f8b\u5c06\u56fe\u50cf\u6570\u636e\u4ecePIL\u7c7b\u578b\u53d8\u6362\u621032\u4f4d\u6d6e\u70b9\u6570\u683c\u5f0f\uff0c\n# \u5e76\u9664\u4ee5255\u4f7f\u5f97\u6240\u6709\u50cf\u7d20\u7684\u6570\u503c\u5747\u57280\uff5e1\u4e4b\u95f4\ntrans = transforms.ToTensor()\nmnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\nmnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\n\ndef get_fashion_mnist_labels(labels): #@save\n \"\"\"\u8fd4\u56deFashion-MNIST\u6570\u636e\u96c6\u7684\u6587\u672c\u6807\u7b7e\"\"\"\n text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',\n 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']\n return [text_labels[int(i)] for i in labels]\n\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save\n \"\"\"\u7ed8\u5236\u56fe\u50cf\u5217\u8868\"\"\"\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if torch.is_tensor(img):\n # \u56fe\u7247\u5f20\u91cf\n ax.imshow(img.numpy())\n else:\n # PIL\u56fe\u7247\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\n\nbatch_size = 256\n\ndef get_dataloader_workers(): #@save\n \"\"\"\u4f7f\u75284\u4e2a\u8fdb\u7a0b\u6765\u8bfb\u53d6\u6570\u636e\"\"\"\n return 4\n\ntrain_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,\n num_workers=get_dataloader_workers())\n\ndef load_data_fashion_mnist(batch_size, resize=None): #@save\n \"\"\"\u4e0b\u8f7dFashion-MNIST\u6570\u636e\u96c6\uff0c\u7136\u540e\u5c06\u5176\u52a0\u8f7d\u5230\u5185\u5b58\u4e2d\"\"\"\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\n mnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\n return (data.DataLoader(mnist_train, batch_size, shuffle=True,\n num_workers=get_dataloader_workers()),\n data.DataLoader(mnist_test, batch_size, shuffle=False,\n num_workers=get_dataloader_workers()))\n\ntrain_iter, test_iter = load_data_fashion_mnist(32, resize=64)\nfor X, y in train_iter:\n print(X.shape, X.dtype, y.shape, y.dtype)\n break\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#36-softmax","title":"3.6 softmax \u56de\u5f52\u7684\u4ece\u96f6\u5f00\u59cb\u5b9e\u73b0","text":"Pythonimport torch\nfrom IPython import display\nfrom d2l import torch as d2l\n\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\n\nnum_inputs = 784\nnum_outputs = 10\n\nW = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)\nb = torch.zeros(num_outputs, requires_grad=True) # \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\n\nX = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True) \n\ndef softmax(X):\n X_exp = torch.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition # \u8fd9\u91cc\u5e94\u7528\u4e86\u5e7f\u64ad\u673a\u5236\n\nX = torch.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1) # \u5b9a\u4e49softmax\u64cd\u4f5c\n\ndef net(X):\n return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b) # \u5b9a\u4e49\u6a21\u578b\n\ny = torch.tensor([0, 2])\ny_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y] \ndef cross_entropy(y_hat, y):\n return - torch.log(y_hat[range(len(y_hat)), y])\n\ncross_entropy(y_hat, y) # \u5b9a\u4e49\u635f\u5931\u51fd\u6570\n\ndef accuracy(y_hat, y): #@save\n \"\"\"\u8ba1\u7b97\u9884\u6d4b\u6b63\u786e\u7684\u6570\u91cf\"\"\"\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n cmp = y_hat.type(y.dtype) == y\n return float(cmp.type(y.dtype).sum())\n\ndef evaluate_accuracy(net, data_iter): #@save\n \"\"\"\u8ba1\u7b97\u5728\u6307\u5b9a\u6570\u636e\u96c6\u4e0a\u6a21\u578b\u7684\u7cbe\u5ea6\"\"\"\n if isinstance(net, torch.nn.Module):\n net.eval() # \u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f\n metric = Accumulator(2) # \u6b63\u786e\u9884\u6d4b\u6570\u3001\u9884\u6d4b\u603b\u6570\n with torch.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\n\nclass Accumulator: #@save\n \"\"\"\u5728n\u4e2a\u53d8\u91cf\u4e0a\u7d2f\u52a0\"\"\"\n def __init__(self, n):\n self.data = [0.0] * n\n\n def add(self, *args):\n self.data = [a + float(b) for a, b in zip(self.data, args)]\n\n def reset(self):\n self.data = [0.0] * len(self.data)\n\n def __getitem__(self, idx):\n return self.data[idx]\n\nevaluate_accuracy(net, test_iter) # \u5206\u7c7b\u7cbe\u5ea6\n\ndef train_epoch_ch3(net, train_iter, loss, updater): #@save\n \"\"\"\u8bad\u7ec3\u6a21\u578b\u4e00\u4e2a\u8fed\u4ee3\u5468\u671f\uff08\u5b9a\u4e49\u89c1\u7b2c3\u7ae0\uff09\"\"\"\n # \u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bad\u7ec3\u6a21\u5f0f\n if isinstance(net, torch.nn.Module):\n net.train()\n # \u8bad\u7ec3\u635f\u5931\u603b\u548c\u3001\u8bad\u7ec3\u51c6\u786e\u5ea6\u603b\u548c\u3001\u6837\u672c\u6570\n metric = Accumulator(3)\n for X, y in train_iter:\n # \u8ba1\u7b97\u68af\u5ea6\u5e76\u66f4\u65b0\u53c2\u6570\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, torch.optim.Optimizer):\n # \u4f7f\u7528PyTorch\u5185\u7f6e\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570\n updater.zero_grad()\n l.mean().backward()\n updater.step()\n else:\n # \u4f7f\u7528\u5b9a\u5236\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n # \u8fd4\u56de\u8bad\u7ec3\u635f\u5931\u548c\u8bad\u7ec3\u7cbe\u5ea6\n return metric[0] / metric[2], metric[1] / metric[2]\n\nclass Animator: #@save\n \"\"\"\u5728\u52a8\u753b\u4e2d\u7ed8\u5236\u6570\u636e\"\"\"\n def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,\n ylim=None, xscale='linear', yscale='linear',\n fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,\n figsize=(3.5, 2.5)):\n # \u589e\u91cf\u5730\u7ed8\u5236\u591a\u6761\u7ebf\n if legend is None:\n legend = []\n d2l.use_svg_display()\n self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)\n if nrows * ncols == 1:\n self.axes = [self.axes, ]\n # \u4f7f\u7528lambda\u51fd\u6570\u6355\u83b7\u53c2\u6570\n self.config_axes = lambda: d2l.set_axes(\n self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)\n self.X, self.Y, self.fmts = None, None, fmts\n\n def add(self, x, y):\n # \u5411\u56fe\u8868\u4e2d\u6dfb\u52a0\u591a\u4e2a\u6570\u636e\u70b9\n if not hasattr(y, \"__len__\"):\n y = [y]\n n = len(y)\n if not hasattr(x, \"__len__\"):\n x = [x] * n\n if not self.X:\n self.X = [[] for _ in range(n)]\n if not self.Y:\n self.Y = [[] for _ in range(n)]\n for i, (a, b) in enumerate(zip(x, y)):\n if a is not None and b is not None:\n self.X[i].append(a)\n self.Y[i].append(b)\n self.axes[0].cla()\n for x, y, fmt in zip(self.X, self.Y, self.fmts):\n self.axes[0].plot(x, y, fmt)\n self.config_axes()\n display.display(self.fig)\n display.clear_output(wait=True)\n\ndef train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save\n \"\"\"\u8bad\u7ec3\u6a21\u578b\uff08\u5b9a\u4e49\u89c1\u7b2c3\u7ae0\uff09\"\"\"\n animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],\n legend=['train loss', 'train acc', 'test acc'])\n for epoch in range(num_epochs):\n train_metrics = train_epoch_ch3(net, train_iter, loss, updater)\n test_acc = evaluate_accuracy(net, test_iter)\n animator.add(epoch + 1, train_metrics + (test_acc,))\n train_loss, train_acc = train_metrics\n assert train_loss < 0.5, train_loss\n assert train_acc <= 1 and train_acc > 0.7, train_acc\n assert test_acc <= 1 and test_acc > 0.7, test_acc\n\nlr = 0.1\n\ndef updater(batch_size):\n return d2l.sgd([W, b], lr, batch_size)\n\nnum_epochs = 10\ntrain_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater) # \u8bad\u7ec3\n\ndef predict_ch3(net, test_iter, n=6): #@save\n \"\"\"\u9884\u6d4b\u6807\u7b7e\uff08\u5b9a\u4e49\u89c1\u7b2c3\u7ae0\uff09\"\"\"\n for X, y in test_iter:\n break\n trues = d2l.get_fashion_mnist_labels(y)\n preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))\n titles = [true +'\\n' + pred for true, pred in zip(trues, preds)]\n d2l.show_images(\n X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])\n\npredict_ch3(net, test_iter) # \u9884\u6d4b\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#37-softmax","title":"3.7 softmax \u56de\u5f52\u7684\u7b80\u6d01\u5b9e\u73b0","text":"Pythonimport torch\nfrom torch import nn\nfrom d2l import torch as d2l\n\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\n\n# PyTorch\u4e0d\u4f1a\u9690\u5f0f\u5730\u8c03\u6574\u8f93\u5165\u7684\u5f62\u72b6\u3002\u56e0\u6b64\uff0c\n# \u6211\u4eec\u5728\u7ebf\u6027\u5c42\u524d\u5b9a\u4e49\u4e86\u5c55\u5e73\u5c42\uff08flatten\uff09\uff0c\u6765\u8c03\u6574\u7f51\u7edc\u8f93\u5165\u7684\u5f62\u72b6\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))\n\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\n\nnet.apply(init_weights); # \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\n
\\[ \\begin{split}\\begin{aligned} \\hat y_j & = \\frac{\\exp(o_j - \\max(o_k))\\exp(\\max(o_k))}{\\sum_k \\exp(o_k - \\max(o_k))\\exp(\\max(o_k))} \\\\ & = \\frac{\\exp(o_j - \\max(o_k))}{\\sum_k \\exp(o_k - \\max(o_k))}. \\end{aligned}\\end{split} \\] \\[ \\begin{split}\\begin{aligned} \\log{(\\hat y_j)} & = \\log\\left( \\frac{\\exp(o_j - \\max(o_k))}{\\sum_k \\exp(o_k - \\max(o_k))}\\right) \\\\ & = \\log{(\\exp(o_j - \\max(o_k)))}-\\log{\\left( \\sum_k \\exp(o_k - \\max(o_k)) \\right)} \\\\ & = o_j - \\max(o_k) -\\log{\\left( \\sum_k \\exp(o_k - \\max(o_k)) \\right)}. \\end{aligned}\\end{split} \\] Pythonloss = nn.CrossEntropyLoss(reduction='none') # LogSumExp\u6280\u5de7\n\ntrainer = torch.optim.SGD(net.parameters(), lr=0.1) # \u4f18\u5316\u7b97\u6cd5\n\nnum_epochs = 10\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) # \u8bad\u7ec3\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#_1","title":"\u591a\u5c42\u611f\u77e5\u673a","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_2","title":"\u8fc7\u62df\u5408\u548c\u6b20\u62df\u5408","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#dropout","title":"dropout","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_3","title":"\u6df1\u5ea6\u5b66\u4e60\u8ba1\u7b97","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_4","title":"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#lenet","title":"LeNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_5","title":"\u73b0\u4ee3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#alexnet","title":"AlexNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#vgg","title":"VGG","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#nin","title":"NiN","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#googlenet","title":"GoogLeNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#resnet","title":"ResNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#densenet","title":"DenseNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_6","title":"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_7","title":"\u73b0\u4ee3\u5faa\u73af\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#gru","title":"GRU","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#lstm","title":"LSTM","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#seq2seq","title":"seq2seq","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_8","title":"\u6ce8\u610f\u529b\u673a\u5236","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#nadaraya-watson","title":"Nadaraya-Watson","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#bahdanau","title":"Bahdanau","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#multi-headed-attention","title":"Multi-headed attention","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#transformer","title":"Transformer","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_9","title":"\u4f18\u5316\u7b97\u6cd5","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#adagrad","title":"AdaGrad","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#rmsprop","title":"RMSProp","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#adadelta","title":"Adadelta","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#adam","title":"Adam","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_10","title":"\u8ba1\u7b97\u6027\u80fd","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_11","title":"\u8ba1\u7b97\u673a\u89c6\u89c9","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#ssd","title":"SSD","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#r-cnn","title":"R-CNN","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_12","title":"\u81ea\u7136\u8bed\u8a00\u5904\u7406:\u9884\u8bad\u7ec3","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#word2vec","title":"word2vec","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#glove","title":"GloVe","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#bert","title":"BERT","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_13","title":"\u81ea\u7136\u8bed\u8a00\u5904\u7406:\u5e94\u7528","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/","title":"\u7edf\u8ba1\u5b66\u4e60\u65b9\u6cd5","text":" \u7ea6 3356 \u4e2a\u5b57 43 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 11 \u5206\u949f
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#1","title":"1 \u7edf\u8ba1\u5b66\u4e60\u65b9\u6cd5\u6982\u8bba","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#11","title":"1.1 \u7edf\u8ba1\u5b66\u4e60","text":" - \u7edf\u8ba1\u5b66\u4e60\u7684\u7279\u70b9
- \u4ee5\u8ba1\u7b97\u673a\u53ca\u7f51\u7edc\u4e3a\u5e73\u53f0
- \u4ee5\u6570\u636e\u4e3a\u7814\u7a76\u5bf9\u8c61
- \u76ee\u7684\u662f\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u6d4b\u4e0e\u5206\u6790
- \u4ea4\u53c9\u5b66\u79d1
- \u7edf\u8ba1\u5b66\u4e60\u7684\u5bf9\u8c61
- \u662f\u6570\u636e
- \u7edf\u8ba1\u5b66\u4e60\u7684\u76ee\u7684
- \u7edf\u8ba1\u5b66\u4e60\u7684\u65b9\u6cd5
- \u4e3b\u8981\u6709
- \u76d1\u7763\u5b66\u4e60\uff08\u672c\u4e66\u4e3b\u8981\u8ba8\u8bba\uff09
- \u975e\u76d1\u7763\u5b66\u4e60
- \u534a\u76d1\u7763\u5b66\u4e60
- \u5f3a\u5316\u5b66\u4e60
- \u4e09\u8981\u7d20
- \u6a21\u578b
- \u7b56\u7565
- \u7b97\u6cd5
- \u5b9e\u73b0\u6b65\u9aa4
- \u5f97\u5230\u4e00\u4e2a\u8bad\u7ec3\u6570\u636e\u96c6\u5408
- \u786e\u5b9a\u5b66\u4e60\u6a21\u578b\u7684\u96c6\u5408
- \u786e\u5b9a\u5b66\u4e60\u7684\u7b56\u7565
- \u786e\u5b9a\u5b66\u4e60\u7684\u7b97\u6cd5
- \u901a\u8fc7\u5b66\u4e60\u65b9\u6cd5\u9009\u62e9\u6700\u4f18\u6a21\u578b
- \u5229\u7528\u5b66\u4e60\u7684\u6700\u4f18\u6a21\u578b\u5bf9\u65b0\u6570\u636e\u8fdb\u884c\u9884\u6d4b\u6216\u5206\u6790
- \u7edf\u8ba1\u5b66\u4e60\u7684\u7814\u7a76
- \u65b9\u6cd5
- \u7406\u8bba
- \u5e94\u7528
- \u7edf\u8ba1\u5b66\u4e60\u7684\u91cd\u8981\u6027
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#12","title":"1.2 \u76d1\u7763\u5b66\u4e60","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#121","title":"1.2.1 \u57fa\u672c\u6982\u5ff5","text":" - \u8f93\u5165\u7a7a\u95f4\u3001\u7279\u5f81\u7a7a\u95f4\u4e0e\u8f93\u51fa\u7a7a\u95f4
- \u6bcf\u4e2a\u8f93\u5165\u662f\u4e00\u4e2a\u5b9e\u4f8b\uff0c\u901a\u5e38\u7531\u7279\u5f81\u5411\u91cf\u8868\u793a
- \u76d1\u7763\u5b66\u4e60\u4ece\u8bad\u7ec3\u6570\u636e\u96c6\u5408\u4e2d\u5b66\u4e60\u6a21\u578b\uff0c\u5bf9\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u9884\u6d4b
- \u6839\u636e\u8f93\u5165\u53d8\u91cf\u548c\u8f93\u51fa\u53d8\u91cf\u7684\u4e0d\u540c\u7c7b\u578b
- \u56de\u5f52\u95ee\u9898: \u90fd\u8fde\u7eed
- \u5206\u7c7b\u95ee\u9898: \u8f93\u51fa\u6709\u9650\u79bb\u6563
- \u6807\u6ce8\u95ee\u9898: \u90fd\u662f\u53d8\u91cf\u5e8f\u5217
- \u8054\u5408\u6982\u7387\u5206\u5e03
- \u5047\u8bbe\u7a7a\u95f4
- \u6a21\u578b\u5c5e\u4e8e\u7531\u8f93\u5165\u7a7a\u95f4\u5230\u8f93\u51fa\u7a7a\u95f4\u7684\u6620\u5c04\u7684\u96c6\u5408\uff0c\u8fd9\u4e2a\u96c6\u5408\u5c31\u662f\u5047\u8bbe\u7a7a\u95f4
- \u6a21\u578b\u53ef\u4ee5\u662f\uff08\u975e\uff09\u6982\u7387\u6a21\u578b
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#122","title":"1.2.2 \u95ee\u9898\u7684\u5f62\u5f0f\u5316","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#13","title":"1.3 \u7edf\u8ba1\u5b66\u4e60\u4e09\u8981\u8bfb","text":" - \u65b9\u6cd5=\u6a21\u578b+\u7b56\u7565+\u7b97\u6cd5
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#131","title":"1.3.1 \u6a21\u578b","text":" - \u6a21\u578b\u5c31\u662f\u7d22\u8981\u5b66\u4e60\u7684\u6761\u4ef6\u6982\u7387\u5206\u5e03\u6216\u51b3\u7b56\u51fd\u6570
\\[ \\mathcal{F}=\\{f\\mid Y=f(X)\\} \\] \\[ \\mathcal{F}=\\{f | Y=f_{\\theta}(X),\\theta\\in\\mathbf{R}^{n}\\} \\] - \u540c\u6837\u53ef\u4ee5\u5b9a\u4e49\u4e3a\u6761\u4ef6\u6982\u7387\u7684\u96c6\u5408
\\[ \\mathcal{F}=\\{P|P(Y|X)\\} \\] \\[ \\mathcal{F}=\\{P\\mid P_{\\theta}(Y\\mid X),\\theta\\in\\mathbf{R}^{n}\\} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#132","title":"1.3.2 \u7b56\u7565","text":" - \u635f\u5931\u51fd\u6570\u548c\u98ce\u9669\u51fd\u6570
- loos function or cost function \\(\\displaystyle L(Y,f(X))\\)
- 0-1 loss function
- \\(\\displaystyle L(Y,f(X))=\\begin{cases}1,&Y\\neq f(X)\\\\0,&Y=f(X)\\end{cases}\\)
- quadratic loss function
- \\(\\displaystyle L(Y,f(X))=(Y-f(X))^{2}\\)
- absolute loss function
- \\(\\displaystyle L(Y,f(X))=|Y-f(X)|\\)
- logarithmic loss function or log-likelihood loss function
- \\(\\displaystyle L(Y,P(Y\\mid X))=-\\log P(Y\\mid X)\\)
- \\(\\displaystyle R_{\\exp}(f)=E_{P}[L(Y,f(X))]=\\int_{x\\times y}L(y,f(x))P(x,y)\\mathrm{d}x\\mathrm{d}y\\)
- risk function or expected loss
- \u4f46\u662f\u8054\u5408\u5206\u5e03\u4f4d\u7f6e\uff0c\u6240\u4ee5\u8981\u5b66\u4e60\uff0c\u4f46\u662f\u8fd9\u6837\u4ee5\u6765\u98ce\u9669\u6700\u5c0f\u53c8\u8981\u7528\u5230\u8054\u5408\u5206\u5e03\uff0c\u90a3\u4e48\u8fd9\u5c31\u6210\u4e3a\u4e86\u75c5\u6001\u95ee\u9898 (ill-formed problem)
- empirical risk or empirical loss
- \\(\\displaystyle R_{\\mathrm{emp}}(f)=\\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},f(x_{i}))\\)
- \u5f53 \\(\\displaystyle N\\) \u8d8b\u4e8e\u65e0\u7a77\u65f6\uff0c\u7ecf\u9a8c\u98ce\u9669\u8d8b\u4e8e\u671f\u671b\u98ce\u9669
- \u8fd9\u5c31\u5173\u7cfb\u5230\u4e24\u4e2a\u57fa\u672c\u7b56\u7565:
- \u7ecf\u9a8c\u98ce\u9669\u6700\u5c0f\u5316
- \u7ed3\u6784\u98ce\u9669\u6700\u5c0f\u5316
- \u7ecf\u9a8c\u98ce\u9669\u6700\u5c0f\u5316\u4e0e\u7ed3\u6784\u98ce\u9669\u6700\u5c0f\u5316
- empirical risk minimization \uff08\u6837\u672c\u5bb9\u91cf\u6bd4\u8f83\u5927\u7684\u65f6\u5019\uff09
- \\(\\displaystyle \\min_{f\\in\\mathcal{F}} \\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},f(x_{i}))\\)
- maximum likelihood estimation
- structural risk minimization
- regularization
- \\(\\displaystyle R_{\\mathrm{sm}}(f)=\\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},f(x_{i}))+\\lambda J(f)\\)
- \u590d\u6742\u5ea6\u8868\u793a\u4e86\u5bf9\u590d\u6742\u6a21\u578b\u7684\u4e58\u6cd5
- maximum posterior probability estimation
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#133","title":"1.3.3 \u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#14","title":"1.4 \u6a21\u578b\u8bc4\u4f30\u4e0e\u6a21\u578b\u9009\u62e9","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#141","title":"1.4.1 \u8bad\u7ec3\u8bef\u5dee\u4e0e\u6d4b\u8bd5\u8bef\u5dee","text":"\\[ R_{\\mathrm{emp}}(\\hat{f})=\\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},\\hat{f}(x_{i})) \\] \\[ e_{\\mathrm{test}}=\\frac{1}{N^{\\prime}}\\sum_{i=1}^{N^{\\prime}}L(y_{i},\\hat{f}(x_{i})) \\] \\[ r_{\\mathrm{test}}+e_{\\mathrm{test}}=1 \\] "},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#142","title":"1.4.2 \u8fc7\u62df\u5408\u4e0e\u6a21\u578b\u9009\u62e9","text":" - model selection
- over-fitting
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#15","title":"1.5 \u6b63\u5219\u5316\u4e0e\u4ea4\u53c9\u9a8c\u8bc1","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#151","title":"1.5.1 \u6b63\u5219\u5316","text":"\\[ L(w)=\\frac{1}{N}\\sum_{i=1}^{N}(f(x_{i};w)-y_{i})^{2}+\\frac{\\lambda}{2}\\parallel w\\parallel^{2} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#152","title":"1.5.2 \u4ea4\u53c9\u9a8c\u8bc1","text":" - cross validation
- \u6570\u636e\u96c6
- \u8bad\u7ec3\u96c6
- \u9a8c\u8bc1\u96c6
- \u6d4b\u8bd5\u96c6 1. \u7b80\u5355\u4ea4\u53c9\u9a8c\u8bc1 2. \\(\\displaystyle S\\) \u6298\u4ea4\u53c9\u9a8c\u8bc1 3. \u7559\u4e00\u4ea4\u53c9\u9a8c\u8bc1
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#16","title":"1.6 \u6cdb\u5316\u80fd\u529b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#161","title":"1.6.1 \u6cdb\u5316\u8bef\u5dee","text":" \\[ R_{\\exp}(\\hat{f})=E_{P}[L(Y,\\hat{f}(X))]=\\int_{R\\times y}L(y,\\hat{f}(x))P(x,y)\\mathrm{d}x\\mathrm{d}y \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#162","title":"1.6.2 \u6cdb\u5316\u8bef\u5dee\u4e0a\u754c","text":" - generalization error bound
- \u6837\u672c\u5bb9\u91cf\u589e\u52a0\u65f6\uff0c\u6cdb\u5316\u4e0a\u754c\u8d8b\u4e8e 0
- \u5047\u8bbe\u7a7a\u95f4\u8d8a\u5927\uff0c\u6cdb\u5316\u8bef\u5dee\u4e0a\u754c\u8d8a\u5927
- \u8fd9\u4e2a\u5b9a\u7406\u53ea\u9002\u7528\u4e8e\u5047\u8bbe\u7a7a\u95f4\u5305\u542b\u6709\u9650\u4e2a\u51fd\u6570
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#17","title":"1.7 \u751f\u6210\u6a21\u578b\u4e0e\u5224\u522b\u6a21\u578b","text":" - generative model
- \u8fd8\u539f\u51fa\u8054\u5408\u6982\u7387\u5206\u5e03 \\(\\displaystyle P(X,Y)\\)
- \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5
- \u9690\u9a6c\u5c14\u53ef\u592b\u6a21\u578b
- \u6536\u655b\u901f\u5ea6\u5feb
- discriminative model
- \u76f4\u63a5\u5b66\u4e60\u51b3\u7b56\u51fd\u6570\u6216\u6761\u4ef6\u6982\u7387\u5206\u5e03 \\(\\displaystyle P(Y|X)\\)
- \\(\\displaystyle k\\) \u8fd1\u90bb\u6cd5
- \u611f\u77e5\u673a
- \u51b3\u7b56\u6811
- \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b
- \u6700\u5927\u71b5\u6a21\u578b
- \u652f\u6301\u5411\u91cf\u673a
- \u63d0\u5347\u65b9\u6cd5
- \u6761\u4ef6\u968f\u673a\u573a
- \u51c6\u786e\u5ea6\u9ad8
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#18","title":"1.8 \u5206\u7c7b\u95ee\u9898","text":" - precision \\(\\displaystyle P=\\frac{TP}{TP+FP}\\)
- recall \\(\\displaystyle R=\\frac{TP}{TP+FN}\\)
\\[ \\frac{2}{F_{1}}=\\frac{1}{P}+\\frac{1}{R} \\] \\[ F_{1}=\\frac{2TP}{2TP+FP+FN} \\] "},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#19","title":"1.9 \u6807\u6ce8\u95ee\u9898","text":" - tagging \u662f classificationd \u4e00\u4e2a\u63a8\u5e7f
- \u662f structure prediction \u7684\u7b80\u5355\u5f62\u5f0f
- \u9690\u9a6c\u5c14\u53ef\u592b\u6a21\u578b
- \u6761\u4ef6\u968f\u673a\u573a
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#110","title":"1.10 \u56de\u5f52\u95ee\u9898","text":" - regression
- \uff08\u975e\uff09\u7ebf\u6027\u56de\u5f52\uff0c\u4e00\u5143\u56de\u5f52\uff0c\u591a\u5143\u56de\u5f52
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#2","title":"2 \u611f\u77e5\u673a","text":" - perception
- \u611f\u77e5\u673a\u5bf9\u5e94\u4e8e\u8f93\u5165\u7a7a\u95f4\u4e2d\u5c06\u5b9e\u4f8b\u5212\u5206\u6210\u6b63\u8d1f\u4e24\u7c7b\u7684\u5206\u79bb\u8d85\u5e73\u9762\uff0c\u5c5e\u4e8e\u5224\u522b\u6a21\u578b
- \u539f\u59cb\u5f62\u5f0f\u548c\u5bf9\u5076\u5f62\u5f0f
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#21","title":"2.1 \u611f\u77e5\u673a\u6a21\u578b","text":" - \u5047\u8bbe\u7a7a\u95f4\u662f\u5b9a\u4e49\u5728\u7279\u5f81\u7a7a\u95f4\u4e2d\u6240\u6709\u7684\u7ebf\u6027\u5206\u7c7b\u6a21\u578b\uff08linear classification model\uff09\\(\\displaystyle \\{f|f(x) = w \\cdot x+b\\}\\)
- separating hyperplane
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#22","title":"2.2 \u611f\u77e5\u673a\u5b66\u4e60\u7b56\u7565","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#221","title":"2.2.1 \u6570\u636e\u96c6\u7684\u7ebf\u6027\u53ef\u5206\u6027","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#222","title":"2.2.2 \u611f\u77e5\u673a\u5b66\u4e60\u7b56\u7565","text":" - \u5b9a\u4e49\u635f\u5931\u51fd\u6570\u5e76\u5c06\u635f\u5931\u51fd\u6570\u6781\u5c0f\u5316
\\[ L(w,b)=-\\sum_{x_{i}\\in M}y_{i}(w\\cdot x_{i}+b) \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#223","title":"2.2.3 \u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#224","title":"2.2.4 \u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5\u7684\u539f\u59cb\u5f62\u5f0f","text":"\\[ \\min_{w,b}L(w,b)=-\\sum_{x_{i}\\in M}y_{i}(w\\cdot x_{i}+b) \\] - stochastic gradient descent
\\[ \\nabla_{_w}L(w,b)=-\\sum_{x_{i}\\in M}y_{i}x_{i} \\] \\[ \\nabla_{b}L(w,b)=-\\sum_{x_{i}eM}y_{i} \\] \\[ w\\leftarrow w+\\eta y_{i}x_{i} \\] \\[ b\\leftarrow b+\\eta y_{i} \\] - \\(\\displaystyle \\eta\\) \u88ab\u79f0\u4e3a\u5b66\u4e60\u7387\uff08learning rate\uff09
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#225","title":"2.2.5 \u7b97\u6cd5\u7684\u6536\u655b\u6027","text":" - \u4e3a\u4e86\u5f97\u5230\u552f\u4e00\u7684\u8d85\u5e73\u9762\uff0c\u9700\u8981\u5bf9\u5206\u79bb\u8d85\u5e73\u9762\u589e\u52a0\u7ea6\u675f\u6761\u4ef6\uff0c\u5373\u7ebf\u6027\u652f\u6301\u5411\u91cf\u673a
- \u5982\u679c\u8bad\u7ec3\u96c6\u7ebf\u6027\u4e0d\u53ef\u5206\uff0c\u90a3\u4e48\u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5\u4e0d\u6536\u655b
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#226","title":"2.2.6 \u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5\u7684\u5bf9\u5076\u5f62\u5f0f","text":"\\[ \\begin{aligned}&w\\leftarrow w+\\eta y_{i}x_{i}\\\\&b\\leftarrow b+\\eta y_{i}\\end{aligned} \\] \\[ w=\\sum_{i=1}^{N}\\alpha_{i}y_{i}x_{i} \\] \\[ b=\\sum_{i=1}^{N}\\alpha_{i}y_{i} \\] \\[ G=[x_{i}\\cdot x_{j}]_{N\\times N} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#3-displaystyle-k","title":"3 \\(\\displaystyle k\\) \u8fd1\u90bb\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#31-displaystyle-k","title":"3.1 \\(\\displaystyle k\\) \u8fd1\u90bb\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#32-displaystyle-k","title":"3.2 \\(\\displaystyle k\\) \u8fd1\u90bb\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#321","title":"3.2.1 \u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#33","title":"3.3 \u8ddd\u79bb\u5ea6\u91cf","text":" - \\(\\displaystyle L_{p}\\) distance or Minkowski distamce
- \\(\\displaystyle L_{p}(x_{i},x_{j})=\\left(\\sum_{l=1}^{n}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid^{p}\\right)^{\\frac{1}{p}}\\)
- \\(\\displaystyle L_{2}(x_{i},x_{j})=\\left(\\sum_{i=1}^{n}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid^{2}\\right)^{\\frac{1}{2}}\\)
- \\(\\displaystyle L_{1}(x_{i}, x_{j})=\\sum_{l=1}^{n}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid\\)
- \\(\\displaystyle L_{\\infty}(x_{i}, x_{j})=\\max_{l}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid\\)
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#331-displaystyle-k","title":"3.3.1 \\(\\displaystyle k\\) \u503c\u7684\u9009\u62e9","text":" - if k is small, then the approximation error will reduce
- estimation error
- \\(\\displaystyle k\\) \u503c\u7684\u51cf\u5c0f\u5c31\u610f\u5473\u7740\u6574\u4f53\u6a21\u578b\u53d8\u5f97\u590d\u6742\uff0c\u5bb9\u6613\u53d1\u751f\u8fc7\u62df\u5408
- \u5728\u5e94\u7528\u4e2d, \\(\\displaystyle k\\) \u503c\u4e00\u822c\u53d6\u4e00\u4e2a\u6bd4\u8f83\u5c0f\u7684\u6570\u503c\uff0c\u901a\u5e38\u91c7\u7528\u4ea4\u53c9\u9a8c\u8bc1\u6cd5\u6765\u9009\u53d6\u6700\u4f18\u7684 \\(\\displaystyle k\\) \u503c
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#332","title":"3.3.2 \u5206\u7c7b\u51b3\u7b56\u89c4\u5219","text":" - \u591a\u6570\u8868\u51b3\u89c4\u5219\uff08majority voting rule\uff09
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#34-displaystyle-k-displaystyle-kd","title":"3.4 \\(\\displaystyle k\\) \u8fd1\u90bb\u6cd5\u7684\u5b9e\u73b0: \\(\\displaystyle kd\\) \u6811","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#341-displaystyle-kd","title":"3.4.1 \u6784\u9020 \\(\\displaystyle kd\\) \u6811","text":" - \\(\\displaystyle kd\\) \u6811\u662f\u4e00\u4e8c\u53c9\u6811\uff0c\u8868\u793a\u5bf9 \\(\\displaystyle k\\) \u7ef4\u7a7a\u95f4\u7684\u4e00\u4e2a\u5212\u5206\uff08partition\uff09
- \u901a\u5e38\u9009\u62e9\u8bad\u7ec3\u5b9e\u4f8b\u70b9\u5728\u9009\u5b9a\u5750\u6807\u8f74\u4e0a\u7684\u4e2d\u4f4d\u6570\u4e3a\u5207\u5206\u70b9\uff0c\u867d\u7136\u8fd9\u6837\u5f97\u5230\u7684\u6811\u662f\u5e73\u8861\u7684\uff0c\u4f46\u6548\u7387\u672a\u5fc5\u662f\u6700\u4f18\u7684 \u6709\u610f\u601d
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#342-displaystyle-kd","title":"3.4.2 \u641c\u7d22 \\(\\displaystyle kd\\) \u6811","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#4","title":"4 \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5","text":" - \u57fa\u4e8e\u8d1d\u53f6\u65af\u5b9a\u7406\u4e0e\u7279\u5f81\u6761\u4ef6\u72ec\u7acb\u5047\u8bbe\u7684\u5206\u7c7b\u65b9\u6cd5
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#41","title":"4.1 \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5\u7684\u5b66\u4e60\u4e0e\u5206\u7c7b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#411","title":"4.1.1 \u57fa\u672c\u65b9\u6cd5","text":" - \u5b66\u4e60\u5148\u9a8c\u6982\u7387\u5206\u5e03\u548c\u6761\u4ef6\u6982\u7387\u5206\u5e03\u4e8e\u662f\u5b66\u4e60\u5230\u8054\u5408\u6982\u7387\u5206\u5e03
\\[ P(X=x\\mid Y=c_{k})=P(X^{(1)}=x^{(1)},\\cdots,X^{(n)}=x^{(n)}\\mid Y=c_{k}),\\quad k=1,2,\\cdots,K \\] - \u5f15\u5165\u4e86\u6761\u4ef6\u72ec\u7acb\u6027\u5047\u8bbe
\\[ \\begin{aligned} P(X=x|Y=c_{k})& =P(X^{(1)}=x^{(1)},\\cdots,X^{(n)}=x^{(n)}\\mid Y=c_{k}) \\\\ &=\\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}\\mid Y=c_{k}) \\end{aligned} \\] \\[ P(Y=c_{k}\\mid X=x)=\\frac{P(X=x\\mid Y=c_{k})P(Y=c_{k})}{\\sum_{k}P(X=x\\mid Y=c_{k})P(Y=c_{k})} \\] \\[ P(Y=c_{k}\\mid X=x)=\\frac{P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})}{\\sum_{k}P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})},\\quad k=1,2,\\cdots,K \\] \\[ y=f(x)=\\arg\\max_{c_{k}}\\frac{P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})}{\\sum_{k}P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})} \\] \\[ y=\\arg\\max_{c_{k}}P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k}) \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#412","title":"4.1.2 \u540e\u9a8c\u6982\u7387\u6700\u5927\u5316\u7684\u542b\u4e49","text":"\\[ L(Y,f(X))=\\begin{cases}1,&Y\\neq f(X)\\\\0,&Y=f(X)\\end{cases} \\] \\[ R_{\\exp}(f)=E[L(Y,f(X))] \\] \\[ R_{\\exp}(f)=E_{\\chi}\\sum_{k=1}^{K}[L(c_{k},f(X))]P(c_{k}\\mid X) \\] \\[ \\begin{align} f(x) &=\\arg\\min_{y\\in\\mathcal{Y}}\\sum_{k=1}^{K}L(c_{k},y)P(c_{k}\\mid X=x) \\\\ &=\\arg\\min_{y\\in\\mathcal{Y}}\\sum_{k=1}^{K}P(y\\neq c_{k}\\mid X=x) \\\\ &=\\arg\\min_{y\\in\\mathcal{Y}}(1-P(y=c_{k}\\mid X=x)) \\\\ &=\\arg\\max_{y\\in\\mathcal{Y}}P(y=c_{k}\\mid X=x) \\end{align} \\] \\[ f(x)=\\arg\\max_{c_{k}}P(c_{k}\\mid X=x) \\] - \u671f\u671b\u98ce\u9669\u6700\u5c0f\u5316\u51c6\u5219\u5c31\u5f97\u5230\u8054\u8003\u540e\u9a8c\u6982\u7387\u6700\u5927\u5316\u51c6\u5219
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#42","title":"4.2 \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5\u7684\u53c2\u6570\u4f30\u8ba1","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#421","title":"4.2.1 \u6781\u5927\u4f3c\u7136\u4f30\u8ba1","text":"\\[ P(Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(y_{i}=c_{k})}{N} , k=1,2,\\cdots,K \\] \\[ P(X^{(j)}=a_{ji}\\mid Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{ji},y_{i}=c_{k})}{\\sum_{i=1}^{N}I(y_{i}=c_{k})}\\\\j=1,2,\\cdots,n ;\\quad l=1,2,\\cdots,S_{j} ;\\quad k=1,2,\\cdots,K \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#422","title":"4.2.2 \u5b66\u4e60\u4e0e\u5206\u7c7b\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#423","title":"4.2.3 \u8d1d\u53f6\u65af\u4f30\u8ba1","text":" - \u6781\u5927\u4f3c\u7136\u4f30\u8ba1\u53ef\u80fd\u4f1a\u51fa\u73b0\u6240\u8981\u4f30\u8ba1\u7684\u6982\u7387\u503c\u4e3a 0 \u7684\u60c5\u51b5
- \u6761\u4ef6\u6982\u7387\u7684\u8d1d\u53f6\u65af\u4f30\u8ba1
\\[ P_{\\lambda}(X^{(j)}=a_{ji}\\mid Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{ji},y_{i}=c_{k})+\\lambda}{\\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\\lambda} \\] - when \\(\\displaystyle \\lambda = 0\\), it's called Laplace smoothing
\\[ \\begin{aligned}&P_{\\lambda}(X^{(j)}=a_{jl}\\mid Y=c_{k})>0\\\\&\\sum_{l=1}^{s_{j}}P(X^{(j)}=a_{jl}\\mid Y=c_{k})=1\\end{aligned} \\] - \u8868\u660e\u8d1d\u53f6\u65af\u4f30\u8ba1\u786e\u5b9e\u662f\u4e00\u79cd\u6982\u7387\u5206\u5e03
- \u5148\u9a8c\u6982\u7387\u7684\u8d1d\u53f6\u65af\u4f30\u8ba1
\\[ P_{\\lambda}(Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(y_{i}=c_{k})+\\lambda}{N+K\\lambda} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#5","title":"5 \u51b3\u7b56\u6811","text":" - decision tree
- \u7279\u5f81\u9009\u62e9
- \u51b3\u7b56\u6811\u7684\u751f\u6210
- \u51b3\u7b56\u6811\u7684\u4fee\u526a
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#51","title":"5.1 \u51b3\u7b56\u6811\u6a21\u578b\u4e0e\u5b66\u4e60","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#511","title":"5.1.1 \u51b3\u7b56\u6811\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#512-if-then","title":"5.1.2 \u51b3\u7b56\u6811\u4e0e if-then \u89c4\u5219","text":" - \u4e92\u65a5\u4e14\u5b8c\u5907
- \u6bcf\u4e00\u4e2a\u5b9e\u4f8b\u90fd\u88ab\u4e00\u6761\u8def\u5f84\u4f1a\u89c4\u5219\u6240\u8986\u76d6\uff0c\u800c\u4e14\u53ea\u88ab\u4e00\u6761\u8def\u5f84\u6216\u4e00\u6761\u89c4\u5219\u6240\u8986\u76d6
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#513","title":"5.1.3 \u51b3\u7b56\u6811\u4e0e\u6761\u4ef6\u6982\u7387\u5206\u5e03","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#514","title":"5.1.4 \u51b3\u7b56\u6811\u5b66\u4e60","text":" - \u51b3\u7b56\u6811\u5b66\u4e60\u672c\u8d28\u4e0a\u662f\u4ece\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u5f52\u7eb3\u51fa\u4e00\u7ec4\u5206\u7c7b\u89c4\u5219
- \u5728\u635f\u5931\u51fd\u6570\u610f\u4e49\u4e0b\u9009\u62e9\u6700\u4f18\u51b3\u7b56\u6811\u7684\u95ee\u9898\uff0c\u662f NP \u5b8c\u5168\u95ee\u9898\uff0c\u91c7\u7528\u542f\u53d1\u5f0f\u65b9\u6cd5\uff0c\u8fd1\u4f3c\u6c42\u89e3\uff0c\u8fd9\u6837\u5f97\u5230\u7684\u51b3\u7b56\u6811\u662f\u6b21\u6700\u4f18\uff08sub-optimal\uff09
- \u4e3a\u4e86\u9632\u6b62\u8fc7\u62df\u5408\uff0c\u6211\u4eec\u9700\u8981\u5bf9\u5df2\u751f\u6210\u7684\u6811\u81ea\u4e0a\u800c\u4e0b\u8fdb\u884c\u526a\u679d
- \u51b3\u7b56\u6811\u7684\u751f\u6210\u503c\u8003\u8651\u5c40\u90e8\u6700\u4f18\uff0c\u526a\u679d\u5219\u8003\u8651\u5168\u5c40\u6700\u4f18
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#52","title":"5.2 \u7279\u5f81\u9009\u62e9","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#521","title":"5.2.1 \u7279\u5f81\u9009\u62e9\u95ee\u9898","text":" - \u901a\u5e38\u7279\u5f81\u9009\u62e9\u7684\u51c6\u5219\u662f\u4fe1\u606f\u589e\u76ca\u6216\u4fe1\u606f\u589e\u76ca\u6bd4
- information gain
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#522","title":"5.2.2 \u4fe1\u606f\u589e\u76ca","text":" - \u71b5\u548c\u6761\u4ef6\u71b5
\\[ P(X=x_{i})=p_{i} ,\\quad i=1,2,\\cdots,n \\] \\[ H(X)=-\\sum_{i=1}^{n}p_{i}\\log p_{i} \\] \\[ H(p)=-\\sum_{i=1}^{n}p_{i}\\log p_{i} \\] \\[ 0\\leqslant H(p)\\leqslant\\log n \\] \\[ P(X=x_{i},Y=y_{j})=p_{ij} ,\\quad i=1,2,\\cdots,n ;\\quad j=1,2,\\cdots,m \\] \\[ H(Y\\mid X)=\\sum_{i=1}^{n}p_{i}H(Y\\mid X=x_{i}) \\] "},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#523","title":"5.2.3 \u4fe1\u606f\u589e\u76ca\u6bd4","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#53","title":"5.3 \u51b3\u7b56\u6811\u7684\u751f\u6210","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#531-id-3","title":"5.3.1 ID 3 \u7b97\u6cd5","text":" - ID 3 \u7b97\u6cd5\u53ea\u6709\u6811\u7684\u751f\u6210\uff0c\u6240\u4ee5\u8be5\u7b97\u6cd5\u751f\u6210\u7684\u6811\u5bb9\u6613\u4ea7\u751f\u8fc7\u62df\u5408
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#532-c-45","title":"5.3.2 C 4.5 \u7684\u751f\u6210\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#54","title":"5.4 \u51b3\u7b56\u6811\u7684\u526a\u679d","text":" \\[ C_{\\alpha}(T)=\\sum_{t=1}^{|T|}N_{t}H_{t}(T)+\\alpha|T| \\] \\[ H_{t}(T)=-\\sum_{k}\\frac{N_{ik}}{N_{t}}\\log\\frac{N_{ik}}{N_{t}} \\] \\[ C(T)=\\sum_{t=1}^{|T|}N_{t}H_{t}(T)=-\\sum_{t=1}^{|T|}\\sum_{k=1}^{K}N_{tk}\\log\\frac{N_{tk}}{N_{t}} \\] \\[ C_{\\alpha}(T)=C(T)+\\alpha|T| \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#55-cart","title":"5.5 CART \u7b97\u6cd5","text":" - \u5206\u88c2\u4e0e\u56de\u5f52\u6811\uff08classification and regression tree\uff09
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#551-cart","title":"5.5.1 CART \u751f\u6210","text":" - \u5bf9\u56de\u5f52\u6811\u7528\u5e73\u65b9\u8bef\u5dee\u6700\u5c0f\u5316\u51c6\u5219
- \u5bf9\u5206\u7c7b\u6811\u7528\u57fa\u5c3c\u6307\u6570\uff08Gini index\uff09\u6700\u5c0f\u5316\u51c6\u5219 1. \u56de\u5f52\u6811\u7684\u751f\u6210
\\[ f(x)=\\sum_{m=1}^{M}c_{m}I(x\\in R_{m}) \\] \\[ \\hat{c}_{m}=\\mathrm{ave}(y_{i}\\mid x_{i}\\in R_{m}) \\] - splitting variable
- splitting point
\\[ R_{1}(j,s)=\\{x\\mid x^{(j)}\\leqslant s\\}\\quad\\text{\u548c}\\quad R_{2}(j,s)=\\{x\\mid x^{(j)}>s\\} \\] \\[ \\min_{j,s}\\biggl[\\min_{c_{1}}\\sum_{x_{i}\\in R_{i}(j,s)}(y_{i}-c_{1})^{2}+\\min_{c_{2}}\\sum_{x_{i}\\in R_{2}(j,s)}(y_{i}-c_{2})^{2}\\biggr] \\] \\[ \\hat{c}_{1}=\\mathrm{ave}(y_{i}\\mid x_{i}\\in R_{1}(j,s))\\quad\\hat{\\text{\u548c}}\\quad\\hat{c}_{2}=\\mathrm{ave}(y_{i}\\mid x_{i}\\in R_{2}(j,s)) \\] - least squares regression tree 1. \u5206\u7c7b\u6811\u7684\u751f\u6210
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#552-cart","title":"5.5.2 CART \u526a\u679d","text":" - \u526a\u679d\uff0c\u5f62\u6210\u4e00\u4e2a\u5b50\u6811\u5e8f\u5217
\\[ C_{\\alpha}(T)=C(T)+\\alpha\\left|T\\right| \\] \\[ g(t)=\\frac{C(t)-C(T_{t})}{\\mid T_{t}\\mid-1} \\] - \u5728\u526a\u679d\u5f97\u5230\u7684\u5b50\u6811\u5e8f\u5217 \\(\\displaystyle T_0,T_1,\\cdots,T_n\\) \u4e2d\u901a\u8fc7\u4ea4\u53c9\u9a8c\u8bc1\u9009\u53d6\u6700\u4f18\u5b50\u6811 \\(\\displaystyle T_{\\alpha}\\)
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#6","title":"6 \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u4e0e\u6700\u5927\u71b5\u6a21\u578b","text":" - logistic regression
- maximum entropy model
- \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b\u548c\u6700\u5927\u71b5\u6a21\u578b\u90fd\u5c5e\u4e8e\u5bf9\u6570\u7ebf\u6027\u6a21\u578b
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#61","title":"6.1 \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#611","title":"6.1.1 \u903b\u8f91\u65af\u8c1b\u5206\u5e03","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#612","title":"6.1.2 \u4e8c\u9879\u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b","text":" - binomial logistic regression model
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#7","title":"7 \u652f\u6301\u5411\u91cf\u673a","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#8","title":"8 \u63d0\u5347\u65b9\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#9-displaystyle-boldsymbolem","title":"9 \\(\\displaystyle \\boldsymbol{EM}\\) \u7b97\u6cd5\u53ca\u5176\u63a8\u5e7f","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#10","title":"10 \u9690\u9a6c\u5c14\u53ef\u592b\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#11_1","title":"11 \u6761\u4ef6\u968f\u673a\u573a","text":""},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/","title":"Image Classification-Data-driven Approach, k-Nearest Neighbor, train_val_test splits","text":" \u7ea6 653 \u4e2a\u5b57 28 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#image-classification","title":"image classification","text":" - challenges
- viewpoint variation
- scale variation
- deformation
- occlusion
- illumination conditions
- background clutter
- intra-class variation
- data-driven approach
- the image classification pipeline
- input
- learning
- training a classifier
- learning a model
- evaluation
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#nearest-neighbor-classifier","title":"Nearest Neighbor Classifier","text":"\\[ d_1 (I_1, I_2) = \\sum_{p} \\left| I^p_1 - I^p_2 \\right| \\] Pythonimport numpy as np\n\nclass NearestNeighbor(object): \n def **init**(self): \n pass\n\n def train(self, X, y): \n \"\"\" X is N x D where each row is an example. Y is 1-dimension of size N \"\"\" \n # the nearest neighbor classifier simply remembers all the training data \n self.Xtr = X \n self.ytr = y\n\n def predict(self, X): \n \"\"\" X is N x D where each row is an example we wish to predict label for \"\"\" \n num_test = X.shape[0] \n # lets make sure that the output type matches the input type \n Ypred = np.zeros(num_test, dtype = self.ytr.dtype)\n\n # loop over all test rows\n for i in range(num_test):\n # find the nearest training image to the i'th test image\n # using the L1 distance (sum of absolute value differences)\n distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)\n min_index = np.argmin(distances) # get the index with smallest distance\n Ypred[i] = self.ytr[min_index] # predict the label of the nearest example\n\n return Ypred\n
\\[ d_2 (I_1, I_2) = \\sqrt{\\sum_{p} \\left( I^p_1 - I^p_2 \\right)^2} \\] Pythondistances = np.sqrt(np.sum(np.square(self.Xtr - X[i,:]), axis = 1))\n
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#k-nearest-neighbor-classifier","title":"k - Nearest Neighbor Classifier","text":"![[Pasted image 20241031202452.jpg]]
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#validation-sets-for-hyperparameter-tuning","title":"Validation sets for Hyperparameter tuning","text":"Evaluate on the test only a single time, at the very end
Split your training set into training set and a validation set. Use validation set to tune all hyperparameters. At the end run a single time on the test set and report performance.
- cross-validation
- single calidation split ![[Pasted image 20241031202849.png]]
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#pros-and-cons-of-nearest-neighbor-classifier","title":"Pros and Cons of Nearest Neighbor classifier","text":" - simple to implement and understand
- take no time to train
- however, pay a cost at test time
As an aside, the computational complexity of the Nearest Neighbor classifier is an active area of research, and several\u00a0Approximate Nearest Neighbor\u00a0(ANN) algorithms and libraries exist that can accelerate the nearest neighbor lookup in a dataset (e.g.\u00a0FLANN). These algorithms allow one to trade off the correctness of the nearest neighbor retrieval with its space/time complexity during retrieval, and usually rely on a pre-processing/indexing stage that involves building a kdtree, or running the k-means algorithm.
- \\(\\displaystyle L_{2}\\) isn't enough sensitive
In particular, note that images that are nearby each other are much more a function of the general color distribution of the images, or the type of background rather than their semantic identity.
[!note]+ Applying kNN in practice 1. Preprocess your data: Normalize the features in your data (e.g. one pixel in images) to have zero mean and unit variance. We will cover this in more detail in later sections, and chose not to cover data normalization in this section because pixels in images are usually homogeneous and do not exhibit widely different distributions, alleviating the need for data normalization. 2. If your data is very high-dimensional, consider using a dimensionality reduction technique such as PCA (wiki ref,\u00a0CS229ref,\u00a0blog ref), NCA (wiki ref,\u00a0blog ref), or even\u00a0Random Projections. 3. Split your training data randomly into train/val splits. As a rule of thumb, between 70-90% of your data usually goes to the train split. This setting depends on how many hyperparameters you have and how much of an influence you expect them to have. If there are many hyperparameters to estimate, you should err on the side of having larger validation set to estimate them effectively. If you are concerned about the size of your validation data, it is best to split the training data into folds and perform cross-validation. If you can afford the computational budget it is always safer to go with cross-validation (the more folds the better, but more expensive). 4. Train and evaluate the kNN classifier on the validation data (for all folds, if doing cross-validation) for many choices of\u00a0k\u00a0(e.g. the more the better) and across different distance types (L1 and L2 are good candidates) 5. If your kNN classifier is running too long, consider using an Approximate Nearest Neighbor library (e.g.\u00a0FLANN) to accelerate the retrieval (at cost of some accuracy). 6. Take note of the hyperparameters that gave the best results. There is a question of whether you should use the full training set with the best hyperparameters, since the optimal hyperparameters might change if you were to fold the validation data into your training set (since the size of the data would be larger). In practice it is cleaner to not use the validation data in the final classifier and consider it to be\u00a0burned\u00a0on estimating the hyperparameters. Evaluate the best model on the test set. Report the test set accuracy and declare the result to be the performance of the kNN classifier on your data.
[[more about Machine Learing]]
"},{"location":"AI/CS231n/Linear%20classification-Support%20Vector%20Machine%2C%20Softmax/","title":"Linear classification-Support Vector Machine, Softmax","text":" \u7ea6 129 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
"},{"location":"AI/CS231n/Linear%20classification-Support%20Vector%20Machine%2C%20Softmax/#linear-classifiaction","title":"Linear Classifiaction","text":"\\[ L_i = \\sum_{j\\neq y_i} \\max(0, s_j - s_{y_i} + \\Delta) \\] \\[ L = \\frac{1}{N} \\sum_i \\sum_{j\\neq y_i} \\left[ \\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \\Delta) \\right] + \\lambda \\sum_k\\sum_l W_{k,l}^2 \\] \\[ L_i = -\\log\\left(\\frac{e^{f_{y_i}}}{ \\sum_j e^{f_j} }\\right) \\hspace{0.5in} \\text{or equivalently} \\hspace{0.5in} L_i = -f_{y_i} + \\log\\sum_j e^{f_j} \\] \\[ \\frac{e^{f_{y_i}}}{\\sum_j e^{f_j}} = \\frac{Ce^{f_{y_i}}}{C\\sum_j e^{f_j}} = \\frac{e^{f_{y_i} + \\log C}}{\\sum_j e^{f_j + \\log C}} \\] ![[Pasted image 20241031210509.png]]
"},{"location":"AI/CS231n/Python%20Numpy/","title":"Python Numpy","text":""},{"location":"AI/CS231n/Python%20Numpy/#python","title":"Python","text":""},{"location":"AI/CS231n/Python%20Numpy/#string","title":"string","text":"Pythons = \"hello\"\nprint(s.capitalize()) # Capitalize a string; prints \"Hello\"\nprint(s.upper()) # Convert a string to uppercase; prints \"HELLO\"\nprint(s.rjust(7)) # Right-justify a string, padding with spaces; prints \" hello\"\nprint(s.center(7)) # Center a string, padding with spaces; prints \" hello \"\nprint(s.replace('l', '(ell)')) # Replace all instances of one substring with another;\n # prints \"he(ell)(ell)o\"\n<div markdown=\"1\" style=\"margin-top: -30px; font-size: 0.75em; opacity: 0.7;\">\n:material-circle-edit-outline: \u7ea6 49 \u4e2a\u5b57 :fontawesome-solid-code: 104 \u884c\u4ee3\u7801 :material-clock-time-two-outline: \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f\n</div>\nprint(' world '.strip()) # Strip leading and trailing whitespace; prints \"world\"\n
"},{"location":"AI/CS231n/Python%20Numpy/#containers","title":"Containers","text":"Pythonanimals = ['cat', 'dog', 'monkey']\nfor idx, animal in enumerate(animals):\n print('#%d: %s' % (idx + 1, animal))\n# Prints \"#1: cat\", \"#2: dog\", \"#3: monkey\", each on its own line\n
\u5217\u8868\u63a8\u5bfc\u5f0f
Pythonnums = [0, 1, 2, 3, 4]\neven_squares = [x ** 2 for x in nums if x % 2 == 0]\nprint(even_squares) # Prints \"[0, 4, 16]\"\n
\u540c\u6837\u4e5f\u6709\u5b57\u5178\u63a8\u5bfc\u5f0f
Tuples \u53ef\u4ee5\u7528\u4f5c\u5b57\u5178\u4e2d\u7684\u952e\u548c\u96c6\u5408\u7684\u5143\u7d20\uff0c\u4f46\u662f lists \u4e0d\u80fd
"},{"location":"AI/CS231n/Python%20Numpy/#numpy","title":"Numpy","text":"Pythonimport numpy as np\n\n# Create a new array from which we will select elements\na = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])\n\nprint(a) # prints \"array([[ 1, 2, 3],\n # [ 4, 5, 6],\n # [ 7, 8, 9],\n # [10, 11, 12]])\"\n\n# Create an array of indices\nb = np.array([0, 2, 0, 1])\n\n# Select one element from each row of a using the indices in b\nprint(a[np.arange(4), b]) # Prints \"[ 1 6 7 11]\"\n\n# Mutate one element from each row of a using the indices in b\na[np.arange(4), b] += 10\n\nprint(a) # prints \"array([[11, 2, 3],\n # [ 4, 5, 16],\n # [17, 8, 9],\n # [10, 21, 12]])\n
Pythonimport numpy as np\n\na = np.array([[1,2], [3, 4], [5, 6]])\n\nbool_idx = (a > 2) # Find the elements of a that are bigger than 2;\n # this returns a numpy array of Booleans of the same\n # shape as a, where each slot of bool_idx tells\n # whether that element of a is > 2.\n\nprint(bool_idx) # Prints \"[[False False]\n # [ True True]\n # [ True True]]\"\n\n# We use boolean array indexing to construct a rank 1 array\n# consisting of the elements of a corresponding to the True values\n# of bool_idx\nprint(a[bool_idx]) # Prints \"[3 4 5 6]\"\n\n# We can do all of the above in a single concise statement:\nprint(a[a > 2]) # Prints \"[3 4 5 6]\"\n
Pythonx = np.array([1, 2], dtype=np.int64) # Force a particular datatype\nprint(x.dtype) # Prints \"int64\"\n
Pythonimport numpy as np\n\nx = np.array([[1,2],[3,4]], dtype=np.float64)\ny = np.array([[5,6],[7,8]], dtype=np.float64)\n\n# Elementwise sum; both produce the array\n# [[ 6.0 8.0]\n# [10.0 12.0]]\nprint(x + y)\nprint(np.add(x, y))\n\n# Elementwise difference; both produce the array\n# [[-4.0 -4.0]\n# [-4.0 -4.0]]\nprint(x - y)\nprint(np.subtract(x, y))\n\n# Elementwise product; both produce the array\n# [[ 5.0 12.0]\n# [21.0 32.0]]\nprint(x * y)\nprint(np.multiply(x, y))\n\n# Elementwise division; both produce the array\n# [[ 0.2 0.33333333]\n# [ 0.42857143 0.5 ]]\nprint(x / y)\nprint(np.divide(x, y))\n\n# Elementwise square root; produces the array\n# [[ 1. 1.41421356]\n# [ 1.73205081 2. ]]\nprint(np.sqrt(x))\n
\u5e7f\u64ad\u53ef\u4ee5\u907f\u514d\u5faa\u73af
Pythonimport numpy as np\n\n# We will add the vector v to each row of the matrix x,\n# storing the result in the matrix y\nx = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])\nv = np.array([1, 0, 1])\ny = x + v # Add v to each row of x using broadcasting\nprint(y) # Prints \"[[ 2 2 4]\n # [ 5 5 7]\n # [ 8 8 10]\n # [11 11 13]]\"\n
"},{"location":"AI/CS231n/Python%20Numpy/#scipy","title":"SciPy","text":""},{"location":"AI/CS231n/Python%20Numpy/#matplotlib","title":"Matplotlib","text":""},{"location":"AI/EECS%20498-007/KNN/","title":"KNN","text":" \u7ea6 374 \u4e2a\u5b57 100 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u5bf9\u4e8e\u4e00\u4e2a\u5f85\u5206\u7c7b\u7684\u6837\u672c\uff0c\u627e\u5230\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u4e0e\u5176\u6700\u63a5\u8fd1\u7684K\u4e2a\u6837\u672c\uff08\u5373\u6700\u8fd1\u90bb\uff09\uff0c\u7136\u540e\u6839\u636e\u8fd9K\u4e2a\u6837\u672c\u7684\u7c7b\u522b\u6765\u51b3\u5b9a\u5f85\u5206\u7c7b\u6837\u672c\u7684\u7c7b\u522b\u3002
"},{"location":"AI/EECS%20498-007/KNN/#_1","title":"\u6570\u5b66\u63a8\u5bfc","text":"\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u8bad\u7ec3\u6570\u636e\u96c6 \\(T = \\{(x_1, y_1), (x_2, y_2), \\ldots, (x_N, y_N)\\}\\)\uff0c\u5176\u4e2d \\(x_i\\) \u662f\u7279\u5f81\u5411\u91cf\uff0c \\(y_i\\) \u662f\u5bf9\u5e94\u7684\u7c7b\u522b\u6807\u7b7e\u3002\u5bf9\u4e8e\u4e00\u4e2a\u65b0\u7684\u5f85\u5206\u7c7b\u6837\u672c x\uff0cKNN\u7b97\u6cd5\u7684\u76ee\u6807\u662f\u9884\u6d4b\u5176\u7c7b\u522b \\(y\\) \u3002
- \u8ddd\u79bb\u5ea6\u91cf\uff1a\u9996\u5148\uff0c\u6211\u4eec\u9700\u8981\u4e00\u4e2a\u8ddd\u79bb\u5ea6\u91cf\u6765\u8ba1\u7b97\u5f85\u5206\u7c7b\u6837\u672c \\(x\\) \u4e0e\u8bad\u7ec3\u96c6\u4e2d\u6bcf\u4e2a\u6837\u672c \\(x_i\\) \u4e4b\u95f4\u7684\u8ddd\u79bb\u3002\u5e38\u7528\u7684\u8ddd\u79bb\u5ea6\u91cf\u5305\u62ec\u6b27\u6c0f\u8ddd\u79bb\uff08Euclidean distance\uff09\u3001\u66fc\u54c8\u987f\u8ddd\u79bb\uff08Manhattan distance\uff09\u548c\u95f5\u53ef\u592b\u65af\u57fa\u8ddd\u79bb\uff08Minkowski distance\uff09\u3002\u4ee5\u6b27\u6c0f\u8ddd\u79bb\u4e3a\u4f8b\uff0c\u4e24\u4e2a\u6837\u672c \\(x\\) \u548c \\(x_i\\) \u4e4b\u95f4\u7684\u8ddd\u79bb\u5b9a\u4e49\u4e3a\uff1a
\\[ d(x, x_i) = \\sqrt{\\sum_{j=1}^{d} (x_j - x_{i,j})^2} \\] \u5176\u4e2d\uff0c \\(d\\) \u662f\u7279\u5f81\u7684\u7ef4\u5ea6\u3002
- \u5bfb\u627e\u6700\u8fd1\u90bb\uff1a\u7136\u540e\uff0c\u6211\u4eec\u6839\u636e\u8ba1\u7b97\u51fa\u7684\u8ddd\u79bb\uff0c\u9009\u62e9\u8ddd\u79bb\u6700\u8fd1\u7684K\u4e2a\u6837\u672c\uff0c\u6784\u6210\u5f85\u5206\u7c7b\u6837\u672c\u7684\u90bb\u57df \\(N_k(x)\\)\u3002
- \u51b3\u7b56\u89c4\u5219\uff1a\u6700\u540e\uff0c\u6839\u636e\u90bb\u57df \\( N_k(x) \\) \u4e2d\u7684\u6837\u672c\u7c7b\u522b\uff0c\u901a\u8fc7\u591a\u6570\u6295\u7968\u7684\u65b9\u5f0f\u6765\u51b3\u5b9a\u5f85\u5206\u7c7b\u6837\u672c\u7684\u7c7b\u522b\u3002\u5373\uff1a
\\[ y = \\arg\\max_{c_j} \\sum_{x_i \\in N_k(x)} I(y_i = c_j) \\] \u5176\u4e2d\uff0c \\(I\\) \u662f\u6307\u793a\u51fd\u6570\uff0c\u5f53 \\(y_i = c_j\\) \u65f6\u53d6\u503c\u4e3a1\uff0c\u5426\u5219\u4e3a0\u3002
"},{"location":"AI/EECS%20498-007/KNN/#_2","title":"\u4f5c\u4e1a\u4e2d\u7684\u5b9e\u73b0","text":"Pythonimport torch\n\ndef compute_distances_two_loops(x_train, x_test):\n num_train = x_train.shape[0]\n num_test = x_test.shape[0]\n dists = x_train.new_zeros(num_train, num_test)\n\n for i in range(num_train):\n for j in range(num_test):\n dists[i,j] = ((x_train[i] - x_test[j]) ** 2).sum() ** (1/2)\n\n return dists\n\ndef compute_distances_one_loop(x_train, x_test):\n num_train = x_train.shape[0]\n num_test = x_test.shape[0]\n dists = x_train.new_zeros(num_train, num_test)\n\n for i in range(num_train):\n dists[i] = ((x_train[i] - x_test) ** 2).sum(dim=(1,2,3)) ** (1/2)\n\n return dists\n\ndef compute_distances_no_loops(x_train, x_test):\n num_train = x_train.shape[0]\n num_test = x_test.shape[0]\n dists = x_train.new_zeros(num_train, num_test)\n\n A = x_train.reshape(num_train, -1)\n B = x_test.reshape(num_test, -1)\n AB2 = A.mm(B.T) * 2\n dists = ((A ** 2).sum(dim=1).reshape(-1, 1) - AB2 + (B ** 2).sum(dim=1).reshape(1, -1)) ** (1/2)\n\n return dists\n\ndef predict_labels(dists, y_train, k=1):\n num_train, num_test = dists.shape\n y_pred = torch.zeros(num_test, dtype=torch.int64)\n\n values, indices = torch.topk(dists, k, dim=0, largest=False)\n for i in range(indices.shape[1]):\n _, idx = torch.max(y_train[indices[:, i]].bincount(), dim=0)\n y_pred[i] = idx\n\n return y_pred\n\nclass KnnClassifier:\n def __init__(self, x_train, y_train):\n self.x_train = x_train\n self.y_train = y_train\n\n def predict(self, x_test, k=1):\n dists = compute_distances_no_loops(self.x_train, x_test)\n y_test_pred = predict_labels(dists, self.y_train, k)\n return y_test_pred\n\n def check_accuracy(self, x_test, y_test, k=1, quiet=False):\n y_test_pred = self.predict(x_test, k=k)\n num_samples = x_test.shape[0]\n num_correct = (y_test == y_test_pred).sum().item()\n accuracy = 100.0 * num_correct / num_samples\n msg = (f'Got {num_correct} / {num_samples} correct; accuracy is {accuracy:.2f}%')\n if not quiet:\n print(msg)\n return accuracy\n\ndef knn_cross_validate(x_train, y_train, num_folds=5, k_choices=None):\n if k_choices is None:\n k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]\n\n x_train_folds = torch.chunk(x_train, num_folds, dim=0)\n y_train_folds = torch.chunk(y_train, num_folds, dim=0)\n\n k_to_accuracies = {}\n\n for k in k_choices:\n list_of_acc = []\n for num_fold in range(num_folds):\n x_train_folds_local = [x for x in x_train_folds]\n y_train_folds_local = [x for x in y_train_folds]\n x_test = x_train_folds_local[num_fold]\n y_test = y_train_folds_local[num_fold]\n del x_train_folds_local[num_fold]\n del y_train_folds_local[num_fold]\n x_train = torch.cat(x_train_folds_local, dim=0)\n y_train = torch.cat(y_train_folds_local, dim=0)\n classifier = KnnClassifier(x_train, y_train)\n list_of_acc.append(classifier.check_accuracy(x_test, y_test, k))\n k_to_accuracies[k] = list_of_acc\n\n return k_to_accuracies\n\ndef knn_get_best_k(k_to_accuracies):\n best_k = 0\n new_dict = {}\n for k, accs in sorted(k_to_accuracies.items()):\n new_dict[k] = sum(accs) / len(accs) \n max_value = max(new_dict.values())\n best_k = [k for k, v in new_dict.items() if v == max_value][0]\n return best_k\n
"},{"location":"AI/EECS%20498-007/linear_classifer/","title":"Linear classifer","text":" \u7ea6 677 \u4e2a\u5b57 216 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
"},{"location":"AI/EECS%20498-007/linear_classifer/#_1","title":"\u539f\u7406","text":"\u4e24\u79cd\u7ebf\u6027\u5206\u7c7b\u5668\uff1a\u652f\u6301\u5411\u91cf\u673a\uff08SVM\uff09\u548cSoftmax\u5206\u7c7b\u5668\u3002\u8fd9\u4e24\u79cd\u5206\u7c7b\u5668\u90fd\u662f\u76d1\u7763\u5b66\u4e60\u7b97\u6cd5\uff0c\u7528\u4e8e\u5206\u7c7b\u4efb\u52a1\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#svm","title":"\u652f\u6301\u5411\u91cf\u673a\uff08SVM\uff09","text":"SVM\u7684\u76ee\u6807\u662f\u627e\u5230\u4e00\u4e2a\u8d85\u5e73\u9762\uff0c\u5b83\u53ef\u4ee5\u6700\u5927\u5316\u4e0d\u540c\u7c7b\u522b\u4e4b\u95f4\u7684\u8fb9\u754c\u3002\u8fd9\u4e2a\u8d85\u5e73\u9762\u88ab\u79f0\u4e3a\u6700\u4f18\u5206\u5272\u8d85\u5e73\u9762\u3002\u5bf9\u4e8e\u4e8c\u5206\u7c7b\u95ee\u9898\uff0cSVM\u7684\u635f\u5931\u51fd\u6570\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W, b) = \\frac{1}{N} \\sum_{i=1}^{N} \\max(0, 1 - y_i (W \\cdot x_i + b)) \\] \u5176\u4e2d\uff0c\\(W\\) \u662f\u6743\u91cd\u5411\u91cf\uff0c\\(b\\) \u662f\u504f\u7f6e\u9879\uff0c\\(x_i\\) \u662f\u8f93\u5165\u7279\u5f81\uff0c\\(y_i\\) \u662f\u6807\u7b7e\uff08-1\u62161\uff09\uff0c\\(N\\) \u662f\u6837\u672c\u6570\u91cf\u3002
\u4e3a\u4e86\u5b9e\u73b0\u591a\u5206\u7c7b\uff0c\u6211\u4eec\u4f7f\u7528\u7ed3\u6784\u5316SVM\u635f\u5931\u51fd\u6570\uff0c\u5b83\u8003\u8651\u4e86\u6bcf\u4e2a\u7c7b\u522b\u7684\u5206\u6570\uff0c\u5e76\u5c1d\u8bd5\u6700\u5927\u5316\u6b63\u786e\u7c7b\u522b\u7684\u5206\u6570\u4e0e\u6b21\u9ad8\u7c7b\u522b\u5206\u6570\u4e4b\u95f4\u7684\u5dee\u8ddd\u3002\u635f\u5931\u51fd\u6570\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W) = \\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j \\neq y_i} \\max(0, \\text{score}_j - \\text{score}_{y_i} + \\Delta) \\] \u5176\u4e2d\uff0c\\(\\text{score}_j = W_j \\cdot x_i\\)\uff0c\\(\\Delta\\) \u662f\u4e00\u4e2a\u5e38\u6570\uff0c\u901a\u5e38\u8bbe\u7f6e\u4e3a1\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#softmax","title":"Softmax\u5206\u7c7b\u5668","text":"Softmax\u5206\u7c7b\u5668\u4f7f\u7528Softmax\u51fd\u6570\u5c06\u8f93\u5165\u7279\u5f81\u6620\u5c04\u5230\u6982\u7387\u5206\u5e03\u4e0a\u3002\u5bf9\u4e8e\u6bcf\u4e2a\u6837\u672c\uff0cSoftmax\u51fd\u6570\u8f93\u51fa\u6bcf\u4e2a\u7c7b\u522b\u7684\u6982\u7387\u3002Softmax\u51fd\u6570\u5b9a\u4e49\u4e3a\uff1a
\\[ \\text{softmax}(z_i) = \\frac{e^{z_i}}{\\sum_{j=1}^{K} e^{z_j}} \\] \u5176\u4e2d\uff0c\\(z_i\\) \u662f\u7b2c\\(i\\)\u4e2a\u7c7b\u522b\u7684\u5206\u6570\uff0c\\(K\\) \u662f\u7c7b\u522b\u603b\u6570\u3002
Softmax\u5206\u7c7b\u5668\u7684\u635f\u5931\u51fd\u6570\u662f\u4ea4\u53c9\u71b5\u635f\u5931\uff0c\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W) = -\\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j=1}^{K} y_{ij} \\log(\\text{softmax}(z_j)) \\] \u5176\u4e2d\uff0c\\(y_{ij}\\) \u662f\u4e00\u4e2a\u6307\u793a\u53d8\u91cf\uff0c\u5982\u679c\u6837\u672c\\(i\\)\u5c5e\u4e8e\u7c7b\u522b\\(j\\)\uff0c\u5219\u4e3a1\uff0c\u5426\u5219\u4e3a0\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_2","title":"\u6b63\u5219\u5316","text":"\u4e3a\u4e86\u9632\u6b62\u8fc7\u62df\u5408\uff0c\u6211\u4eec\u5728\u635f\u5931\u51fd\u6570\u4e2d\u6dfb\u52a0\u4e86\u6b63\u5219\u5316\u9879\u3002L2\u6b63\u5219\u5316\u7684\u635f\u5931\u51fd\u6570\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W) = L(W) + \\lambda \\lVert W \\rVert^2 \\] \u5176\u4e2d\uff0c\\(\\lambda\\) \u662f\u6b63\u5219\u5316\u5f3a\u5ea6\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_3","title":"\u4ee3\u7801\u5b9e\u73b0","text":"\u4ee3\u7801\u4e2d\u5b9e\u73b0\u4e86\u4e24\u79cd\u635f\u5931\u51fd\u6570\u7684\u6734\u7d20\u7248\u672c\uff08svm_loss_naive
\u548c softmax_loss_naive
\uff09\u548c\u5411\u91cf\u5316\u7248\u672c\uff08svm_loss_vectorized
\u548c softmax_loss_vectorized
\uff09\u3002\u5411\u91cf\u5316\u7248\u672c\u901a\u8fc7\u907f\u514d\u663e\u5f0f\u5faa\u73af\u6765\u63d0\u9ad8\u8ba1\u7b97\u6548\u7387\u3002
\u8bad\u7ec3\u8fc7\u7a0b\uff08train_linear_classifier
\uff09\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d\uff08SGD\uff09\u6765\u4f18\u5316\u635f\u5931\u51fd\u6570\u3002\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\uff0c\u6211\u4eec\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6279\u6b21\u7684\u6837\u672c\uff0c\u8ba1\u7b97\u635f\u5931\u548c\u68af\u5ea6\uff0c\u7136\u540e\u66f4\u65b0\u6743\u91cd\u3002
\u9884\u6d4b\u8fc7\u7a0b\uff08predict_linear_classifier
\uff09\u4f7f\u7528\u8bad\u7ec3\u597d\u7684\u6743\u91cd\u6765\u9884\u6d4b\u65b0\u6837\u672c\u7684\u7c7b\u522b\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_4","title":"\u8d85\u53c2\u6570\u641c\u7d22","text":"\u4ee3\u7801\u4e2d\u8fd8\u5305\u542b\u4e86\u8d85\u53c2\u6570\u641c\u7d22\u7684\u51fd\u6570\uff08svm_get_search_params
\u548c softmax_get_search_params
\uff09\uff0c\u5b83\u4eec\u8fd4\u56de\u4e0d\u540c\u7684\u5b66\u4e60\u7387\u548c\u6b63\u5219\u5316\u5f3a\u5ea6\u7684\u5019\u9009\u503c\uff0c\u4ee5\u4fbf\u627e\u5230\u6700\u4f73\u7684\u6a21\u578b\u53c2\u6570\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_5","title":"\u4f5c\u4e1a\u5b9e\u73b0","text":"Pythonimport torch\nimport random\nfrom abc import abstractmethod\n\ndef hello_linear_classifier():\n print('Hello from linear_classifier.py!')\n\nclass LinearClassifier(object):\n def __init__(self):\n random.seed(0)\n torch.manual_seed(0)\n self.W = None\n\n def train(self, X_train, y_train, learning_rate=1e-3, reg=1e-5, num_iters=100,\n batch_size=200, verbose=False):\n train_args = (self.loss, self.W, X_train, y_train, learning_rate, reg,\n num_iters, batch_size, verbose)\n self.W, loss_history = train_linear_classifier(*train_args)\n return loss_history\n\n def predict(self, X):\n return predict_linear_classifier(self.W, X)\n\n @abstractmethod\n def loss(self, W, X_batch, y_batch, reg):\n raise NotImplementedError\n\n def _loss(self, X_batch, y_batch, reg):\n self.loss(self.W, X_batch, y_batch, reg)\n\n def save(self, path):\n torch.save({'W': self.W}, path)\n print(\"Saved in {}\".format(path))\n\n def load(self, path):\n W_dict = torch.load(path, map_location='cpu')\n self.W = W_dict['W']\n print(\"load checkpoint file: {}\".format(path))\n\n\nclass LinearSVM(LinearClassifier):\n def loss(self, W, X_batch, y_batch, reg):\n return svm_loss_vectorized(W, X_batch, y_batch, reg)\n\n\nclass Softmax(LinearClassifier):\n def loss(self, W, X_batch, y_batch, reg):\n return softmax_loss_vectorized(W, X_batch, y_batch, reg)\n\n\ndef svm_loss_naive(W, X, y, reg):\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n loss = 0.0\n for i in range(num_train):\n scores = W.t().mv(X[i])\n correct_class_score = scores[y[i]]\n for j in range(num_classes):\n if j == y[i]:\n continue\n margin = scores[j] - correct_class_score + 1\n if margin > 0:\n loss += margin\n dW[:, j] += X[i]\n dW[:, y[i]] -= X[i]\n\n loss /= num_train\n loss += reg * torch.sum(W * W)\n dW /= num_train\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef svm_loss_vectorized(W, X, y, reg):\n loss = 0.0\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n scores = X.mm(W)\n correct_class_score = scores[range(num_train), y]\n margin = scores - correct_class_score.view(-1, 1) + 1\n margin[range(num_train), y] = 0\n mask = (margin > 0)\n loss = margin[mask].sum()\n mask_correct_y = torch.zeros_like(scores, dtype=torch.bool)\n mask_correct_y[range(num_train), y] = True\n margin[margin > 0] = 1\n margin[margin < 0] = 0\n margin[mask_correct_y] = torch.sum(margin, axis=1) * -1\n dW = margin.T.mm(X).T\n loss /= num_train\n dW /= num_train\n loss += reg * torch.sum(W * W)\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef sample_batch(X, y, num_train, batch_size):\n indices = torch.randint(num_train, (batch_size,))\n y_batch = y[indices]\n X_batch = X[indices]\n return X_batch, y_batch\n\n\ndef train_linear_classifier(loss_func, W, X, y, learning_rate=1e-3,\n reg=1e-5, num_iters=100, batch_size=200,\n verbose=False):\n num_train, dim = X.shape\n if W is None:\n num_classes = torch.max(y) + 1\n W = 0.000001 * torch.randn(dim, num_classes, device=X.device, dtype=X.dtype)\n else:\n num_classes = W.shape[1]\n\n loss_history = []\n for it in range(num_iters):\n X_batch, y_batch = sample_batch(X, y, num_train, batch_size)\n loss, grad = loss_func(W, X_batch, y_batch, reg)\n loss_history.append(loss.item())\n W -= learning_rate * grad\n if verbose and it % 100 == 0:\n print('iteration %d / %d: loss %f' % (it, num_iters, loss))\n\n return W, loss_history\n\n\ndef predict_linear_classifier(W, X):\n y_pred = torch.zeros(X.shape[0], dtype=torch.int64)\n _, y_pred = X.mm(W).max(dim=1)\n return y_pred\n\n\ndef svm_get_search_params():\n learning_rates = [0.000001, 0.0001, 0.001, 0.005, 0.01, 0.05]\n regularization_strengths = [0.001, 0.5, 1, 3]\n return learning_rates, regularization_strengths\n\n\ndef test_one_param_set(cls, data_dict, lr, reg, num_iters=2000):\n train_acc = 0.0\n val_acc = 0.0\n cls.train(data_dict['X_train'], data_dict['y_train'], lr, reg, num_iters,\n batch_size=200, verbose=False)\n y_train_pred = cls.predict(data_dict['X_train'])\n train_acc = 100.0 * (data_dict['y_train'] == y_train_pred).double().mean().item()\n\n y_test_pred = cls.predict(data_dict['X_val'])\n val_acc = 100.0 * (data_dict['y_val'] == y_test_pred).double().mean().item()\n\n return cls, train_acc, val_acc\n\n\ndef softmax_loss_naive(W, X, y, reg):\n loss = 0.0\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n\n scores = W.t().mv(X[0])\n correct_class_score = scores[y[0]]\n\n for i in range(num_train):\n scores = W.t().mv(X[i])\n scores = scores - scores.max()\n correct_class_score = scores[y[i]]\n loss += -correct_class_score + torch.log(torch.exp(scores).sum())\n for j in range(num_classes):\n if j == y[i]:\n dW[:, j] += torch.exp(scores[j]) / torch.exp(scores).sum() * X[i, :] - X[i, :]\n else:\n dW[:, j] += torch.exp(scores[j]) / torch.exp(scores).sum() * X[i, :]\n\n loss /= num_train\n loss += reg * torch.sum(W * W)\n dW /= num_train\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef softmax_loss_vectorized(W, X, y, reg):\n loss = 0.0\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n\n\n scores = X.mm(W)\n val, _ = scores.max(dim=1)\n scores = scores - val.view(-1, 1)\n exp_scores = scores.exp()\n exp_scores_sum = exp_scores.sum(dim=1)\n exp_scores_sum_log = exp_scores_sum.log()\n correct_class_scores = scores[range(num_train), y]\n loss = (exp_scores_sum_log - correct_class_scores).sum()\n zeros = torch.zeros((num_train, num_classes), dtype=torch.float64, device='cuda')\n zeros[range(num_train), y] = -1\n minus_X = zeros.t().mm(X)\n dW += minus_X.t()\n dW += ((exp_scores / exp_scores_sum.view(-1, 1)).t().mm(X)).t()\n\n loss /= num_train\n loss += reg * torch.sum(W * W)\n dW /= num_train\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef softmax_get_search_params():\n learning_rates = [1e-4, 1e-3,1e-2, 1e-1, 1]\n regularization_strengths = [1e-4, 1e-3, 1e-2, 1e-1] \n return learning_rates, regularization_strengths\n
"},{"location":"AI/EECS%20498-007/pytorch%20%E7%9A%84%E5%9F%BA%E6%9C%AC%E4%BD%BF%E7%94%A8/","title":"pytorch \u7684\u57fa\u672c\u4f7f\u7528","text":" \u7ea6 564 \u4e2a\u5b57 45 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
Python# Create a rank 1 tensor from a Python list\na = torch.tensor([[1, 2, 3], [4, 5, 6]])\nprint('Here is a:')\nprint(a)\nprint('type(a): ', type(a))\nprint('rank of a: ', a.dim())\nprint('a.shape: ', a.shape)\n\ntorch.zeros(2, 3)\ntorch.ones(2, 3)\ntorch.eye(3)\ntorch.rand(2, 3)\ntorch.full((M, N), 3.14)\n\ny2 = torch.tensor([1, 2], dtype=torch.int64)\nprint(y2.dtype)\n\nx3 = x0.to(torch.float32)\n\nx0 = torch.eye(3, dtype=torch.float64) \u00a0# Shape (3, 3), dtype torch.float64\nx1 = torch.zeros_like(x0) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 # Shape (3, 3), dtype torch.float64\nx2 = x0.new_zeros(4, 5) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 # Shape (4, 5), dtype torch.float64\nx3 = torch.ones(6, 7).to(x0) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0# Shape (6, 7), dtype torch.float64\n
Even though PyTorch provides a large number of numeric datatypes, the most commonly used datatypes are:
torch.float32
: Standard floating-point type; used to store learnable parameters, network activations, etc. Nearly all arithmetic is done using this type. torch.int64
: Typically used to store indices torch.bool
: Stores boolean values: 0 is false and 1 is true torch.float16
: Used for mixed-precision arithmetic, usually on NVIDIA GPUs with tensor cores. You won't need to worry about this datatype in this course. - \u6ce8\u610f
a[:, 1]
\u548c a[:, 1:2]
\u7684\u533a\u522b\uff0c\u540e\u8005\u4f1a\u4fdd\u7559\u7684\u591a\u4e00\u70b9 clone()
\u4ee5\u540e\u7684\u53d8\u91cf\u8ddf\u539f\u53d8\u91cf\u662f\u72ec\u7acb\u7684\uff0c\u4f46\u662f\u7b49\u53f7\u76f4\u63a5\u8d4b\u503c\u7684\u662f\u540c\u4e00\u4e2a\u6307\u9488
Pythonmask = (a > 3)\nprint('\\nMask tensor:')\nprint(mask)\n# Mask tensor: tensor([[False, False], [False, True], [ True, True]])\n
- As its name implies, a tensor returned by
.view()
shares the same data as the input, so changes to one will affect the other.
Reshape\u548cview\u7684\u533a\u522b - \u5185\u5b58\u8fde\u7eed\u6027\uff1a
view
\u8981\u6c42\u539f\u59cb\u5f20\u91cf\u548c\u76ee\u6807\u5f20\u91cf\u5728\u5185\u5b58\u4e2d\u662f\u8fde\u7eed\u7684\u3002\u5982\u679c\u539f\u59cb\u5f20\u91cf\u4e0d\u662f\u8fde\u7eed\u7684\uff0c view
\u4f1a\u9996\u5148\u8c03\u7528 contiguous
\u65b9\u6cd5\u4f7f\u5176\u8fde\u7eed\uff0c\u7136\u540e\u6539\u53d8\u5f62\u72b6\u3002\u5982\u679c\u5f20\u91cf\u5df2\u7ecf\u662f\u8fde\u7eed\u7684\uff0c view
\u64cd\u4f5c\u4e0d\u4f1a\u590d\u5236\u6570\u636e\u3002 reshape
\u4e0d\u8981\u6c42\u539f\u59cb\u5f20\u91cf\u662f\u8fde\u7eed\u7684\u3002\u5982\u679c\u539f\u59cb\u5f20\u91cf\u4e0d\u662f\u8fde\u7eed\u7684\uff0creshape
\u4f1a\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u5f20\u91cf\u5e76\u590d\u5236\u6570\u636e\uff0c\u4ee5\u786e\u4fdd\u65b0\u5f20\u91cf\u662f\u8fde\u7eed\u7684\u3002
- \u8fd4\u56de\u503c
view
\u8fd4\u56de\u4e00\u4e2a\u65b0\u7684\u5f20\u91cf\uff0c\u5b83\u4e0e\u539f\u59cb\u5f20\u91cf\u5171\u4eab\u76f8\u540c\u7684\u6570\u636e\uff0c\u4f46\u662f\u6709\u4e0d\u540c\u7684\u5f62\u72b6\u3002\u5982\u679c\u539f\u59cb\u5f20\u91cf\u4e0d\u662f\u8fde\u7eed\u7684\uff0cview
\u4f1a\u8fd4\u56de\u4e00\u4e2a\u526f\u672c\u3002 reshape
\u4e5f\u8fd4\u56de\u4e00\u4e2a\u65b0\u7684\u5f20\u91cf\uff0c\u4f46\u603b\u662f\u521b\u5efa\u6570\u636e\u7684\u526f\u672c\uff0c\u5373\u4f7f\u539f\u59cb\u5f20\u91cf\u662f\u8fde\u7eed\u7684\u3002
- \u4f7f\u7528\u573a\u666f\uff1a
- \u5f53\u4f60\u786e\u5b9a\u539f\u59cb\u5f20\u91cf\u662f\u8fde\u7eed\u7684\uff0c\u5e76\u4e14\u4f60\u60f3\u8981\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u6570\u636e\u590d\u5236\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528
view
\u3002 - \u5f53\u4f60\u4e0d\u786e\u5b9a\u539f\u59cb\u5f20\u91cf\u662f\u5426\u8fde\u7eed\uff0c\u6216\u8005\u4f60\u60f3\u8981\u786e\u4fdd\u64cd\u4f5c\u4e0d\u4f1a\u56e0\u975e\u8fde\u7eed\u6027\u800c\u5931\u8d25\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528
reshape
\u3002
- \u53c2\u6570\uff1a
view
\u7684\u53c2\u6570\u662f\u76ee\u6807\u5f62\u72b6\u7684\u7ef4\u5ea6\u3002 reshape
\u7684\u53c2\u6570\u4e5f\u662f\u76ee\u6807\u5f62\u72b6\u7684\u7ef4\u5ea6\uff0c\u4f46\u5b83\u53ef\u4ee5\u63a5\u53d7\u4e00\u4e2a\u989d\u5916\u7684\u53c2\u6570inplace
\uff0c\u5982\u679c\u8bbe\u7f6e\u4e3aTrue
\uff0c\u5219\u4f1a\u5728\u539f\u5730\u4fee\u6539\u5f20\u91cf\u7684\u5f62\u72b6\u3002
torch.sin(x)
\u548c x.sin()
\u662f\u7b49\u4ef7\u7684
Pythonx = torch.tensor([[1, 2, 3],\n\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 [4, 5, 6]], dtype=torch.float32)\nprint('Original tensor:')\nprint(x)\n\nprint('\\nSum over entire tensor:')\nprint(torch.sum(x))\nprint(x.sum())\n\n# We can sum over each row:\nprint('\\nSum of each row:')\nprint(torch.sum(x, dim=0))\nprint(x.sum(dim=0))\n\n# Sum over each column:\nprint('\\nSum of each column:')\nprint(torch.sum(x, dim=1))\nprint(x.sum(dim=1))\n
torch.dot
: Computes inner product of vectors torch.mm
: Computes matrix-matrix products torch.mv
: Computes matrix-vector products torch.addmm
/ torch.addmv
: Computes matrix-matrix and matrix-vector multiplications plus a bias torch.bmm
/ torch.baddmm
: Batched versions of torch.mm
and torch.addmm
, respectively torch.matmul
: General matrix product that performs different operations depending on the rank of the inputs. Confusingly, this is similar to np.dot
in numpy.
"},{"location":"AI/ffb6d/ffb6d-docker/","title":"Docker\u4ece\u5165\u95e8\u5230\u5b9e\u8df5\uff1a\u4ee5FFB6D\u73af\u5883\u914d\u7f6e\u4e3a\u4f8b","text":" \u7ea6 653 \u4e2a\u5b57 213 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
"},{"location":"AI/ffb6d/ffb6d-docker/#1","title":"1. \u7b80\u4ecb","text":"Docker\u662f\u4e00\u4e2a\u5f00\u6e90\u7684\u5e94\u7528\u5bb9\u5668\u5f15\u64ce\uff0c\u8ba9\u5f00\u53d1\u8005\u53ef\u4ee5\u6253\u5305\u4ed6\u4eec\u7684\u5e94\u7528\u4ee5\u53ca\u4f9d\u8d56\u5305\u5230\u4e00\u4e2a\u53ef\u79fb\u690d\u7684\u5bb9\u5668\u4e2d\uff0c\u7136\u540e\u53d1\u5e03\u5230\u4efb\u4f55\u6d41\u884c\u7684Linux\u6216Windows\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u3002\u672c\u6587\u5c06\u4ee5\u914d\u7f6eFFB6D\uff08\u4e00\u4e2a3D\u76ee\u6807\u68c0\u6d4b\u6a21\u578b\uff09\u7684\u8fd0\u884c\u73af\u5883\u4e3a\u4f8b\uff0c\u4ecb\u7ecdDocker\u7684\u57fa\u672c\u4f7f\u7528\u3002
"},{"location":"AI/ffb6d/ffb6d-docker/#2","title":"2. \u73af\u5883\u51c6\u5907","text":""},{"location":"AI/ffb6d/ffb6d-docker/#21","title":"2.1 \u7cfb\u7edf\u8981\u6c42","text":" - Ubuntu 20.04/22.04/24.04
- NVIDIA GPU\uff08\u652f\u6301CUDA\uff09
- \u81f3\u5c118GB\u5185\u5b58
- \u81f3\u5c1130GB\u78c1\u76d8\u7a7a\u95f4
"},{"location":"AI/ffb6d/ffb6d-docker/#22","title":"2.2 \u57fa\u7840\u7ec4\u4ef6\u5b89\u88c5","text":"\u5b89\u88c5Docker
Bash# \u66f4\u65b0apt\u5305\u7d22\u5f15\nsudo apt-get update\n\n# \u5b89\u88c5\u5fc5\u8981\u7684\u7cfb\u7edf\u5de5\u5177\nsudo apt-get install -y \\\n apt-transport-https \\\n ca-certificates \\\n curl \\\n gnupg \\\n lsb-release\n\n# \u6dfb\u52a0Docker\u7684\u5b98\u65b9GPG\u5bc6\u94a5\ncurl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg\n\n# \u8bbe\u7f6e\u7a33\u5b9a\u7248\u4ed3\u5e93\necho \\\n \"deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \\\n $(lsb_release -cs) stable\" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null\n\n# \u5b89\u88c5Docker Engine\nsudo apt-get update\nsudo apt-get install -y docker-ce docker-ce-cli containerd.io\n\n# \u9a8c\u8bc1\u5b89\u88c5\nsudo docker run hello-world\n
\u5b89\u88c5NVIDIA\u9a71\u52a8
Bash# \u6dfb\u52a0NVIDIA\u5305\u4ed3\u5e93\nsudo add-apt-repository ppa:graphics-drivers/ppa\nsudo apt-get update\n\n# \u5b89\u88c5NVIDIA\u9a71\u52a8\nsudo apt-get install -y nvidia-driver-535 # \u6839\u636e\u9700\u8981\u9009\u62e9\u7248\u672c\n\n# \u91cd\u542f\u7cfb\u7edf\nsudo reboot\n\n# \u9a8c\u8bc1\u5b89\u88c5\nnvidia-smi\n
\u5b89\u88c5NVIDIA Container Toolkit
Bash# \u8bbe\u7f6e\u7a33\u5b9a\u7248\u4ed3\u5e93\ncurl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg\n\necho \"deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/$(arch) /\" | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list\n\n# \u66f4\u65b0\u8f6f\u4ef6\u5305\u5217\u8868\nsudo apt-get update\n\n# \u5b89\u88c5nvidia-docker2\nsudo apt-get install -y nvidia-container-toolkit\n\n# \u91cd\u542fDocker\u670d\u52a1\nsudo systemctl restart docker\n\n# \u6d4b\u8bd5GPU\u652f\u6301\nsudo docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi\n
"},{"location":"AI/ffb6d/ffb6d-docker/#23-docker","title":"2.3 Docker\u914d\u7f6e\u4f18\u5316","text":"\u914d\u7f6e\u955c\u50cf\u52a0\u901f
Bashsudo tee /etc/docker/daemon.json << EOF\n{\n \"registry-mirrors\": [\n \"https://docker.1panel.dev\",\n \"https://docker.zhai.cm\",\n \"https://hub.littlediary.cn\",\n \"https://docker.nastool.de\"\n ],\n \"dns\": [\"8.8.8.8\", \"8.8.4.4\"],\n \"max-concurrent-downloads\": 10,\n \"log-driver\": \"json-file\",\n \"log-opts\": {\n \"max-size\": \"10m\",\n \"max-file\": \"3\"\n }\n}\nEOF\n\nsudo systemctl daemon-reload\nsudo systemctl restart docker\n
"},{"location":"AI/ffb6d/ffb6d-docker/#3-ffb6d","title":"3. FFB6D\u73af\u5883\u914d\u7f6e\u5b9e\u4f8b","text":""},{"location":"AI/ffb6d/ffb6d-docker/#31","title":"3.1 \u9879\u76ee\u7ed3\u6784","text":"Bashffb6d_docker/\n\u251c\u2500\u2500 Dockerfile\n\u251c\u2500\u2500 docker-compose.yml\n\u251c\u2500\u2500 build_and_run.sh\n\u251c\u2500\u2500 downloads/\n\u2502 \u251c\u2500\u2500 apex/\n\u2502 \u2514\u2500\u2500 normalspeed/\n\u251c\u2500\u2500 code/\n\u251c\u2500\u2500 datasets/\n\u251c\u2500\u2500 models/\n\u2514\u2500\u2500 train_log/\n
"},{"location":"AI/ffb6d/ffb6d-docker/#32-dockerfile","title":"3.2 \u521b\u5efaDockerfile","text":"Docker# \u4f7f\u7528\u8f83\u65b0\u7684 CUDA \u955c\u50cf\nFROM nvcr.io/nvidia/cuda:11.0.3-cudnn8-devel-ubuntu18.04\n\n# \u4f7f\u7528 NVIDIA CUDA 11.3 \u57fa\u7840\u955c\u50cf\n# FROM nvcr.io/nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04\n\n# \u907f\u514d\u4ea4\u4e92\u5f0f\u63d0\u793a\nENV DEBIAN_FRONTEND=noninteractive\nENV PYTHONPATH=/workspace/code\nENV CUDA_HOME=/usr/local/cuda\nENV PATH=$CUDA_HOME/bin:$PATH\nENV LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH\n\nWORKDIR /workspace\n\n# \u5b89\u88c5\u7cfb\u7edf\u4f9d\u8d56\nRUN apt-get update && apt-get install -y \\\n python3.6 \\\n python3.6-dev \\\n python3-pip \\\n git \\\n cmake \\\n build-essential \\\n libopencv-dev \\\n libglib2.0-0 \\\n libsm6 \\\n libxext6 \\\n libxrender-dev \\\n libboost-all-dev \\\n libeigen3-dev \\\n wget \\\n && rm -rf /var/lib/apt/lists/*\n\n# \u8bbe\u7f6e Python 3.6 \u4e3a\u9ed8\u8ba4\u7248\u672c\nRUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1\nRUN update-alternatives --set python3 /usr/bin/python3.6\n\n# \u5347\u7ea7 pip\nRUN python3 -m pip install --upgrade pip\n\n# \u914d\u7f6epip\u955c\u50cf\u6e90\nRUN pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n\n# \u5148\u5b89\u88c5 PyTorch (\u4f7f\u7528\u8f83\u65b0\u4f46\u517c\u5bb9\u7684\u7248\u672c)\nRUN pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/torch_stable.html\n\n# \u590d\u5236\u9884\u4e0b\u8f7d\u7684\u6587\u4ef6\nCOPY downloads/apex /workspace/apex\nCOPY downloads/normalspeed /workspace/normalspeed\nCOPY code /workspace/code\n\n# \u5b89\u88c5 apex\n#RUN cd /workspace/apex && \\\n# pip install -v --no-cache-dir --global-option=\"--cpp_ext\" --global-option=\"--cuda_ext\" ./ || \\\n# (echo \"Apex installation failed. Check the error messages above.\" && exit 1)\n\n# \u5b89\u88c5 normalspeed\n#RUN cd /workspace/normalspeed && \\\n# python3 setup.py build_ext --inplace && \\\n# python3 setup.py install\n\nWORKDIR /workspace/code\n
\u66f4\u6539 requirement.txt
Text Onlyh5py \nnumpy \npyyaml==5.4.1\nenum34 \nfuture \nscipy==1.4.1 \nopencv_contrib_python==3.4.2.16 \ntransforms3d==0.3.1 \nscikit_image==0.13.1 \nlmdb==0.94 \nsetuptools==41.0.0 \ncffi==1.11.5 \neasydict==1.7 \nplyfile==0.6 \npillow==8.2.0 \ndataclasses\nglumpy \ntqdm\ntensorboardX \npandas\nscikit-learn \nscipy \ntermcolor\npybind11\n
"},{"location":"AI/ffb6d/ffb6d-docker/#33-docker-composeyml","title":"3.3 \u521b\u5efadocker-compose.yml","text":"YAMLversion: '3'\nservices:\n ffb6d:\n build: .\n image: ffb6d:latest\n container_name: ffb6d_container\n runtime: nvidia\n environment:\n - NVIDIA_VISIBLE_DEVICES=all\n volumes:\n - ./datasets:/workspace/code/datasets\n - ./train_log:/workspace/code/train_log\n - ./models:/workspace/code/models\n shm_size: '8gb'\n tty: true\n stdin_open: true\n
"},{"location":"AI/ffb6d/ffb6d-docker/#34","title":"3.4 \u6784\u5efa\u548c\u8fd0\u884c\u811a\u672c","text":"\u521b\u5efabuild_and_run.sh
\uff1a
Bash#!/bin/bash\n\n# \u521b\u5efa\u5fc5\u8981\u76ee\u5f55\nmkdir -p downloads datasets models train_log\n\n# \u4e0b\u8f7d\u4f9d\u8d56\ncd downloads\nif [ ! -d \"apex\" ]; then\n git clone https://github.com/NVIDIA/apex.git\nfi\nif [ ! -d \"normalspeed\" ]; then\n git clone https://github.com/hfutcgncas/normalspeed.git\nfi\ncd ..\n\n# \u514b\u9686FFB6D\u4ee3\u7801\nif [ ! -d \"code\" ]; then\n git clone https://github.com/ethnhe/FFB6D.git code\nfi\n\n# \u6784\u5efa\u955c\u50cf\ndocker-compose build\n\n# \u8fd0\u884c\u5bb9\u5668\ndocker-compose up -d\ndocker exec -it ffb6d_container bash\n
"},{"location":"AI/ffb6d/ffb6d-docker/#35","title":"3.5 \u542f\u52a8\u548c\u9a8c\u8bc1","text":"Bash# \u6dfb\u52a0\u6267\u884c\u6743\u9650\nchmod +x build_and_run.sh\n\n# \u8fd0\u884c\n./build_and_run.sh\n\n# \u5728\u5bb9\u5668\u5185\u9a8c\u8bc1\npython3 -c \"import torch; print('CUDA available:', torch.cuda.is_available())\"\npython3 -c \"from apex import amp; print('APEX installed')\"\npython3 -c \"import normalspeed; print('normalspeed installed')\"\n
"},{"location":"AI/ffb6d/ffb6d-docker/#36-apex","title":"3.6 \u7f16\u8bd1 apex","text":"Text Onlygit clone https://github.com/NVIDIA/apex\ncd apex\nexport TORCH_CUDA_ARCH_LIST=\"6.0;6.1;6.2;7.0;7.5\"\npython setup.py install -v\n
"},{"location":"AI/ffb6d/ffb6d-docker/#37-normalspeed","title":"3.7 \u7f16\u8bd1 normalspeed","text":"Text Only# 1. \u5378\u8f7d\u5f53\u524dcv2\npip uninstall opencv-python opencv-python-headless -y\n\n# 2. \u5b89\u88c5\u7279\u5b9a\u7248\u672c\u7684OpenCV\uff0c\u9009\u62e9\u4e0ePython 3.6\u517c\u5bb9\u7684\u7248\u672c\npip install opencv-python==4.5.3.56\n\n# 3. \u9a8c\u8bc1\u5b89\u88c5\npython3 -c \"import cv2; print(cv2.__version__)\"\n
Text Only# \u8fdb\u5165normalSpeed\u76ee\u5f55\ncd /workspace/code/normalspeed/normalSpeed\n\n# \u5b89\u88c5\u4f9d\u8d56\napt-get update\napt-get install python3-pybind11\npip3 install Cython==0.29.15\n\n# \u6e05\u7406\u4e4b\u524d\u7684\u6784\u5efa\nrm -rf build/\nrm -rf dist/\nrm -rf *.egg-info/\n\n# \u91cd\u65b0\u5b89\u88c5\npython3 setup.py install\n\n# \u9a8c\u8bc1\u5b89\u88c5\npython3 -c \"import normalSpeed\"\n\n# \u8fd4\u56deffb6d\u76ee\u5f55\ncd /workspace/code/ffb6d/\n
Text Onlypython3 setup.py install --user\n
"},{"location":"AI/ffb6d/ffb6d-docker/#38","title":"3.8 \u8bad\u7ec3","text":"\u628a LineMOD \u590d\u5236\u5230\u5bf9\u5e94\u7684\u8def\u5f84\u4e0b\uff0c\u7136\u540e\u6309\u5b98\u7f51\u6765\u5c31\u597d\u4e86
"},{"location":"AI/ffb6d/ffb6d-docker/#4","title":"4. \u5e38\u89c1\u95ee\u9898","text":""},{"location":"AI/ffb6d/ffb6d-docker/#41","title":"4.1 \u7f51\u7edc\u95ee\u9898","text":"\u5982\u679c\u9047\u5230\u4e0b\u8f7d\u6162\u6216\u5931\u8d25\uff1a
Bash# \u4e34\u65f6\u4f7f\u7528\u4ee3\u7406\nexport http_proxy=\"http://proxy:port\"\nexport https_proxy=\"http://proxy:port\"\n\n# \u6216\u4fee\u6539pip\u6e90\npip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n
\u6ce8\u610f\u7528\u4e86\u4ee3\u7406\u7684\u8bdd\uff0cdocker hub \u955c\u50cf\u5c31\u4f1a\u88ab\u8986\u76d6\u6389\uff0c\u5bfc\u81f4\u901f\u5ea6\u5f88\u6162\u3002\u6240\u4ee5\u5230\u65f6\u5019\u4e00\u5b9a\u8981\u53d6\u6d88\u4ee3\u7406 / \u5220\u9664\u4ee3\u7406\u6587\u4ef6
docker hub \u955c\u50cf\u8bbe\u7f6e\u4e0a\u9762\u5199\u4e86\uff0c\u5b98\u7f51\u662f\u8fd9\u4e2a GitHub - dongyubin/DockerHub: 2024\u5e7411\u6708\u66f4\u65b0\uff0c\u76ee\u524d\u56fd\u5185\u53ef\u7528Docker\u955c\u50cf\u6e90\u6c47\u603b\uff0cDockerHub\u56fd\u5185\u955c\u50cf\u52a0\u901f\u5217\u8868\uff0c\ud83d\ude80DockerHub\u955c\u50cf\u52a0\u901f\u5668
"},{"location":"AI/ffb6d/ffb6d-docker/#42-cuda","title":"4.2 CUDA\u517c\u5bb9\u6027","text":"\u786e\u4fddNVIDIA\u9a71\u52a8\u7248\u672c\u652f\u6301\u6240\u9700\u7684CUDA\u7248\u672c\uff1a
Bash# \u68c0\u67e5\u652f\u6301\u7684\u6700\u9ad8CUDA\u7248\u672c\nnvidia-smi\n
"},{"location":"AI/ffb6d/ffb6d-docker/#43","title":"4.3 \u5185\u5b58\u4e0d\u8db3","text":"\u8c03\u6574Docker\u5185\u5b58\u9650\u5236\uff1a
YAML# \u5728docker-compose.yml\u4e2d\u6dfb\u52a0\nservices:\n ffb6d:\n deploy:\n resources:\n limits:\n memory: 16G\n
"},{"location":"AI/ffb6d/ffb6d-docker/#5","title":"5. \u603b\u7ed3","text":"\u672c\u6587\u4ecb\u7ecd\u4e86\u4f7f\u7528Docker\u914d\u7f6e\u6df1\u5ea6\u5b66\u4e60\u73af\u5883\u7684\u5b8c\u6574\u6d41\u7a0b\uff0c\u4ee5FFB6D\u4e3a\u4f8b\u5c55\u793a\u4e86\u5982\u4f55\u5904\u7406\u590d\u6742\u4f9d\u8d56\u5173\u7cfb\u3002\u901a\u8fc7\u5bb9\u5668\u5316\u6280\u672f\uff0c\u6211\u4eec\u53ef\u4ee5\uff1a
- \u786e\u4fdd\u73af\u5883\u4e00\u81f4\u6027
- \u7b80\u5316\u90e8\u7f72\u6d41\u7a0b
- \u63d0\u9ad8\u5f00\u53d1\u6548\u7387
- \u65b9\u4fbf\u56e2\u961f\u534f\u4f5c
\u5e0c\u671b\u672c\u6559\u7a0b\u80fd\u5e2e\u52a9\u4f60\u66f4\u597d\u5730\u7406\u89e3\u548c\u4f7f\u7528Docker\u3002
"},{"location":"AI/ffb6d/ffb6d-docker/#_1","title":"\u53c2\u8003\u8d44\u6599","text":" - Docker\u5b98\u65b9\u6587\u6863
- NVIDIA Docker\u6587\u6863
- FFB6D\u9879\u76ee
- \u3010\u8bba\u6587\u7b14\u8bb0\u3011FFB6D | \u9a6c\u6d69\u98de\u4e28\u535a\u5ba2
"},{"location":"AI/ffb6d/ffb6d/","title":"FFB6D\u73af\u5883\u914d\u7f6e\u6307\u5357\uff1a\u539f\u751f\u7cfb\u7edf\u5b89\u88c5","text":" \u7ea6 293 \u4e2a\u5b57 96 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
"},{"location":"AI/ffb6d/ffb6d/#1","title":"1. \u7cfb\u7edf\u8981\u6c42","text":" - Ubuntu 20.04/22.04/24.04
- NVIDIA GPU\uff08\u652f\u6301CUDA\uff09
- \u81f3\u5c118GB\u5185\u5b58
- \u81f3\u5c1130GB\u78c1\u76d8\u7a7a\u95f4
"},{"location":"AI/ffb6d/ffb6d/#2","title":"2. \u57fa\u7840\u73af\u5883\u914d\u7f6e","text":""},{"location":"AI/ffb6d/ffb6d/#21-nvidia","title":"2.1 \u5b89\u88c5NVIDIA\u9a71\u52a8","text":"Bash# \u6dfb\u52a0NVIDIA\u5305\u4ed3\u5e93\nsudo add-apt-repository ppa:graphics-drivers/ppa\nsudo apt-get update\n\n# \u5b89\u88c5NVIDIA\u9a71\u52a8\nsudo apt-get install -y nvidia-driver-535 # \u6839\u636e\u9700\u8981\u9009\u62e9\u7248\u672c\n\n# \u91cd\u542f\u7cfb\u7edf\nsudo reboot\n\n# \u9a8c\u8bc1\u5b89\u88c5\nnvidia-smi\n
"},{"location":"AI/ffb6d/ffb6d/#22-cudacudnn","title":"2.2 \u5b89\u88c5CUDA\u548ccuDNN","text":"Bash# \u4e0b\u8f7d\u5e76\u5b89\u88c5CUDA 11.0\nwget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run\nsudo sh cuda_11.0.3_450.51.06_linux.run\n\n# \u914d\u7f6e\u73af\u5883\u53d8\u91cf\necho 'export PATH=/usr/local/cuda-11.0/bin:$PATH' >> ~/.bashrc\necho 'export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc\nsource ~/.bashrc\n\n# \u4e0b\u8f7d\u5e76\u5b89\u88c5cuDNN 8.0\n# \u6ce8\uff1a\u9700\u8981\u4eceNVIDIA\u5f00\u53d1\u8005\u7f51\u7ad9\u4e0b\u8f7dcuDNN v8.0\uff0c\u89e3\u538b\u540e\uff1a\nsudo cp cuda/include/cudnn*.h /usr/local/cuda/include\nsudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64\nsudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*\n
"},{"location":"AI/ffb6d/ffb6d/#23","title":"2.3 \u5b89\u88c5\u7cfb\u7edf\u4f9d\u8d56","text":"Bashsudo apt-get update\nsudo apt-get install -y \\\n python3.6 \\\n python3.6-dev \\\n python3-pip \\\n git \\\n cmake \\\n build-essential \\\n libopencv-dev \\\n libglib2.0-0 \\\n libsm6 \\\n libxext6 \\\n libxrender-dev \\\n libboost-all-dev \\\n libeigen3-dev\n
"},{"location":"AI/ffb6d/ffb6d/#24-python","title":"2.4 \u914d\u7f6ePython\u73af\u5883","text":"Bash# \u8bbe\u7f6ePython 3.6\u4e3a\u9ed8\u8ba4\u7248\u672c\nsudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1\nsudo update-alternatives --set python3 /usr/bin/python3.6\n\n# \u914d\u7f6epip\u955c\u50cf\u6e90\npip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n\n# \u5347\u7ea7pip\npython3 -m pip install --upgrade pip\n
"},{"location":"AI/ffb6d/ffb6d/#3-pytorch","title":"3. \u5b89\u88c5PyTorch\u548c\u4f9d\u8d56\u5305","text":""},{"location":"AI/ffb6d/ffb6d/#31-pytorch","title":"3.1 \u5b89\u88c5PyTorch","text":"Bashpip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/torch_stable.html\n
"},{"location":"AI/ffb6d/ffb6d/#32","title":"3.2 \u5b89\u88c5\u9879\u76ee\u4f9d\u8d56","text":"\u521b\u5efarequirements.txt\u5e76\u5b89\u88c5\u4f9d\u8d56\uff1a
Bashpip3 install -r requirements.txt\n
requirements.txt\u5185\u5bb9\uff1a Text Only
h5py \nnumpy \npyyaml==5.4.1\nenum34 \nfuture \nscipy==1.4.1 \nopencv_contrib_python==3.4.2.16 \ntransforms3d==0.3.1 \nscikit_image==0.13.1 \nlmdb==0.94 \nsetuptools==41.0.0 \ncffi==1.11.5 \neasydict==1.7 \nplyfile==0.6 \npillow==8.2.0 \ndataclasses\nglumpy \ntqdm\ntensorboardX \npandas\nscikit-learn \nscipy \ntermcolor\npybind11\n
"},{"location":"AI/ffb6d/ffb6d/#4","title":"4. \u7f16\u8bd1\u548c\u5b89\u88c5\u7279\u6b8a\u7ec4\u4ef6","text":""},{"location":"AI/ffb6d/ffb6d/#41-apex","title":"4.1 \u7f16\u8bd1apex","text":"Bash
git clone https://github.com/NVIDIA/apex\ncd apex\nexport TORCH_CUDA_ARCH_LIST=\"6.0;6.1;6.2;7.0;7.5\"\npython setup.py install -v\ncd ..\n
"},{"location":"AI/ffb6d/ffb6d/#42-normalspeed","title":"4.2 \u5b89\u88c5\u548c\u7f16\u8bd1normalspeed","text":"Bash
# 1. \u51c6\u5907OpenCV\u73af\u5883\npip uninstall opencv-python opencv-python-headless -y\npip install opencv-python==4.5.3.56\n\n# 2. \u514b\u9686\u5e76\u5b89\u88c5normalspeed\ngit clone https://github.com/hfutcgncas/normalspeed.git\ncd normalspeed/normalSpeed\n\n# \u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56\nsudo apt-get install python3-pybind11\npip3 install Cython==0.29.15\n\n# \u6e05\u7406\u5e76\u91cd\u65b0\u5b89\u88c5\nrm -rf build/ dist/ *.egg-info/\npython3 setup.py install --user\ncd ../..\n
"},{"location":"AI/ffb6d/ffb6d/#5-ffb6d","title":"5. \u514b\u9686\u548c\u914d\u7f6eFFB6D","text":"Bash
# \u514b\u9686\u4ee3\u7801\ngit clone https://github.com/ethnhe/FFB6D.git\ncd FFB6D\n\n# \u521b\u5efa\u5fc5\u8981\u7684\u76ee\u5f55\nmkdir -p datasets models train_log\n\n# \u914d\u7f6e\u73af\u5883\u53d8\u91cf\nexport PYTHONPATH=$PYTHONPATH:$(pwd)\n
"},{"location":"AI/ffb6d/ffb6d/#6","title":"6. \u9a8c\u8bc1\u5b89\u88c5","text":"Bash
# \u9a8c\u8bc1CUDA\u652f\u6301\npython3 -c \"import torch; print('CUDA available:', torch.cuda.is_available())\"\n\n# \u9a8c\u8bc1apex\u5b89\u88c5\npython3 -c \"from apex import amp; print('APEX installed')\"\n\n# \u9a8c\u8bc1normalspeed\u5b89\u88c5\npython3 -c \"import normalSpeed; print('normalspeed installed')\"\n
"},{"location":"AI/ffb6d/ffb6d/#7","title":"7. \u5e38\u89c1\u95ee\u9898","text":""},{"location":"AI/ffb6d/ffb6d/#71","title":"7.1 \u7f51\u7edc\u95ee\u9898","text":"Bash
# \u4f7f\u7528\u4ee3\u7406\uff08\u5982\u9700\u8981\uff09\nexport http_proxy=\"http://proxy:port\"\nexport https_proxy=\"http://proxy:port\"\n\n# \u6216\u4f7f\u7528\u56fd\u5185\u955c\u50cf\u6e90\npip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n
"},{"location":"AI/ffb6d/ffb6d/#72","title":"7.2 \u7248\u672c\u517c\u5bb9\u6027\u95ee\u9898","text":"
- \u786e\u4fddNVIDIA\u9a71\u52a8\u7248\u672c\u652f\u6301CUDA 11.0
- \u786e\u4fddPython\u5305\u7248\u672c\u76f8\u4e92\u517c\u5bb9
- \u68c0\u67e5CUDA\u7248\u672c\u4e0ePyTorch\u7248\u672c\u7684\u5339\u914d
"},{"location":"AI/ffb6d/ffb6d/#73","title":"7.3 \u7f16\u8bd1\u9519\u8bef","text":"
- \u786e\u4fdd\u5df2\u5b89\u88c5\u6240\u6709\u5fc5\u8981\u7684\u7f16\u8bd1\u5de5\u5177
- \u68c0\u67e5CUDA\u8def\u5f84\u914d\u7f6e\u662f\u5426\u6b63\u786e
- \u786e\u8ba4\u7cfb\u7edf\u5e93\u7248\u672c\u662f\u5426\u6ee1\u8db3\u8981\u6c42
"},{"location":"AI/ffb6d/ffb6d/#8","title":"8. \u8bad\u7ec3","text":"
\u6309\u7167\u5b98\u65b9\u6587\u6863\u914d\u7f6eLineMOD\u6570\u636e\u96c6\u5e76\u5f00\u59cb\u8bad\u7ec3\u3002
"},{"location":"AI/ffb6d/ffb6d/#_1","title":"\u53c2\u8003\u8d44\u6599","text":"
- FFB6D\u9879\u76ee
- CUDA\u5b89\u88c5\u6307\u5357
- PyTorch\u5b89\u88c5\u6307\u5357
- \u3010\u8bba\u6587\u7b14\u8bb0\u3011FFB6D | \u9a6c\u6d69\u98de\u4e28\u535a\u5ba2
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/","title":"\u6df1\u5165\u7406\u89e3\u8ba1\u7b97\u673a\u7cfb\u7edf","text":"
\u7ea6 1012 \u4e2a\u5b57 36 \u884c\u4ee3\u7801 14 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#1","title":"1 \u8ba1\u7b97\u673a\u7cfb\u7edf\u6f2b\u6e38","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#2","title":"2 \u4fe1\u606f\u7684\u8868\u793a\u548c\u5904\u7406","text":"
- \u628a\u4f4d\u7ec4\u5408\u518d\u4e00\u8d77\uff0c\u518d\u52a0\u4e0a interpretation
- \u4e09\u79cd\u91cd\u8981\u7684\u6570\u5b57\u8868\u793a
- unsigned
- two's-complement
- floating-point
- overflow
- \u6d6e\u70b9\u6570\u662f\u8fd1\u4f3c\u7684
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#21","title":"2.1 \u4fe1\u606f\u5b58\u50a8","text":"
- 1 byte = 8 bits
- virtual memory
- address
- \u8bb2\u5b58\u50a8\u5668\u7a7a\u95f4\u5212\u5206\u4e3a\u66f4\u53ef\u7ba1\u7406\u7684\u5355\u5143\uff0c\u6765\u5b58\u653e\u4e0d\u540c\u7684 program object
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#211","title":"2.1.1 \u5341\u516d\u8fdb\u5236\u8868\u793a\u6cd5","text":"
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#212","title":"2.1.2 \u5b57\u6570\u636e\u5927\u5c0f","text":"
- word size
- nominal size
- \u5b57\u957f\u51b3\u5b9a\u7684\u6700\u91cd\u8981\u7684\u7cfb\u7edf\u53c2\u6570\u5c31\u662f\u865a\u62df\u5730\u5740\u7a7a\u95f4\u7684\u6700\u5927\u5927\u5c0f
- \u5b57\u957f\u4e3a \\(\\displaystyle \\omega\\) \u4e3a\u7684\u673a\u5668\uff0c\u865a\u62df\u5730\u5740\u7684\u8303\u56f4\u4e3a \\(\\displaystyle 0\\sim2^{\\omega} - 1\\)
- \u5927\u591a\u6570 64 \u4f4d\u673a\u5668\u53ef\u4ee5\u8fd0\u884c 32 \u4f4d\u673a\u5668\u7f16\u8bd1\u7684\u7a0b\u5e8f\uff0c\u5373\u5411\u540e\u517c\u5bb9
- \u4e3a\u4e86\u907f\u514d\u5927\u5c0f\u548c\u4e0d\u540c\u7f16\u8bd1\u5668\u8bbe\u7f6e\u5e26\u6765\u7684\u5947\u602a\u884c\u4e3a\uff0c\u6211\u4eec\u6709\u4e86 int 32_t \u548c int 64_t
- C \u8bed\u8a00\u5bf9\u58f0\u660e\u7684\u5173\u952e\u8bcd\u987a\u5e8f\u4e0d\u654f\u611f
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#213","title":"2.1.3 \u5bfb\u5740\u548c\u5b57\u8282\u987a\u5e8f","text":"
- [[\u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u786c\u4ef6\u8f6f\u4ef6\u63a5\u53e3#^da8be4|\u5c0f\u7aef\u7f16\u5740]]
- \u5c31\u662f\u53f3\u8fb9\u653e\u5c0f\u7684\uff0c\u8981\u4ece\u53f3\u5f80\u5de6\u8bfb
- \u5b57\u8282\u987a\u5e8f\u53d8\u5f97\u91cd\u8981\u7684\u4e09\u79cd\u60c5\u51b5
- \u7f51\u7edc\u5e94\u7528\u7a0b\u5e8f\u7684\u4ee3\u7801\u7f16\u5199\u5fc5\u987b\u9075\u5b88\u5df2\u5efa\u7acb\u7684\u5173\u4e8e\u5b57\u8282\u987a\u5e8f\u7684\u89c4\u5219
- disassembler
- \u7f16\u5199\u89c4\u907f\u6b63\u5e38\u7684\u7c7b\u578b\u7cfb\u7edf\u7684\u7a0b\u5e8f
- cast or union in C
- \u5bf9\u5e94\u7528\u7f16\u7a0b\u4e0d\u63a8\u8350\uff0c\u4f46\u662f\u5bf9\u7cfb\u7edf\u7ea7\u7f16\u7a0b\u662f\u5fc5\u9700\u7684
C
#include <stdio.h>\n\n\n\ntypedef unsigned char *byte_pointer;\n\nvoid show_bytes(byte_pointer start, size_t len) {\n\u00a0 size_t i;\n\u00a0 for (i = 0; i < len; i++)\n\u00a0 \u00a0 printf(\" %.2x\", start[i]);\n\u00a0 printf(\"\\n\");\n}\n\nvoid show_int(int x) { show_bytes((byte_pointer)&x, sizeof(int)); }\n\nvoid show_float(float x) { show_bytes((byte_pointer)&x, sizeof(float)); }\n\nvoid show_pointer(void *x) { show_bytes((byte_pointer)&x, sizeof(void *)); }\n\nvoid test_show_bytes(int val) {\n\u00a0 int ival = val;\n\u00a0 float fval = (float)ival;\n\u00a0 int *pval = &ival;\n\u00a0 show_int(ival);\n\u00a0 show_float(fval);\n\u00a0 show_pointer(pval);\n}\n\nint main() {\n\u00a0 int val = 12345;\n\u00a0 test_show_bytes(val);\n\u00a0 return 0;\n}\n
Text Only
39 30 00 00 //\u5c0f\u7aef\u6cd5\n 00 e4 40 46\n 8c f6 bf ef b4 00 00 00\n
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#214","title":"2.1.4 \u8868\u793a\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#215","title":"2.1.5 \u8868\u793a\u4ee3\u7801","text":"
- \u4e8c\u8fdb\u5236\u4ee3\u7801\u5f88\u5c11\u80fd\u5728\u4e0d\u540c\u673a\u5668\u548c\u64cd\u4f5c\u7cfb\u7edf\u7ec4\u5408\u4e4b\u95f4\u79fb\u690d
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#216","title":"2.1.6 \u5e03\u5c14\u4ee3\u6570\u7b80\u4ecb","text":"
- \u53ef\u4ee5\u6269\u5c55\u5230\u4f4d\u5411\u91cf\u7684\u8fd0\u7b97
- \u5e03\u5c14\u4ee3\u6570
- Boolean ring
- \u548c\u96c6\u5408\u7684\u5bf9\u5e94
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#217-c","title":"2.1.7 C \u8bed\u8a00\u4e2d\u7684\u4f4d\u7ea7\u8fd0\u7b97","text":"
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#218-c","title":"2.1.8 C \u8bed\u8a00\u4e2d\u7684\u903b\u8f91\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#219-c","title":"2.1.9 C \u8bed\u8a00\u4e2d\u7684\u79fb\u4f4d\u8fd0\u7b97","text":"
- \u903b\u8f91\u53f3\u79fb
- \u7b97\u6570\u53f3\u79fb
- \u5b9e\u9645\u4e0a\uff0c\u51e0\u4e4e\u6240\u6709\u7684\u7f16\u8bd1\u5668\u90fd\u5bf9\u6709\u7b26\u53f7\u6570\u4f7f\u7528\u7b97\u672f\u53f3\u79fb\uff0c\u800c\u5bf9\u4e8e\u65e0\u7b26\u53f7\u6570\uff0c\u53f3\u79fb\u5fc5\u987b\u662f\u903b\u8f91\u7684\uff08C \u8bed\u8a00\uff09
- \u800c\u5bf9\u4e8e Java
x>>k
\u662f\u7b97\u6570\u53f3\u79fb\uff0c x>>>k
\u662f\u903b\u8f91\u53f3\u79fb - \u5bf9\u4e8e C \u8bed\u8a00\uff0c\u79fb\u52a8 \\(\\displaystyle k \\text{ mod } \\omega\\)
- \u52a0\u51cf\u7684\u4f18\u5148\u7ea7\u6bd4\u79fb\u4f4d\u7b97\u6cd5\u8981\u641e
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#22","title":"2.2 \u6574\u6570\u8868\u793a","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#221","title":"2.2.1 \u6574\u578b\u6570\u636e\u7c7b\u578b","text":"
- 64 \u4f4d\u548c 32 \u4f4d\u662f\u4e0d\u4e00\u6837\u7684
- \u53d6\u503c\u8303\u56f4\u4e0d\u662f\u5bf9\u79f0\u7684
- Java \u53ea\u652f\u6301\u6709\u7b26\u53f7\u6570
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#222","title":"2.2.2 \u65e0\u7b26\u53f7\u6570\u7684\u7f16\u7801","text":"
- \u628a\u5411\u91cf\u5199\u6210\u4e8c\u8fdb\u5236\u8868\u793a\u7684\u6570\uff0c\u5c31\u5f97\u5230\u4e86\u65e0\u7b26\u53f7\u8868\u793a
\\[ B2U_w(\\vec{x})\\doteq\\sum_{i=0}^{u-1}x_i2^i \\] \\[ B2U_w:\\{0, 1\\}^w\\to\\{0, \\cdots,2^w-1\\} \\]
- \u65e0\u7b26\u53f7\u6570\u7f16\u7801\u7684\u552f\u4e00\u6027
- \\(\\displaystyle \u51fd\u6570B2U_w\u662f\u4e00\u4e2a\u53cc\u5c04\u3002\\)
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#223","title":"2.2.3 \u8865\u7801\u7f16\u7801","text":"
- two's-complement
- negative weight
\\[ B2T_w(\\vec{x})\\doteq- x_{w-1}2^{w-1}+\\sum_{i=0}^{w-2}x_i2^i \\] \\[ B2T_{w}\\colon \\{0, 1\\}^{w}\\to\\langle TMin_{w}, \\cdots, TMax_{w} \\rangle \\]
\\[ B2O_w(\\vec{x})\\doteq-x_{w-1}(2^{w-1}-1)+\\sum_{i=0}^{w-2}x_i2^i \\]
\\[ B2S_w(\\vec{x})\\doteq(-1)^{x_{w-1}}\\cdot\\bigl(\\sum_{i=0}^{w-2}x_i2^i\\bigr) \\]
- \u5bf9\u4e8e\u6570\u5b57 0 \u6709\u4e24\u79cd\u4e0d\u540c\u7684\u7f16\u7801\u65b9\u5f0f
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#224","title":"2.2.4 \u6709\u7b26\u53f7\u6570\u548c\u65e0\u7b26\u53f7\u6570\u4e4b\u95f4\u7684\u8f6c\u6362","text":"
- \u4fdd\u6301\u4f4d\u503c\u4e0d\u53d8\uff0c\u6539\u53d8\u89e3\u91ca\u65b9\u5f0f
\\[ T2U_{_w}(x)\\doteq B2U_{_w}( T2B_{_w}(x) ) \\]
- \u8865\u7801\u8f6c\u6362\u4e3a\u65e0\u7b26\u53f7\u6570
\\[ T2U_w(x)=\\begin{cases}x+2^w,&x<0\\\\x,&x\\geqslant0\\end{cases} \\]
- \u65e0\u7b26\u53f7\u6570\u8f6c\u6362\u4e3a\u8865\u7801
\\[ U2T_w(u)=\\begin{cases}u ,&u\\leqslant TMax_w\\\\u-2^w ,&u>TMax_w\\end{cases} \\]"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#225-c","title":"2.2.5 C \u8bed\u8a00\u4e2d\u7684\u6709\u7b26\u53f7\u6570\u4e0e\u65e0\u7b26\u53f7\u6570","text":"
- \u4e00\u4e2a\u8fd0\u7b97\u7b26\u662f\u6709\u7b26\u53f7\u7684\u800c\u53e6\u4e00\u4e2a\u662f\u65e0\u7b26\u53f7\u7684\uff0c\u90a3 C \u7a0b\u5e8f\u4f1a\u628a\u6709\u7b26\u53f7\u7684\u8f6c\u6362\u4e3a\u65e0\u7b26\u53f7\u7684\u3002
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#226","title":"2.2.6 \u6269\u5c55\u4e00\u4e2a\u6570\u5b57\u7684\u4f4d\u8868\u793a","text":"
- \u65e0\u7b26\u53f7\u6570\u7684 zero extension
- \u8865\u7801\u6570\u7684\u7b26\u53f7\u6269\u5c55
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#227","title":"2.2.7 \u622a\u65ad\u6570\u5b57","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#228","title":"2.2.8 \u5173\u4e8e\u6709\u7b26\u53f7\u6570\u4e0e\u65e0\u7b26\u53f7\u6570\u7684\u5efa\u8bae","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#23","title":"2.3 \u6574\u6570\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#231","title":"2.3.1 \u65e0\u7b26\u53f7\u52a0\u6cd5","text":"
- Lisp \u652f\u6301\u65e0\u9650\u7cbe\u5ea6\u7684\u8fd0\u7b97
\\[ x+_w^uy=\\begin{cases}x+y,&x+y<2^w&\\text{\u6b63\u5e38}\\\\x+y-2^w,&2^w\\leqslant x+y<2^{w+1}&\\text{\u6ea2\u51fa}\\end{cases} \\]"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#3","title":"3 \u7a0b\u5e8f\u7684\u673a\u5668\u7ea7\u8868\u793a","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#4","title":"4 \u5904\u7406\u5668\u4f53\u7cfb\u7ed3\u6784","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#5","title":"5 \u4f18\u5316\u7a0b\u5e8f\u6027\u80fd","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#6","title":"6 \u5b58\u50a8\u5668\u5c42\u6b21\u7ed3\u6784","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#7","title":"7 \u94fe\u63a5","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#8","title":"8 \u5f02\u5e38\u63a7\u5236\u6d41","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#9","title":"9 \u865a\u62df\u5185\u5b58","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#10-io","title":"10 \u7cfb\u7edf\u7ea7 I/O","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#11","title":"11 \u7f51\u7edc\u7f16\u7a0b","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#12","title":"12 \u5e76\u53d1\u7f16\u7a0b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/","title":"\u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u786c\u4ef6\u8f6f\u4ef6\u63a5\u53e3","text":"
\u7ea6 2978 \u4e2a\u5b57 13 \u884c\u4ee3\u7801 4 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 10 \u5206\u949f
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#1","title":"1 \u8ba1\u7b97\u673a\u62bd\u8c61\u53ca\u76f8\u5173\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2","title":"2 \u6307\u4ee4: \u8ba1\u7b97\u673a\u7684\u8bed\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#21","title":"2.1 \u5f15\u8a00","text":"
\u8bbe\u8ba1\u539f\u5219:
- \u7b80\u5355\u6e90\u4e8e\u89c4\u6574
- \u66f4\u5c11\u5219\u66f4\u5feb
- \u4f18\u79c0\u7684\u8bbe\u8ba1\u9700\u8981\u9002\u5f53\u7684\u6298\u4e2d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#22","title":"2.2 \u8ba1\u7b97\u673a\u786c\u4ef6\u7684\u64cd\u4f5c","text":"
Java \u7f16\u8bd1\u5668: Just In Time \u7f16\u8bd1\u5668
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#23","title":"2.3 \u8ba1\u7b97\u673a\u786c\u4ef6\u7684\u64cd\u4f5c\u6570","text":"
- \u5bc4\u5b58\u5668
- \u5927\u5c0f\u4e3a64 bits \u53cc\u5b57
- \u6570\u91cf\u6709\u9650\u901a\u5e38\u4e3a 32 \u4e2a
- x +\u5bc4\u5b58\u5668\u7f16\u53f7
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#231","title":"2.3.1 \u5b58\u50a8\u5668\u64cd\u4f5c\u6570","text":"
\u5728\u5185\u5b58\u548c\u5bc4\u5b58\u5668\u4e4b\u95f4\u4f20\u8f93\u6307\u4ee4:\u6570\u636e\u4f20\u8f93\u6307\u4ee4 \u6307\u4ee4\u63d0\u4f9b\u5185\u5b58\u5730\u5740 \u8f7d\u5165\u6307\u4ee4\uff08load\uff09:ld
Text Only
Ld x9, 8(x22)\n
X 22 \u57fa\u5740\u5bc4\u5b58\u5668 8 \u504f\u79fb\u91cf \u5b57\u8282\u5730\u5740: 0 8 16 24 RICS- V \u662f\u5c0f\u7aef\u7f16\u5740: \u53ea\u5728\u4ee5\u53cc\u5b57\u5f62\u5f0f\u548c\u516b\u4e2a\u5355\u72ec\u5b57\u8282\u8bbf\u95ee\u76f8\u540c\u6570\u636e\u65f6\u4f1a\u6709\u5f71\u54cd ^da8be4
\u5b58\u50a8\u6307\u4ee4\uff08store\uff09\u5b58\u50a8\u53cc\u5b57
Text Only
sd x9, 96(x22)\n
- \u5bf9\u9f50\u9650\u5236:
- \u5b57\u7684\u8d77\u59cb\u5730\u5740\u662f 4 \u7684\u500d\u6570
- \u53cc\u5b57\u7684\u8d77\u59cb\u5730\u5740\u662f 8 \u7684\u500d\u6570
- \u4f46\u662f risc-v and Intel x 86 \u6ca1\u6709
- MIPS \u6709 Gibibyte (\\(\\displaystyle 2^{30}\\)) and tebibyte (\\(\\displaystyle 2^{40}\\)) \u5982\u679c\u53d8\u91cf\u6bd4\u5bc4\u5b58\u5668\u6570\u91cf\u66f4\u591a\uff0c\u90a3\u4e48\u4f1a\u628a\u4e00\u4e9b\u653e\u5230\u5185\u5b58\uff0c\u5373\u5bc4\u5b58\u5668\u6362\u51fa\u3002
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#232","title":"2.3.2 \u5e38\u6570\u6216\u7acb\u5373\u6570\u64cd\u4f5c\u6570","text":"Text Only
ld x9, AddConstant4(x3)\nAdd x22, x22, x9\n\n# Equals to \n\naddi x22, x22, 4 # x22 = x22 + 4\n
\u5e38\u6570\u79f0\u4e3a\u7b97\u6570\u6307\u4ee4\u64cd\u4f5c\u6570 X0 \u53ef\u4ee5\u7528\u6765\u8868\u793a 0 \u5176\u5b9e\u8fd8\u6709 RV 32 \u57fa\u5740\u5bc4\u5b58\u5668\u4e5f\u88ab\u79f0\u4e3a\u4e0b\u6807\u5bc4\u5b58\u5668 \u6211\u4eec\u5047\u8bbe\u6307\u4ee4\u90fd\u662f 64 \u4f4d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#24","title":"2.4 \u6709\u7b26\u53f7\u6570\u4e0e\u65e0\u7b26\u53f7\u6570","text":"
- Binary digit Or bit
- Least significant bit
- Most significant bit
- sign and magnitude
- \u8865\u7801\u8f6c\u5316:
- \u62d3\u5c55\u7b26\u53f7\u4f4d
- \u53d6\u53cd
- \u52a0\u4e00
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#25","title":"2.5 \u8ba1\u7b97\u673a\u4e2d\u7684\u6307\u4ee4\u8868\u793a","text":"
- \u5b57\u6bb5
- \u6307\u4ee4 32 \u4f4d\u957f
- \u6307\u4ee4\u7684\u6570\u5b57\u8868\u793a:\u673a\u5668\u8bed\u8a00
- \u6307\u4ee4\u5e8f\u5217: \u673a\u5668\u7801
- C \u548c java \u7528 0 xnnnn \u6765\u8868\u793a\u5341\u516d\u8fdb\u5236\u6570
- RISC-V:\uff08R\uff09
- funct7 + rs 2 + rs 1 + funct 3 + rd + opcode
- rd: \u76ee\u7684\u64cd\u4f5c\u6570\u5bc4\u5b58\u5668
- rs 1: \u7b2c\u4e00\u4e2a\u539f\u64cd\u4f5c\u6570\u5bc4\u5b58\u5668
- rs 2: \u7b2c\u4e8c\u4e2a\u539f\u64cd\u4f5c\u6570\u5bc4\u5b58\u5668
- funct 7 (3): \u64cd\u4f5c\u7801\u5b57\u6bb5
- \u5bf9\u4e0d\u540c\u7684\u6307\u4ee4\u4f7f\u7528\u4e0d\u540c\u7684\u6307\u4ee4\u683c\u5f0f
- I
- immediate + rs 1 + funct 3 + rd + opcode
- \u8d85\u8fc7 32 \u4e2a\u5bc4\u5b58\u5668\u7684\u8bdd\uff0crd and rs 1 \u90fd\u8981\u589e\u52a0\u989d\u5916\u7684\u4e00\u4f4d
- ld
- S
- immediate + rs 2 + rs 1 + funct 3 + immediate + opcode
- Reg \u8868\u793a 0 \u5230 31 \u4e4b\u95f4\u7684\u5bc4\u5b58\u5668\u7f16\u53f7
- \u6ca1\u6709 subi \u56e0\u4e3a\u53ef\u4ee5\u901a\u8fc7\u52a0\u8d1f\u6570\u6765\u5b9e\u73b0
- \u8ba1\u7b97\u673a\u6784\u5efa\u57fa\u4e8e\u4e24\u4e2a\u5173\u952e\u539f\u5219:
- \u6307\u4ee4\u7531\u6570\u5b57\u5f62\u5f0f\u8868\u793a
- \u7a0b\u5e8f\u548c\u6570\u636e\u4e00\u6837\u4fdd\u5b58\u5728\u5b58\u50a8\u5668\u4e2d\u8fdb\u884c\u8bfb\u5199
- \u7a0b\u5e8f\u4f1a\u4ee5\u4e8c\u8fdb\u5236\u6570\u636e\u6587\u4ef6\u7684\u5f62\u5f0f\u6765\u53d1\u5e03
- \u4e8c\u8fdb\u5236\u517c\u5bb9\u6027\u8ba9\u884c\u4e1a\u56f4\u7ed5\u5c11\u6570\u51e0\u4e2a\u6307\u4ee4\u7cfb\u7edf\u7ed3\u6784\u5f62\u6210\u8054\u76df
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#26","title":"2.6 \u903b\u8f91\u64cd\u4f5c","text":"
- sll, slli
- srl, srli
- sra, srai
- and, andi
- or, ori
- xor, xori
- not
- \u4f4d\u79fb\u6307\u4ee4\u7528\u7684 I \u578b\u683c\u5f0f:
- \u4f46\u5b83\u7684\u683c\u5f0f\u6709\u53d8\u5316:
- funct 6 + immediate + rs 1 + funct 3 + rd + opcode
- \u7b97\u6570\u53f3\u79fb\u7528\u7684\u662f\u7b26\u53f7\u4f4d
- AND \u5b9e\u73b0\u4e86\u63a9\u7801
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#27","title":"2.7 \u7528\u4e8e\u51b3\u7b56\u7684\u6307\u4ee4","text":"
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#271","title":"2.7.1 \u5faa\u73af","text":"C
while (save[i] == k) \n i += 1;\n
I -> x 22 K -> x 24 Save -> x 25
Text Only
loop: slli, x10, x22, 3\nAdd x10, x10, x25\nLd x9, 0(x10)\nBen x9, x24, Exit\nAddi x22, x22, l\nBeq x0, x0, loop\nExit:\n
\u57fa\u672c\u5757:
- \u9664\u4e86\u5728\u6307\u4ee4\u5e8f\u5217\u7684\u7ed3\u5c3e\uff0c\u5e8f\u5217\u4e2d\u6ca1\u6709\u5206\u652f\u3002
- \u9664\u4e86\u5728\u5e8f\u5217\u8d77\u59cb\u5904\uff0c\u5e8f\u5217\u4e2d\u6ca1\u6709\u5206\u652f\u76ee\u6807\u548c\u5206\u652f\u6807\u7b7e\u3002
- \u5bf9\u4e8e\u7b26\u53f7:
- RISC-V \u7528\u4e0d\u540c\u7684\u6307\u4ee4
- MIPS \u8bbe\u7f6e\u4e34\u65f6\u5bc4\u5b58\u5668
- ARM \u6761\u4ef6\u4ee3\u7801\u6216\u6807\u5fd7\u4f4d
- \u4e0d\u8fc7\u4e5f\u4f1a\u6709\u7f3a\u70b9: \u8fc7\u591a\u7684\u6307\u4ee4\u8bbe\u7f6e\u6761\u4ef6\u4ee3\u7801\uff0c\u4f1a\u8ba9\u6d41\u6c34\u7ebf\u6267\u884c\u56f0\u96be
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#272","title":"2.7.2 \u8fb9\u754c\u68c0\u67e5\u7684\u7b80\u4fbf\u65b9\u6cd5","text":"
\u5c06\u7b26\u53f7\u6570\u5f53\u4f5c\u65e0\u7b26\u53f7\u6570\u5904\u7406
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#273-caseswitch","title":"2.7.3 Case/switch \u8bed\u53e5","text":"
- \u7f16\u7801\u5f62\u6210\u6307\u4ee4\u5e8f\u5217\u7684\u5730\u5740\u8868: \u5206\u652f\u5730\u5740\u8868/\u5206\u652f\u8868
- \u95f4\u63a5\u8df3\u8f6c\u6307\u4ee4 jalr
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#28","title":"2.8 \u8ba1\u7b97\u673a\u786c\u4ef6\u5bf9\u8fc7\u7a0b\u7684\u652f\u6301","text":"
- Procedure
- \u6267\u884c\u8fc7\u7a0b\u7684\u516d\u4e2a\u6b65\u9aa4:
- \u5c06\u53c2\u6570\u653e\u5728\u8fc7\u7a0b\u53ef\u4ee5\u8bbf\u95ee\u5230\u7684\u4f4d\u7f6e
- \u5c06\u63a7\u5236\u8f6c\u4ea4\u7ed9\u8fc7\u7a0b
- \u83b7\u53d6\u8fc7\u7a0b\u6240\u9700\u7684\u5b58\u50a8\u8d44\u6e90
- \u6267\u884c\u6240\u9700\u7684\u4efb\u52a1
- \u5c06\u7ed3\u679c\u503c\u653e\u5728\u8c03\u7528\u7a0b\u5e8f\u53ef\u4ee5\u8bbf\u95ee\u5230\u7684\u4f4d\u7f6e
- \u5c06\u63a7\u5236\u8fd4\u56de\u5230\u521d\u59cb\u70b9\uff0c\u56e0\u4e3a\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u7a0b\u5e8f\u4e2d\u7684\u591a\u4e2a\u70b9\u8c03\u7528
- x 10~x 17: \u53c2\u6570\u5bc4\u5b58\u5668\uff0c\u7528\u4e8e\u4f20\u9012\u53c2\u6570\u6216\u8fd4\u56de\u503c
- x 1: \u8fd4\u56de\u5730\u5740\u5bc4\u5b58\u5668\uff0c\u7528\u4e8e\u8fd4\u56de\u5230\u8d77\u59cb\u70b9
- jal \u8df3\u8f6c-\u94fe\u63a5\u6307\u4ee4
Text Only
Jal x1, ProcedureAddress\nJalr x0, 0(x1)\n
\u8c03\u7528\u8005\u5c06\u53c2\u6570\u503c\u653e\u5165 x 10~x 17 \u8fc7\u7a0b\u662f\u88ab\u8c03\u7528\u8005 Program counter:PC \u6307\u4ee4\u5730\u5740\u5bc4\u5b58\u5668
Text Only
jal x0, Label // unconditionally branch to Label\n
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#281","title":"2.8.1 \u4f7f\u7528\u66f4\u591a\u7684\u5bc4\u5b58\u5668","text":"
- Stack
- Stack pointer x2:sp
- \u538b\u6808\u5f39\u6808
Text Only
leaf_example:\nAddi sp, sp, -14\nSd x5, 16(sp)\nSd x6, 8(sp)\nSd x20, 0(sp)\nAdd x5, x10, x11\nAdd x6, x12, x13\nSub x20, x5, x6\nAddi x10, x20, 0\nLd x20, 0(sp)\nLd x6, 8(sp)\nLd x5, 16(sp)\nAddi sp, sp, 24\nJalr x0, 0(x1)\n
- X 5~x 7, x 28~x 31: \u4e34\u65f6\u5bc4\u5b58\u5668
- x 8~x 9, x 18~x 27: \u4fdd\u5b58\u5bc4\u5b58\u5668
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#282","title":"2.8.2 \u5d4c\u5957\u8fc7\u7a0b","text":"
- Leaf procedure
- \u5c06\u6240\u6709\u5fc5\u987b\u4fdd\u5b58\u7684\u5bc4\u5b58\u5668\u538b\u6808\uff0c\u9632\u6b62\u51b2\u7a81
C
long long int fact (long long int n) {\n if (n < 1) return (1);\n else return (n * fact(n - 1))\n}\n
n -> x 10
Text Only
fact:\n addi sp, sp, -16\n Sd x1, 8(sp)\n Sd x10, 0(sp)\n\n Addi x5, x10, -1\n Bge x5, x0, L1\n\n Addi x10, x0, 1\n Addi sp, sp, 16\n Jalr x0, 0(x1)\n\nL1: addi x10, x10, -1\n Jal x1, fact\n\naddi x6, x10, 0\nLd x10, 0(sp)\nLd x1, 8(sp)\nAddi sp, sp, 16\nMul x10, x10, x6\nJalr x0, 0(x1)\n
- \u4e00\u4e9b\u7f16\u8bd1\u5668\u4fdd\u7559\u4e00\u4e2a\u5bc4\u5b58\u5668 x 3 \u7528\u4f5c\u5168\u5c40\u6307\u9488 gp
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#283","title":"2.8.3 \u5728\u6808\u4e2d\u4f4d\u65b0\u6570\u636e\u5206\u914d\u7a7a\u95f4","text":"
\u6808\u4e5f\u7528\u4e8e\u5b58\u50a8\u8fc7\u7a0b\u7684\u5c40\u90e8\u53d8\u91cf \u8fc7\u7a0b\u5e27/\u6d3b\u52a8\u8bb0\u5f55
\u6ca1\u770b\u61c2
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#284","title":"2.8.4 \u5728\u5806\u4e2d\u4e3a\u65b0\u6570\u636e\u5206\u914d\u7a7a\u95f4","text":"
Static data segment text segment \u50cf\u94fe\u8868\u7b49\u6570\u636e\u7ed3\u6784\u5f80\u5f80\u4f1a\u968f\u751f\u547d\u5468\u671f\u589e\u957f\u548c\u7f29\u77ed\uff0c\u6240\u4ee5\u4f1a\u628a\u4ed6\u4eec\u5b58\u5728\u5806\u91cc (heap)
- malloc ()
- free () \u8be6\u7ec6\u9610\u8ff0\u6ca1\u770b
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#29","title":"2.9 \u4eba\u673a\u4ea4\u4e92","text":"
ASCII: american standard code for information interchange
\u52a0\u8f7d\u65e0\u7b26\u53f7\u5b57\u8282 (lbu) \u5b58\u50a8\u5b57\u8282 (sb)
Text Only
lbu x12, 0(x10)\nsb x12, 0(x11)\n
\u5b57\u7b26\u4e32\u7684\u8868\u793a\u6709\u4e09\u79cd\u9009\u62e9:
- \u7b2c\u4e00\u4e2a\u4f4d\u7f6e\u4fdd\u7559\u6765\u7ed9\u51fa\u5b57\u7b26\u4e32\u7684\u957f\u5ea6
- \u7528\u989d\u5916\u7684\u53d8\u91cf\u6765\u5b58\u50a8\u957f\u5ea6\uff08\u5982\u7ed3\u6784\u4f53\uff09
- \u5b57\u7b26\u4e32\u7684\u6700\u540e\u4e00\u4e2a\u4f4d\u7f6e\u7528\u5b57\u7b26\u6807\u8bb0\u7ed3\u5c3e \u5176\u4e2d C \u8bed\u8a00\u7528\u7b2c\u4e09\u79cd\uff0c\u4f7f\u7528\u503c\u4e3a 0 \u7684\u5b57\u8282\u6765\u7ec8\u6b62\u5b57\u7b26\u4e32\uff08null in ASCII\uff09
C
void strcpy (char x[], char y[])\n{\n size_t i;\n i = 0;\n while ((x[i] = y[i]) != '\\0')\n i += 1;\n}\n
x -> x 10 y -> x 11 i -> x 19
Text Only
strcpy:\n addi sp, sp, -8\n sd x19, 0(sp)\n add x19, x0, x0\nL1: add x5, x19, x11\n lbu x6, 0(x5)\n add x7, x19, x10\n sb x6, 0(x7)\n beq x6, x0, L2\n addi x19, x19, 1\n jal x0, L1\nL2: ld x19, 0(sp)\n addi sp, sp, 8\n jalr x0, 0(x1)\n
load half unsigned \u52a0\u8f7d\u534a\u5b57: lh lhu sh
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#210-risc-v","title":"2.10 \u5bf9\u5927\u7acb\u5373\u6570\u7684 RISC-V \u7684\u7f16\u5740\u548c\u5bfb\u5740","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2101","title":"2.10.1 \u5927\u7acb\u5373\u6570","text":"
load upper immediate \u53d6\u7acb\u5373\u6570\u9ad8\u4f4d lui lui \u53ef\u4ee5\u52a0\u8f7d 12~31 \u4f4d addi \u53ef\u4ee5\u52a0\u8f7d 0~11 \u4f4d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2102","title":"2.10.2 \u5206\u652f\u4e2d\u7684\u5bfb\u5740","text":"
\u5206\u652f\u6307\u4ee4\u4f7f\u7528 SB \u578b\u7684\u6307\u4ee4\u683c\u5f0f
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#211","title":"2.11 \u6307\u4ee4\u4e0e\u5e76\u884c\u6027\uff1a\u540c\u6b65","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#212","title":"2.12 \u7ffb\u8bd1\u5e76\u542f\u52a8\u7a0b\u5e8f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2121","title":"2.12.1 \u7f16\u8bd1\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2122","title":"2.12.2 \u6c47\u7f16\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2123","title":"2.12.3 \u94fe\u63a5\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2124","title":"2.12.4 \u52a0\u8f7d\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2125","title":"2.12.5 \u52a8\u6001\u94fe\u63a5\u5e93","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#21251-java","title":"2.12.5.1 \u542f\u52a8 Java \u7a0b\u5e8f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#213-c","title":"2.13 \u4ee5 C \u6392\u5e8f\u7a0b\u5e8f\u4e3a\u4f8b\u7684\u6c47\u603b\u6574\u7406","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2131-swap","title":"2.13.1 swap \u8fc7\u7a0b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2132-sort","title":"2.13.2 sort \u8fc7\u7a0b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#214","title":"2.14 \u6570\u7ec4\u4e0e\u6307\u9488","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2141-clear","title":"2.14.1 \u7528\u6570\u7ec4\u5b9e\u73b0 clear","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2142-clear","title":"2.14.2 \u7528\u6307\u9488\u5b9e\u73b0 clear","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2143-clear","title":"2.14.3 \u6bd4\u8f83\u4e24\u4e2a\u7248\u672c\u7684 clear","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#215-c-java","title":"2.15 \u9ad8\u7ea7\u4e13\u9898: \u7f16\u8bd1 C \u8bed\u8a00\u548c\u89e3\u91ca Java \u7a0b\u5e8f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#216-mips","title":"2.16 \u5b9e\u4f8b: MIPS \u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#217-x-86","title":"2.17 \u5b9e\u4f8b: x 86 \u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2171-intel-x-86","title":"2.17.1 Intel x 86 \u7684\u6f14\u53d8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2172-x-86","title":"2.17.2 x 86 \u5bc4\u5b58\u5668\u548c\u5bfb\u5740\u6a21\u5f0f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2173-x-86","title":"2.17.3 x 86 \u6574\u6570\u64cd\u4f5c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2174-x-86","title":"2.17.4 x 86 \u6307\u4ee4\u7f16\u7801","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2175-x-86","title":"2.17.5 x 86 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#218-risc-v","title":"2.18 \u5b9e\u4f8b: RISC-V \u6307\u4ee4\u7cfb\u7edf\u7684\u5269\u4f59\u90e8\u5206","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#219","title":"2.19 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#220","title":"2.20 \u672c\u7ae0\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#3","title":"3 \u8ba1\u7b97\u673a\u7684\u7b97\u6570\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#31","title":"3.1 \u5f15\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#32","title":"3.2 \u52a0\u6cd5\u548c\u51cf\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#33","title":"3.3 \u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#331","title":"3.3.1 \u4e32\u884c\u7248\u7684\u4e58\u6cd5\u7b97\u6cd5\u53ca\u5176\u786c\u4ef6\u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#332","title":"3.3.2 \u5e26\u7b26\u53f7\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#333","title":"3.3.3 \u5feb\u901f\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#334-risc-v","title":"3.3.4 RISC-V \u4e2d\u7684\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#335","title":"3.3.5 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#34","title":"3.4 \u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#341","title":"3.4.1 \u9664\u6cd5\u7b97\u6cd5\u53ca\u786c\u4ef6\u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#342","title":"3.4.2 \u6709\u7b26\u53f7\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#343","title":"3.4.3 \u5feb\u901f\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#344-risc-v","title":"3.4.4 RISC-V \u4e2d\u7684\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#345","title":"3.4.5 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#35","title":"3.5 \u6d6e\u70b9\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#351","title":"3.5.1 \u6d6e\u70b9\u8868\u793a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#352","title":"3.5.2 \u4f8b\u5916\u548c\u4e2d\u65ad","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#353-ieee-754","title":"3.5.3 IEEE 754 \u6d6e\u70b9\u6570\u6807\u51c6","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#354","title":"3.5.4 \u6d6e\u70b9\u52a0\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#355","title":"3.5.5 \u6d6e\u70b9\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#356-risc-v","title":"3.5.6 RISC-V \u4e2d\u7684\u6d6e\u70b9\u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#357","title":"3.5.7 \u7cbe\u786e\u7b97\u6570","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#358","title":"3.5.8 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#36","title":"3.6 \u5e76\u884c\u6027\u4e0e\u8ba1\u7b97\u673a\u7b97\u6570: \u5b50\u5b57\u5e76\u884c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#37-x-86-simd","title":"3.7 \u5b9e\u4f8b: x 86 \u4e2d\u7684 SIMD \u6269\u5c55\u548c\u9ad8\u7ea7\u5411\u91cf\u6269\u5c55","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#38","title":"3.8 \u52a0\u901f: \u5b50\u5b57\u5e76\u884c\u548c\u77e9\u9635\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#39","title":"3.9 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#310","title":"3.10 \u672c\u7ae0\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4","title":"4 \u5904\u7406\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#41","title":"4.1 \u5f15\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#411-risc-v","title":"4.1.1 \u4e00\u79cd\u57fa\u672c\u7684 RISC-V \u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#412","title":"4.1.2 \u5b9e\u73b0\u6982\u8ff0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#42","title":"4.2 \u903b\u8f91\u8bbe\u8ba1\u7684\u4e00\u822c\u65b9\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#43","title":"4.3 \u5efa\u7acb\u6570\u636e\u901a\u8def","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#44","title":"4.4 \u4e00\u4e2a\u7b80\u5355\u7684\u5b9e\u73b0\u65b9\u6848","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#441-alu","title":"4.4.1 ALU\u63a7\u5236","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#442","title":"4.4.2 \u8bbe\u8ba1\u4e3b\u63a7\u5236\u5355\u5143","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#443","title":"4.4.3 \u6570\u636e\u901a\u8def\u64cd\u4f5c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#444","title":"4.4.4 \u63a7\u5236\u7684\u7ed3\u675f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#445","title":"4.4.5 \u4e3a\u4ec0\u4e48\u73b0\u5728\u4e0d\u9002\u7528\u5355\u5468\u671f\u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#45","title":"4.5 \u6d41\u6c34\u7ebf\u6982\u8ff0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#451","title":"4.5.1 \u9762\u5411\u6d41\u6c34\u7ebf\u7684\u6307\u4ee4\u7cfb\u7edf\u8bbe\u8ba1","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#452","title":"4.5.2 \u6d41\u6c34\u4e0b\u5192\u9669","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#453","title":"4.5.3 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#46","title":"4.6 \u6d41\u6c34\u7ebf\u6570\u636e\u901a\u8def\u548c\u63a7\u5236","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#461","title":"4.6.1 \u6d41\u6c34\u7ebf\u7684\u56fe\u5f62\u5316\u8868\u793a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#462","title":"4.6.2 \u6d41\u6c34\u7ebf\u63a7\u5236","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#47","title":"4.7 \u6570\u636e\u5192\u9669: \u524d\u9012\u4e0e\u505c\u987f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#48","title":"4.8 \u63a7\u5236\u5192\u9669","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#481","title":"4.8.1 \u5047\u8bbe\u5206\u652f\u4e0d\u53d1\u751f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#482","title":"4.8.2 \u7f29\u77ed\u5206\u652f\u5ef6\u8fdf","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#483","title":"4.8.3 \u52a8\u6001\u5206\u652f\u9884\u6d4b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#484","title":"4.8.4 \u6d41\u6c34\u7ebf\u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#49","title":"4.9 \u4f8b\u5916","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#491-risc-v","title":"4.9.1 RISC-V \u4f53\u7cfb\u7ed3\u6784\u4e2d\u5982\u4f55\u5904\u7406\u4f8b\u5916","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#492","title":"4.9.2 \u6d41\u6c34\u7ebf\u5b9e\u73b0\u4e2d\u7684\u4f8b\u5916","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#410","title":"4.10 \u6307\u4ee4\u95f4\u7684\u5e76\u884c\u6027","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4101","title":"4.10.1 \u63a8\u6d4b\u7684\u6982\u5ff5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4102","title":"4.10.2 \u9759\u6001\u591a\u53d1\u5c04","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4103","title":"4.10.3 \u52a8\u6001\u591a\u53d1\u5c04\u5904\u7406\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4104","title":"4.10.4 \u9ad8\u7ea7\u6d41\u6c34\u7ebf\u548c\u80fd\u6548","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#411-armcortex-a-53-intel-core-i-7","title":"4.11 \u5b9e\u4f8b: armCortex-A 53 \u548c Intel Core i 7 \u6d41\u6c34\u7ebf\u7ed3\u6784","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4111-arm-cortex-a-53","title":"4.11.1 ARM Cortex-A 53","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4112-intel-core-i-7-920","title":"4.11.2 Intel Core i 7 920","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4113-intel-core-i-7","title":"4.11.3 Intel Core i 7 \u5904\u7406\u5668\u7684\u6027\u80fd","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#412_1","title":"4.12 \u52a0\u901f: \u6307\u4ee4\u96c6\u5e76\u884c\u548c\u77e9\u9635\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#413","title":"4.13 \u9ad8\u7ea7\u4e13\u9898: \u6570\u5b57\u8bbe\u8ba1\u6982\u8ff0\u2014\u2014\u4f7f\u7528\u786c\u4ef6\u8bbe\u8ba1\u8bed\u8a00\u8fdb\u884c\u6d41\u6c34\u7ebf\u5efa\u6a21\u4ee5\u53ca\u66f4\u591a\u6d41\u6c34\u7ebf\u793a\u4f8b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#414","title":"4.14 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#415","title":"4.15 \u672c\u7ae0\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#416","title":"4.16 \u5386\u53f2\u89c6\u89d2\u548c\u6269\u5c55\u9605\u8bfb","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5","title":"5 \u5927\u800c\u5feb: \u5c42\u6b21\u5316\u5b58\u50a8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#51","title":"5.1 \u5f15\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#52","title":"5.2 \u5b58\u50a8\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#521-sram","title":"5.2.1 SRAM \u5b58\u50a8\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#522-dram","title":"5.2.2 DRAM \u5b58\u50a8\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#523","title":"5.2.3 \u95ea\u5b58","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#524","title":"5.2.4 \u78c1\u76d8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#53-cache","title":"5.3 cache \u57fa\u7840","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#531-cache","title":"5.3.1 cache \u8bbf\u95ee","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#532-cache","title":"5.3.2 \u5904\u7406 cache \u5931\u6548","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#533","title":"5.3.3 \u5904\u7406\u5199\u64cd\u4f5c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#534-cache-intrinsity-fastmath","title":"5.3.4 cache \u5b9e\u4f8b: Intrinsity FastMATH \u5904\u7406\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#535","title":"5.3.5 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#54-cache","title":"5.4 cache \u7684\u6027\u80fd\u8bc4\u4f30\u548c\u6539\u8fdb","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#541-cache","title":"5.4.1 \u4f7f\u7528\u66f4\u4e3a\u7075\u6d3b\u7684\u66ff\u6362\u7b56\u7565\u964d\u4f4e cache \u5931\u6548\u7387","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#542-cache","title":"5.4.2 \u5728 cache \u4e2d\u67e5\u627e\u6570\u636e\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#543","title":"5.4.3 \u9009\u62e9\u66ff\u6362\u7684\u6570\u636e\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#544-cache","title":"5.4.4 \u4f7f\u7528\u591a\u7ea7 cache \u51cf\u5c11\u5931\u6548\u4ee3\u4ef7","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#545","title":"5.4.5 \u901a\u8fc7\u5206\u5757\u8fdb\u884c\u8f6f\u4ef6\u4f18\u5316","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#546","title":"5.4.6 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#55","title":"5.5 \u53ef\u9760\u7684\u5b58\u50a8\u5668\u66fe\u6d4b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#551","title":"5.5.1 \u5931\u6548\u7684\u5b9a\u4e49","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#552-1-2","title":"5.5.2 \u7ea0\u6b63 1 \u4f4d\u9519\u3001\u68c0\u6d4b 2 \u4f4d\u9519\u7684\u6c49\u660e\u7f16\u7801","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#56","title":"5.6 \u865a\u62df\u673a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#561","title":"5.6.1 \u865a\u62df\u673a\u76d1\u89c6\u5668\u7684\u5fc5\u5907\u6761\u4ef6","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#562","title":"5.6.2 \u6307\u4ee4\u7cfb\u7edf\u4f53\u7cfb\u7ed3\u6784\uff08\u7f3a\u4e4f\uff09\u5bf9\u865a\u62df\u673a\u7684\u652f\u6301\u3001","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#563","title":"5.6.3 \u4fdd\u62a4\u548c\u6307\u4ee4\u7cfb\u7edf\u4f53\u7cfb\u7ed3\u6784","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#57","title":"5.7 \u865a\u62df\u5185\u5b58","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#571","title":"5.7.1 \u9875\u7684\u5b58\u653e\u548c\u67e5\u627e","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#572","title":"5.7.2 \u7f3a\u9875\u5931\u6548","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#573","title":"5.7.3 \u652f\u6301\u5927\u865a\u62df\u5730\u5740\u7a7a\u95f4\u7684\u865a\u62df\u5b58\u50a8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#574","title":"5.7.4 \u5173\u4e8e\u5199","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#575-tlb","title":"5.7.5 \u52a0\u5feb\u5730\u5740\u8f6c\u6362:TLB","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#576-intrinsity-fastmath-tlb","title":"5.7.6 Intrinsity FastMATH TLB","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#577-tlb-cache","title":"5.7.7 \u7ee7\u627f\u865a\u62df\u5b58\u50a8\u3001TLB \u548c cache","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#578","title":"5.7.8 \u865a\u62df\u5b58\u50a8\u4e2d\u7684\u4fdd\u62a4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#579-tlb","title":"5.7.9 \u5904\u7406 TLB \u5931\u6548\u548c\u7f3a\u9875\u5931\u8d25","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5710","title":"5.7.10 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#58","title":"5.8 \u5b58\u50a8\u5c42\u6b21\u7ed3\u6784\u7684\u4e00\u822c\u6846\u67b6","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#581","title":"5.8.1 \u95ee\u9898\u4e00: \u5757\u53ef\u4ee5\u88ab\u653e\u5728\u4f55\u5904","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#582","title":"5.8.2 \u95ee\u9898\u4e8c: \u5982\u4f55\u627e\u5230\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#583-cache","title":"5.8.3 \u95ee\u9898\u4e09: \u5f53 cache \u53d1\u751f\u5931\u6548\u65f6\u66ff\u6362\u54ea\u4e00\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#584","title":"5.8.4 \u95ee\u9898\u56db: \u5199\u64cd\u4f5c\u5982\u4f55\u5904\u7406","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#585-c","title":"5.8.5 C: \u4e00\u79cd\u7406\u89e3\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784\u7684\u76f4\u89c2\u6a21\u578b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#59-cache","title":"5.9 \u4f7f\u7528\u6709\u9650\u72b6\u6001\u81ea\u52a8\u673a\u63a7\u5236\u7b80\u5355\u7684 cache","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#591-cache","title":"5.9.1 \u4e00\u4e2a\u7b80\u5355\u7684 cache","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#592","title":"5.9.2 \u6709\u9650\u72b6\u6001\u81ea\u52a8\u673a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#593-cache","title":"5.9.3 \u4f7f\u7528\u6709\u9650\u8f6c\u53f0\u81ea\u52a8\u673a\u4f5c\u4e3a\u7b80\u5355\u7684 cache \u63a7\u5236\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#510-cache","title":"5.10 \u5e76\u884c\u548c\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784: cache \u4e00\u81f4\u6027","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5101","title":"5.10.1 \u5b9e\u884c\u4e00\u81f4\u6027\u7684\u57fa\u672c\u65b9\u6848","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5102","title":"5.10.2 \u76d1\u542c\u534f\u8bae","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#511","title":"5.11 \u5e76\u884c\u4e0e\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784: \u5ec9\u4ef7\u78c1\u76d8\u5197\u4f59\u9635\u5217","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#512","title":"5.12 \u9ad8\u7ea7\u4e13\u9898: \u5b9e\u73b0\u7f13\u5b58\u63a7\u5236\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#513-arm-cortex-a-53-intel-core-i-7","title":"5.13 \u5b9e\u4f8b: ARM Cortex-A 53 \u548c Intel Core i 7 \u7684\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#514-risc-v","title":"5.14 \u5b9e\u4f8b: RISC-V \u7cfb\u7edf\u5176\u4ed6\u90e8\u5206\u548c\u7279\u6b8a\u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#515-cache","title":"5.15 \u52a0\u901f: cache \u5206\u5757\u548c\u77e9\u9635\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#516","title":"5.16 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#517","title":"5.17 \u672c\u8eab\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#518","title":"5.18 \u5386\u53f2\u89c6\u89d2\u548c\u62d3\u5c55\u9605\u8bfb","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#6","title":"6 \u5e76\u884c\u5904\u7406\u5668: \u4ece\u5ba2\u6237\u7aef\u5230\u4e91","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/","title":"Accelerated C++","text":"
\u7ea6 2520 \u4e2a\u5b57 489 \u884c\u4ee3\u7801 2 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 15 \u5206\u949f
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#0-c","title":"0 \u5f00\u59cb\u5b66\u4e60 C++","text":"C++
#include <iostream>\n\nint main()\n{\n std::cout << \"Hello, World!\" << std::endl;\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#01","title":"0.1 \u6ce8\u91ca","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#02-displaystyle-include","title":"0.2 \\(\\displaystyle \\#\\)include \u6307\u4ee4","text":"
- \u8f93\u5165\u3001\u8f93\u51fa\u4e0d\u5c5e\u4e8e\u8bed\u8a00\u6838\u5fc3\uff0c\u800c\u662f\u6807\u51c6\u5e93\u7684\u4e00\u90e8\u5206
- iostream \u4ee3\u8868 C++\u5e93\u7684\u6807\u51c6\u5934\u6587\u4ef6
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#03-main","title":"0.3 \u4e3b\u51fd\u6570 main","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#04","title":"0.4 \u82b1\u62ec\u53f7","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#05","title":"0.5 \u4f7f\u7528\u6807\u51c6\u5e93\u8fdb\u884c\u8f93\u51fa","text":"
- std:: cout \u6307\u6807\u51c6\u8f93\u51fa\u6d41
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#06","title":"0.6 \u8fd4\u56de\u8bed\u53e5","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#07","title":"0.7 \u4e00\u4e9b\u8f83\u4e3a\u6df1\u5165\u7684\u89c2\u5bdf","text":"
- \u8868\u8fbe\u5f0f
- \u8fd0\u7b97\u4f1a\u4ea7\u751f\u4e00\u4e2a\u7ed3\u679c\uff0c\u53ef\u80fd\u4f1a\u5177\u6709\u526f\u4f5c\u7528
- \u6bcf\u4e2a\u64cd\u4f5c\u6570\u90fd\u5177\u6709\u4e00\u4e2a\u7c7b\u578b
- <<\u662f\u5de6\u7ed3\u5408\u7684\uff0c\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e24\u4e2a<<\u8fd0\u7b97\u7b26\u548c\u4e09\u4e2a\u64cd\u4f5c\u6570
C++
(std::cout << \"Hello, World!\") << std::endl\n
- std:: cout \u7684\u7c7b\u578b\u662f std::ostream
- std:: endl \u662f\u4e00\u4e2a\u63a7\u5236\u5668\uff08manipulator\uff09
- \u7b2c\u4e00\u79cd\u4f5c\u7528\u57df: \u540d\u5b57\u7a7a\u95f4
- :: \u662f\u4f5c\u7528\u57df\u8fd0\u7b97\u7b26\uff0cstd:: cout \u662f\u4e00\u4e2a\u9650\u5b9a\u540d\u79f0
- \u82b1\u62ec\u53f7\u662f\u53e6\u4e00\u79cd\u4f5c\u7528\u57df
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#08","title":"0.8 \u5c0f\u7ed3","text":"
- main \u53ef\u4ee5\u6ca1\u6709 return \u8bed\u53e5
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#1","title":"1 \u4f7f\u7528\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#11","title":"1.1 \u8f93\u5165","text":"C++
#include <iostream>\n#include <string>\n\nint main() \n{\n std::cout << \"Please enter your first name:\";\n\n std::string name;\n std::cin >> name;\n\n std::cout << \"Hello\" << name << \"!\" << std::endl;\n return 0;\n}\n
- \u53d8\u91cf\u662f\u4e00\u4e2a\u5bf9\u8c61\uff0c\u4f46\u6709\u4e9b\u5bf9\u8c61\u53ef\u80fd\u6ca1\u6709\u540d\u79f0
- \u5c40\u90e8\u53d8\u91cf\u6709\u9650\u7684\u751f\u5b58\u671f\u662f\u533a\u5206\u53d8\u91cf\u548c\u5bf9\u8c61\u7684\u4e00\u4e2a\u91cd\u8981\u4f9d\u636e
- \u9690\u85cf\u5728\u5bf9\u8c61\u7c7b\u578b\u4e2d\u7684\u8fd8\u6709\u5176\u63a5\u53e3
- \u63a5\u53e3\u662f\u53ef\u5b9e\u73b0\u64cd\u4f5c\u7684\u96c6\u5408
- \u7f13\u51b2\u533a\u6765\u4fdd\u5b58\u8f93\u51fa
- \u4f55\u65f6\u5237\u65b0\u7f13\u51b2\u533a:
- \u7f13\u51b2\u533a\u6ee1\u4e86
- \u8f93\u5165\u6d41\u8bfb\u6570\u636e
- \u660e\u786e\u8981\u6c42\u5237\u65b0
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#12","title":"1.2 \u4e3a\u59d3\u540d\u88c5\u6846","text":"
- \u8fd0\u7b97\u7b26\u88ab\u91cd\u8f7d\u4e86
- \u8fd0\u7b97\u7b26\u4e00\u4e2a\u6c38\u8fdc\u4e0d\u4f1a\u6539\u53d8\u7684\u6027\u8d28\u662f\u7ed3\u5408\u5f8b\uff0c+\u662f\u5de6\u7ed3\u5408\u7684
C++
std::string stars(10, '*')\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#13","title":"1.3 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#2","title":"2 \u5faa\u73af\u548c\u8ba1\u6570","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#21","title":"2.1 \u95ee\u9898","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#22","title":"2.2 \u7a0b\u5e8f\u7684\u6574\u4f53\u7ed3\u6784","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#23","title":"2.3 \u8f93\u51fa\u6570\u76ee\u672a\u77e5\u7684\u884c","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#231-while","title":"2.3.1 while \u8bed\u53e5","text":"
- ++\u662f\u4e00\u4e2a\u589e\u91cf\u8fd0\u7b97\u7b26
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#232-while","title":"2.3.2 \u8bbe\u8ba1 while \u8bed\u53e5","text":"
- \u5faa\u73af\u4e0d\u53d8\u5f0f\uff08Loop invariant\uff09
- \u521d\u59cb\u5316\uff1a\u5728\u5faa\u73af\u5f00\u59cb\u4e4b\u524d\uff0c\u5faa\u73af\u4e0d\u53d8\u5f0f\u5e94\u8be5\u88ab\u786e\u7acb\u4e3a\u771f\u3002
- \u4fdd\u6301\uff1a\u5faa\u73af\u7684\u6bcf\u6b21\u8fed\u4ee3\u90fd\u5fc5\u987b\u4fdd\u6301\u5faa\u73af\u4e0d\u53d8\u5f0f\u4e3a\u771f\uff0c\u5373\u5982\u679c\u8fdb\u5165\u67d0\u6b21\u8fed\u4ee3\u65f6\u5faa\u73af\u4e0d\u53d8\u5f0f\u4e3a\u771f\uff0c\u90a3\u4e48\u5728\u8be5\u6b21\u8fed\u4ee3\u7ed3\u675f\u65f6\uff0c\u5faa\u73af\u4e0d\u53d8\u5f0f\u4ecd\u7136\u4e3a\u771f\u3002
- \u7ec8\u6b62\uff1a\u5f53\u5faa\u73af\u7ed3\u675f\u65f6\uff0c\u5faa\u73af\u4e0d\u53d8\u5f0f\u5e94\u8be5\u80fd\u591f\u7528\u6765\u8bc1\u660e\u5faa\u73af\u7684\u7ec8\u6b62\u6761\u4ef6\u6210\u7acb\uff0c\u6216\u8005\u7528\u6765\u8bc1\u660e\u5faa\u73af\u7684\u8f93\u51fa\u6216\u7ed3\u679c\u6ee1\u8db3\u7279\u5b9a\u7684\u5c5e\u6027\u3002
- \u5faa\u73af\u4e0d\u53d8\u5f0f\u7684\u4e00\u4e2a\u5178\u578b\u4f8b\u5b50\u662f\u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u4f8b\u5982\u5192\u6ce1\u6392\u5e8f\u3002\u5728\u5192\u6ce1\u6392\u5e8f\u4e2d\uff0c\u4e00\u4e2a\u53ef\u80fd\u7684\u5faa\u73af\u4e0d\u53d8\u5f0f\u662f\uff1a\u201c\u6bcf\u6b21\u5faa\u73af\u8fed\u4ee3\u540e\uff0c\u6570\u7ec4\u7684\u6700\u540en\u4e2a\u5143\u7d20\u662f\u6392\u5e8f\u597d\u7684\u201d\uff0c\u5176\u4e2dn\u662f\u5faa\u73af\u8fed\u4ee3\u7684\u6b21\u6570\u3002
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#24","title":"2.4 \u8f93\u51fa\u4e00\u884c","text":"C++
const std::string::size_type cols = greeting.size() + pad * 2 + 2;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#241","title":"2.4.1 \u8f93\u51fa\u8fb9\u754c\u5b57\u7b26","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#2411-if","title":"2.4.1.1 if \u8bed\u53e5","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#2412","title":"2.4.1.2 \u903b\u8f91\u8fd0\u7b97\u7b26","text":"
- ||\u662f\u5de6\u7ed3\u5408\uff0c\u4f1a\u6709\u77ed\u8def\u6c42\u503c\uff08short-circuit evaluation\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#242","title":"2.4.2 \u8f93\u51fa\u975e\u8fb9\u754c\u5b57\u7b26","text":"
- +=\u590d\u5408\u8d4b\u503c\u8fd0\u7b97\u7b26
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#25","title":"2.5 \u5b8c\u6574\u7684\u6846\u67b6\u7a0b\u5e8f","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#251-std","title":"2.5.1 \u7565\u53bb\u91cd\u590d\u4f7f\u7528\u7684 std::","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#252-for","title":"2.5.2 \u4f7f\u7528 for \u8bed\u53e5\u6765\u7f29\u77ed\u7a0b\u5e8f","text":"
- \u533a\u95f4\u7684\u8d8a\u754c\u503c\uff08off-the-end value\uff09
C++
for (int r = 0; r != rows; ++r) {\n\n}\n
- \u8fd9\u662f\u534a\u5f00\u533a\u95f4
C++
for (init-statement condition; expression)\n statement\n\n#equals to\n\n{\n inti-statement\n while (condition) {\n statement\n expression;\n }\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#253","title":"2.5.3 \u538b\u7f29\u68c0\u6d4b","text":"
- \u5c31\u662f\u628a if \u8bed\u53e5\u5408\u5e76\u4e00\u4e0b
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#254","title":"2.5.4 \u5b8c\u6574\u7684\u6846\u67b6\u7a0b\u5e8f","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#26","title":"2.6 \u8ba1\u6570","text":"
- \u4e0d\u5bf9\u6210\u533a\u95f4\u53ef\u4ee5\u76f4\u63a5\u770b\u51fa\u6709\u591a\u5c11\u4e2a\u5143\u7d20
- \\(\\displaystyle [m, n]\\) \u6709 m - n \u4e2a\u5143\u7d20
- \u800c\u4e14\u53ef\u4ee5\u8868\u793a\u7a7a\u533a\u95f4 \\(\\displaystyle [n, n]\\)
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#27","title":"2.7 \u5c0f\u7ed3","text":"
- \u8868\u8fbe\u5f0f
- \u64cd\u4f5c\u6570\u7684\u7ec4\u5408\u65b9\u5f0f
- \u64cd\u4f5c\u6570\u5982\u4f55\u88ab\u8f6c\u6362
- \u64cd\u4f5c\u6570\u7684\u8fd0\u7b97\u6b21\u5e8f
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#3","title":"3 \u4f7f\u7528\u6279\u91cf\u6570\u636e","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#31","title":"3.1 \u8ba1\u7b97\u5b66\u751f\u6210\u7ee9","text":"C++
#include <iomanip>\n#include <ios>\n#include <iostream>\n#include <string>\n\nusing std::cin;\nusing std::cout;\nusing std::endl;\nusing std::precision;\n\nint main() {\n cout << \"Please enter your first name:\";\n string name;\n cin >> name;\n cout << \"Hello, \" << name << \"!\" << endl;\n\n cout << \"Please enter your midterm and final exam grades:\";\n double midterm, final;\n cin >> midterm >> final;\n\n cout << \"Enter all your homework grades, \" \n \"followed by end-of-file:\";\n\n int count = 0;\n double sum = 0;\n\n double x;\n\n while (cin >> x) {\n ++ count;\n sum += x;\n }\n\n streamsize prec = cout.precision();\n cout << \"Your final grade is \" << setprecision(3)\n << 0.2 * midterm + 0.4 * final + 0.4 * sum / count\n << setprecision(prec) << endl; //\u91cd\u7f6e\u6709\u6548\u4f4d\u6570 \u6216\u5199\u6210cout.precision(prec);\n return 0;\n}\n
- \u8f93\u5165\u8fd0\u7b97\u7b26\u8fd4\u56de\u5b83\u7684\u5de6\u64cd\u4f5c\u6570\u4f5c\u4e3a\u7ed3\u679c
- \u5374\u7701\u521d\u59cb\u5316
- setprecision \u4e5f\u662f\u4e00\u4e2a\u63a7\u5236\u5668: \u4e3a\u6d41\u7684\u540e\u7ee7\u8f93\u51fa\u8bbe\u7f6e\u4e86\u4e00\u4e2a\u7279\u5b9a\u7684\u6709\u6548\u4f4d\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#311","title":"3.1.1 \u68c0\u6d4b\u8f93\u51fa","text":"
- istream \u53ef\u4ee5\u88ab\u8f6c\u6362\u6210 bool \u503c
- \u6709\u4e09\u79cd\u60c5\u51b5\u6761\u4ef6\u4f1a\u53d8\u5047:
- \u8fbe\u5230\u8f93\u5165\u6587\u4ef6\u7684\u7ed3\u5c3e
- \u8f93\u5165\u548c\u6211\u4eec\u8bd5\u56fe\u8bfb\u53d6\u7684\u53d8\u91cf\u7c7b\u578b\u4e0d\u4e00\u81f4
- \u68c0\u6d4b\u5230\u4e00\u4e2a\u786c\u4ef6\u95ee\u9898
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#312","title":"3.1.2 \u5faa\u73af\u4e0d\u53d8\u5f0f","text":"
\u4e0d\u662f\u5f88\u61c2
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#32","title":"3.2 \u7528\u4e2d\u503c\u4ee3\u66ff\u5e73\u5747\u503c","text":"
\u90a3\u4e48\u5c31\u8981\u6392\u5e8f\u4e86
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#321","title":"3.2.1 \u628a\u6570\u636e\u96c6\u5408\u5b58\u50a8\u5728\u5411\u91cf\u4e2d","text":"C++
double x;\nvector<double> homework;\n\nwhile(cin >> x)\n homework.push_back(x);\n
- \u6211\u4eec\u4f7f\u7528\u4e86\u4e00\u79cd\u540d\u4e3a\u6a21\u677f\u7c7b\u7684\u8bed\u8a00\u7279\u5f81
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#322","title":"3.2.2 \u4ea7\u751f\u8f93\u51fa","text":"C++
typedef vector<double>::size_type vec_sz;\nvec_sz size = homework.size();\n
- \u6211\u4eec\u5e0c\u671b\u4fdd\u6301\u7cfb\u7edf\u73af\u5883\u7684\u72ec\u7acb\u6027
C++
if (size == 0) {\n cout << endl << \"You must enter your grades. \"\n \"Please try again.\" << endl;\n return 1;\n}\n\nsort (homework.begin(), homework.end());\n\nvec_sz mid = size / 2;\ndouble median;\nmedian = size % 2 == 0 ? (homework[mid] + homework[mid - 1]) / 2\n : homework[mid];\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#323","title":"3.2.3 \u4e00\u4e9b\u66f4\u4e3a\u6df1\u5165\u7684\u89c2\u5bdf","text":"
- size_type \u662f\u65e0\u7b26\u53f7\u6574\u6570\u7c7b\u578b
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#33","title":"3.3 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#4","title":"4 \u7ec4\u7ec7\u7a0b\u5e8f\u548c\u6570\u636e","text":"
- \u8fd9\u4e9b\u5e93\u5de5\u5177\u6709\u51e0\u4e2a\u540c\u6837\u7684\u7279\u6027:
- \u80fd\u89e3\u51b3\u67d0\u4e9b\u7279\u5b9a\u7c7b\u578b\u7684\u95ee\u9898
- \u4e0e\u5176\u4ed6\u7684\u5927\u591a\u6570\u5de5\u5177\u90fd\u76f8\u4e92\u72ec\u7acb
- \u90fd\u5177\u6709\u4e00\u4e2a\u540d\u79f0
- \u4e24\u79cd\u65b9\u6cd5\u6765\u7ec4\u7ec7\u5927\u578b\u7684\u7a0b\u5e8f
- \u51fd\u6570
- \u6570\u636e\u7ed3\u6784
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#41","title":"4.1 \u7ec4\u7ec7\u8ba1\u7b97","text":"
- \u53c2\u6570\u7684\u521d\u59cb\u503c\u662f\u76f8\u5e94\u53c2\u6570\u503c\u7684\u590d\u5236\uff0c\u5373\u6309\u503c\u8c03\u7528\uff08call by value\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#411","title":"4.1.1 \u67e5\u627e\u4e2d\u503c","text":"C++
double median(vector<double> vec)\n{\n typedef vector<double>::size_type vec_sz;\n vec_sz size = vec.size();\n if (size == 0)\n throw domain_error(\"median of an empty vector\");\n sort(vec.begin(), vec.end());\n vec_sz mid = size / 2;\n return size % 2 == 0 ? (vec[mid] + vec[mid - 1]) / 2 : vec[mid];\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#412","title":"4.1.2 \u91cd\u65b0\u5236\u5b9a\u8ba1\u7b97\u6210\u7ee9\u7684\u7b56\u7565","text":"
- \u53ea\u80fd\u628a\u4e0d\u662f\u5e38\u91cf\u7684\u5f15\u7528\u7ed9\u5e38\u91cf\u7684\uff0c\u5373\u6761\u4ef6\u53ea\u80fd\u52a0\u5f3a
- \u6709\u597d\u51e0\u4e2a\u540c\u6837\u51fd\u6570\u540d\u7684\u51fd\u6570\u65f6\uff0c\u4f1a\u53d1\u751f\u91cd\u8f7d
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#413","title":"4.1.3 \u8bfb\u5bb6\u5ead\u4f5c\u4e1a\u6210\u7ee9","text":"
- \u5de6\u503c\u53c2\u6570: \u975e\u4e34\u65f6\u5bf9\u8c61
C++
istream read_hw(istream& in, vector<double>& hw)\n{\n if (in) {\n hw.clear();\n double x;\n while (in >> x) \n hw.push_back(x);\n in.clear();\n }\n return in;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#414","title":"4.1.4 \u4e09\u79cd\u51fd\u6570\u53c2\u6570","text":"
- \u4e00\u822c\u800c\u8a00\uff0c\u6211\u4eec\u6ca1\u6709\u5fc5\u8981\u4e3a\u4e86 int \u6216 double \u8fd9\u6837\u89c1\u5230\u4f60\u7684\u5185\u90e8\u7c7b\u578b\u7684\u53c2\u6570\u800c\u53bb\u4f7f\u7528 const \u5f15\u7528
- \u5982\u679c\u4f20\u5165 read_hw () \u7684\u4e0d\u662f\u4e00\u4e2a\u5de6\u503c\uff0c\u90a3\u4e48\u6211\u4eec\u4f1a\u628a\u8f93\u5165\u5b58\u5230\u4e00\u4e2a\u6211\u4eec\u65e0\u59a8\u8bbf\u95ee\u7684\u5bf9\u8c61\u4e2d\uff08\u6539\u5bf9\u8c61\u4f1a\u5728 read_hw() \u8fd4\u56de\u65f6\u7acb\u5373\u6d88\u5931\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#415","title":"4.1.5 \u4f7f\u7528\u51fd\u6570\u6765\u8ba1\u7b97\u5b66\u751f\u7684\u6210\u7ee9","text":"
- \u4e0d\u8981\u8ba9\u4e00\u6761\u8bed\u53e5\u4e2d\u7684\u526f\u4f5c\u7528\u4e2a\u6570\u8d85\u8fc7\u4e00\u4e2a
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#42","title":"4.2 \u7ec4\u7ec7\u6570\u636e","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#421","title":"4.2.1 \u628a\u4e00\u4e2a\u5b66\u751f\u7684\u6240\u6709\u6570\u636e\u653e\u7f6e\u5728\u4e00\u8d77","text":"C++
struct Student_info {\n string name;\n double midterm, final;\n vector<double> homework;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#422","title":"4.2.2 \u5904\u7406\u5b66\u751f\u8bb0\u5f55","text":"C++
istream& read(istream& is, Student_info& s)\n{\n is >> s.name >> s.midterm >> s.final;\n read_hw(is, s.homework);\n return is;\n}\n\ndouble grade(const Student_info& s) \n{\n return grade(s.midterm, s.final, s.homework);\n}\n\nbool compare(const Student_info& x, const Studeng_info& y)\n{\n return x.name < y.name;\n}\n\nsort(students.begin(), students.end(), compare;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#423","title":"4.2.3 \u751f\u6210\u62a5\u8868","text":"C++
cout << setw(maxlen + 1) << student[i].name;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#43","title":"4.3 \u628a\u5404\u90e8\u5206\u4ee3\u7801\u8fde\u63a5\u5230\u4e00\u8d77","text":"Text Only
#ifndef GUARD_median_h\n#define GUARD_median_h //\u9884\u5904\u7406\u7a0b\u5e8f\n\n#include <vector>\ndouble median(vector<double>);\n\n#endif\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#44","title":"4.4 \u628a\u8ba1\u7b97\u6210\u7ee9\u7684\u7a0b\u5e8f\u5206\u5757","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#45","title":"4.5 \u4fee\u6b63\u540e\u7684\u8ba1\u7b97\u6210\u7ee9\u7684\u7a0b\u5e8f","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#46","title":"4.6 \u5c0f\u7ed3","text":"
- \u7528\u6237\u5b9a\u4e49\u7684\u5934\u6587\u4ef6\u4e00\u822c\u4ee5 .h \u7ed3\u5c3e
- \u4e0d\u5e94\u8be5\u5728\u5934\u6587\u4ef6\u4e2d\u4f7f\u7528 using \u58f0\u660e
- \u7528 \\(\\displaystyle \\#\\) ifndef \u6307\u4ee4\u6765\u9632\u6b62\u5bf9\u5934\u6587\u4ef6\u7684\u91cd\u590d\u5305\u542b
- \u5185\u8054\u5b50\u8fc7\u7a0b\u901a\u5e38\u65f6\u5728\u5934\u6587\u4ef6\u800c\u4e0d\u662f\u5728\u6e90\u6587\u4ef6\u4e2d\u5b9a\u4e49 inline
- \u4e3a\u4e86\u6bd4\u5356\u4f60\u51fd\u6570\u8c03\u7528\u7684\u989d\u5916\u5f00\u9500\uff0c\u7f16\u8bd1\u5668\u4f1a\u7528\u51fd\u6570\u4f53\u7684\u4e00\u4e2a\u590d\u5236\u6765\u66ff\u6362\u5bf9\u51fd\u6570\u7684\u6bcf\u4e00\u4e2a\u8c03\u7528\u5e76\u6839\u636e\u9700\u8981\u8fdb\u884c\u4fee\u6b63
- \u5f02\u5e38\u5904\u7406
C++
try{\n} catch (t) { }\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#5","title":"5 \u4f7f\u7528\u987a\u5e8f\u5bb9\u5668\u5e76\u5206\u6790\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#51","title":"5.1 \u6309\u7c7b\u522b\u6765\u533a\u5206\u5b66\u751f","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students)\n{\n vector<Student_info> pass, fail;\n for (vector<Student_info>::size_type i = 0; i != students.size(); ++i;)\n if (fgrade(student[i]))\n fail.push_back(student[i]);\n else\n pass.push_back(student[i]);\n students = pass;\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#511","title":"5.1.1 \u5c31\u5730\u5220\u9664\u51fd\u6570","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students)\n{\n vector<Student_info> fail;\n vector<Student_info>::size_type i = 0;\n while (i != students.size()) {\n if (fgrade(studentp[i])) {\n fail.push_back(students[i]);\n students.erase(students.begin() + i);\n } else\n ++i;\n }\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#512","title":"5.1.2 \u987a\u5e8f\u5b58\u53d6\u4e0e\u968f\u673a\u5b58\u53d6","text":"
- \u8bbf\u95ee\u5bb9\u5668\u65f6\u6240\u91c7\u53d6\u7684\u6b21\u5e8f\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7684\u6027\u80fd\u7279\u6027
- \u4e8e\u662f\u4fbf\u6709\u4e86 iterator
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#52","title":"5.2 \u8fed\u4ee3\u5668","text":"
- iterator
- \u8bc6\u522b\u4e00\u4e2a\u5bb9\u5668\u4ee5\u53ca\u5bb9\u5668\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20
- \u8ba9\u6211\u4eec\u68c0\u67e5\u5b58\u50a8\u5728\u8fd9\u4e2a\u5143\u7d20\u4e2d\u7684\u503c
- \u63d0\u4f9b\u64cd\u4f5c\u6765\u79fb\u52a8\u5728\u5bb9\u6613\u4e2d\u7684\u5143\u7d20
- \u91c7\u7528\u5bf9\u5e94\u4e8e\u5bb9\u5668\u6240\u80fd\u591f\u6709\u6548\u5904\u7406\u7684\u65b9\u5f0f\u5bf9\u53ef\u7528\u7684\u64cd\u4f5c\u8fdb\u884c\u7ea6\u675f
C++
for (vector<Student_info>::size_type i = 0; i != students.end(); ++i)\n cout << students[i].name << endl;\nfor (vector<Student_info>::const_iterator iter = students.begin();\n iter != students.end(); ++iter) {\n cout << (*iter).name << endl; }\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#521","title":"5.2.1 \u8fed\u4ee3\u5668\u7c7b\u578b","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#522","title":"5.2.2 \u8fed\u4ee3\u5668\u64cd\u4f5c","text":"
- end \u7d27\u63a5\u5728\u5bb9\u5668\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u540e\u9762\u7684\u4f4d\u7f6e
- ++iter \u7528\u4e86\u8fed\u4ee3\u5668\u7c7b\u578b\u91cd\u8f7d
- \u5f53\u6211\u4eec\u7528\u95f4\u63a5\u5f15\u7528\u8fd0\u7b97\u7b26 \\(\\displaystyle *\\) \u6765\u8bbf\u95ee\u8fd9\u4e2a\u5143\u7d20\uff0c\u90a3\u4e48\u4ed6\u4f1a\u8fd4\u56de\u4e00\u4e2a\u5de6\u503c\uff08\u8fed\u4ee3\u5668\u6240\u6307\u5411\u7684\u5143\u7d20\uff09
- \\(\\displaystyle .\\) \u7684\u4f18\u5148\u7ea7\u6bd4 \\(\\displaystyle *\\) \u9ad8
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#523","title":"5.2.3 \u4e00\u70b9\u8bed\u6cd5\u77e5\u8bc6","text":"C++
(*iter).name\niter->name\n//both are ok\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#524-students-erase-students-begin-i","title":"5.2.4 students. erase (students. begin () + i) \u7684\u542b\u4e49","text":"
- students \u4e0d\u652f\u6301\u968f\u673a\u8bbf\u95ee\u7d22\u5f15\u64cd\u4f5c\u7684\u5bb9\u5668\uff0c\u4f46\u662f\u4ecd\u4f1a\u5141\u8bb8\u8fed\u4ee3\u5668\u7684\u968f\u673a\u8bbf\u95ee
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#53","title":"5.3 \u7528\u8fed\u4ee3\u5668\u6765\u4ee3\u66ff\u7d22\u5f15","text":"C++
vecotr<Student_info> extract_fails(vector<Student_info>& students)\n{\n vector<Student_info> fail;\n vector<Student_info>::iterator iter = students.begin();\n while (iter != students.end()) {\n if (fgrade(*iter)) {\n fail.push_back(*iter);\n iter = students.erase(iter); //important\n } else\n ++iter;\n }\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#54","title":"5.4 \u91cd\u65b0\u601d\u8003\u6570\u636e\u7ed3\u6784\u4ee5\u5b9e\u73b0\u66f4\u597d\u7684\u6027\u80fd","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#55-list","title":"5.5 list \u7c7b\u578b","text":"
- \u76f4\u63a5\u628a\u6240\u6709\u7684 vector \u6362\u6210 list \u5c31\u53ef\u4ee5\u4e86
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#551","title":"5.5.1 \u4e00\u4e9b\u91cd\u8981\u7684\u5dee\u522b","text":"
- list \u7c7b\u7684\u8fed\u4ee3\u5668\u5e76\u4e0d\u652f\u6301\u5b8c\u5168\u968f\u673a\u7684\u8bbf\u95ee
- \u6240\u4ee5\u6211\u4eec\u4e0d\u80fd\u7528 sort \u51fd\u6570
- \u4f46\u662f list \u6709\u81ea\u5df1\u6210\u5458\u51fd\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#552","title":"5.5.2 \u4e00\u4e2a\u607c\u4eba\u7684\u8bdd\u9898","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#56","title":"5.6 \u5206\u5272\u5b57\u7b26\u4e32","text":"C++
vector<string> split(const string& s)\n{\n vector<string> ret;\n typedef string::size_def string_size;\n string_size i = 0;\n while (i != s.size()) {\n while (i != s.size() && isspace(s[i])) // is from <cctype>\n ++i;\n string_size j = i;\n while (j != s.size() && !isspace(s[i]))\n ++j;\n if (i != j) {\n ret.push_back(s.substr(i, j - i));\n i = j;\n }\n }\n return ret;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#57-split","title":"5.7 \u6d4b\u8bd5 split \u51fd\u6570","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#58","title":"5.8 \u8fde\u63a5\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#581","title":"5.8.1 \u4e3a\u56fe\u6848\u88c5\u6846","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#582","title":"5.8.2 \u7eb5\u5411\u8fde\u63a5","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#583","title":"5.8.3 \u6a2a\u5411\u8fde\u63a5","text":"
TODO
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#59","title":"5.9 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#6","title":"6 \u4f7f\u7528\u5e93\u7b97\u6cd5","text":"
- \u5229\u7528\u516c\u7528\u63a5\u53e3\u6765\u63d0\u4f9b\u4e00\u4e2a\u6807\u51c6\u7b97\u6cd5\u96c6\u5408
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#61","title":"6.1 \u5206\u6790\u5b57\u7b26\u4e32","text":"C++
for (vector<string>::const_iterator it = bottom.begin(); it != bottom.end(); ++i)\n ret.push_back(*it);\n\nret.insert(ret.end(), bottom.begin(), bottom.end());\n\ncopy(bottom.begin(), bottom.end(), back_inserter(ret));\n
- copy \u662f\u4e00\u4e2a\u6cdb\u578b (generic) \u7b97\u6cd5\u7684\u4f8b\u5b50
- back_inserter \u662f\u4e00\u4e2a\u8fed\u4ee3\u5668\u9002\u914d\u5668\u7684\u4f8b\u5b50
C++
copy(begin, end, out);\n//equals to\nwhile (begin != end)\n *out++ = *begin++;\n // equals to \n // *out = *begin; ++out; ++begin;\n\nit = begin++;\n//equals to\nit = begin;\n++begin;\n
- \u8fed\u4ee3\u5668\u9002\u914d\u5668\u662f\u4e00\u4e2a\u4ea7\u751f\u8fed\u4ee3\u5668\u7684\u4e1c\u897f
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#611-split","title":"6.1.1 \u53e6\u4e00\u4e2a\u5b9e\u73b0 split \u7684\u65b9\u6cd5","text":"C++
bool space(char c) {\n return isspace(c);\n}\nbool not_space(char c) {\n return !isspace(c);\n}\nvector<string> split(const string& str) {\n typedef string::const_iterator iter;\n vector<string> ret;\n iter i = str.begin();\n while(i != str.end()) {\n i = find_if(i, str.end(), not_space);\n iter j = find_if(i, str.end(), space);\n if (i != str.end()) ret.push_back(string(i, j));\n i = j; \n }\n return ret;\n}\n
- \u6211\u4eec\u9700\u8981\u7f16\u5199\u6211\u4eec space \u548c not_space \u662f\u7528\u6765\u89e3\u91ca\u6211\u4eec\u6240\u6307\u7684\u662f\u54ea\u4e2a\u7248\u672c\u7684 isspace
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#612","title":"6.1.2 \u56de\u6587","text":"C++
bool is_palindrome(const string& s) {\n return equal(s.begin(), s.end(), s.rbegin());\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#613-url","title":"6.1.3 \u67e5\u627e URL","text":"
C++
vector<string> find_urls(const string& s) {\n vector<string> ret;\n typedef string::const_iterator iter;\n iter b = s.begin(), e = s.end();\n while (b != e) {\n b = url_beg(b, e);\n if (b != e) {\n iter after = url_end(b, e);\n ret.push_back(string(b, after));\n b = after;\n }\n }\n return ret;\n}\n\nstring::const_iterator url_end(string::const_iterator b, string::const_iterator e) {\n return find_if(b, e, not_url_char);\n}\n\nbool not_url_char(char c) {\n static const string url_ch = \"~;/?@=&$-_.+!*{},'\";\n return !(isalnum(c)) || find(url_ch.begin(), url_ch.end(), c) != url_end());\n //static\u58f0\u660e\u7684\u5c40\u90e8\u53d8\u91cf\u5177\u6709\u5168\u5c40\u5bff\u547d\uff0c\u751f\u5b58\u671f\u8d2f\u7a7f\u6574\u4e2a\u51fd\u6570\u8c03\u7528\u8fc7\u7a0b\n}\n\nstring::const_iterator url_beg(string::const_iterator b, string::const_iterator e) {\n static const string sep = \"://\";\n typedef string::const_iterator iter;\n iter i = b;\n while ((i = search(i, e, sep.begin(), sep.end())) != e) {\n if (i != b && i + sep.size() != e) {\n iter beg = i;\n while (beg != b && isalpha(beg[-1]))\n --beg;\n if (beg != i && i + sep.size() != e && !not_url_char(i[sep.size()])) return beg;\n }\n if (i != e) i += sep.size();\n }\n return e;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#62","title":"6.2 \u5bf9\u8ba1\u7b97\u6210\u7ee9\u7684\u65b9\u6848\u8fdb\u884c\u6bd4\u8f83","text":"
- \u8bfb\u6240\u6709\u7684\u5b66\u751f\u8bb0\u5f55\uff0c\u628a\u505a\u4e86\u5168\u90e8\u5bb6\u5ead\u4f5c\u4e1a\u7684\u5b66\u751f\u4e0e\u5176\u4ed6\u7684\u5b66\u751f\u5206\u9694\u5f00\u3002
- \u5bf9\u6bcf\u4e00\u7ec4\u4e2d\u7684\u6240\u6709\u5b66\u751f\u5206\u522b\u4f7f\u7528\u6bcf\u4e00\u4e2a\u7684\u8ba1\u7b97\u6210\u7ee9\u7684\u65b9\u6848\uff0c\u62a5\u544a\u6bcf\u4e00\u7ec4\u7684\u4e2d\u503c\u6210\u7ee9\u3002
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#621","title":"6.2.1 \u5904\u7406\u5b66\u751f\u8bb0\u5f55","text":"C++
bool did_all_hw(const Student_info& s) {\n reutrn ((fint(s.homework.begin(), s.homework.end(), 0)) == s.homework.end());\n}\n\nvector<Student_info> did, didnt;\nStudent_info student;\n\nwhile (read(cin, student)) {\n if (did_all_hw(student))\n did.push_back(student);\n else\n didnt.push_back(student);\n}\nif (did.empty()) {\n cout << \"No student did all the homework!\" << endl;\n return 1;\n}\nif (didnt.empty()) {\n cout << \"Every student did all the homework!\" << endl;\n return 1;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#622","title":"6.2.2 \u5206\u6790\u6210\u7ee9","text":"C++
write_analysis(cout, \"median\", median_analysis, did, didn't);\n\ndouble grade_aux(const Student_info& s) {\n tru {\n return grade(s);\n } catch (domain_error) {\n return grade(s.midterm, s.final, 0);\n }\n}\n\ndouble median_analysis(const vector<Student_info>& students) {\n vector<double> grades;\n transdorm(students.begin(), students.end(), back_inserter(grades), grade_aux);\n return medina(grades);\n}\n\nvoid write_analysis(ostream& out, const string& name, double analysis(const vector<Student_info>&), const vector<Student_info>& did, const vector<Student_info>& didnt) {\n out << name << \": median(did) = \" << analysis(did) << \", median(didnt) = \" << analysis(didnt) << endl; \n}\n\nint main() {\n vector<Student_info> did, didnt;\n Student_info student;\n while (read(cin, student)) {\n if (did_all_hw(student))\n did.push_back(student);\n else \n didnt.push_back(student);\n }\n if (did.empty()) {\n cout << \"No student did all the homework!\" << endl;\n return 1;\n }\n if (didnt.empty()) {\n cout << \"Every student did all the homework!\" << endl;\n return 1;\n }\n write_analysis(cout, \"median\", median_analysis, did, didnt);\n write_analysis(cout, \"average\", average_analysis, did, didnt);\n write_analysis(cout, \"medina of homework turned in\", optimistic_median_analysis, did, didnt);\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#623","title":"6.2.3 \u8ba1\u7b97\u57fa\u4e8e\u5bb6\u5ead\u4f5c\u4e1a\u5e73\u5747\u6210\u7ee9\u7684\u603b\u6210\u7ee9","text":"C++
double average(const vector<double>& v) {\n return accumulate(v.begin(), v.end(), 0.0) / v.size();\n}\n\ndouble average_analysis(const Student_info& s) {\n return grade(s.midterm, s.final, average(s.homework));\n}\n\ndouble average_analysis(const vector<Student_info>& students) {\n vector<double> grades;\n transform(students.begin(), students.end(), back_inserter(grades), average_grade);\n return median(grades);\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#624","title":"6.2.4 \u4e0a\u4ea4\u7684\u5bb6\u5ead\u4f5c\u4e1a\u7684\u4e2d\u503c","text":"C++
double optimistic_median(const Student_info& s) {\n vector<double> nonzero;\n remove_copy(s.homework.begin(), s.homework.end(), back_inserter(nonzero), 0);\n if (nonzero.empty())\n return grade(s.midterm, s.final, 0);\n else \n return grade(s.midterm, s.final, median(nonzero));\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#63","title":"6.3 \u5bf9\u5b66\u751f\u8fdb\u884c\u5206\u7c7b\u5e76\u56de\u987e\u4e00\u4e0b\u6211\u4eec\u7684\u95ee\u9898","text":"
- \u4f7f\u7528\u4e00\u4e9b\u7b97\u6cd5\u5e93\u6765\u89e3\u51b3\u95ee\u9898
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#631","title":"6.3.1 \u4e00\u79cd\u4e24\u6b21\u4f20\u9012\u7684\u89e3\u51b3\u65b9\u6848","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students) {\n vector<Student_info> fail;\n remove_copy_if(students.begin(), students.end(), back_inserter(fail), pgrade);\n students.earse(remove_if(students.begin(), students.end(), fgrade), student.end());\n return fail;\n}\n\nbool pgrade(const Student_info& s) {\n return !fgrade(s);\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#64","title":"6.4 \u4e00\u79cd\u4e00\u6b21\u4f20\u9012\u7684\u89e3\u51b3\u65b9\u6848","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students) {\n vector<Student_info>::iterator iter = stable_partition(students.begin(), students.end(), pgrade);\n vector<Student_info> fail(iter, students.end());\n students.erase(iter, students.end());\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#65","title":"6.5 \u7b97\u6cd5\u3001\u5bb9\u5668\u4ee5\u53ca\u8fed\u4ee3\u5668","text":"
- \u7b97\u6cd5\u4f5c\u7528\u4e8e\u5bb9\u5668\u7684\u5143\u7d20\uff0c\u800c\u4e0d\u662f\u4f5c\u7528\u4e8e\u5bb9\u5668
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#7","title":"7 \u4f7f\u7528\u5173\u8054\u5bb9\u5668","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#71","title":"7.1 \u652f\u6301\u9ad8\u6548\u67e5\u627e\u7684\u5bb9\u5668","text":"
- \u5173\u8054\u5bb9\u5668\u4f1a\u5bf9\u63d2\u5165\u7684\u5143\u7d20\u8fdb\u884c\u6392\u5e8f\u6765\u63d0\u9ad8\u67e5\u627e\u7684\u901f\u5ea6
- \u5173\u8054\u6570\u7ec4\u5c31\u662f\u6709 key-value \u7684\u6570\u7ec4
- map: \u6620\u5c04\u8868\u7684\u7d22\u5f15\u4e0d\u4e00\u5b9a\u662f\u6574\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#72","title":"7.2 \u8ba1\u7b97\u5355\u8bcd\u6570","text":"C++
int main() {\n string s;\n map<string, int> counters;\n while (cin >> s) ++counters[s];\n for (map<string, int>::const_iterator it = counters.begin(); it != couners.end(); ++it) {\n cout << it->first << \"\\t\" << it->second << endl;\n }\n return 0;\n}\n
- \u6570\u5bf9\uff08pair\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#73","title":"7.3 \u4ea7\u751f\u4e00\u4e2a\u4ea4\u53c9\u5f15\u7528\u8868","text":"C++
map<string, vector<int> > xref(istream& in, vector<string> find_words(const string&) = split) {\n string line;\n int line_number = 0'\n map<string, vector<int>> ret;\n while (getline(in, line)) {\n ++line_number;\n vector<string> words = find_words(line);\n for (vector<string>::const_iterator it = words.begin(); it != words.end(); ++it)\n ret(*it).push_back(line_number);\n }\n return ret;\n}\n\n\nint main() {\n map<string, vector<int> > ret = cref(cin);\n for (map<string, vector<int> >::const_iterator it = ret.begin(); it != ret.end(); ++it) {\n cout << it->first << \" occurs on line(s): \";\n vector<int>::const_iterator line_it = it->second.begin();\n cout << *lint_it;\n ++line_it;\n while (line_it != it->second.end()) {\n cout << \", \" << *line_it;\n ++line_it;\n }\n cout << endl;\n }\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#74","title":"7.4 \u751f\u6210\u53e5\u5b50","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#741","title":"7.4.1 \u8868\u793a\u89c4\u5219","text":"C++
typedef vector<string> Rule;\ntypedef vector<Rule> Rule_collection;\ntypedef map<string, Rule_collection> Grammer;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#742","title":"7.4.2 \u8bfb\u5165\u6587\u6cd5","text":"C++
Grammer read_grammer(istream& in) {\n Grammer ret;\n string line;\n while (getline(in, line)) {\n vector<string> entry = split(line);\n if (!entry.empty())\n ret[entry[0]].push_back(Rule(entry.begin() + 1, entry.end()));\n }\n return ret;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#743","title":"7.4.3 \u751f\u6210\u53e5\u5b50","text":"C++
vector<string> gen_sentence(const Grammar& g) {\n vector<string> ret;\n gen_aux(g, \"<sentence>\", ret);\n return ret;\n}\n\nbool bracketed(const string& s) {\n return s.size() > 1 && s[0] == '<' && s[s.size() - 1] == '>';\n}\n\nvoid gen_aux(const Grammar& g, const string& word, vector<string>& ret) {\n if (!bracketed(word)) {\n ret.push_back(word);\n } else {\n Grammar::const_iterator it = g.find(word);\n if (it == g.end())\n throw logic_error(\"empty rule\");\n const Rule_collection& c = it->seond;\n const Rule& r = c[nrand(c.size())];\n for (Rule::const_iterator i = r.begin(); i != r.end(); ++i)\n gen_aux(g, *i, ret);\n }\n}\n\nint main() {\n vector<string> sentence = gen_sentence(read_grammar(cin));\n vector<string>::const_iterator it = sentence.begin();\n if (!sentence.empty()) {\n cout << *it;\n ++it; \n }\n while (it != sentence.end()) {\n cout << \" \" << *it;\n ++it;\n }\n cout << endl;\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#744","title":"7.4.4 \u9009\u62e9\u4e00\u4e2a\u968f\u673a\u51fd\u6570","text":"C++
int nrand(int n) {\n if (n <= 0 || n > RAND_MAX)\n throw domain_error(\"Argument to nrand is out of range\");\n const int bucket_size = RAND_MAX / n;\n int r;\n do r = rand() / bucket_size;\n while (r >= n);\n return r;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#75","title":"7.5 \u5173\u4e8e\u6027\u80fd\u7684\u4e00\u70b9\u8bf4\u660e","text":"
- \u7528\u6563\u5217\u8868\u5b9e\u73b0\u5173\u8054\u6570\u7ec4\u5728 C++\u4e2d\u7684\u662f\u5f88\u56f0\u96be\u7684 \u6ca1\u641e\u61c2
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#76","title":"7.6 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#8","title":"8 \u7f16\u5199\u6cdb\u578b\u51fd\u6570","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#81","title":"8.1 \u6cdb\u578b\u51fd\u6570\u662f\u4ec0\u4e48","text":"
- \u5728\u4f7f\u7528\u51fd\u6570\u4e4b\u524d\u4e0d\u77e5\u9053\u53c2\u6570\u6216\u8005\u8fd4\u56de\u7c7b\u578b\u662f\u4ec0\u4e48
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#811","title":"8.1.1 \u672a\u77e5\u7c7b\u578b\u7684\u4e2d\u503c","text":"
- \u5b9e\u73b0\u4e86\u6cdb\u578b\u51fd\u6570\u7684\u8bed\u8a00\u7279\u5f81\u88ab\u79f0\u4f5c\u6a21\u677f\u51fd\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#9","title":"9 \u5b9a\u4e49\u65b0\u7c7b\u578b","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#10","title":"10 \u7ba1\u7406\u5185\u5b58\u548c\u4f4e\u7ea7\u6570\u636e\u7ed3\u6784","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#11_1","title":"11 \u5b9a\u4e49\u62bd\u8c61\u6570\u636e\u7c7b\u578b","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#12_1","title":"12 \u4f7f\u7c7b\u5bf9\u8c61\u50cf\u4e00\u4e2a\u6570\u503c\u4e00\u6837\u5de5\u4f5c","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#13_1","title":"13 \u4f7f\u7528\u7ee7\u627f\u4e0e\u52a8\u6001\u7ed1\u5b9a","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#14","title":"14 \u8fd1\u4e4e\u81ea\u52a8\u5730\u7ba1\u7406\u5185\u5b58","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#15","title":"15 \u518d\u8c08\u5b57\u7b26\u56fe\u5f62","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#16-c","title":"16 \u4eca\u540e\u5982\u4f55\u5b66\u4e60 C++","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/","title":"C++","text":"
\u7ea6 3115 \u4e2a\u5b57 523 \u884c\u4ee3\u7801 9 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 17 \u5206\u949f
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#1","title":"1 \u6587\u4ef6\u64cd\u4f5c","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#11","title":"1.1 \u6587\u4ef6\u7684\u6982\u5ff5","text":"
- C/C++\u628a\u6bcf\u4e00\u4e2a\u6587\u4ef6\u90fd\u770b\u6210\u662f\u4e00\u4e2a\u6709\u5e8f\u7684\u5b57\u8282\u6d41\uff0c\u4ee5\u6587\u4ef6\u7ed3\u675f\u6807\u5fd7\uff08EOF\uff09\u7ed3\u675f
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#12","title":"1.2 \u6587\u4ef6\u7684\u64cd\u4f5c\u6b65\u9aa4","text":"
- \u6253\u5f00\u6587\u4ef6\uff0c\u8bb2\u6587\u4ef6\u6307\u9488\u6307\u5411\u6587\u4ef6\uff0c\u51b3\u5b9a\u6253\u5f00\u6587\u4ef6\u7684\u7c7b\u578b
- \u5bf9\u6587\u4ef6\u8fdb\u884c\u8bfb/\u5199\u64cd\u4f5c
- \u5728\u4f7f\u7528\u5b8c\u6587\u4ef6\u540e\uff0c\u5173\u95ed\u6587\u4ef6
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#13","title":"1.3 \u4e00\u4e9b\u51fd\u6570","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#131-freopen","title":"1.3.1 freopen \u51fd\u6570","text":"C++
FILE* freopen(const char* filename, const char* mode, FILE* stream);\n
- \u53c2\u6570\u8bf4\u660e
filename
: \u8981\u6253\u5f00\u7684\u6587\u4ef6\u540d mode
: \u6587\u4ef6\u6253\u5f00\u7684\u6a21\u5f0f\uff0c\u8868\u793a\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650 stream
: \u6587\u4ef6\u6307\u9488\uff0c\u901a\u5e38\u4f7f\u7528\u6807\u51c6\u6587\u4ef6\u6d41 (stdin/stdout
) \u6216\u6807\u51c6\u9519\u8bef\u8f93\u51fa\u6d41 (stderr
) - \u8fd4\u56de\u503c\uff1a\u6587\u4ef6\u6307\u9488\uff0c\u6307\u5411\u88ab\u6253\u5f00\u6587\u4ef6
- \u6587\u4ef6\u6253\u5f00\u683c\u5f0f
r
\uff1a\u4ee5\u53ea\u8bfb\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u53ea\u5141\u8bb8\u8bfb\u5165\u6570\u636e\u00a0\uff08\u5e38\u7528\uff09 r+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e rb
\uff1a\u4ee5\u53ea\u8bfb\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u53ea\u5141\u8bb8\u8bfb\u5165\u6570\u636e rb+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e rt+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u672c\u6587\u4ef6\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e w
\uff1a\u4ee5\u53ea\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u4f1a\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u53ea\u5141\u8bb8\u5199\u5165\u6570\u636e\u00a0\uff08\u5e38\u7528\uff09 w+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e wb
\uff1a\u4ee5\u53ea\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u4f1a\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u53ea\u5141\u8bb8\u5199\u5165\u6570\u636e wb+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e a
\uff1a\u4ee5\u53ea\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e\uff08\u4fdd\u7559 EOF \u7b26\uff09 a+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e\uff08\u4e0d\u4fdd\u7559 EOF \u7b26\uff09 at+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u672c\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e ab+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e \u4f7f\u7528\u65b9\u5f0f
C++
#include <cstdio>\n#include <iostream>\nint mian(void) {\n freopen(\"data.in\", \"r\", stdin); \n // data.in \u5c31\u662f\u8bfb\u53d6\u7684\u6587\u4ef6\u540d\uff0c\u8981\u548c\u53ef\u6267\u884c\u6587\u4ef6\u653e\u5728\u540c\u4e00\u76ee\u5f55\u4e0b\n freopen(\"data.out\", \"w\", stdout); \n // data.out \u5c31\u662f\u8f93\u51fa\u6587\u4ef6\u7684\u6587\u4ef6\u540d\uff0c\u548c\u53ef\u6267\u884c\u6587\u4ef6\u5728\u540c\u4e00\u76ee\u5f55\u4e0b\n fclose(stdin);\n fclose(stdout);\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#132-fopen","title":"1.3.2 fopen \u51fd\u6570","text":"C++
FILE* fopen(const char* path, const char* mode)\n
\u4f7f\u7528\u65b9\u5f0f
C++
FILE *in, *out; // \u5b9a\u4e49\u6587\u4ef6\u6307\u9488 \nin = fopen(\"data.in\", \"r\"); \nout = fopen(\"data.out\", \"w\"); \n/* do what you want to do */ \nfclose(in); \nfclose(out);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#14-c-ifstreamofstream","title":"1.4 C++ \u7684\u00a0
ifstream/ofstream
\u00a0\u6587\u4ef6\u8f93\u5165\u8f93\u51fa\u6d41","text":"C++
#include <fstream> \nusing namespace std; \n// \u4e24\u4e2a\u7c7b\u578b\u90fd\u5728 std \u547d\u540d\u7a7a\u95f4\u91cc \nifstream fin(\"data.in\"); \nofstream fout(\"data.out\"); \nint main(void) { \n /* \u4e2d\u95f4\u7684\u4ee3\u7801\u6539\u53d8 cin \u4e3a fin \uff0ccout \u4e3a fout \u5373\u53ef */ \n fin.close(); \n fout.close(); \n return 0; \n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2","title":"2 \u6807\u51c6\u5e93","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#21-stl","title":"2.1 STL \u5bb9\u5668","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#211","title":"2.1.1 \u5e8f\u5217\u5f0f\u5bb9\u5668","text":"
- \u5411\u91cf(
vector
) \u540e\u7aef\u53ef\u9ad8\u6548\u589e\u52a0\u5143\u7d20\u7684\u987a\u5e8f\u8868\u3002 - \u53ef\u4ee5\u52a8\u6001\u5206\u914d\u5185\u5b58
- \u91cd\u5199\u4e86\u6bd4\u8f83\u8fd0\u7b97\u7b26\u53ca\u8d4b\u503c\u8fd0\u7b97\u7b26
- \u4fbf\u5229\u7684\u521d\u59cb\u5316
- std::vector - cppreference.com
- \u6570\u7ec4(
array
)C++11\uff0c\u5b9a\u957f\u7684\u987a\u5e8f\u8868\uff0cC \u98ce\u683c\u6570\u7ec4\u7684\u7b80\u5355\u5305\u88c5\u3002 - \u53cc\u7aef\u961f\u5217(
deque
) \u53cc\u7aef\u90fd\u53ef\u9ad8\u6548\u589e\u52a0\u5143\u7d20\u7684\u987a\u5e8f\u8868\u3002 - \u5217\u8868(
list
) \u53ef\u4ee5\u6cbf\u53cc\u5411\u904d\u5386\u7684\u94fe\u8868\u3002 - \u5355\u5411\u5217\u8868(
forward_list
) \u53ea\u80fd\u6cbf\u4e00\u4e2a\u65b9\u5411\u904d\u5386\u7684\u94fe\u8868\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#212","title":"2.1.2 \u5173\u8054\u5f0f\u5bb9\u5668","text":"
- \u96c6\u5408(
set
) \u7528\u4ee5\u6709\u5e8f\u5730\u5b58\u50a8\u00a0\u4e92\u5f02\u00a0\u5143\u7d20\u7684\u5bb9\u5668\u3002\u5176\u5b9e\u73b0\u662f\u7531\u8282\u70b9\u7ec4\u6210\u7684\u7ea2\u9ed1\u6811\uff0c\u6bcf\u4e2a\u8282\u70b9\u90fd\u5305\u542b\u7740\u4e00\u4e2a\u5143\u7d20\uff0c\u8282\u70b9\u4e4b\u95f4\u4ee5\u67d0\u79cd\u6bd4\u8f83\u5143\u7d20\u5927\u5c0f\u7684\u8c13\u8bcd\u8fdb\u884c\u6392\u5217\u3002 - \u591a\u91cd\u96c6\u5408(
multiset
) \u7528\u4ee5\u6709\u5e8f\u5730\u5b58\u50a8\u5143\u7d20\u7684\u5bb9\u5668\u3002\u5141\u8bb8\u5b58\u5728\u76f8\u7b49\u7684\u5143\u7d20\u3002 - \u6620\u5c04(
map
) \u7531 {\u952e\uff0c\u503c} \u5bf9\u7ec4\u6210\u7684\u96c6\u5408\uff0c\u4ee5\u67d0\u79cd\u6bd4\u8f83\u952e\u5927\u5c0f\u5173\u7cfb\u7684\u8c13\u8bcd\u8fdb\u884c\u6392\u5217\u3002 - \u591a\u91cd\u6620\u5c04(
multimap
) \u7531 {\u952e\uff0c\u503c} \u5bf9\u7ec4\u6210\u7684\u591a\u91cd\u96c6\u5408\uff0c\u4ea6\u5373\u5141\u8bb8\u952e\u6709\u76f8\u7b49\u60c5\u51b5\u7684\u6620\u5c04\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#213","title":"2.1.3 \u65e0\u5e8f\uff08\u5173\u8054\u5f0f\uff09\u5bb9\u5668","text":"
- \u65e0\u5e8f\uff08\u591a\u91cd\uff09\u96c6\u5408(
unordered_set
/unordered_multiset
)C++11\uff0c\u4e0e\u00a0set
/multiset
\u00a0\u7684\u533a\u522b\u5728\u4e8e\u5143\u7d20\u65e0\u5e8f\uff0c\u53ea\u5173\u5fc3\u300c\u5143\u7d20\u662f\u5426\u5b58\u5728\u300d\uff0c\u4f7f\u7528\u54c8\u5e0c\u5b9e\u73b0\u3002 - \u65e0\u5e8f\uff08\u591a\u91cd\uff09\u6620\u5c04(
unordered_map
/unordered_multimap
)C++11\uff0c\u4e0e\u00a0map
/multimap
\u00a0\u7684\u533a\u522b\u5728\u4e8e\u952e (key) \u65e0\u5e8f\uff0c\u53ea\u5173\u5fc3 \"\u952e\u4e0e\u503c\u7684\u5bf9\u5e94\u5173\u7cfb\"\uff0c\u4f7f\u7528\u54c8\u5e0c\u5b9e\u73b0\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#214","title":"2.1.4 \u5bb9\u5668\u9002\u914d\u5668","text":"
\u5bb9\u5668\u9002\u914d\u5668\u5176\u5b9e\u5e76\u4e0d\u662f\u5bb9\u5668\u3002\u5b83\u4eec\u4e0d\u5177\u6709\u5bb9\u5668\u7684\u67d0\u4e9b\u7279\u70b9\uff08\u5982\uff1a\u6709\u8fed\u4ee3\u5668\u3001\u6709\u00a0clear()
\u00a0\u51fd\u6570\u2026\u2026\uff09\u3002
\u300c\u9002\u914d\u5668\u662f\u4f7f\u4e00\u79cd\u4e8b\u7269\u7684\u884c\u4e3a\u7c7b\u4f3c\u4e8e\u53e6\u5916\u4e00\u79cd\u4e8b\u7269\u884c\u4e3a\u7684\u4e00\u79cd\u673a\u5236\u300d\uff0c\u9002\u914d\u5668\u5bf9\u5bb9\u5668\u8fdb\u884c\u5305\u88c5\uff0c\u4f7f\u5176\u8868\u73b0\u51fa\u53e6\u5916\u4e00\u79cd\u884c\u4e3a\u3002
- \u6808(
stack
) \u540e\u8fdb\u5148\u51fa (LIFO) \u7684\u5bb9\u5668\uff0c\u9ed8\u8ba4\u662f\u5bf9\u53cc\u7aef\u961f\u5217\uff08deque
\uff09\u7684\u5305\u88c5\u3002 - \u961f\u5217(
queue
) \u5148\u8fdb\u5148\u51fa (FIFO) \u7684\u5bb9\u5668\uff0c\u9ed8\u8ba4\u662f\u5bf9\u53cc\u7aef\u961f\u5217\uff08deque
\uff09\u7684\u5305\u88c5\u3002 - \u4f18\u5148\u961f\u5217(
priority_queue
) \u5143\u7d20\u7684\u6b21\u5e8f\u662f\u7531\u4f5c\u7528\u4e8e\u6240\u5b58\u50a8\u7684\u503c\u5bf9\u4e0a\u7684\u67d0\u79cd\u8c13\u8bcd\u51b3\u5b9a\u7684\u7684\u4e00\u79cd\u961f\u5217\uff0c\u9ed8\u8ba4\u662f\u5bf9\u5411\u91cf\uff08vector
\uff09\u7684\u5305\u88c5\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#215","title":"2.1.5 \u5171\u540c\u70b9","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2151","title":"2.1.5.1 \u5bb9\u5668\u58f0\u660e","text":"
- \u90fd\u662f\u00a0
containerName<typeName,...> name
\u00a0\u7684\u5f62\u5f0f\uff0c\u4f46\u6a21\u677f\u53c2\u6570\uff08<>
\u00a0\u5185\u7684\u53c2\u6570\uff09\u7684\u4e2a\u6570\u3001\u5f62\u5f0f\u4f1a\u6839\u636e\u5177\u4f53\u5bb9\u5668\u800c\u53d8\u3002 - \u672c\u8d28\u539f\u56e0\uff1aSTL \u5c31\u662f\u300c\u6807\u51c6\u6a21\u677f\u5e93\u300d\uff0c\u6240\u4ee5\u5bb9\u5668\u90fd\u662f\u6a21\u677f\u7c7b\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2152","title":"2.1.5.2 \u8fed\u4ee3\u5668","text":"C++
vector<int> data(10);\n\nfor (int i = 0; i < data.size(); i++)\n cout << data[i] << endl;\n\nfor (vector<int>::iterator iter = data.begin(); iter != data.end(); iter++)\n cout << *iter << endl;\n//C++11 \u4ee5\u540e\u53ef\u4ee5\u7528 auto iter = data.begin() \u6765\u7b80\u5316\n
- \u5206\u7c7b
- InputIterator\uff08\u8f93\u5165\u8fed\u4ee3\u5668\uff09\uff1a\u53ea\u8981\u6c42\u652f\u6301\u62f7\u8d1d\u3001\u81ea\u589e\u548c\u89e3\u5f15\u8bbf\u95ee\u3002
- OutputIterator\uff08\u8f93\u51fa\u8fed\u4ee3\u5668\uff09\uff1a\u53ea\u8981\u6c42\u652f\u6301\u62f7\u8d1d\u3001\u81ea\u589e\u548c\u89e3\u5f15\u8d4b\u503c\u3002
- ForwardIterator\uff08\u5411\u524d\u8fed\u4ee3\u5668\uff09\uff1a\u540c\u65f6\u6ee1\u8db3 InputIterator \u548c OutputIterator \u7684\u8981\u6c42\u3002
- BidirectionalIterator\uff08\u53cc\u5411\u8fed\u4ee3\u5668\uff09\uff1a\u5728 ForwardIterator \u7684\u57fa\u7840\u4e0a\u652f\u6301\u81ea\u51cf\uff08\u5373\u53cd\u5411\u8bbf\u95ee\uff09\u3002
- RandomAccessIterator\uff08\u968f\u673a\u8bbf\u95ee\u8fed\u4ee3\u5668\uff09\uff1a\u5728 BidirectionalIterator \u7684\u57fa\u7840\u4e0a\u652f\u6301\u52a0\u51cf\u8fd0\u7b97\u548c\u6bd4\u8f83\u8fd0\u7b97\uff08\u5373\u968f\u673a\u8bbf\u95ee\uff09\u3002
- ContiguousIterator\uff08\u8fde\u7eed\u8fed\u4ee3\u5668\uff09\uff1a\u5728 RandomAccessIterator \u7684\u57fa\u7840\u4e0a\u8981\u6c42\u5bf9\u53ef\u89e3\u5f15\u7528\u7684\u8fed\u4ee3\u5668\u00a0
a + n
\u00a0\u6ee1\u8db3\u00a0*(a + n)
\u00a0\u4e0e\u00a0*(std::address_of(*a) + n)
\u00a0\u7b49\u4ef7\uff08\u5373\u8fde\u7eed\u5b58\u50a8\uff0c\u5176\u4e2d\u00a0a
\u00a0\u4e3a\u8fde\u7eed\u8fed\u4ee3\u5668\u3001n
\u00a0\u4e3a\u6574\u578b\u503c\uff09\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2153","title":"2.1.5.3 \u5171\u6709\u51fd\u6570","text":"
=
\uff1a\u6709\u8d4b\u503c\u8fd0\u7b97\u7b26\u4ee5\u53ca\u590d\u5236\u6784\u9020\u51fd\u6570\u3002 begin()
\uff1a\u8fd4\u56de\u6307\u5411\u5f00\u5934\u5143\u7d20\u7684\u8fed\u4ee3\u5668\u3002 end()
\uff1a\u8fd4\u56de\u6307\u5411\u672b\u5c3e\u7684\u4e0b\u4e00\u4e2a\u5143\u7d20\u7684\u8fed\u4ee3\u5668\u3002end()
\u00a0\u4e0d\u6307\u5411\u67d0\u4e2a\u5143\u7d20\uff0c\u4f46\u5b83\u662f\u672b\u5c3e\u5143\u7d20\u7684\u540e\u7ee7\u3002 size()
\uff1a\u8fd4\u56de\u5bb9\u5668\u5185\u7684\u5143\u7d20\u4e2a\u6570\u3002 max_size()
\uff1a\u8fd4\u56de\u5bb9\u5668\u00a0\u7406\u8bba\u4e0a\u00a0\u80fd\u5b58\u50a8\u7684\u6700\u5927\u5143\u7d20\u4e2a\u6570\u3002\u4f9d\u5bb9\u5668\u7c7b\u578b\u548c\u6240\u5b58\u50a8\u53d8\u91cf\u7684\u7c7b\u578b\u800c\u53d8\u3002 empty()
\uff1a\u8fd4\u56de\u5bb9\u5668\u662f\u5426\u4e3a\u7a7a\u3002 swap()
\uff1a\u4ea4\u6362\u4e24\u4e2a\u5bb9\u5668\u3002 clear()
\uff1a\u6e05\u7a7a\u5bb9\u5668\u3002 ==
/!=
/<
/>
/<=
/>=
\uff1a\u6309\u00a0\u5b57\u5178\u5e8f\u00a0\u6bd4\u8f83\u4e24\u4e2a\u5bb9\u5668\u7684\u5927\u5c0f\u3002\uff08\u6bd4\u8f83\u5143\u7d20\u5927\u5c0f\u65f6\u00a0map
\u00a0\u7684\u6bcf\u4e2a\u5143\u7d20\u76f8\u5f53\u4e8e\u00a0set<pair<key, value> >
\uff0c\u65e0\u5e8f\u5bb9\u5668\u4e0d\u652f\u6301\u00a0<
/>
/<=
/>=
\u3002\uff09
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#216-stl","title":"2.1.6 STL \u7b97\u6cd5","text":"
find
\uff1a\u987a\u5e8f\u67e5\u627e\u3002find(v.begin(), v.end(), value)
\uff0c\u5176\u4e2d\u00a0value
\u00a0\u4e3a\u9700\u8981\u67e5\u627e\u7684\u503c\u3002 reverse
\uff1a\u7ffb\u8f6c\u6570\u7ec4\u3001\u5b57\u7b26\u4e32\u3002reverse(v.begin(), v.end())
\u00a0\u6216\u00a0reverse(a + begin, a + end)
\u3002 unique
\uff1a\u53bb\u9664\u5bb9\u5668\u4e2d\u76f8\u90bb\u7684\u91cd\u590d\u5143\u7d20\u3002unique(ForwardIterator first, ForwardIterator last)
\uff0c\u8fd4\u56de\u503c\u4e3a\u6307\u5411\u00a0\u53bb\u91cd\u540e\u00a0\u5bb9\u5668\u7ed3\u5c3e\u7684\u8fed\u4ee3\u5668\uff0c\u539f\u5bb9\u5668\u5927\u5c0f\u4e0d\u53d8\u3002\u4e0e\u00a0sort
\u00a0\u7ed3\u5408\u4f7f\u7528\u53ef\u4ee5\u5b9e\u73b0\u5b8c\u6574\u5bb9\u5668\u53bb\u91cd\u3002 sort
\uff1a\u6392\u5e8f\u3002sort(v.begin(), v.end(), cmp)
\u00a0\u6216\u00a0sort(a + begin, a + end, cmp)
\uff0c\u5176\u4e2d\u00a0end
\u00a0\u662f\u6392\u5e8f\u7684\u6570\u7ec4\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u540e\u4e00\u4f4d\uff0ccmp
\u00a0\u4e3a\u81ea\u5b9a\u4e49\u7684\u6bd4\u8f83\u51fd\u6570\u3002 stable_sort
\uff1a\u7a33\u5b9a\u6392\u5e8f\uff0c\u7528\u6cd5\u540c\u00a0sort()
\u3002 nth_element
\uff1a\u6309\u6307\u5b9a\u8303\u56f4\u8fdb\u884c\u5206\u7c7b\uff0c\u5373\u627e\u51fa\u5e8f\u5217\u4e2d\u7b2c \\(\\displaystyle n\\) \u5927\u7684\u5143\u7d20\uff0c\u4f7f\u5176\u5de6\u8fb9\u5747\u4e3a\u5c0f\u4e8e\u5b83\u7684\u6570\uff0c\u53f3\u8fb9\u5747\u4e3a\u5927\u4e8e\u5b83\u7684\u6570\u3002 nth_element(v.begin(), v.begin() + mid, v.end(), cmp)
\u00a0\u6216\u00a0nth_element(a + begin, a + begin + mid, a + end, cmp)
\u3002 binary_search
\uff1a\u4e8c\u5206\u67e5\u627e\u3002binary_search(v.begin(), v.end(), value)
\uff0c\u5176\u4e2d\u00a0value
\u00a0\u4e3a\u9700\u8981\u67e5\u627e\u7684\u503c\u3002 merge
\uff1a\u5c06\u4e24\u4e2a\uff08\u5df2\u6392\u5e8f\u7684\uff09\u5e8f\u5217\u00a0\u6709\u5e8f\u5408\u5e76\u00a0\u5230\u7b2c\u4e09\u4e2a\u5e8f\u5217\u7684\u00a0\u63d2\u5165\u8fed\u4ee3\u5668\u00a0\u4e0a\u3002merge(v1.begin(), v1.end(), v2.begin(), v2.end() ,back_inserter(v3))
\u3002 inplace_merge
\uff1a\u5c06\u4e24\u4e2a\uff08\u5df2\u6309\u5c0f\u4e8e\u8fd0\u7b97\u7b26\u6392\u5e8f\u7684\uff09\uff1a[first,middle), [middle,last)
\u00a0\u8303\u56f4\u00a0\u539f\u5730\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u5e8f\u5217\u3002inplace_merge(v.begin(), v.begin() + middle, v.end())
\u3002 lower_bound
\uff1a\u5728\u4e00\u4e2a\u6709\u5e8f\u5e8f\u5217\u4e2d\u8fdb\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u8fd4\u56de\u6307\u5411\u7b2c\u4e00\u4e2a\u00a0\u5927\u4e8e\u7b49\u4e8e \u00a0\u7684\u5143\u7d20\u7684\u4f4d\u7f6e\u7684\u8fed\u4ee3\u5668\u3002\u5982\u679c\u4e0d\u5b58\u5728\u8fd9\u6837\u7684\u5143\u7d20\uff0c\u5219\u8fd4\u56de\u5c3e\u8fed\u4ee3\u5668\u3002lower_bound(v.begin(),v.end(),x)
\u3002 upper_bound
\uff1a\u5728\u4e00\u4e2a\u6709\u5e8f\u5e8f\u5217\u4e2d\u8fdb\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u8fd4\u56de\u6307\u5411\u7b2c\u4e00\u4e2a\u00a0\u5927\u4e8e \u00a0\u7684\u5143\u7d20\u7684\u4f4d\u7f6e\u7684\u8fed\u4ee3\u5668\u3002\u5982\u679c\u4e0d\u5b58\u5728\u8fd9\u6837\u7684\u5143\u7d20\uff0c\u5219\u8fd4\u56de\u5c3e\u8fed\u4ee3\u5668\u3002upper_bound(v.begin(),v.end(),x)
\u3002 next_permutation
\uff1a\u5c06\u5f53\u524d\u6392\u5217\u66f4\u6539\u4e3a\u00a0\u5168\u6392\u5217\u4e2d\u7684\u4e0b\u4e00\u4e2a\u6392\u5217\u3002\u5982\u679c\u5f53\u524d\u6392\u5217\u5df2\u7ecf\u662f\u00a0\u5168\u6392\u5217\u4e2d\u7684\u6700\u540e\u4e00\u4e2a\u6392\u5217\uff08\u5143\u7d20\u5b8c\u5168\u4ece\u5927\u5230\u5c0f\u6392\u5217\uff09\uff0c\u51fd\u6570\u8fd4\u56de\u00a0false
\u00a0\u5e76\u5c06\u6392\u5217\u66f4\u6539\u4e3a\u00a0\u5168\u6392\u5217\u4e2d\u7684\u7b2c\u4e00\u4e2a\u6392\u5217\uff08\u5143\u7d20\u5b8c\u5168\u4ece\u5c0f\u5230\u5927\u6392\u5217\uff09\uff1b\u5426\u5219\uff0c\u51fd\u6570\u8fd4\u56de\u00a0true
\u3002next_permutation(v.begin(), v.end())
\u00a0\u6216\u00a0next_permutation(v + begin, v + end)
\u3002 prev_permutation
\uff1a\u5c06\u5f53\u524d\u6392\u5217\u66f4\u6539\u4e3a\u00a0\u5168\u6392\u5217\u4e2d\u7684\u4e0a\u4e00\u4e2a\u6392\u5217\u3002\u7528\u6cd5\u540c\u00a0next_permutation
\u3002 partial_sum
\uff1a\u6c42\u524d\u7f00\u548c\u3002\u8bbe\u6e90\u5bb9\u5668\u4e3a\u00a0\uff0c\u76ee\u6807\u5bb9\u5668\u4e3a\u00a0\uff0c\u5219\u4ee4\u00a0\u3002partial_sum(src.begin(), src.end(), back_inserter(dst))
\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#22-bitset","title":"2.2 bitset","text":"
TODO bitset - OI Wiki
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#23-string","title":"2.3 string","text":"
- \u91cd\u8f7d\u8fd0\u7b97\u7b26
- \u52a8\u6001\u5206\u914d\u7a7a\u95f4
C++
std::string s;\nprintf(\"%s\", s.c_str());\nprintf(\"s \u7684\u957f\u5ea6\u4e3a %lu\", s.size()); \nprintf(\"s \u7684\u957f\u5ea6\u4e3a %lu\", s.length()); \nprintf(\"s \u7684\u957f\u5ea6\u4e3a %lu\", strlen(s.c_str()));\nsubstr(pos, len);\ninsert(index, count, ch);\ninsert(index, str);\nerase(index, count);\nreplace(pos, count, str);\nreplace(first, last, str);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#24-pair","title":"2.4 pair","text":"
pair
\u4e0d\u9700\u8981\u989d\u5916\u5b9a\u4e49\u7ed3\u6784\u4e0e\u91cd\u8f7d\u8fd0\u7b97\u7b26
C++
pair<int, double> p0(1, 2.0);\npair<int, double> p2 = make_pair(1, 2.0);\nauto p3 = make_pair(1, 2.0);\n\nint i = p0.first; \ndouble d = p0.second;\np1.first++;\n\npriority_queue<pair<int, double> > q;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3","title":"3 \u8fdb\u9636","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#31","title":"3.1 \u7c7b","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#32","title":"3.2 \u52a8\u6001\u5185\u5b58","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#321-new-delete","title":"3.2.1 new \u548c delete \u8fd0\u7b97\u7b26","text":"
- \u6808: \u58f0\u660e\u7684\u6240\u6709\u53d8\u91cf\u5c06\u5360\u7528\u6808\u5185\u5b58
- \u5806: \u672a\u4f7f\u7528\u7684\u5185\u5b58
C++
new data-type;\n\ndouble* pvalue = NULL;\npvalue = new double;\n\nif (!(pvalue = new double)) {\n cout << \"Error: out of memory.\" << endl;\n exit(1);\n}\n\ndelete pvalue;\n
- new \u4e0d\u4ec5\u5206\u914d\u7684\u5185\u5b58\u8fd8\u521b\u5efa\u4e86\u5bf9\u8c61
- malloc () \u53ea\u5206\u914d\u7684\u5185\u5b58
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#322","title":"3.2.2 \u6570\u7ec4\u7684\u52a8\u6001\u5185\u5b58\u5206\u914d","text":"C++
int ***array;\n// \u5047\u5b9a\u6570\u7ec4\u7b2c\u4e00\u7ef4\u4e3a m\uff0c \u7b2c\u4e8c\u7ef4\u4e3a n\uff0c \u7b2c\u4e09\u7ef4\u4e3ah\n// \u52a8\u6001\u5206\u914d\u7a7a\u95f4\narray = new int **[m];\nfor( int i=0; i<m; i++ )\n{\n array[i] = new int *[n];\n for( int j=0; j<n; j++ )\n {\n array[i][j] = new int [h];\n }\n}\n//\u91ca\u653e\nfor( int i=0; i<m; i++ )\n{\n for( int j=0; j<n; j++ )\n {\n delete [] array[i][j];\n }\n delete [] array[i];\n}\ndelete [] array;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#323","title":"3.2.3 \u5bf9\u8c61\u7684\u52a8\u6001\u5185\u5b58\u5206\u914d","text":"C++
#include <iostream>\nusing namespace std;\n\nclass Box\n{\n public:\n Box() { \n cout << \"\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\" <<endl; \n }\n ~Box() { \n cout << \"\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\" <<endl; \n }\n};\n\nint main( )\n{\n Box* myBoxArray = new Box[4]; // \u4e00\u4e2a\u5305\u542b 4 \u4e2a Box \u5bf9\u8c61\u7684\u6570\u7ec4\n\n delete [] myBoxArray; // \u5220\u9664\u6570\u7ec4\n return 0;\n}\n
Text Only
\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#33","title":"3.3 \u547d\u540d\u7a7a\u95f4","text":"
- \u7f16\u8bd1\u5668\u4e3a\u4e86\u533a\u522b\u540c\u540d\u51fd\u6570\u5f15\u5165\u4e86\u547d\u540d\u7a7a\u95f4
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#331","title":"3.3.1 \u5b9a\u4e49\u547d\u540d\u7a7a\u95f4","text":"C++
namespace namespace_name {\n // code\n}\n\nnamespace_name::code;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#332-using","title":"3.3.2 using \u6307\u4ee4","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#333","title":"3.3.3 \u4e0d\u8fde\u7eed\u7684\u547d\u540d\u7a7a\u95f4","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#334","title":"3.3.4 \u5d4c\u5957\u7684\u547d\u540d\u7a7a\u95f4","text":"C++
namespace namespace_name1 {\n // \u4ee3\u7801\u58f0\u660e\n namespace namespace_name2 {\n // \u4ee3\u7801\u58f0\u660e\n }\n}\n\n// \u8bbf\u95ee namespace_name2 \u4e2d\u7684\u6210\u5458\nusing namespace namespace_name1::namespace_name2;\n\n// \u8bbf\u95ee namespace_name1 \u4e2d\u7684\u6210\u5458\nusing namespace namespace_name1;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#34","title":"3.4 \u6a21\u677f","text":"
- \u6cdb\u578b\u7f16\u7a0b: \u72ec\u7acb\u4e8e\u4efb\u4f55\u7279\u5b9a\u7c7b\u578b\u7684\u65b9\u5f0f\u5199\u4ee3\u7801
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#341","title":"3.4.1 \u51fd\u6570\u6a21\u677f","text":"C++
template <typename type> ret-type func-name(parameter list)\n{\n // \u51fd\u6570\u7684\u4e3b\u4f53\n}\n
C++
#include <iostream>\n#include <string>\n\nusing namespace std;\n\ntemplate <typename T>\ninline T const& Max (T const& a, T const& b) \n{ \n return a < b ? b:a; \n} \n\nint main ()\n{\n\n int i = 39;\n int j = 20;\n cout << \"Max(i, j): \" << Max(i, j) << endl; \n\n double f1 = 13.5; \n double f2 = 20.7; \n cout << \"Max(f1, f2): \" << Max(f1, f2) << endl; \n\n string s1 = \"Hello\"; \n string s2 = \"World\"; \n cout << \"Max(s1, s2): \" << Max(s1, s2) << endl; \n\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#342","title":"3.4.2 \u7c7b\u6a21\u677f","text":"C++
template <class type> class class-name {\n// code\n}\n
C++
#include <iostream>\n#include <vector>\n#include <cstdlib>\n#include <string>\n#include <stdexcept>\n\nusing namespace std;\n\ntemplate <class T>\nclass Stack { \n private: \n vector<T> elems; // \u5143\u7d20 \n\n public: \n void push(T const&); // \u5165\u6808\n void pop(); // \u51fa\u6808\n T top() const; // \u8fd4\u56de\u6808\u9876\u5143\u7d20\n bool empty() const{ // \u5982\u679c\u4e3a\u7a7a\u5219\u8fd4\u56de\u771f\u3002\n return elems.empty(); \n } \n}; \n\ntemplate <class T>\nvoid Stack<T>::push (T const& elem) \n{ \n // \u8ffd\u52a0\u4f20\u5165\u5143\u7d20\u7684\u526f\u672c\n elems.push_back(elem); \n} \n\ntemplate <class T>\nvoid Stack<T>::pop () \n{ \n if (elems.empty()) { \n throw out_of_range(\"Stack<>::pop(): empty stack\"); \n }\n // \u5220\u9664\u6700\u540e\u4e00\u4e2a\u5143\u7d20\n elems.pop_back(); \n} \n\ntemplate <class T>\nT Stack<T>::top () const \n{ \n if (elems.empty()) { \n throw out_of_range(\"Stack<>::top(): empty stack\"); \n }\n // \u8fd4\u56de\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u526f\u672c \n return elems.back(); \n} \n\nint main() \n{ \n try { \n Stack<int> intStack; // int \u7c7b\u578b\u7684\u6808 \n Stack<string> stringStack; // string \u7c7b\u578b\u7684\u6808 \n\n // \u64cd\u4f5c int \u7c7b\u578b\u7684\u6808 \n intStack.push(7); \n cout << intStack.top() <<endl; \n\n // \u64cd\u4f5c string \u7c7b\u578b\u7684\u6808 \n stringStack.push(\"hello\"); \n cout << stringStack.top() << std::endl; \n stringStack.pop(); \n stringStack.pop(); \n } \n catch (exception const& ex) { \n cerr << \"Exception: \" << ex.what() <<endl; \n return -1;\n } \n}\n
Text Only
7\nhello\nException: Stack<>::pop(): empty stack\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#35","title":"3.5 \u9884\u5904\u7406\u5668","text":"
- \u4e0d\u662f C++\u8bed\u53e5\uff0c\u4e0d\u4f1a\u4ee5\u5206\u53f7\u7ed3\u5c3e
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#351-define","title":"3.5.1 #define \u9884\u5904\u7406","text":"C++
#define macro-name replacement-text \n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#352","title":"3.5.2 \u53c2\u6570\u5b8f","text":"C++
#include <iostream>\nusing namespace std;\n\n#define MIN(a,b) (a<b ? a : b)\n\nint main ()\n{\n int i, j;\n i = 100;\n j = 30;\n cout <<\"\u8f83\u5c0f\u7684\u503c\u4e3a\uff1a\" << MIN(i, j) << endl;\n\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#353","title":"3.5.3 \u6761\u4ef6\u7f16\u8bd1","text":"C++
#ifdef NULL\n #define NULL 0\n#endif\n\n#ifdef DEBUG\n cerr <<\"Variable x = \" << x << endl;\n#endif\n\n#if 0\n \u4e0d\u8fdb\u884c\u7f16\u8bd1\u7684\u4ee3\u7801\n#endif\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#354","title":"3.5.4 # \u548c ## \u8fd0\u7b97\u7b26","text":"C++
#include <iostream>\nusing namespace std;\n\n#define MKSTR( x ) #x\n\nint main ()\n{\n cout << MKSTR(HELLO C++) << endl;\n\n return 0;\n}\n
C++
#include <iostream>\nusing namespace std;\n\n#define concat(a, b) a ## b\nint main()\n{\n int xy = 100;\n\n cout << concat(x, y);\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#355","title":"3.5.5 \u9884\u5b9a\u4e49\u5b8f","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#36","title":"3.6 \u4fe1\u53f7\u5904\u7406","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#361-signal","title":"3.6.1 signal () \u51fd\u6570","text":"C++
void (*signal (int sig, void (*func)(int)))(int); \n\nsignal(registered signal, signal handler)\n
C++
#include <iostream>\n#include <csignal>\n#include <unistd.h>\n\nusing namespace std;\n\nvoid signalHandler( int signum )\n{\n cout << \"Interrupt signal (\" << signum << \") received.\\n\";\n\n // \u6e05\u7406\u5e76\u5173\u95ed\n // \u7ec8\u6b62\u7a0b\u5e8f \n\n exit(signum); \n\n}\n\nint main ()\n{\n // \u6ce8\u518c\u4fe1\u53f7 SIGINT \u548c\u4fe1\u53f7\u5904\u7406\u7a0b\u5e8f\n signal(SIGINT, signalHandler); \n\n while(1){\n cout << \"Going to sleep....\" << endl;\n sleep(1);\n }\n\n return 0;\n}\n
\u6309 Ctrl + C \u4e2d\u65ad\u7a0b\u5e8f:
Text Only
Going to sleep....\nGoing to sleep....\nGoing to sleep....\nInterrupt signal (2) received.\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#362-raise","title":"3.6.2 raise () \u51fd\u6570","text":"C++
int raise (signal sig);\n
C++
#include <iostream>\n#include <csignal>\n#include <unistd.h>\n\nusing namespace std;\n\nvoid signalHandler( int signum )\n{\n cout << \"Interrupt signal (\" << signum << \") received.\\n\";\n\n // \u6e05\u7406\u5e76\u5173\u95ed\n // \u7ec8\u6b62\u7a0b\u5e8f \n\n exit(signum); \n\n}\n\nint main ()\n{\n int i = 0;\n // \u6ce8\u518c\u4fe1\u53f7 SIGINT \u548c\u4fe1\u53f7\u5904\u7406\u7a0b\u5e8f\n signal(SIGINT, signalHandler); \n\n while(++i){\n cout << \"Going to sleep....\" << endl;\n if( i == 3 ){\n raise(SIGINT);\n }\n sleep(1);\n }\n\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#37","title":"3.7 \u591a\u7ebf\u7a0b","text":"
- \u4e24\u79cd\u7c7b\u578b\u7684\u591a\u4efb\u52a1\u5904\u7406
- \u57fa\u4e8e\u8fdb\u7a0b\u662f\u7a0b\u5e8f\u7684\u5e76\u53d1\u6267\u884c
- \u57fa\u4e8e\u7ebf\u7a0b\u662f\u540c\u4e00\u7a0b\u5e8f\u7684\u7247\u6bb5\u7684\u5e76\u53d1\u6267\u884c
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#371","title":"3.7.1 \u6982\u5ff5\u8bf4\u660e","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3711-thread","title":"3.7.1.1 \u7ebf\u7a0b\uff08Thread\uff09","text":"
- \u7ebf\u7a0b\u662f\u7a0b\u5e8f\u6267\u884c\u4e2d\u7684\u5355\u4e00\u987a\u5e8f\u63a7\u5236\u6d41\uff0c\u591a\u4e2a\u7ebf\u7a0b\u53ef\u4ee5\u5728\u540c\u4e00\u4e2a\u8fdb\u7a0b\u4e2d\u72ec\u7acb\u8fd0\u884c\u3002
- \u7ebf\u7a0b\u5171\u4eab\u8fdb\u7a0b\u7684\u5730\u5740\u7a7a\u95f4\u3001\u6587\u4ef6\u63cf\u8ff0\u7b26\u3001\u5806\u548c\u5168\u5c40\u53d8\u91cf\u7b49\u8d44\u6e90\uff0c\u4f46\u6bcf\u4e2a\u7ebf\u7a0b\u6709\u81ea\u5df1\u7684\u6808\u3001\u5bc4\u5b58\u5668\u548c\u7a0b\u5e8f\u8ba1\u6570\u5668\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3712-concurrency-parallelism","title":"3.7.1.2 \u5e76\u53d1\uff08Concurrency\uff09\u4e0e\u5e76\u884c \uff08Parallelism\uff09","text":"
- \u5e76\u53d1\uff1a\u591a\u4e2a\u4efb\u52a1\u5728\u65f6\u95f4\u7247\u6bb5\u5185\u4ea4\u66ff\u6267\u884c\uff0c\u8868\u73b0\u51fa\u540c\u65f6\u8fdb\u884c\u7684\u6548\u679c\u3002
- \u5e76\u884c\uff1a\u591a\u4e2a\u4efb\u52a1\u5728\u591a\u4e2a\u5904\u7406\u5668\u6216\u5904\u7406\u5668\u6838\u4e0a\u540c\u65f6\u6267\u884c\u3002 C++11 \u4ee5\u540e\u6709\u591a\u7ebf\u7a0b\u652f\u6301:
- std::thread\uff1a\u7528\u4e8e\u521b\u5efa\u548c\u7ba1\u7406\u7ebf\u7a0b\u3002
- std::mutex\uff1a\u7528\u4e8e\u7ebf\u7a0b\u4e4b\u95f4\u7684\u4e92\u65a5\uff0c\u9632\u6b62\u591a\u4e2a\u7ebf\u7a0b\u540c\u65f6\u8bbf\u95ee\u5171\u4eab\u8d44\u6e90\u3002
- std::lock_guard\u00a0\u548c\u00a0std::unique_lock\uff1a\u7528\u4e8e\u7ba1\u7406\u9501\u7684\u83b7\u53d6\u548c\u91ca\u653e\u3002
- std::condition_variable\uff1a\u7528\u4e8e\u7ebf\u7a0b\u95f4\u7684\u6761\u4ef6\u53d8\u91cf\uff0c\u534f\u8c03\u7ebf\u7a0b\u95f4\u7684\u7b49\u5f85\u548c\u901a\u77e5\u3002
- std::future\u00a0\u548c\u00a0std::promise\uff1a\u7528\u4e8e\u5b9e\u73b0\u7ebf\u7a0b\u95f4\u7684\u503c\u4f20\u9012\u548c\u4efb\u52a1\u540c\u6b65\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#372","title":"3.7.2 \u521b\u5efa\u7ebf\u7a0b","text":"C++
#include<thread>\nstd::thread thread_object(callable, args...);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3721","title":"3.7.2.1 \u4f7f\u7528\u51fd\u6570\u6307\u9488","text":"C++
#include <iostream>\n#include <thread>\n\nvoid printMessage(int count) {\n for (int i = 0; i < count; ++i) {\n std::cout << \"Hello from thread (function pointer)!\\n\";\n }\n}\n\nint main() {\n std::thread t1(printMessage, 5); // \u521b\u5efa\u7ebf\u7a0b\uff0c\u4f20\u9012\u51fd\u6570\u6307\u9488\u548c\u53c2\u6570\n t1.join(); // \u7b49\u5f85\u7ebf\u7a0b\u5b8c\u6210\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3722","title":"3.7.2.2 \u4f7f\u7528\u51fd\u6570\u5bf9\u8c61","text":"C++
#include <iostream>\n#include <thread>\n\nclass PrintTask {\npublic:\n void operator()(int count) const {\n for (int i = 0; i < count; ++i) {\n std::cout << \"Hello from thread (function object)!\\n\";\n }\n }\n};\n\nint main() {\n std::thread t2(PrintTask(), 5); // \u521b\u5efa\u7ebf\u7a0b\uff0c\u4f20\u9012\u51fd\u6570\u5bf9\u8c61\u548c\u53c2\u6570\n t2.join(); // \u7b49\u5f85\u7ebf\u7a0b\u5b8c\u6210\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3723-lambda","title":"3.7.2.3 \u4f7f\u7528 Lambda \u8868\u8fbe\u5f0f","text":"C++
#include <iostream>\n#include <thread>\n\nint main() {\n std::thread t3([](int count) {\n for (int i = 0; i < count; ++i) {\n std::cout << \"Hello from thread (lambda)!\\n\";\n }\n }, 5); // \u521b\u5efa\u7ebf\u7a0b\uff0c\u4f20\u9012 Lambda \u8868\u8fbe\u5f0f\u548c\u53c2\u6570\n t3.join(); // \u7b49\u5f85\u7ebf\u7a0b\u5b8c\u6210\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3724","title":"3.7.2.4 \u7ebf\u7a0b\u7ba1\u7406","text":"C++
t.join();\nt.detach();\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3725","title":"3.7.2.5 \u7ebf\u7a0b\u7684\u4f20\u53c2","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3726","title":"3.7.2.6 \u503c\u4f20\u9012","text":"C++
std::thread t(funx, arg1, arg2);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3727","title":"3.7.2.7 \u5f15\u7528\u4f20\u9012","text":"C++
#include <iostream>\n#include <thread>\n\nvoid increment(int& x) {\n ++x;\n}\n\nint main() {\n int num = 0;\n std::thread t(increment, std::ref(num)); // \u4f7f\u7528 std::ref \u4f20\u9012\u5f15\u7528\n t.join();\n std::cout << \"Value after increment: \" << num << std::endl;\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#373","title":"3.7.3 \u7ebf\u7a0b\u540c\u6b65\u4e0e\u4e92\u65a5","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3731-mutex","title":"3.7.3.1 \u4e92\u65a5\u91cf\uff08Mutex\uff09","text":"C++
std::mutex mtx;\nmtx.lock(); // \u9501\u5b9a\u4e92\u65a5\u9501\n// \u8bbf\u95ee\u5171\u4eab\u8d44\u6e90\nmtx.unlock();// \u91ca\u653e\u4e92\u65a5\u9501\n\nstd::lock_guard<std::mutex> lock(mtx); // \u81ea\u52a8\u9501\u5b9a\u548c\u89e3\u9501\n// \u8bbf\u95ee\u5171\u4eab\u8d44\u6e90\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3732-locks","title":"3.7.3.2 \u9501\uff08Locks\uff09","text":"
std::lock_guard
\uff1a\u4f5c\u7528\u57df\u9501\uff0c\u5f53\u6784\u9020\u65f6\u81ea\u52a8\u9501\u5b9a\u4e92\u65a5\u91cf\uff0c\u5f53\u6790\u6784\u65f6\u81ea\u52a8\u89e3\u9501\u3002 std::unique_lock
\uff1a\u4e0e std::lock_guard
\u7c7b\u4f3c\uff0c\u4f46\u63d0\u4f9b\u4e86\u66f4\u591a\u7684\u7075\u6d3b\u6027\uff0c\u4f8b\u5982\u53ef\u4ee5\u8f6c\u79fb\u6240\u6709\u6743\u548c\u624b\u52a8\u89e3\u9501\u3002
C++
#include <mutex>\n\nstd::mutex mtx;\n\nvoid safeFunctionWithLockGuard() {\n std::lock_guard<std::mutex> lk(mtx);\n // \u8bbf\u95ee\u6216\u4fee\u6539\u5171\u4eab\u8d44\u6e90\n}\n\nvoid safeFunctionWithUniqueLock() {\n std::unique_lock<std::mutex> ul(mtx);\n // \u8bbf\u95ee\u6216\u4fee\u6539\u5171\u4eab\u8d44\u6e90\n // ul.unlock(); // \u53ef\u9009\uff1a\u624b\u52a8\u89e3\u9501\n // ...\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3733-condition-variable","title":"3.7.3.3 \u6761\u4ef6\u53d8\u91cf\uff08Condition Variable\uff09","text":"C++
std::condition_variable cv;\nstd::mutex mtx;\nbool ready = false;\n\nstd::unique_lock<std::mutex> lock(mtx);\ncv.wait(lock, []{ return ready; }); // \u7b49\u5f85\u6761\u4ef6\u6ee1\u8db3\n// \u6761\u4ef6\u6ee1\u8db3\u540e\u6267\u884c\n
C++
#include <mutex>\n#include <condition_variable>\n\nstd::mutex mtx;\nstd::condition_variable cv;\nbool ready = false;\n\nvoid workerThread() {\n std::unique_lock<std::mutex> lk(mtx);\n cv.wait(lk, []{ return ready; }); // \u7b49\u5f85\u6761\u4ef6\n // \u5f53\u6761\u4ef6\u6ee1\u8db3\u65f6\u6267\u884c\u5de5\u4f5c\n}\n\nvoid mainThread() {\n {\n std::lock_guard<std::mutex> lk(mtx);\n // \u51c6\u5907\u6570\u636e\n ready = true;\n } // \u79bb\u5f00\u4f5c\u7528\u57df\u65f6\u89e3\u9501\n cv.notify_one(); // \u901a\u77e5\u4e00\u4e2a\u7b49\u5f85\u7684\u7ebf\u7a0b\n}\n
TODO
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3734-atomic-operations","title":"3.7.3.4 \u539f\u5b50\u64cd\u4f5c\uff08Atomic Operations\uff09","text":"
- \u5bf9\u5171\u4eab\u6570\u636e\u7684\u8bbf\u95ee\u4e0d\u53ef\u5206\u5272
C++
#include <atomic>\n#include <thread>\n\nstd::atomic<int> count(0);\n\nvoid increment() {\n count.fetch_add(1, std::memory_order_relaxed);\n}\n\nint main() {\n std::thread t1(increment);\n std::thread t2(increment);\n t1.join();\n t2.join();\n return count; // \u5e94\u8fd4\u56de2\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3735-thread-local-storagetls","title":"3.7.3.5 \u7ebf\u7a0b\u5c40\u90e8\u5b58\u50a8\uff08Thread Local Storage\uff0cTLS\uff09","text":"
- \u5141\u8bb8\u6bcf\u4e2a\u7ebf\u7a0b\u6709\u81ea\u5df1\u7684\u6570\u636e\u526f\u672c
C++
#include <iostream>\n#include <thread>\n\nthread_local int threadData = 0;\n\nvoid threadFunction() {\n threadData = 42; // \u6bcf\u4e2a\u7ebf\u7a0b\u90fd\u6709\u81ea\u5df1\u7684threadData\u526f\u672c\n std::cout << \"Thread data: \" << threadData << std::endl;\n}\n\nint main() {\n std::thread t1(threadFunction);\n std::thread t2(threadFunction);\n t1.join();\n t2.join();\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3736-deadlock","title":"3.7.3.6 \u6b7b\u9501\uff08Deadlock\uff09\u548c\u907f\u514d\u7b56\u7565","text":"
- \u6b7b\u9501\u5373\u591a\u4e2a\u7ebf\u7a0b\u4e92\u76f8\u7b49\u5f85\u5bf9\u65b9\u91ca\u653e\u8d44\u6e90
- \u603b\u662f\u4ee5\u76f8\u540c\u7684\u987a\u5e8f\u8bf7\u6c42\u8d44\u6e90\u3002
- \u4f7f\u7528\u8d85\u65f6\u6765\u5c1d\u8bd5\u83b7\u53d6\u8d44\u6e90\u3002
- \u4f7f\u7528\u6b7b\u9501\u68c0\u6d4b\u7b97\u6cd5\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#374","title":"3.7.4 \u7ebf\u7a0b\u95f4\u901a\u4fe1","text":"C++
std::promise<int> p;\nstd::future<int> f = p.get_future();\n\nstd::thread t([&p] {\n p.set_value(10); // \u8bbe\u7f6e\u503c\uff0c\u89e6\u53d1 future\n});\n\nint result = f.get(); // \u83b7\u53d6\u503c\n
C++17 \u5f15\u5165\u4e86\u5e76\u884c\u7b97\u6cd5\u5e93
C++
#include <algorithm>\n#include <vector>\n#include <execution>\n\nstd::vector<int> vec = {1, 2, 3, 4, 5};\nstd::for_each(std::execution::par, vec.begin(), vec.end(), [](int &n) {\n n *= 2;\n});\n
TODO \u591a\u7ebf\u7a0b\u5b9e\u4f8b
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#38-web","title":"3.8 Web \u7f16\u7a0b","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#381-cgi","title":"3.8.1 \u4ec0\u4e48\u662f CGI\uff1f","text":"
- \u516c\u5171\u7f51\u5173\u63a5\u53e3\uff08CGI\uff09\uff0c\u662f\u4e00\u5957\u6807\u51c6\uff0c\u5b9a\u4e49\u4e86\u4fe1\u606f\u662f\u5982\u4f55\u5728 Web \u670d\u52a1\u5668\u548c\u5ba2\u6237\u7aef\u811a\u672c\u4e4b\u95f4\u8fdb\u884c\u4ea4\u6362\u7684\u3002
- CGI \u89c4\u8303\u76ee\u524d\u662f\u7531 NCSA \u7ef4\u62a4\u7684\uff0cNCSA \u5b9a\u4e49 CGI \u5982\u4e0b\uff1a
- \u516c\u5171\u7f51\u5173\u63a5\u53e3\uff08CGI\uff09\uff0c\u662f\u4e00\u79cd\u7528\u4e8e\u5916\u90e8\u7f51\u5173\u7a0b\u5e8f\u4e0e\u4fe1\u606f\u670d\u52a1\u5668\uff08\u5982 HTTP \u670d\u52a1\u5668\uff09\u5bf9\u63a5\u7684\u63a5\u53e3\u6807\u51c6\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#382-web","title":"3.8.2 Web \u6d4f\u89c8","text":"
- \u60a8\u7684\u6d4f\u89c8\u5668\u8054\u7cfb\u4e0a HTTP Web \u670d\u52a1\u5668\uff0c\u5e76\u8bf7\u6c42 URL\uff0c\u5373\u6587\u4ef6\u540d\u3002
- Web \u670d\u52a1\u5668\u5c06\u89e3\u6790 URL\uff0c\u5e76\u67e5\u627e\u6587\u4ef6\u540d\u3002\u5982\u679c\u627e\u5230\u8bf7\u6c42\u7684\u6587\u4ef6\uff0cWeb \u670d\u52a1\u5668\u4f1a\u628a\u6587\u4ef6\u53d1\u9001\u56de\u6d4f\u89c8\u5668\uff0c\u5426\u5219\u53d1\u9001\u4e00\u6761\u9519\u8bef\u6d88\u606f\uff0c\u8868\u660e\u60a8\u8bf7\u6c42\u4e86\u4e00\u4e2a\u9519\u8bef\u7684\u6587\u4ef6\u3002
- Web \u6d4f\u89c8\u5668\u4ece Web \u670d\u52a1\u5668\u83b7\u53d6\u54cd\u5e94\uff0c\u5e76\u6839\u636e\u63a5\u6536\u5230\u7684\u54cd\u5e94\u6765\u663e\u793a\u6587\u4ef6\u6216\u9519\u8bef\u6d88\u606f\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#383-cgi","title":"3.8.3 CGI \u67b6\u6784\u56fe","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#384-web","title":"3.8.4 Web \u670d\u52a1\u5668\u914d\u7f6e","text":"
TODO
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/","title":"COMPOSING PROGRAMS","text":"
\u7ea6 2713 \u4e2a\u5b57 651 \u884c\u4ee3\u7801 2 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 17 \u5206\u949f
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#1","title":"1 \u4f7f\u7528\u51fd\u6570\u6784\u5efa\u62bd\u8c61","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#11","title":"1.1 \u5f00\u59cb","text":"
\u7a0b\u5e8f\u7531\u4e24\u90e8\u5206\u7ec4\u6210:
- \u8ba1\u7b97\u4e00\u4e9b\u503c
- \u6267\u884c\u4e00\u4e9b\u64cd\u4f5c
- \u51fd\u6570
- \u5bf9\u8c61
- \u89e3\u91ca\u5668:
- \u7528\u4e8e\u8ba1\u7b97\u590d\u6742\u8868\u8fbe\u5f0f\u7684\u7a0b\u5e8f
- \u589e\u91cf\u6d4b\u8bd5\u3001\u6a21\u5757\u5316\u8bbe\u8ba1\u3001\u660e\u786e\u7684\u5047\u8bbe\u548c\u56e2\u961f\u5408\u4f5c
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#12","title":"1.2 \u7f16\u7a0b\u8981\u7d20","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#121","title":"1.2.1 \u8868\u8fbe\u5f0f","text":"
- \u8bed\u8a00\u8981\u6709\u7684\u673a\u5236:
- \u539f\u59cb\u8868\u8fbe\u5f0f\u548c\u8bed\u53e5\uff1a\u8bed\u8a00\u6240\u5173\u5fc3\u7684\u6700\u7b80\u5355\u7684\u4e2a\u4f53
- \u7ec4\u5408\u65b9\u6cd5\uff1a\u7531\u7b80\u5355\u5143\u7d20\u7ec4\u5408\u6784\u5efa\u590d\u5408\u5143\u7d20
- \u62bd\u8c61\u65b9\u6cd5\uff1a\u547d\u540d\u590d\u5408\u5143\u7d20\uff0c\u5e76\u5c06\u5176\u4f5c\u4e3a\u5355\u5143\u8fdb\u884c\u64cd\u4f5c
- infix notation
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#122","title":"1.2.2 \u8c03\u7528\u8868\u8fbe\u5f0f","text":"
- subexpressions
- \u7528\u53c2\u6570\u6765\u8c03\u7528\u51fd\u6570
- nested\uff08\u5d4c\u5957\uff09
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#123","title":"1.2.3 \u5bfc\u5165\u5e93\u51fd\u6570","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#124","title":"1.2.4 \u540d\u79f0\u4e0e\u73af\u5883","text":"
- = is assignment operator
- \u6700\u7b80\u5355\u7684\u62bd\u8c61\u65b9\u6cd5
- environment
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#125","title":"1.2.5 \u6c42\u89e3\u5d4c\u5957\u8868\u8fbe\u5f0f","text":"
\u6c42\u503c\u7a0b\u5e8f\u672c\u8d28\u4e0a\u662f\u9012\u5f52\u7684
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#126-print","title":"1.2.6 \u975e\u7eaf\u51fd\u6570 print","text":"
Pure functions None-pure functions which has a side effect
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#13","title":"1.3 \u5b9a\u4e49\u65b0\u7684\u51fd\u6570","text":"Python
def <name>(<formal parameters>):\n return <return expression> \n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#131","title":"1.3.1 \u73af\u5883","text":"
environment has some frames frames have some bindings
- intrinsic name
- bound name \u4e0d\u540c\u7684\u540d\u79f0\u53ef\u80fd\u6307\u7684\u662f\u540c\u4e00\u4e2a\u51fd\u6570\uff0c\u4f46\u8be5\u51fd\u6570\u672c\u8eab\u53ea\u6709\u4e00\u4e2a\u5185\u5728\u540d\u79f0 \u5bf9\u51fd\u6570\u5f62\u5f0f\u53c2\u6570\u7684\u63cf\u8ff0\u88ab\u79f0\u4e3a\u51fd\u6570\u7684\u7b7e\u540d
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#132","title":"1.3.2 \u8c03\u7528\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570","text":"
- \u5728\u65b0\u7684\u5c40\u90e8\u5e27\u4e2d\uff0c\u5c06\u5b9e\u53c2\u7ed1\u5b9a\u5230\u51fd\u6570\u7684\u5f62\u53c2\u4e0a\u3002
- \u5728\u4ee5\u6b64\u5e27\u5f00\u59cb\u7684\u73af\u5883\u4e2d\u6267\u884c\u51fd\u6570\u4f53\u3002 name evaluation
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#133","title":"1.3.3 \u793a\u4f8b\uff1a\u8c03\u7528\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#134","title":"1.3.4 \u5c40\u90e8\u540d\u79f0","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#135","title":"1.3.5 \u9009\u62e9\u540d\u79f0","text":"
PEP 8 \u2013 Style Guide for Python Code | peps.python.org
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#136","title":"1.3.6 \u62bd\u8c61\u51fd\u6570","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#137","title":"1.3.7 \u8fd0\u7b97\u7b26","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#14","title":"1.4 \u8bbe\u8ba1\u51fd\u6570","text":"
- \u4e00\u4e2a\u51fd\u6570\u4e00\u4e2a\u4efb\u52a1
- Don't repeat yourself (DRY)
- \u5b9a\u4e49\u901a\u7528\u7684\u51fd\u6570
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#141","title":"1.4.1 \u6587\u6863","text":"
docstring
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#142","title":"1.4.2 \u53c2\u6570\u9ed8\u8ba4\u503c","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#15","title":"1.5 \u63a7\u5236","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#151","title":"1.5.1 \u8bed\u53e5","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#152","title":"1.5.2 \u590d\u5408\u8bed\u53e5","text":"
header suite
Python
<header>:\n <statement>\n <statement>\n ...\n<separating header>:\n <statement>\n <statement>\n ...\n...\n
def \u662f\u590d\u5408\u8bed\u53e5 the header controls its suite \u8fd9\u4e2a\u5b9a\u4e49\u63ed\u793a\u4e86\u9012\u5f52\u5b9a\u4e49\u5e8f\u5217\uff08sequence\uff09\u7684\u57fa\u672c\u7ed3\u6784\uff1a\u4e00\u4e2a\u5e8f\u5217\u53ef\u4ee5\u5206\u89e3\u6210\u5b83\u7684\u7b2c\u4e00\u4e2a\u5143\u7d20\u548c\u5176\u4f59\u5143\u7d20 redirected control
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#153-ii","title":"1.5.3 \u00a0\u5b9a\u4e49\u51fd\u6570 II\uff1a\u5c40\u90e8\u8d4b\u503c","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#154","title":"1.5.4 \u6761\u4ef6\u8bed\u53e5","text":"Python
if <expression>:\n <suite>\nelif <expression>:\n <suite>\nelse:\n <suite>\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#155","title":"1.5.5 \u8fed\u4ee3","text":"
iteractive control
Python
while <expression>:\n <suite>\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#156","title":"1.5.6 \u6d4b\u8bd5","text":"
assertions
Python
>>> assert fib(8) == 13, '\u7b2c\u516b\u4e2a\u6590\u6ce2\u90a3\u5951\u6570\u5e94\u8be5\u662f 13'\n
Doctests
Python
>>> def sum_naturals(n):\n \"\"\"\u8fd4\u56de\u524d n \u4e2a\u81ea\u7136\u6570\u7684\u548c\u3002\n\n >>> sum_naturals(10)\n 55\n >>> sum_naturals(100)\n 5050\n \"\"\"\n total, k = 0, 1\n while k <= n:\n total, k = total + k, k + 1\n return total\n
Python
>>> from doctest import testmod\n>>> testmod()\nTestResults(failed=0, attempted=2)\n
\u5355\u4e2a\u51fd\u6570\u7684\u4ea4\u4e92
Python
>>> from doctest import run_docstring_examples\n>>> run_docstring_examples(sum_naturals, globals(), True)\nFinding tests in NoName\nTrying:\n\u00a0\u00a0\u00a0 sum_naturals(10)\nExpecting:\n\u00a0\u00a0\u00a0 55\nok\nTrying:\n\u00a0\u00a0\u00a0 sum_naturals(100)\nExpecting:\n\u00a0\u00a0\u00a0 5050\nok\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#16","title":"1.6 \u9ad8\u9636\u51fd\u6570","text":"
- general patterns
- named concepts
- higher-order functions
- \u53ef\u4ee5\u628a\u51fd\u6570\u5f53\u4f5c\u53c2\u6570\u6216\u8005\u8fd4\u56de\u503c
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#161","title":"1.6.1 \u4f5c\u4e3a\u53c2\u6570\u7684\u51fd\u6570","text":"
- slots
- step through \uff08\u5355\u6b65\u8c03\u8bd5\uff09
- \u4e00\u4e2a\u51e0\u4e4e\u6ca1\u5fc5\u8981\u770b\u7684\u4f8b\u5b50:
Python
>>> def summation(n, term):\n total, k = 0, 1\n while k <= n:\n total, k = total + term(k), k + 1\n return total\n>>> def identity(x):\n return x\n>>> def sum_naturals(n):\n return summation(n, identity)\n>>> sum_naturals(10)\n55\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#162","title":"1.6.2 \u4f5c\u4e3a\u901a\u7528\u65b9\u6cd5\u7684\u51fd\u6570","text":"
- user-defined functions
- general methods
- iterative improvement
- repetitive refinement
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#163-iii","title":"1.6.3 \u5b9a\u4e49\u51fd\u6570 III\uff1a\u5d4c\u5957\u5b9a\u4e49","text":"
\u4e24\u4e2a\u540e\u679c:
- \u5168\u5c40\u5e27\u53d8\u6df7\u4e71
- \u51fd\u6570\u7b7e\u540d\u9650\u5236
- Nested function definition
- Lexical scope
- \u8fd9\u79cd\u5728\u5d4c\u5957\u5b9a\u4e49\u4e4b\u95f4\u5171\u4eab\u540d\u79f0\u7684\u89c4\u5219\u79f0\u4e3a\u8bcd\u6cd5\u4f5c\u7528\u57df
- \u6bcf\u4e2a\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570\u90fd\u6709\u4e00\u4e2a\u7236\u73af\u5883\uff1a\u5b9a\u4e49\u5b83\u7684\u73af\u5883\u3002
- \u8c03\u7528\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570\u65f6\uff0c\u5176\u5c40\u90e8\u5e27\u4f1a\u7ee7\u627f\u5176\u7236\u73af\u5883\u3002
- \u5173\u952e\u4f18\u52bf:
- \u5c40\u90e8\u51fd\u6570\u7684\u540d\u79f0\u4e0d\u4f1a\u5f71\u54cd\u5b9a\u4e49\u5b83\u7684\u51fd\u6570\u7684\u5916\u90e8\u540d\u79f0\uff0c\u56e0\u4e3a\u5c40\u90e8\u51fd\u6570\u7684\u540d\u79f0\u5c06\u7ed1\u5b9a\u5728\u5b9a\u4e49\u5b83\u7684\u5f53\u524d\u5c40\u90e8\u73af\u5883\u4e2d\uff0c\u800c\u4e0d\u662f\u5168\u5c40\u73af\u5883\u4e2d\u3002
- \u5c40\u90e8\u51fd\u6570\u53ef\u4ee5\u8bbf\u95ee\u5916\u5c42\u51fd\u6570\u7684\u73af\u5883\uff0c\u8fd9\u662f\u56e0\u4e3a\u5c40\u90e8\u51fd\u6570\u7684\u51fd\u6570\u4f53\u7684\u6c42\u503c\u73af\u5883\u4f1a\u7ee7\u627f\u5b9a\u4e49\u5b83\u7684\u6c42\u503c\u73af\u5883\u3002
- Extended Environments
- \u5c40\u90e8\u5b9a\u4e49\u7684\u51fd\u6570\u901a\u5e38\u88ab\u79f0\u4e3a\u95ed\u5305\uff08closures\uff09
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#164","title":"1.6.4 \u4f5c\u4e3a\u8fd4\u56de\u503c\u7684\u51fd\u6570","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#165","title":"1.6.5 \u793a\u4f8b\uff1a\u725b\u987f\u6cd5","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#166-currying","title":"1.6.6 Currying","text":"
- uncurrying transformation
Python
>>> def curry2(f):\n \"\"\"\u8fd4\u56de\u7ed9\u5b9a\u7684\u53cc\u53c2\u6570\u51fd\u6570\u7684\u67ef\u91cc\u5316\u7248\u672c\"\"\"\n def g(x):\n def h(y):\n return f(x, y)\n return h\n return g\n>>> def uncurry2(g):\n \"\"\"\u8fd4\u56de\u7ed9\u5b9a\u7684\u67ef\u91cc\u5316\u51fd\u6570\u7684\u53cc\u53c2\u6570\u7248\u672c\"\"\"\n def f(x, y):\n return g(x)(y)\n return f\n>>> pow_curried = curry2(pow)\n>>> pow_curried(2)(5)\n32\n>>> map_to_range(0, 10, pow_curried(2))\n1\n2\n4\n8\n16\n32\n64\n128\n256\n512\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#167-lambda","title":"1.6.7 Lambda \u8868\u8fbe\u5f0f","text":"Python
lambda x : f(g(x))\n\"A function that takes x and returns f(g(x))\"\n
\\(\\displaystyle \\lambda\\)
Python
>>> s = lambda x: x * x\n>>> s\n<function <lambda> at 0xf3f490>\n>>> s(12)\n144\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#168","title":"1.6.8 \u62bd\u8c61\u548c\u4e00\u7b49\u51fd\u6570","text":"
- \u53ef\u4ee5\u4e0e\u540d\u79f0\u7ed1\u5b9a
- \u53ef\u4ee5\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u7ed9\u51fd\u6570
- \u53ef\u4ee5\u4f5c\u4e3a\u51fd\u6570\u7684\u7ed3\u679c\u8fd4\u56de
- \u53ef\u4ee5\u5305\u542b\u5728\u6570\u636e\u7ed3\u6784\u4e2d
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#169","title":"1.6.9 \u51fd\u6570\u88c5\u9970\u5668","text":"
Python
>>> def trace(fn):\n def wrapped(x):\n print('-> ', fn, '(', x, ')')\n return fn(x)\n return wrapped\n\n>>> @trace\n def triple(x):\n return 3 * x\n\n>>> triple(12)\n-> <function triple at 0x102a39848> ( 12 )\n36\n
- annotation
- \u7b49\u4ef7\u4e8e:
Python
>>> def triple(x):\n return 3 * x\n>>> triple = trace(triple)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#17","title":"1.7 \u9012\u5f52\u51fd\u6570","text":"
- rucursive
- circular nature
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#171","title":"1.7.1 \u9012\u5f52\u51fd\u6570\u5256\u6790","text":"
- base case
- unwinds
- recursive calls
- induction
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#172-mutually-recursive","title":"1.7.2 mutually recursive","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#173","title":"1.7.3 \u9012\u5f52\u51fd\u6570\u4e2d\u7684\u6253\u5370","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#174-tree-recursive","title":"1.7.4 tree recursive","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#175","title":"1.7.5 \u793a\u4f8b\uff1a\u5206\u5272\u6570","text":"Python
>>> def count_partitions(n, m):\n\u00a0\u00a0\u00a0 \"\"\"\u8ba1\u7b97\u4f7f\u7528\u6700\u5927\u6570 m \u7684\u6574\u6570\u5206\u5272 n \u7684\u65b9\u5f0f\u7684\u6570\u91cf\"\"\"\n\u00a0\u00a0\u00a0 if n == 0:\n\u00a0\u00a0\u00a0 return 1\n\u00a0\u00a0\u00a0 elif n < 0:\n\u00a0\u00a0\u00a0 return 0\n\u00a0\u00a0\u00a0 elif m == 0:\n\u00a0\u00a0\u00a0 return 0\n\u00a0\u00a0\u00a0 else:\n\u00a0\u00a0\u00a0 return count_partitions(n-m, m) + count_partitions(n, m-1)\n\n>>> count_partitions(6, 4)\n9\n>>> count_partitions(5, 5)\n7\n>>> count_partitions(10, 10)\n42\n>>> count_partitions(15, 15)\n176\n>>> count_partitions(20, 20)\n627\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#2","title":"2 \u4f7f\u7528\u6570\u636e\u6784\u5efa\u62bd\u8c61","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#21","title":"2.1 \u5f15\u8a00","text":"
- \u9ad8\u9636\u51fd\u6570\u4f7f\u6211\u4eec\u80fd\u591f\u6839\u636e\u901a\u7528\u7684\u8ba1\u7b97\u65b9\u6cd5\u8fdb\u884c\u64cd\u4f5c\u548c\u63a8\u7406\uff0c\u4ece\u800c\u589e\u5f3a\u4e86\u8bed\u8a00\u7684\u529f\u80fd\u3002\u8fd9\u5c31\u662f\u7f16\u7a0b\u7684\u672c\u8d28
- \u6709\u6548\u4f7f\u7528\u5185\u7f6e\u6570\u636e\u7c7b\u578b\u548c\u7528\u6237\u5b9a\u4e49\u7684\u6570\u636e\u7c7b\u578b\u662f\u6570\u636e\u5904\u7406\u578b\u5e94\u7528\uff08data processing applications\uff09\u7684\u57fa\u7840
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#211","title":"2.1.1 \u539f\u59cb\u6570\u636e\u7c7b\u578b","text":"
\u539f\u59cb\u6570\u636e\u7c7b\u578b\u5177\u6709\u5c5e\u6027:
- \u6709\u4e00\u4e9b\u53ef\u4ee5\u6c42\u89e3\u4e3a\u539f\u59cb\u6570\u636e\u7c7b\u578b\u7684\u8868\u8fbe\u5f0f\uff0c\u88ab\u79f0\u4e3a\u5b57\u9762\u91cf\uff08literals\uff09\u3002
- \u6709\u7528\u4e8e\u64cd\u4f5c\u539f\u59cb\u7c7b\u578b\u503c\u7684\u5185\u7f6e\u51fd\u6570\u548c\u64cd\u4f5c\u7b26\u3002 - \u539f\u59cb\u6570\u5b57\u7c7b\u578b
- int
- float
- complex
- Non-numeric types
- bool
- more on \u539f\u59cb\u6570\u636e\u7c7b\u578b
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#22","title":"2.2 \u6570\u636e\u62bd\u8c61","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#221","title":"2.2.1 \u793a\u4f8b\uff1a\u6709\u7406\u6570","text":"
wishful thinking
Python
>>> def add_rationals(x, y):\n nx, dx = numer(x), denom(x)\n ny, dy = numer(y), denom(y)\n return rational(nx * dy + ny * dx, dx * dy)\n\n>>> def mul_rationals(x, y):\n return rational(numer(x) * numer(y), denom(x) * denom(y))\n\n>>> def print_rational(x):\n print(numer(x), '/', denom(x))\n\n>>> def rationals_are_equal(x, y):\n return numer(x) * denom(y) == numer(y) * denom(x)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#222-pair","title":"2.2.2 pair","text":"
from operator import getitem
Python
>>> def rational(n, d):\n return [n, d]\n\n>>> def numer(x):\n return x[0]\n\n>>> def denom(x):\n return x[1]\n
\u7b80\u5316\u6709\u7406\u6570:
Python
>>> from fractions import gcd\n>>> def rational(n, d):\n g = gcd(n, d)\n return (n//g, d//g)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#223","title":"2.2.3 \u62bd\u8c61\u5c4f\u969c","text":"
- \u6570\u636e\u62bd\u8c61: \u7528\u4e00\u7ec4\u57fa\u672c\u64cd\u4f5c\u6765\u64cd\u4f5c\u6570\u636e\u3002
- avbstraction barrier
- the best:
Python
>>> def square_rational(x):\n return mul_rational(x, x)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#224","title":"2.2.4 \u6570\u636e\u7684\u5c5e\u6027","text":"
\u76f8\u5f53\u4e8e\u81ea\u5df1\u5199\u4e00\u4e2a\u6570\u636e\u7ed3\u6784:
Python
>>> def pair(x, y):\n \"\"\"Return a function that represents a pair.\"\"\"\n def get(index):\n if index == 0:\n return x\n elif index == 1:\n return y\n return get\n\n>>> def select(p, i):\n \"\"\"Return the element at index i of pair p.\"\"\"\n return p(i)\n\n>>> p = pair(20, 14)\n>>> select(p, 0)\n20\n>>> select(p, 1)\n14\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#23","title":"2.3 \u5e8f\u5217","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#231-list","title":"2.3.1 list","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#232","title":"2.3.2 \u5e8f\u5217\u904d\u5386","text":"Python
for <name> in <expression>:\n <suite>\n
the expression must produce an iterable object sequence unpacking
Python
>>> pairs = [[1, 2], [2, 2], [2, 3], [4, 4]]\n>>> same_count = 0\n>>> for x, y in pairs:\n if x == y:\n same_count = same_count + 1\n>>> same_count\n2\n
range
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#233","title":"2.3.3 \u5e8f\u5217\u5904\u7406","text":"
list comprehensions
Python
>>> odds = [1, 3, 5, 7, 9]\n>>> [x+1 for x in odds]\n[2, 4, 6, 8, 10]\n[<map expression> for <name> in <sequence expression> if <filter expression>]\n
- Aggregation \u5c31\u662f\u7f29\u5e76\u5566
Python
>>> def apply_to_all(map_fn, s):\n return [map_fn(x) for x in s]\n>>> def keep_if(filter_fn, s):\n return [x for x in s if filter_fn(x)]\n# conventional names\n>>> apply_to_all = lambda map_fn, s: list(map(map_fn, s))\n>>> keep_if = lambda filter_fn, s: list(filter(filter_fn, s))\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#234","title":"2.3.4 \u5e8f\u5217\u62bd\u8c61","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#235","title":"2.3.5 \u5b57\u7b26\u4e32","text":"
string \u6ca1\u6709\u5b57\u7b26\u7c7b\u578b
- Membership
- Multiline Literals
- String Coercion more on Dive Into Python 3\u00a0\u7684\u00a0\u5b57\u7b26\u4e32\u7ae0\u8282\u00a0\u63d0\u4f9b\u4e86\u5b57\u7b26\u7f16\u7801\u548c Unicode \u7684\u63cf\u8ff0
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#236","title":"2.3.6 \u6811","text":"
closure property bax-and-pointer notation
- root label
- branch
- leaf: the tree without branch
- node tree-recursive \u4e24\u4e2a\u4f8b\u5b50:
Python
>>> def fib_tree(n):\n if n == 0 or n == 1:\n return tree(n)\n else:\n left, right = fib_tree(n-2), fib_tree(n-1)\n fib_n = label(left) + label(right)\n return tree(fib_n, [left, right])\n>>> fib_tree(5)\n[5, [2, [1], [1, [0], [1]]], [3, [1, [0], [1]], [2, [1], [1, [0], [1]]]]]\n
Python
>>> def count_leaves(tree):\n if is_leaf(tree):\n return 1\n else:\n branch_counts = [count_leaves(b) for b in branches(tree)]\n return sum(branch_counts)\n>>> count_leaves(fib_tree(5))\n8\n
Partition trees
Python
>>> def print_parts(tree, partition=[]):\n if is_leaf(tree):\n if label(tree):\n print(' + '.join(partition))\n else:\n left, right = branches(tree)\n m = str(label(tree))\n print_parts(left, partition + [m])\n print_parts(right, partition)\n\n>>> print_parts(partition_tree(6, 4))\n4 + 2\n4 + 1 + 1\n3 + 3\n3 + 2 + 1\n3 + 1 + 1 + 1\n2 + 2 + 2\n2 + 2 + 1 + 1\n2 + 1 + 1 + 1 + 1\n1 + 1 + 1 + 1 + 1 + 1\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#237","title":"2.3.7 \u94fe\u8868","text":"
linked list abstract data representation
Python
>>> def partitions(n, m):\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u5305\u542b n \u7684\u5206\u5272\u65b9\u6848\u7684\u94fe\u8868\uff0c\u5176\u4e2d\u6bcf\u4e2a\u6b63\u6574\u6570\u4e0d\u8d85\u8fc7 m\"\"\"\nif n == 0:\n return link(empty, empty) # \u5305\u542b\u7a7a\u5206\u5272\u7684\u94fe\u8868\nelif n < 0 or m == 0:\n return empty\nelse:\n using_m = partitions(n-m, m)\n with_m = apply_to_all_link(lambda s: link(m, s), using_m)\n without_m = partitions(n, m-1)\n return extend_link(with_m, without_m)\n\n>>> def print_partitions(n, m):\n lists = partitions(n, m)\n strings = apply_to_all_link(lambda s: join_link(s, \" + \"), lists)\n print(join_link(strings, \"\\n\"))\n\n>>> print_partitions(6, 4)\n4 + 2\n4 + 1 + 1\n3 + 3\n3 + 2 + 1\n3 + 1 + 1 + 1\n2 + 2 + 2\n2 + 2 + 1 + 1\n2 + 1 + 1 + 1 + 1\n1 + 1 + 1 + 1 + 1 + 1\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#24","title":"2.4 \u53ef\u53d8\u6570\u636e","text":"
object-oriented programming
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#241","title":"2.4.1 \u5bf9\u8c61\u9690\u55bb","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#242","title":"2.4.2 \u5e8f\u5217\u5bf9\u8c61","text":"
mutable Sharing and Identity \u5217\u8868\u63a8\u5bfc\u5f0f:
Python
>>> from unicodedata import lookup\n>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]\n['\u2661', '\u2662', '\u2664', '\u2667']\n
tuple
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#243","title":"2.4.3 \u5b57\u5178","text":"
key-value pairs
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#244","title":"2.4.4 \u5c40\u90e8\u72b6\u6001","text":"
local state
Python
>>> def make_withdraw(balance):\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u6bcf\u6b21\u8c03\u7528\u90fd\u4f1a\u51cf\u5c11 balance \u7684 withdraw \u51fd\u6570\"\"\"\ndef withdraw(amount):\n nonlocal balance # \u58f0\u660e balance \u662f\u975e\u5c40\u90e8\u7684\n if amount > balance:\n return '\u4f59\u989d\u4e0d\u8db3'\n balance = balance - amount # \u91cd\u65b0\u7ed1\u5b9a\n return balance\nreturn withdraw\n
Python Particulars
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#245-non-local","title":"2.4.5 \u975e\u5c40\u90e8 Non-local \u8d4b\u503c\u7684\u597d\u5904","text":"
\u8fd9\u6837\uff0c\u6bcf\u4e2a withdraw \u5b9e\u4f8b\u90fd\u4fdd\u6301\u81ea\u5df1\u7684 balance \u72b6\u6001\uff0c\u4f46\u7a0b\u5e8f\u4e2d\u7684\u4efb\u4f55\u5176\u4ed6\u51fd\u6570\u90fd\u65e0\u6cd5\u8bbf\u95ee\u8be5\u72b6\u6001\u3002\u4ece\u66f4\u9ad8\u7684\u5c42\u9762\u6765\u770b\u8fd9\u79cd\u60c5\u51b5\uff0c\u6211\u4eec\u62bd\u8c61\u4e86\u4e00\u4e2a\u94f6\u884c\u8d26\u6237\uff0c\u5b83\u81ea\u5df1\u7ba1\u7406\u81ea\u5df1\u7684\u72b6\u6001\uff0c\u5176\u884c\u4e3a\u65b9\u5f0f\u4e0e\u4e16\u754c\u4e0a\u6240\u6709\u5176\u5b83\u8d26\u6237\u4e00\u6837\uff1a\u968f\u7740\u65f6\u95f4\u63a8\u79fb\uff0c\u8d26\u6237\u7684\u72b6\u6001\u4f1a\u6839\u636e\u8d26\u6237\u7684\u53d6\u6b3e\u8bb0\u5f55\u800c\u53d1\u751f\u53d8\u5316\u3002
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#246-non-local","title":"2.4.6 \u975e\u5c40\u90e8 Non-local \u8d4b\u503c\u7684\u4ee3\u4ef7","text":"
- \u6b63\u786e\u7406\u89e3\u5305\u542b nonlocal \u58f0\u660e\u7684\u4ee3\u7801\u7684\u5173\u952e\u662f\u8bb0\u4f4f\uff1a\u53ea\u6709\u51fd\u6570\u8c03\u7528\u624d\u80fd\u5f15\u5165\u65b0\u5e27\u3002\u8d4b\u503c\u8bed\u53e5\u53ea\u80fd\u66f4\u6539\u73b0\u6709\u5e27\u4e2d\u7684\u7ed1\u5b9a\u5173\u7cfb\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u9664\u975e make_withdraw \u88ab\u8c03\u7528\u4e24\u6b21\uff0c\u5426\u5219\u53ea\u80fd\u6709\u4e00\u4e2a balance \u7ed1\u5b9a\u3002
- Sameness and change
- referentially transparent
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#247","title":"2.4.7 \u5217\u8868\u548c\u5b57\u5178\u5b9e\u73b0","text":"
\u51fd\u6570\u662f\u4e00\u4e2a dispatch \uff08\u8c03\u5ea6\uff09\u51fd\u6570\uff0c\u5176\u53c2\u6570\u9996\u5148\u662f\u4e00\u4e2a\u671f\u671b\u7684\u6307\u4ee4\uff0c\u4ee3\u8868\u671f\u671b\u8fd9\u4e2a\u51fd\u6570\u505a\u4ec0\u4e48\uff1b\u7136\u540e\u662f\u8be5\u65b9\u6cd5\u7684\u9700\u8981\u7528\u5230\u7684\u53c2\u6570\u3002\u6b64\u6307\u4ee4\u662f\u4e00\u4e2a\u5b57\u7b26\u4e32\uff0c\u7528\u4e8e\u547d\u540d\u51fd\u6570\u5e94\u6267\u884c\u7684\u64cd\u4f5c\u3002\u53ef\u4ee5\u5c06\u8fd9\u4e2a dispatch \u51fd\u6570\u7406\u89e3\u4e3a\u591a\u4e2a\u4e0d\u540c\u51fd\u6570\u7684\u62bd\u8c61\uff1a\u7b2c\u4e00\u4e2a\u53c2\u6570\u786e\u5b9a\u76ee\u6807\u51fd\u6570\u7684\u884c\u4e3a\uff0c\u5e76\u4e3a\u8be5\u884c\u4e3a\u5165\u53c2\u5176\u4ed6\u53c2\u6570\u3002 \u7528\u5b57\u7b26\u4e32\u4e5f\u592a\u9006\u5929\u4e86\u3002
Python
>>> def mutable_link():\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u53ef\u53d8\u94fe\u8868\u7684\u51fd\u6570\"\"\"\ncontents = empty\ndef dispatch(message, value=None):\n nonlocal contents\n if message == 'len':\n return len_link(contents)\n elif message == 'getitem':\n return getitem_link(contents, value)\n elif message == 'push_first':\n contents = link(value, contents)\n elif message == 'pop_first':\n f = first(contents)\n contents = rest(contents)\n return f\n elif message == 'str':\n return join_link(contents, \", \")\nreturn dispatch\n\n>>> def to_mutable_link(source):\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u4e0e\u539f\u5217\u8868\u76f8\u540c\u5185\u5bb9\u7684\u51fd\u6570\u5217\u8868\"\"\"\ns = mutable_link()\nfor element in reversed(source):\n s('push_first', element)\nreturn s\n\n>>> s = to_mutable_link(suits)\n>>> type(s)\n<class 'function'>\n>>> print(s('str'))\nheart, diamond, spade, club\n
\u5b57\u5178\u5b9e\u73b0:
Python
>>> def dictionary():\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u5b57\u5178\u7684\u51fd\u6570\u5b9e\u73b0\"\"\"\nrecords = []\ndef getitem(key):\n matches = [r for r in records if r[0] == key]\n if len(matches) == 1:\n key, value = matches[0]\n return value\ndef setitem(key, value):\n nonlocal records\n non_matches = [r for r in records if r[0] != key]\n records = non_matches + [[key, value]]\ndef dispatch(message, key=None, value=None):\n if message == 'getitem':\n return getitem(key)\n elif message == 'setitem':\n setitem(key, value)\nreturn dispatch\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#248-dispatch-dictionaries","title":"2.4.8 \u8c03\u5ea6\u5b57\u5178\uff08Dispatch Dictionaries\uff09","text":"
\u7528\u5b57\u5178\u5b58\u50a8\u6d88\u606f\u3002
Python
def account(initial_balance):\n def deposit(amount):\n dispatch['balance'] += amount\n return dispatch['balance']\n def withdraw(amount):\n if amount > dispatch['balance']:\n return 'Insufficient funds'\n dispatch['balance'] -= amount\n return dispatch['balance']\n dispatch = {'deposit': deposit,\n 'withdraw': withdraw,\n 'balance': initial_balance}\n return dispatch\n\ndef withdraw(account, amount):\n return account['withdraw'](amount)\ndef deposit(account, amount):\n return account['deposit'](amount)\ndef check_balance(account):\n return account['balance']\n\na = account(20)\ndeposit(a, 5)\nwithdraw(a, 17)\ncheck_balance(a)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#249-propagating-constraints","title":"2.4.9 \u7ea6\u675f\u4f20\u9012 (Propagating\u00a0Constraints)","text":"
connector Using the Constraint System
Python
>>> celsius = connector('Celsius')\n>>> fahrenheit = connector('Fahrenheit')\n>>> def converter(c, f):\n \"\"\"\u7528\u7ea6\u675f\u6761\u4ef6\u8fde\u63a5 c \u5230 f\uff0c\u5c06\u6444\u6c0f\u5ea6\u8f6c\u6362\u4e3a\u534e\u6c0f\u5ea6.\"\"\"\n u, v, w, x, y = [connector() for _ in range(5)]\n multiplier(c, w, u)\n multiplier(v, x, u)\n adder(v, y, f)\n constant(w, 9)\n constant(x, 5)\n constant(y, 32)\n>>> converter(celsius, fahrenheit)\n\n>>> celsius['set_val']('user', 25)\nCelsius = 25\nFahrenheit = 77.0\n\n>>> fahrenheit['set_val']('user', 212)\nContradiction detected: 77.0 vs 212\n\n>>> celsius['forget']('user')\nCelsius is forgotten\nFahrenheit is forgotten\n\n>>> fahrenheit['set_val']('user', 212)\nFahrenheit = 212\nCelsius = 100.0\n\n# Implementing the Constraint System\n>>> connector ['set_val'](source, value) \"\"\"\u8868\u793a\u00a0source\u00a0\u5728\u8bf7\u6c42\u8fde\u63a5\u5668\u5c06\u5f53\u524d\u503c\u8bbe\u4e3a value\"\"\"\n>>> connector ['has_val']()\u00a0 \"\"\"\u8fd4\u56de\u8fde\u63a5\u5668\u662f\u5426\u5df2\u7ecf\u5177\u6709\u503c\"\"\"\n>>> connector ['val'] \"\"\"\u662f\u8fde\u63a5\u5668\u7684\u5f53\u524d\u503c\"\"\"\n>>> connector ['forget'](source)\u00a0 \"\"\"\u544a\u8bc9\u8fde\u63a5\u5668 source \u8bf7\u6c42\u9057\u5fd8\u5b83\u7684\u503c\"\"\"\n>>> connector ['connect'](source)\u00a0 \"\"\"\u544a\u8bc9\u8fde\u63a5\u5668\u53c2\u4e0e\u65b0\u7684\u7ea6\u675f\uff0c\u5373 source\"\"\"\n>>> constraint['new_val']() \"\"\"\u8868\u793a\u4e0e\u7ea6\u675f\u76f8\u8fde\u7684\u67d0\u4e2a\u8fde\u63a5\u5668\u5177\u6709\u65b0\u7684\u503c\u3002\"\"\"\n>>> constraint['forget']()\u00a0 \"\"\"\u8868\u793a\u4e0e\u7ea6\u675f\u76f8\u8fde\u7684\u67d0\u4e2a\u8fde\u63a5\u5668\u9057\u5fd8\u4e86\u503c\u3002\"\"\"\n\n>>> from operator import add, sub\n>>> def adder(a, b, c):\n \"\"\"\u7ea6\u675f a+b=c\"\"\"\n return make_ternary_constraint(a, b, c, add, sub, sub)\n\n>>> def make_ternary_constraint(a, b, c, ab, ca, cb):\n \"\"\"\u7ea6\u675f ab(a,b)=c\uff0cca(c,a)=b\uff0ccb(c,b)=a\"\"\"\n def new_value():\n av, bv, cv = [connector['has_val']() for connector in (a, b, c)]\n if av and bv:\n c['set_val'](constraint, ab(a['val'], b['val']))\n elif av and cv:\n b['set_val'](constraint, ca(c['val'], a['val']))\n elif bv and cv:\n a['set_val'](constraint, cb(c['val'], b['val']))\n def forget_value():\n for connector in (a, b, c):\n connector['forget'](constraint)\n constraint = {'new_val': new_value, 'forget': forget_value}\n for connector in (a, b, c):\n connector['connect'](constraint)\n return constraint\n\n>>> from operator import mul, truediv\n>>> def multiplier(a, b, c):\n \"\"\"\u7ea6\u675f a*b=c\"\"\"\n return make_ternary_constraint(a, b, c, mul, truediv, truediv)\n\n>>> def constant(connector, value):\n \"\"\"\u5e38\u91cf\u8d4b\u503c\"\"\"\n constraint = {}\n connector['set_val'](constraint, value)\n return constraint\n\n# Representing connectors\n>>> def connector(name=None):\n \"\"\"\u9650\u5236\u6761\u4ef6\u4e4b\u95f4\u7684\u8fde\u63a5\u5668\"\"\"\n informant = None\n constraints = []\n def set_value(source, value):\n nonlocal informant\n val = connector['val']\n if val is None:\n informant, connector['val'] = source, value\n if name is not None:\n print(name, '=', value)\n inform_all_except(source, 'new_val', constraints)\n else:\n if val != value:\n print('Contradiction detected:', val, 'vs', value)\n def forget_value(source):\n nonlocal informant\n if informant == source:\n informant, connector['val'] = None, None\n if name is not None:\n print(name, 'is forgotten')\n inform_all_except(source, 'forget', constraints)\n connector = {'val': None,\n 'set_val': set_value,\n 'forget': forget_value,\n 'has_val': lambda: connector['val'] is not None,\n 'connect': lambda source: constraints.append(source)}\n return connector\n\n>>> def inform_all_except(source, message, constraints):\n \"\"\"\u544a\u77e5\u4fe1\u606f\u9664\u4e86 source \u5916\u7684\u6240\u6709\u7ea6\u675f\u6761\u4ef6\"\"\"\n for c in constraints:\n if c != source:\n c[message]()\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#25","title":"2.5 \u9762\u5411\u5bf9\u8c61\u7f16\u7a0b","text":"
- object
- dot notation
- class
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#251","title":"2.5.1 \u5bf9\u8c61\u548c\u7c7b","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#252","title":"2.5.2 \u7c7b\u7684\u5b9a\u4e49","text":"
__init__\u7c7b\u7684\u6784\u9020\u51fd\u6570\uff08constructor\uff09
Python
>>> class Account:\n def __init__(self, account_holder):\n self.balance = 0\n self.holder = account_holder\n def deposit(self, amount):\n self.balance = self.balance + amount\n return self.balance\n def withdraw(self, amount):\n if amount > self.balance:\n return 'Insufficient funds'\n self.balance = self.balance - amount\n return self.balance\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#253","title":"2.5.3 \u6d88\u606f\u4f20\u9012\u548c\u70b9\u8868\u8fbe\u5f0f","text":"Python
>>> getattr(spock_account, 'balance')\n10\n>>> hasattr(spock_account, 'deposit')\nTrue\n\n\n>>> type(Account.deposit)\n<class 'Function'>\n>>> type(spock_account.deposit)\n<class 'method'>\n# \u4e3a\u7c7b\u7684\u5c5e\u6027\uff0c\u65b9\u6cd5\u53ea\u662f\u4e00\u4e2a\u51fd\u6570\uff0c\u4f46\u4f5c\u4e3a\u5b9e\u4f8b\u7684\u5c5e\u6027\uff0c\u5b83\u662f\u4e00\u4e2a\u7ed1\u5b9a\u65b9\u6cd5\n\n>>> Account.deposit(spock_account, 1001) # \u51fd\u6570 deposit \u63a5\u53d7\u4e24\u4e2a\u53c2\u6570\n1011\n>>> spock_account.deposit(1000) # \u65b9\u6cd5 deposit \u63a5\u53d7\u4e00\u4e2a\u53c2\u6570\n2011\n
\u547d\u540d\u7ea6\u5b9a\uff1a\u7c7b\u540d\u901a\u5e38\u4f7f\u7528 CapWords \u7ea6\u5b9a\uff08\u4e5f\u79f0\u4e3a CamelCase\uff0c\u56e0\u4e3a\u540d\u79f0\u4e2d\u95f4\u7684\u5927\u5199\u5b57\u6bcd\u770b\u8d77\u6765\u50cf\u9a7c\u5cf0\uff09\u7f16\u5199\u3002\u65b9\u6cd5\u540d\u79f0\u9075\u5faa\u4f7f\u7528\u4e0b\u5212\u7ebf\u5206\u9694\u7684\u5c0f\u5199\u5355\u8bcd\u547d\u540d\u51fd\u6570\u7684\u6807\u51c6\u7ea6\u5b9a\u3002
\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6709\u4e00\u4e9b\u5b9e\u4f8b\u53d8\u91cf\u548c\u65b9\u6cd5\u4e0e\u5bf9\u8c61\u7684\u7ef4\u62a4\u548c\u4e00\u81f4\u6027\u76f8\u5173\uff0c\u6211\u4eec\u4e0d\u5e0c\u671b\u5bf9\u8c61\u7684\u7528\u6237\u770b\u5230\u6216\u4f7f\u7528\u3002\u5b83\u4eec\u4e0d\u662f\u7c7b\u5b9a\u4e49\u7684\u62bd\u8c61\u7684\u4e00\u90e8\u5206\uff0c\u800c\u662f\u5b9e\u73b0\u7684\u4e00\u90e8\u5206\u3002Python \u7684\u7ea6\u5b9a\u89c4\u5b9a\uff0c\u5982\u679c\u5c5e\u6027\u540d\u79f0\u4ee5\u4e0b\u5212\u7ebf\u5f00\u5934\uff0c\u5219\u53ea\u80fd\u5728\u7c7b\u672c\u8eab\u7684\u65b9\u6cd5\u4e2d\u8bbf\u95ee\u5b83\uff0c\u800c\u4e0d\u662f\u7528\u6237\u8bbf\u95ee\u3002
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#254","title":"2.5.4 \u7c7b\u5c5e\u6027","text":"
\u611f\u89c9\u6ca1\u4ec0\u4e48\u7528:
Python
>>> Account.interest = 0.05 # \u6539\u53d8\u7c7b\u5c5e\u6027\n>>> spock_account.interest # \u5b9e\u4f8b\u5c5e\u6027\u53d1\u751f\u53d8\u5316\uff08\u8be5\u5b9e\u4f8b\u4e2d\u6ca1\u6709\u548c\u7c7b\u5c5e\u6027\u540c\u540d\u79f0\u7684\u5b9e\u4f8b\u5c5e\u6027\uff09\n0.05\n>>> kirk_account.interest # \u5982\u679c\u5b9e\u4f8b\u4e2d\u5b58\u5728\u548c\u7c7b\u5c5e\u6027\u540c\u540d\u7684\u5b9e\u4f8b\u5c5e\u6027\uff0c\u5219\u6539\u53d8\u7c7b\u5c5e\u6027\uff0c\u4e0d\u4f1a\u5f71\u54cd\u5b9e\u4f8b\u5c5e\u6027\n0.08\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#255","title":"2.5.5 \u7ee7\u627f","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#256","title":"2.5.6 \u4f7f\u7528\u7ee7\u627f","text":"Python
>>> class Account:\n \"\"\"\u4e00\u4e2a\u4f59\u989d\u975e\u96f6\u7684\u8d26\u6237\u3002\"\"\"\n interest = 0.02\n def __init__(self, account_holder):\n self.balance = 0\n self.holder = account_holder\n def deposit(self, amount):\n \"\"\"\u5b58\u5165\u8d26\u6237 amount\uff0c\u5e76\u8fd4\u56de\u53d8\u5316\u540e\u7684\u4f59\u989d\"\"\"\n self.balance = self.balance + amount\n return self.balance\n def withdraw(self, amount):\n \"\"\"\u4ece\u8d26\u53f7\u4e2d\u53d6\u51fa amount\uff0c\u5e76\u8fd4\u56de\u53d8\u5316\u540e\u7684\u4f59\u989d\"\"\"\n if amount > self.balance:\n return 'Insufficient funds'\n self.balance = self.balance - amount\n return self.balance\n\n>>> class CheckingAccount(Account):\n \"\"\"\u4ece\u8d26\u53f7\u53d6\u94b1\u4f1a\u6263\u51fa\u624b\u7eed\u8d39\u7684\u8d26\u53f7\"\"\"\n withdraw_charge = 1\n interest = 0.01\n def withdraw(self, amount):\n return Account.withdraw(self, amount + self.withdraw_charge)\n
\u63a5\u53e3
Python
>>> def deposit_all(winners, amount=5):\n for account in winners:\n account.deposit(amount) # \u8fd9\u91cc\u8c03\u7528\u7684\u662f\u5b9e\u4f8b account \u7684 deposit \u65b9\u6cd5\n # \u5bf9\u4e8e\u4e0d\u540c\u5b9e\u4f8b\u6765\u8bf4\uff0c\u5b83\u4eec\u7684 deposit \u65b9\u6cd5\u53ef\u80fd\u4e0d\u540c\u3002\u8fd9\u4e2a\u4f8b\u5b50\u76f8\u5bf9\u4e8e\u4e0b\u9762\u6765\u8bb2\uff0c\u66f4\u52a0\u5177\u6709\u5065\u58ee\u6027\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#257","title":"2.5.7 \u591a\u7ee7\u627f","text":"
\u7ee7\u627f\u6392\u5e8f\u95ee\u9898\u6ca1\u6709\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u56e0\u4e3a\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u53ef\u80fd\u66f4\u613f\u610f\u5c06\u67d0\u4e9b\u7ee7\u627f\u7c7b\u7f6e\u4e8e\u5176\u4ed6\u7c7b\u4e4b\u4e0a\u3002\u4f46\u662f\uff0c\u4efb\u4f55\u652f\u6301\u591a\u91cd\u7ee7\u627f\u7684\u7f16\u7a0b\u8bed\u8a00\u90fd\u5fc5\u987b\u4ee5\u4e00\u81f4\u7684\u65b9\u5f0f\u9009\u62e9\u67d0\u4e9b\u6392\u5e8f\uff0c\u4ee5\u4fbf\u8be5\u8bed\u8a00\u7684\u7528\u6237\u53ef\u4ee5\u9884\u6d4b\u5176\u7a0b\u5e8f\u7684\u884c\u4e3a\u3002
\u8fdb\u4e00\u6b65\u9605\u8bfb\u3002Python \u4f7f\u7528\u79f0\u4e3a C3 \u65b9\u6cd5\u89e3\u6790\u6392\u5e8f\u7684\u9012\u5f52\u7b97\u6cd5\u89e3\u6790\u6b64\u540d\u79f0\u3002\u53ef\u4ee5\u5728\u6240\u6709\u7c7b\u4e0a\u4f7f\u7528\u00a0mro
\u00a0\u65b9\u6cd5\u67e5\u8be2\u4efb\u4f55\u7c7b\u7684\u65b9\u6cd5\u89e3\u6790\u987a\u5e8f\u3002
Python
>>> [c.__name__ for c in AsSeenOnTVAccount.mro()]\n['AsSeenOnTVAccount', 'CheckingAccount', 'SavingsAccount', 'Account', 'object']\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#258","title":"2.5.8 \u5bf9\u8c61\u7684\u4f5c\u7528","text":"
\u53e6\u4e00\u65b9\u9762\uff0c\u7c7b\u53ef\u80fd\u4e0d\u662f\u5b9e\u73b0\u67d0\u4e9b\u62bd\u8c61\u7684\u6700\u4f73\u673a\u5236\u3002\u51fd\u6570\u5f0f\u62bd\u8c61\u63d0\u4f9b\u4e86\u4e00\u4e2a\u66f4\u81ea\u7136\u7684\u9690\u55bb\u6765\u8868\u793a\u8f93\u5165\u548c\u8f93\u51fa\u4e4b\u95f4\u7684\u5173\u7cfb\u3002\u6211\u4eec\u4e0d\u5e94\u8be5\u89c9\u5f97\u5fc5\u987b\u5c06\u7a0b\u5e8f\u4e2d\u7684\u6bcf\u4e00\u70b9\u903b\u8f91\u90fd\u585e\u8fdb\u4e00\u4e2a\u7c7b\u4e2d\uff0c\u5c24\u5176\u662f\u5728\u5b9a\u4e49\u72ec\u7acb\u51fd\u6570\u6765\u64cd\u4f5c\u6570\u636e\u66f4\u81ea\u7136\u7684\u60c5\u51b5\u4e0b\u3002\u51fd\u6570\u8fd8\u53ef\u4ee5\u5f3a\u5236\u5b9e\u73b0\u5173\u6ce8\u70b9\u7684\u5206\u79bb\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u51fd\u6570\u5f0f\u7f16\u7a0b\u63d0\u4f9b\u4e86\u53e6\u4e00\u79cd\u6709\u6548\u5730\u7ec4\u7ec7\u7a0b\u5e8f\u903b\u8f91\u7684\u65b9\u6cd5\uff0c\u4f7f\u5f97\u7a0b\u5e8f\u5458\u80fd\u591f\u66f4\u597d\u5730\u5904\u7406\u548c\u7ef4\u62a4\u7a0b\u5e8f\u3002\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u4f7f\u7528\u51fd\u6570\u5f0f\u7f16\u7a0b\u65b9\u6cd5\u53ef\u80fd\u6bd4\u4f7f\u7528\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\u66f4\u81ea\u7136\u548c\u6709\u6548\u3002
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#26","title":"2.6 \u5b9e\u73b0\u7c7b\u548c\u5bf9\u8c61","text":"
object-oriented programming paradigm \u5373\u4f7f\u5728\u6ca1\u6709\u5185\u7f6e\u5bf9\u8c61\u7cfb\u7edf\u7684\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u7a0b\u5e8f\u4e5f\u53ef\u4ee5\u662f\u9762\u5411\u5bf9\u8c61\u7684\u3002 \u653e\u5f03\u70b9\u8868\u793a\u6cd5->\u8c03\u5ea6\u5b57\u5178\u5b9e\u73b0\u6d88\u606f\u4f20\u9012
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#261","title":"2.6.1 \u5b9e\u4f8b","text":"Python
>>> def make_instance(cls):\n \"\"\"Return a new object instance, which is a dispatch dictionary.\"\"\"\n def get_value(name):\n if name in attributes:\n return attributes[name]\n else:\n value = cls['get'](name)\n return bind_method(value, instance)\n def set_value(name, value):\n attributes[name] = value\n attributes = {}\n instance = {'get': get_value, 'set': set_value}\n return instance\n\n>>> def bind_method(value, instance):\n \"\"\"Return a bound method if value is callable, or value otherwise.\"\"\"\n if callable(value):\n def method(*args):\n return value(instance, *args)\n return method\n else:\n return value\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#262","title":"2.6.2 \u7c7b","text":"Python
>>> def make_class(attributes, base_class=None):\n \"\"\"Return a new class, which is a dispatch dictionary.\"\"\"\n def get_value(name):\n if name in attributes:\n return attributes[name]\n elif base_class is not None:\n return base_class['get'](name)\n def set_value(name, value):\n attributes[name] = value\n def new(*args):\n return init_instance(cls, *args)\n cls = {'get': get_value, 'set': set_value, 'new': new}\n return cls\n\n>>> def init_instance(cls, *args):\n \"\"\"Return a new object with type cls, initialized with args.\"\"\"\n instance = make_instance(cls)\n init = cls['get']('__init__')\n if init:\n init(instance, *args)\n return instance\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#3","title":"3 \u8ba1\u7b97\u673a\u7a0b\u5e8f\u7684\u89e3\u91ca","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#31","title":"3.1 \u5f15\u8a00","text":"
\u8bb8\u591a\u89e3\u91ca\u5668\u90fd\u6709\u4e00\u4e2a\u4f18\u96c5\u7684\u7ed3\u6784\uff0c\u5373\u4e24\u4e2a\u4e92\u9012\u5f52\u51fd\u6570\uff1a
- \u7b2c\u4e00\u4e2a\u51fd\u6570\u6c42\u89e3\u73af\u5883\u4e2d\u7684\u8868\u8fbe\u5f0f
- \u7b2c\u4e8c\u4e2a\u51fd\u6570\u5c06\u51fd\u6570\u5e94\u7528\u4e8e\u53c2\u6570
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#32","title":"3.2 \u51fd\u6570\u5f0f\u7f16\u7a0b","text":"
- \u53ea\u4f7f\u7528\u8868\u8fbe\u5f0f\u800c\u4e0d\u4f7f\u7528\u8bed\u53e5\uff0c\u7279\u522b\u9002\u5408\u7b26\u53f7\u8ba1\u7b97
- \u5904\u7406\u7684\u6570\u636e\u90fd\u662f\u4e0d\u53ef\u53d8\u7684\uff08immutable\uff09
Python
(if <predicate> <consequent> <alternative>)\n\n(define pi 3.14)\n(* pi 3.14)\n\n(define (<name> <formal parameters>) <body>)\neg1:\n (define (average x y)\n (/ (+ x y) 2))\neg2:\n (define (abs x)\n (if (< x 0)\n (- x)\n x))\neg3:\n (define (sqrt x)\n (define (good-enough? guess)\n (< (abs (- (square guess) x)) 0.001))\n (define (improve guess)\n (average guess (/ x guess)))\n (define (sqrt-iter guess)\n (if (good-enough? guess)\n guess\n (sqrt-iter (improve guess))))\n (sqrt-iter 1.0))\n (sqrt 9)\n\n(lambda (<formal-parameters>) <body>)\neg1:\n (define (plus4 x) (+ x 4))\n (define plus4 (lambda (x) (+ x 4))) # both are OK\n\n# \u7279\u6b8a\u7684\u503c\u00a0nil\u00a0\u6216\u00a0'()\u00a0\u8868\u793a\u7a7a\u5217\u8868\n\n# null? \u8c13\u8bcd\u7684\u4f7f\u7528:\n (define (length items)\n (if (null? items)\n 0\n (+ 1 (length (cdr items)))))\n (define (getitem items n)\n (if (= n 0)\n (car items)\n (getitem (cdr items) (- n 1))))\n (define squares (list 1 4 9 16 25))\n\n (length squares)\n\n (getitem squares 3)\n\n# \u4efb\u4f55\u4e0d\u88ab\u6c42\u503c\u7684\u8868\u8fbe\u5f0f\u90fd\u88ab\u79f0\u4e3a\u88ab\u5f15\u7528\n (list 'define 'list)\n\n# turtle\u4f7f\u7528+\u9012\u5f52\u753b\u56fe\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#33","title":"3.3 \u5f02\u5e38","text":"
Python
>>> raise Exception(' An error occurred')\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nException: an error occurred\n
- raising an exception
- read-eval-print-loop \u5373 REPL
- stack backtrace
- handling exceptions
Python
try\n <try suite>\nexcept <exception class> as <name>:\n <except suite>\n
\u5f02\u5e38\u662f\u4e2a\u7c7b\uff0c\u53ef\u4ee5\u6709\u989d\u5916\u7684\u5c5e\u6027\uff0c\u53ef\u4ee5\u907f\u514d\u62a5\u9519\uff0c\u8ba9\u7a0b\u5e8f\u7ed9\u51fa\u4e00\u4e2a\u8f83\u4e3a\u7c97\u7cd9\u7684\u503c\uff1a
Python
>>> class IterImproveError(Exception):\n\u00a0\u00a0\u00a0 def __init__(self, last_guess):\n\u00a0\u00a0\u00a0 self.last_guess = last_guess\n>>> def improve(update, done, guess=1, max_updates=1000):\n\u00a0\u00a0\u00a0 k = 0\n\u00a0\u00a0\u00a0 try:\n\u00a0\u00a0\u00a0 while not done(guess) and k < max_updates:\n\u00a0\u00a0\u00a0 guess = update(guess)\n\u00a0\u00a0\u00a0 k = k + 1\n\u00a0\u00a0\u00a0 return guess\n\u00a0\u00a0\u00a0 except ValueError:\n\u00a0\u00a0\u00a0 raise IterImproveError(guess)\n>>> def find_zero(f, guess=1):\n\u00a0\u00a0\u00a0 def done(x):\n\u00a0\u00a0\u00a0 return f(x) == 0\n\u00a0\u00a0\u00a0 try:\n\u00a0\u00a0\u00a0 return improve(newton_update(f), done, guess)\n\u00a0\u00a0\u00a0 except IterImproveError as e:\n\u00a0\u00a0\u00a0 return e.last_guess\n>>> from math import sqrt\n>>> find_zero(lambda x: 2*x*x + sqrt(x))\n-0.030211203830201594\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#34","title":"3.4 \u7ec4\u5408\u8bed\u8a00\u7684\u89e3\u91ca\u5668","text":"
- \u8ba1\u7b97\u5668\u8bed\u8a00 -> \u7b80\u7565\u89e3\u91ca\u5668
- scheme \u5bf9
- \u8868\u8fbe\u5f0f\u6811
- \u89e3\u6790\u8868\u8fbe\u5f0f\u6811
- \u8bcd\u6cd5\u5206\u6790\u5668\uff08lexical analyzer\uff09/ \u5206\u8bcd\u5668\uff08tokenizer\uff09
- \u6807\u8bb0\uff08token\uff09
- \u8bed\u6cd5\u5206\u6790\u5668\uff08syntactic analyzer\uff09
- \u6570\u5b57\u548c\u8c03\u7528\u8868\u8fbe\u5f0f \u8bb2\u4e86\u4e00\u4e0b\u8ba1\u7b97\u5668\u89e3\u91ca\u5668\u4ea4\u4e92\u5f0f\u9875\u9762\u7684\u8868\u8fbe\u5f0f\u5982\u4f55\u8ba1\u7b97\u548c\u5f02\u5e38\u5904\u7406
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#35","title":"3.5 \u62bd\u8c61\u8bed\u8a00\u7684\u89e3\u91ca\u5668","text":"
- \u6269\u5c55 scheme_reader \u89e3\u6790\u70b9\u5217\u8868\u548c\u5f15\u53f7
- \u6c42\u503c\uff08Evaluation\uff09
- \u51fd\u6570\u5e94\u7528\uff08Procedure application\uff09
- \u6c42\u503c/\u5e94\u7528\u9012\u5f52
- \u6570\u636e\u5373\u7a0b\u5e8f
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#4","title":"4 \u6570\u636e\u5904\u7406","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#41","title":"4.1 \u5f15\u8a00","text":"
- pipelines
- sequence interface
- unbounded
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#42","title":"4.2 \u9690\u5f0f\u5e8f\u5217","text":"
- \u6211\u4eec\u53ea\u5728\u6709\u9700\u8981\u7684\u65f6\u5019\u624d\u8ba1\u7b97\u5143\u7d20
- Lazy computation
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#421","title":"4.2.1 \u8fed\u4ee3\u5668","text":"
\u4e24\u4e2a\u7ec4\u4ef6:
- \u68c0\u7d22\u4e0b\u4e00\u4e2a\u5143\u7d20\u7684\u673a\u5236
- \u5230\u8fbe\u5e8f\u5217\u672b\u5c3e\u5e76\u4e14\u6ca1\u6709\u5269\u4f59\u5143\u7d20\uff0c\u53d1\u51fa\u4fe1\u53f7\u7684\u673a\u5236
Python
>>> next(iterator)\n7\n>>> next(iterator)\nTraceback (most recent call las):\n File \"<stdin>\", line 1, in <module>\nStopIteration\n\n>>> try:\n next(iterator)\n except StopIteration:\n print('No more values')\nNo more values\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#422","title":"4.2.2 \u53ef\u8fed\u4ee3\u6027","text":"
iterable value \u53ef\u8fed\u4ee3\u5bf9\u8c61:
- \u5e8f\u5217\u503c: string & tuples
- \u5bb9\u5668: sets & Dictionaries
"},{"location":"CS%20basic/cs61a/cs61a/","title":"Cs61a","text":"
\u7ea6 23 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- \u4ed6\u4eba\u603b\u7ed3
- https://github.com/HobbitQia/CS61A-Fall-2020/tree/main
- \u6559\u6750\u7ffb\u8bd1\u7248
- \u539f\u6559\u6750
- \u8bfe\u7a0b\u7f51\u7ad9\u5b58\u6863
- https://github.com/shuo-liu16/CS61A
"},{"location":"CS%20basic/cs61c/cs61c/","title":"Cs61c","text":"
\u7ea6 21 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- https://github.com/Yan-J-lee/cs61c-projects/blob/master
- https://github.com/FeiNiaoBF/Fa22-Cs61c-proj3
- https://github.com/PKUFlyingPig/CS61C-summer20
- https://github.com/Ch-EnShen/cs61c-all-materials
- https://www.learncs.site/docs/curriculum-resource/cs61c
- note1
- CS61C\u81ea\u5b66\u5c0f\u7ed3
- \u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u7b14\u8bb0
"},{"location":"CS%20basic/cs61c/cs61c_lec06/","title":"Cs61c lec06","text":"
\u7ea6 1228 \u4e2a\u5b57 18 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
lec06.pdf
\u6587\u4ef6\u662f\u5173\u4e8e RISC-V \u6c47\u7f16\u8bed\u8a00\u548c\u6307\u4ee4\u96c6\u67b6\u6784\u7684\u5165\u95e8\u8bfe\u7a0b\uff0c\u4ee5\u4e0b\u662f\u8be5\u8bfe\u7a0b\u7684\u8be6\u7ec6\u5185\u5bb9:
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#1","title":"1. \u6c47\u7f16\u8bed\u8a00\u7b80\u4ecb","text":"
- \u6c47\u7f16\u8bed\u8a00\u662f\u4e00\u79cd\u4f4e\u7ea7\u7f16\u7a0b\u8bed\u8a00\uff0c\u5b83\u4e0e\u7279\u5b9a\u7684\u786c\u4ef6\u67b6\u6784\u7d27\u5bc6\u76f8\u5173\u3002
- \u6c47\u7f16\u8bed\u8a00\u7a0b\u5e8f\u9700\u8981\u901a\u8fc7\u6c47\u7f16\u5668\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u7a0b\u5e8f\uff0c\u4ee5\u4fbf CPU \u6267\u884c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#2","title":"2. \u9ad8\u7ea7\u8bed\u8a00\u4e0e\u6c47\u7f16\u8bed\u8a00","text":"
- \u9ad8\u7ea7\u8bed\u8a00\uff08\u5982 C\u3001Java\uff09\u7f16\u5199\u7684\u7a0b\u5e8f\u9700\u8981\u7f16\u8bd1\u5668\u8f6c\u6362\u6210\u6c47\u7f16\u8bed\u8a00\uff0c\u518d\u7531\u6c47\u7f16\u5668\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u3002
- \u6c47\u7f16\u8bed\u8a00\u4e0e\u786c\u4ef6\u67b6\u6784\uff08\u5982 RISC-V\uff09\u76f4\u63a5\u76f8\u5173\uff0c\u63d0\u4f9b\u4e86\u5bf9\u786c\u4ef6\u7684\u76f4\u63a5\u63a7\u5236\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#3","title":"3. \u62bd\u8c61\u7684\u6982\u5ff5","text":"
- \u62bd\u8c61\u662f\u8ba1\u7b97\u673a\u79d1\u5b66\u4e2d\u7684\u4e00\u4e2a\u57fa\u672c\u6982\u5ff5\uff0c\u5141\u8bb8\u6211\u4eec\u5728\u4e0d\u540c\u7684\u5c42\u6b21\u4e0a\u7406\u89e3\u548c\u5b9e\u73b0\u7a0b\u5e8f\u3002
- \u4f8b\u5982\uff0c\u4ece\u9ad8\u7ea7\u8bed\u8a00\u5230\u6c47\u7f16\u8bed\u8a00\u518d\u5230\u673a\u5668\u8bed\u8a00\uff0c\u6bcf\u4e2a\u5c42\u6b21\u90fd\u662f\u5bf9\u4e0b\u4e00\u5c42\u7684\u62bd\u8c61\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#4-risc-v","title":"4. RISC-V \u67b6\u6784","text":"
- RISC-V \u662f\u4e00\u79cd\u5f00\u6e90\u3001\u65e0\u8bb8\u53ef\u8d39\u7528\u7684\u6307\u4ee4\u96c6\u67b6\u6784\uff08ISA\uff09\u3002
- \u5b83\u652f\u6301 32 \u4f4d\u300164 \u4f4d\u548c 128 \u4f4d\u53d8\u4f53\u3002
- RISC-V \u65e8\u5728\u652f\u6301\u5f00\u653e\u7684\u7814\u7a76\u548c\u6559\u5b66\uff0c\u7531\u52a0\u5dde\u5927\u5b66\u4f2f\u514b\u5229\u5206\u6821\u5728 2010 \u5e74\u53d1\u8d77\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#5-risc-v","title":"5. \u4e3a\u4ec0\u4e48\u9009\u62e9 RISC-V","text":"
- RISC-V \u7b80\u5355\u6613\u5b66\uff0c\u9002\u5408\u4f5c\u4e3a\u5b66\u4e60\u5176\u4ed6\u6c47\u7f16\u8bed\u8a00\u7684\u57fa\u7840\u3002
- \u5b66\u4e60 RISC-V \u53ef\u4ee5\u5e2e\u52a9\u7406\u89e3\u5176\u4ed6 CPU \u67b6\u6784\u548c\u6c47\u7f16\u8bed\u8a00\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#6","title":"6. \u5bc4\u5b58\u5668","text":"
- \u5bc4\u5b58\u5668\u662f CPU \u5185\u90e8\u7684\u5c0f\u578b\u5b58\u50a8\u5355\u5143\uff0c\u7528\u4e8e\u5b58\u50a8\u6307\u4ee4\u6267\u884c\u8fc7\u7a0b\u4e2d\u7684\u4e34\u65f6\u6570\u636e\u3002
- RISC-V \u6709 32 \u4e2a\u5bc4\u5b58\u5668\uff08x0 \u5230 x31\uff09\uff0c\u6bcf\u4e2a\u5bc4\u5b58\u5668\u90fd\u662f 32 \u4f4d\u5bbd\u3002
- \u5bc4\u5b58\u5668\u7684\u8bbf\u95ee\u901f\u5ea6\u6bd4\u5185\u5b58\u5feb\u5f97\u591a\uff0c\u56e0\u4e3a\u5b83\u4eec\u4f4d\u4e8e CPU \u5185\u90e8\u3002\\
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#7","title":"7. \u5bc4\u5b58\u5668\u7684\u4f7f\u7528","text":"
- \u5bc4\u5b58\u5668\u7528\u4e8e\u5b58\u50a8\u6307\u4ee4\u6267\u884c\u6240\u9700\u7684\u6570\u636e\uff0c\u5982\u53d8\u91cf\u548c\u4e2d\u95f4\u7ed3\u679c\u3002
- \u4e0e\u9ad8\u7ea7\u8bed\u8a00\u4e2d\u7684\u53d8\u91cf\u4e0d\u540c\uff0c\u5bc4\u5b58\u5668\u6ca1\u6709\u7c7b\u578b\uff0c\u53ef\u4ee5\u5b58\u50a8\u4efb\u4f55\u7c7b\u578b\u7684\u6570\u636e\u3002
- x0 \u5bc4\u5b58\u5668\u662f\u4e00\u4e2a\u7279\u6b8a\u7684\u5bc4\u5b58\u5668\uff0c\u5b83\u603b\u662f\u5305\u542b\u503c 0\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#8","title":"8. \u5bc4\u5b58\u5668\u4e0e\u5185\u5b58\u7684\u901f\u5ea6\u6bd4\u8f83","text":"
- \u5bc4\u5b58\u5668\u6bd4\u5185\u5b58\u5feb\u7ea6 50-500 \u500d\uff0c\u56e0\u4e3a\u5b83\u4eec\u7684\u7269\u7406\u4f4d\u7f6e\u548c\u5927\u5c0f\u3002
- \u5185\u5b58\u867d\u7136\u5bb9\u91cf\u5927\uff0c\u4f46\u8bbf\u95ee\u901f\u5ea6\u6162\u4e8e\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#9","title":"9. \u6c47\u7f16\u8bed\u8a00\u4e2d\u7684\u6ce8\u91ca","text":"
- \u6ce8\u91ca\u5bf9\u4e8e\u7406\u89e3\u6c47\u7f16\u4ee3\u7801\u81f3\u5173\u91cd\u8981\uff0c\u5c24\u5176\u662f\u5728\u590d\u6742\u7684\u64cd\u4f5c\u4e2d\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#10","title":"10. \u6c47\u7f16\u6307\u4ee4\u793a\u4f8b","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528\u6c47\u7f16\u6307\u4ee4\u6267\u884c\u57fa\u672c\u7684\u7b97\u672f\u64cd\u4f5c\uff0c\u5982\u52a0\u6cd5\u548c\u51cf\u6cd5\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#11-immediates","title":"11. \u7acb\u5373\u6570\uff08Immediates\uff09","text":"
- \u7acb\u5373\u6570\u7528\u4e8e\u5728\u6c47\u7f16\u6307\u4ee4\u4e2d\u63d0\u4f9b\u6570\u503c\u5e38\u91cf\u3002
- RISC-V \u4e2d\u7684\u7acb\u5373\u6570\u64cd\u4f5c\u9650\u5236\u5728 12 \u4f4d\uff0c\u5e76\u4e14\u4f1a\u8fdb\u884c\u7b26\u53f7\u6269\u5c55\u5230 32 \u4f4d\u3002
- extension \u4fdd\u8bc1\u503c\u4e0d\u53d8
- add is for registers
- addi is for immediates
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#12","title":"12. \u5185\u5b58","text":"
- \u5185\u5b58\u662f CPU \u5916\u90e8\u7684\u5b58\u50a8\u8bbe\u5907\uff0c\u5bb9\u91cf\u5927\u4f46\u901f\u5ea6\u6162\u3002
- \u5185\u5b58\u7528\u4e8e\u5b58\u50a8\u7a0b\u5e8f\u548c\u6570\u636e\uff0c\u4f46\u8bbf\u95ee\u901f\u5ea6\u6bd4\u5bc4\u5b58\u5668\u6162\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#13","title":"13. \u5185\u5b58\u5730\u5740","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u901a\u8fc7\u5730\u5740\u8bbf\u95ee\u5185\u5b58\u4e2d\u7684\u6570\u636e\u3002
- \u89e3\u91ca\u4e86\u5b57\u8282\u3001\u5b57\u548c\u4f4d\u7684\u5730\u5740\u8ba1\u7b97\u3002
- goldilocks principle
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#14","title":"14. \u8bbf\u95ee\u6570\u7ec4","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u5728\u6c47\u7f16\u8bed\u8a00\u4e2d\u8bbf\u95ee\u6570\u7ec4\u5143\u7d20\uff0c\u5305\u62ec\u6307\u9488\u7b97\u672f\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#15","title":"15. \u4ece\u5185\u5b58\u52a0\u8f7d\u6570\u636e","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528
lw
\uff08\u52a0\u8f7d\u5b57 load word\uff09\u6307\u4ee4\u5c06\u6570\u636e\u4ece\u5185\u5b58\u52a0\u8f7d\u5230\u5bc4\u5b58\u5668\u3002 - \u7c7b\u4f3c\u7684\uff0cx15\u76f8\u5f53\u4e8e\u6bb5\u5730\u5740\uff0c12(3 * sizeof(int))\u76f8\u5f53\u4e8e\u504f\u79fb\u5730\u5740
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#16","title":"16. \u5b58\u50a8\u6570\u636e\u5230\u5185\u5b58","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528
sw
\uff08\u5b58\u50a8\u5b57\uff09\u6307\u4ee4\u5c06\u6570\u636e\u4ece\u5bc4\u5b58\u5668\u5b58\u50a8\u5230\u5185\u5b58\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#17","title":"17. \u52a0\u8f7d\u548c\u5b58\u50a8\u5b57\u8282","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528
lb
\uff08\u52a0\u8f7d\u5b57\u8282\uff09\u548c sb
\uff08\u5b58\u50a8\u5b57\u8282\uff09\u6307\u4ee4\u5728\u5b57\u8282\u7ea7\u522b\u4e0a\u8fdb\u884c\u6570\u636e\u4f20\u8f93\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#18","title":"18. \u7b26\u53f7\u6269\u5c55","text":"
- \u89e3\u91ca\u4e86\u5728\u52a0\u8f7d\u6570\u636e\u65f6\u5982\u4f55\u8fdb\u884c\u7b26\u53f7\u6269\u5c55\uff0c\u4ee5\u53ca\u5b83\u4e0e\u5b58\u50a8\u64cd\u4f5c\u7684\u533a\u522b\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#19","title":"19. \u903b\u8f91\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86 RISC-V \u4e2d\u7684\u903b\u8f91\u6307\u4ee4\uff0c\u5305\u62ec\u4f4d\u4e0e\uff08AND\uff09\u3001\u4f4d\u6216\uff08OR\uff09\u3001\u4f4d\u5f02\u6216\uff08XOR\uff09\u3001\u903b\u8f91\u5de6\u79fb\uff08SLL\uff09\u7b49\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#20","title":"20. \u79fb\u4f4d\u64cd\u4f5c","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528\u79fb\u4f4d\u6307\u4ee4\u6267\u884c\u7b97\u672f\u548c\u903b\u8f91\u79fb\u4f4d\u3002
- \u5c31\u662f\u5148\u628a\u6240\u6709\u8fd0\u7b97\u7b97\u597d\uff0c\u653e\u5230\u57fa\u7840\u5730\u5740\u91cc\uff0c\u8fd9\u6837\u504f\u79fb\u5730\u5740\u5c31\u4e0d\u4f1a\u5305\u542bregister\u4e86
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#21","title":"21. \u51b3\u7b56\u5236\u5b9a\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528\u5206\u652f\u6307\u4ee4\u5728 RISC-V \u4e2d\u5b9e\u73b0\u6761\u4ef6\u5224\u65ad\uff0c\u4f8b\u5982
beq
\uff08\u5982\u679c\u76f8\u7b49\u5219\u8df3\u8f6c\uff09\u548c bne
\uff08\u5982\u679c\u4e0d\u76f8\u7b49\u5219\u8df3\u8f6c\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#22","title":"22. \u6807\u7b7e\u548c\u8df3\u8f6c","text":"
- \u6807\u7b7e\u7528\u4e8e\u6807\u8bb0\u4ee3\u7801\u4e2d\u7684\u4f4d\u7f6e\uff0c\u5206\u652f\u548c\u8df3\u8f6c\u6307\u4ee4\u53ef\u4ee5\u4f7f\u7528\u6807\u7b7e\u6765\u5b9e\u73b0\u975e\u987a\u5e8f\u6267\u884c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#23","title":"23. \u5faa\u73af\u793a\u4f8b","text":"
- \u5c55\u793a\u4e86\u5982\u4f55\u5728\u6c47\u7f16\u8bed\u8a00\u4e2d\u5b9e\u73b0\u5faa\u73af\uff0c\u4f7f\u7528
for
\u5faa\u73af\u7684\u4f8b\u5b50\u8fdb\u884c\u4e86\u8bf4\u660e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#24","title":"24. \u66f4\u591a\u6307\u4ee4","text":"
- \u63d0\u4f9b\u4e86 RISC-V \u53c2\u8003\u5361\u7247\u7684\u94fe\u63a5\uff0c\u4f9b\u8fdb\u4e00\u6b65\u5b66\u4e60\u548c\u53c2\u8003\u3002
\u8fd9\u4efd\u8bb2\u4e49\u4e3a\u5b66\u751f\u63d0\u4f9b\u4e86 RISC-V \u6c47\u7f16\u8bed\u8a00\u7f16\u7a0b\u7684\u57fa\u7840\u77e5\u8bc6\uff0c\u6db5\u76d6\u4e86\u4ece\u57fa\u672c\u7684\u7b97\u672f\u64cd\u4f5c\u5230\u66f4\u590d\u6742\u7684\u5185\u5b58\u8bbf\u95ee\u548c\u63a7\u5236\u6d41\u6307\u4ee4\u3002\u901a\u8fc7\u8fd9\u4e9b\u77e5\u8bc6\uff0c\u5b66\u751f\u80fd\u591f\u7406\u89e3\u5e76\u5f00\u59cb\u7f16\u5199\u7b80\u5355\u7684\u6c47\u7f16\u7a0b\u5e8f\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/","title":"Cs61c lec07","text":"
\u7ea6 1071 \u4e2a\u5b57 9 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
lec07.pdf
\u6587\u4ef6\u662f\u5173\u4e8e RISC-V \u6307\u4ee4\u96c6\u548c\u5982\u4f55\u5b9e\u73b0\u51fd\u6570\u7684\u8ba1\u7b97\u673a\u79d1\u5b66\u8bfe\u7a0b\u5185\u5bb9\u3002\u4ee5\u4e0b\u662f\u8be5\u8bfe\u7a0b\u5185\u5bb9\u7684\u8be6\u7ec6\u8bb2\u89e3:
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#1","title":"1. \u5bc4\u5b58\u5668\u548c\u5b83\u4eec\u80fd\u5b58\u50a8\u7684\u5185\u5bb9","text":"
- \u5bc4\u5b58\u5668:32\u4f4d\u5bbd\uff0c\u7528\u4e8e\u5b58\u50a8\u5404\u79cd\u503c\u3002
- \u53ef\u4ee5\u5b58\u50a8\u6570\u7ec4\u7684\u5f00\u59cb\u4f4d\u7f6e\u3001\u5b57\u7b26\u4e32\u3001\u6574\u6570\u503c\u7b49\u3002
- \u5bc4\u5b58\u5668\u7528\u4e8e\u5feb\u901f\u8bbf\u95ee\u548c\u5904\u7406\u6570\u636e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#2","title":"2. \u5df2\u5b66\u4e60\u7684\u6307\u4ee4","text":"
- \u52a0\u6cd5/\u51cf\u6cd5:
add
, sub
\uff0c\u7528\u4e8e\u6267\u884c\u57fa\u672c\u7684\u7b97\u672f\u8fd0\u7b97\u3002 - \u52a0\u5e38\u6570:
addi
\uff0c\u7528\u4e8e\u5c06\u5bc4\u5b58\u5668\u7684\u503c\u4e0e\u7acb\u5373\u6570\u76f8\u52a0\u3002 - \u5185\u5b58\u8bbf\u95ee:
lw
(load word), lb
(load byte), sw
(store word), sb
(store byte)\uff0c\u7528\u4e8e\u5728\u5bc4\u5b58\u5668\u548c\u5185\u5b58\u4e4b\u95f4\u4f20\u8f93\u6570\u636e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#3","title":"3. \u903b\u8f91\u6307\u4ee4","text":"
- \u5305\u62ec\u903b\u8f91\u4e0e\uff08
and
\uff09\u3001\u6216\uff08or
\uff09\u3001\u5f02\u6216\uff08xor
\uff09\u3002 - \u4f4d\u79fb\u6307\u4ee4:
sll
(shift left logical), slli
(shift left logical immediate), sra
(shift right arithmetic), srai
(shift right arithmetic immediate)\uff0c\u7528\u4e8e\u6267\u884c\u4f4d\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#4","title":"4. \u6761\u4ef6\u5206\u652f","text":"
- \u7528\u4e8e\u5b9e\u73b0
if
\u3001loops
\u7b49\u63a7\u5236\u6d41\u7ed3\u6784\u3002 - \u683c\u5f0f:
{comparison} {reg1} {reg2} {label}
\uff0c\u4f8b\u5982 beq
(branch if equal), bne
(branch if not equal), blt
(branch if less than), bge
(branch if greater than or equal)\u3002 - \u6ca1\u6709\u76f4\u63a5\u7684 \u201cbranch-less-than-or-equals\u201d \u548c \u201cbranch-greater-than\u201d \u6307\u4ee4\uff0c\u4f46\u53ef\u4ee5\u901a\u8fc7\u4ea4\u6362\u53c2\u6570\u6765\u5b9e\u73b0\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#5","title":"5. \u65e0\u6761\u4ef6\u5206\u652f","text":"
Jump
\u6307\u4ee4:j label
\uff0c\u603b\u662f\u8df3\u8f6c\u5230\u6807\u7b7e\u6307\u5b9a\u7684\u4ee3\u7801\u4f4d\u7f6e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#6-if-else","title":"6. If-Else \u8bed\u53e5\u7684\u5b9e\u73b0","text":"
- \u4f7f\u7528\u5206\u652f\u6307\u4ee4\u6765\u5b9e\u73b0\u6761\u4ef6\u6267\u884c\u3002
- \u793a\u4f8b:\u6839\u636e\u4e24\u4e2a\u5bc4\u5b58\u5668\u7684\u503c\u662f\u5426\u76f8\u7b49\uff0c\u6267\u884c\u4e0d\u540c\u7684\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#7","title":"7. \u5faa\u73af\u793a\u4f8b","text":"
- \u4f7f\u7528\u5faa\u73af\u6765\u7d2f\u52a0\u6570\u7ec4\u5143\u7d20\u7684\u548c\u3002
- \u793a\u4f8b\u4ee3\u7801\u5c55\u793a\u4e86\u5982\u4f55\u521d\u59cb\u5316\u5faa\u73af\u53d8\u91cf\u3001\u5faa\u73af\u6761\u4ef6\u4ee5\u53ca\u5faa\u73af\u4f53\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#8-pc","title":"8. \u7a0b\u5e8f\u8ba1\u6570\u5668\uff08PC\uff09","text":"
- PC \u662f\u4e00\u4e2a\u5bc4\u5b58\u5668\uff0c\u5b58\u50a8\u5f53\u524d\u6b63\u5728\u6267\u884c\u7684\u6307\u4ee4\u7684\u5185\u5b58\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#9-pc","title":"9. \u589e\u52a0 PC \u7684\u503c","text":"
- RV32 \u6307\u4ee4\u662f 32 \u4f4d\u5bbd\uff0c\u5373 4 \u5b57\u8282\u3002
- \u5f53\u79fb\u52a8\u5230\u4e0b\u4e00\u6761\u6307\u4ee4\u65f6\uff0c\u5904\u7406\u5668\u4f1a\u589e\u52a0 PC \u7684\u503c 4 \u5b57\u8282\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#10","title":"10. \u51fd\u6570\u6267\u884c\u4f4d\u7f6e\u7684\u6539\u53d8","text":"
- \u4f7f\u7528\u8df3\u8f6c\u6307\u4ee4\u6539\u53d8 PC \u7684\u503c\uff0c\u4ee5\u6267\u884c\u4e0d\u540c\u4f4d\u7f6e\u7684\u51fd\u6570\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#11-jal","title":"11. JAL \u6307\u4ee4","text":"
jal
\u6307\u4ee4\u7528\u4e8e\u8df3\u8f6c\u5230\u6807\u7b7e\uff0c\u5e76\u5b58\u50a8\u8fd4\u56de\u5730\u5740\u3002 - \u5c06\u6807\u7b7e\u901a\u8fc7\u6c47\u7f16\u5668\u8f6c\u6362\u4e3a 20 \u4f4d\u504f\u79fb\u91cf\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#12","title":"12. \u8fd4\u56de\u5730\u5740\u5bc4\u5b58\u5668","text":"
- \u53ef\u4ee5\u9009\u62e9\u4efb\u610f\u5bc4\u5b58\u5668\u6765\u5b58\u50a8\u8fd4\u56de\u5730\u5740\uff0c\u4f46\u6309\u7167\u6807\u51c6\u7ea6\u5b9a\uff0c\u4f7f\u7528\u5bc4\u5b58\u5668 x1\uff0c\u4e5f\u79f0\u4e3a
ra
\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#13","title":"13. \u8df3\u8f6c\u793a\u4f8b","text":"
- \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u8c03\u7528\u4e2d\u4f7f\u7528
jal
\u548c jr
\u6307\u4ee4\u8fdb\u884c\u8df3\u8f6c\u548c\u8fd4\u56de\u3002 - \u7528x0\u53ef\u4ee5\u4e0d\u7528\u5b58\u8fd4\u56de\u5730\u5740
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#14","title":"14. \u4f2a\u6307\u4ee4","text":"
- \u4f2a\u6307\u4ee4\u5bf9\u7a0b\u5e8f\u5458\u53ef\u7528\uff0c\u4f46\u4e0d\u662f ISA \u7684\u4e00\u90e8\u5206\u3002
- \u7531\u6c47\u7f16\u5668\u8f6c\u6362\u4e3a\u5b9e\u9645\u7684 RISC-V \u6307\u4ee4\u3002
- [[cs61c_lec06]]\u91cc\u5c31\u8bb2\u8fc7\u4e86
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#15-jalr","title":"15. JALR \u6307\u4ee4","text":"
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#16","title":"16. \u8df3\u8f6c\u603b\u7ed3","text":"
- \u603b\u7ed3\u4e86\u4e0d\u540c\u7c7b\u578b\u7684\u8df3\u8f6c\u6307\u4ee4\uff0c\u5305\u62ec
jal
, jalr
, jr
, \u548c ret
\u3002 - [[\u8df3\u8f6c\u548c\u8fd4\u56de\u7684\u51fd\u6570]]
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#17","title":"17. \u4fdd\u5b58\u5bc4\u5b58\u5668","text":"
- \u5f53\u8c03\u7528\u53e6\u4e00\u4e2a\u51fd\u6570\u65f6\uff0c\u9700\u8981\u4fdd\u5b58\u5f53\u524d\u51fd\u6570\u4f7f\u7528\u7684\u5bc4\u5b58\u5668\u503c\uff0c\u4ee5\u9632\u6b62\u88ab\u8986\u76d6\u3002
- save in the stack
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#18","title":"18. \u4e3a\u6808\u5206\u914d\u7a7a\u95f4","text":"
- \u6808\u7528\u4e8e\u5b58\u50a8\u81ea\u52a8\uff08\u5c40\u90e8\uff09\u53d8\u91cf\uff0c\u8fd9\u4e9b\u53d8\u91cf\u5728\u51fd\u6570\u9000\u51fa\u65f6\u88ab\u4e22\u5f03\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#19-sp","title":"19. \u6808\u6307\u9488\uff08SP\uff09","text":"
- SP \u662f\u4e00\u4e2a\u5bc4\u5b58\u5668\uff0c\u5b58\u50a8\u6808\u4e0a\u6700\u540e\u4e00\u9879\u7684\u5185\u5b58\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#20","title":"20. \u6808\u5e27","text":"
- \u6808\u5e27\u662f\u6808\u4e0a\u7684\u4e00\u5757\u533a\u57df\uff0c\u7528\u4e8e\u5b58\u50a8\u51fd\u6570\u7684\u5c40\u90e8\u53d8\u91cf\u548c\u5bc4\u5b58\u5668\u72b6\u6001\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#21","title":"21. \u79fb\u52a8\u6808\u6307\u9488","text":"
- \u901a\u8fc7\u589e\u52a0\u6216\u51cf\u5c11 SP \u7684\u503c\u6765\u5728\u6808\u4e0a\u5206\u914d\u6216\u91ca\u653e\u7a7a\u95f4\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#22","title":"22. \u8c03\u7528\u7ea6\u5b9a","text":"
- \u8c03\u7528\u7ea6\u5b9a\u5b9a\u4e49\u4e86\u54ea\u4e9b\u5bc4\u5b58\u5668\u7531\u8c03\u7528\u8005\u4fdd\u5b58\uff0c\u54ea\u4e9b\u7531\u88ab\u8c03\u7528\u8005\u4fdd\u5b58\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#23","title":"23. \u5bc4\u5b58\u5668\u4f7f\u7528\u8bf4\u660e","text":"
- \u8868\u683c\u5217\u51fa\u4e86\u6bcf\u4e2a\u5bc4\u5b58\u5668\u7684\u7528\u9014\u548c\u8c01\u8d1f\u8d23\u4fdd\u5b58\u5b83\u4eec\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#24","title":"24. \u53c2\u6570\u5bc4\u5b58\u5668","text":"
- \u51fd\u6570\u7684\u53c2\u6570\u548c\u8fd4\u56de\u503c\u901a\u8fc7\u7279\u5b9a\u7684\u5bc4\u5b58\u5668\u4f20\u9012\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#25","title":"25. \u8c03\u7528\u7ea6\u5b9a\u793a\u4f8b","text":"
- \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u8c03\u7528\u4e2d\u4f7f\u7528\u53c2\u6570\u5bc4\u5b58\u5668\u548c\u8fd4\u56de\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#26","title":"26. \u51fd\u6570\u8c03\u7528\u7684\u516d\u4e2a\u57fa\u672c\u6b65\u9aa4","text":"
- \u4ece\u53c2\u6570\u8bbe\u7f6e\u5230\u63a7\u5236\u6743\u8fd4\u56de\u7684\u8be6\u7ec6\u8fc7\u7a0b\u3002
\u8fd9\u4efd\u8bb2\u4e49\u6db5\u76d6\u4e86 RISC-V \u6c47\u7f16\u8bed\u8a00\u4e2d\u63a7\u5236\u6d41\u3001\u51fd\u6570\u8c03\u7528\u3001\u5bc4\u5b58\u5668\u4f7f\u7528\u548c\u5185\u5b58\u7ba1\u7406\u7684\u5173\u952e\u6982\u5ff5\u548c\u6280\u672f\u3002\u901a\u8fc7\u8fd9\u4e9b\u5185\u5bb9\uff0c\u5b66\u751f\u53ef\u4ee5\u5b66\u4e60\u5982\u4f55\u5728 RISC-V \u67b6\u6784\u4e0a\u5b9e\u73b0\u590d\u6742\u7684\u7a0b\u5e8f\u903b\u8f91\u548c\u51fd\u6570\u4ea4\u4e92\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/","title":"Cs61c lec08","text":"
\u7ea6 1440 \u4e2a\u5b57 17 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
lec08.pdf
\u6587\u4ef6\u8be6\u7ec6\u4ecb\u7ecd\u4e86 RISC-V \u6307\u4ee4\u96c6\u67b6\u6784\u4e2d\u7684\u6307\u4ee4\u683c\u5f0f\u548c\u5176\u4ed6\u76f8\u5173\u6982\u5ff5\u3002\u4ee5\u4e0b\u662f\u8be5\u8bfe\u7a0b\u5185\u5bb9\u7684\u8be6\u7ec6\u8bb2\u89e3:
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#1","title":"1. \u62bd\u8c61\u7684\u6982\u5ff5","text":"
- \u4ecb\u7ecd\u4e86\u4e0d\u540c\u7ea7\u522b\u7684\u62bd\u8c61\uff0c\u5305\u62ec\u9ad8\u7ea7\u8bed\u8a00\u3001\u6c47\u7f16\u8bed\u8a00\u3001\u673a\u5668\u8bed\u8a00\u548c\u786c\u4ef6\u67b6\u6784\u63cf\u8ff0\u3002
- \u89e3\u91ca\u4e86\u7f16\u8bd1\u5668\u3001\u6c47\u7f16\u5668\u548c\u673a\u5668\u89e3\u91ca\u7684\u4f5c\u7528\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#2","title":"2. \u6307\u4ee4\u683c\u5f0f","text":"
- \u6307\u51fa\u6bcf\u6761\u6307\u4ee4\u90fd\u662f 32 \u4f4d\u5bbd\uff0c\u5e76\u5206\u4e3a\u4e0d\u540c\u7684\u5b57\u6bb5\u3002
- \u4ecb\u7ecd\u4e86 RISC-V \u6307\u4ee4\u96c6\u7684\u51e0\u79cd\u683c\u5f0f:R \u683c\u5f0f\u3001I \u683c\u5f0f\u3001S \u683c\u5f0f\u548c U \u683c\u5f0f\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#3-r","title":"3. R \u683c\u5f0f","text":"
- R \u683c\u5f0f\u662f\u4e00\u79cd\u5bc4\u5b58\u5668-\u5bc4\u5b58\u5668\u7c7b\u578b\u7684\u6307\u4ee4\uff0c\u6d89\u53ca\u4e09\u4e2a\u5bc4\u5b58\u5668:\u4e24\u4e2a\u6e90\u5bc4\u5b58\u5668\u548c\u4e00\u4e2a\u76ee\u6807\u5bc4\u5b58\u5668\u3002
- \u4ecb\u7ecd\u4e86 R \u683c\u5f0f\u7684\u5b57\u6bb5\u5e03\u5c40\uff0c\u5305\u62ec
funct7
\u3001rs2
\u3001rs1
\u3001funct3
\u3001rd
\u548c opcode
\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#4-r","title":"4. R \u683c\u5f0f\u6307\u4ee4\u7684\u64cd\u4f5c","text":"
- \u901a\u8fc7
funct7
\u548c funct3
\u5b57\u6bb5\u4e0e opcode
\u7ed3\u5408\u6765\u786e\u5b9a\u8981\u6267\u884c\u7684\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#5-r","title":"5. R \u683c\u5f0f\u6307\u4ee4\u7684\u5bc4\u5b58\u5668","text":"
- \u89e3\u91ca\u4e86\u5bc4\u5b58\u5668\u5b57\u6bb5
rs1
\u3001rs2
\u548c rd
\u7684\u4f5c\u7528\uff0c\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u5b58\u50a8 5 \u4f4d\u65e0\u7b26\u53f7\u6574\u6570\u6765\u8868\u793a\u5bc4\u5b58\u5668\u53f7\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#6-r","title":"6. R \u683c\u5f0f\u793a\u4f8b","text":"
- \u901a\u8fc7\u793a\u4f8b
add x18, x19, x10
\u5c55\u793a\u4e86 R \u683c\u5f0f\u6307\u4ee4\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u3002
\u5728RISC-V\u6307\u4ee4\u96c6\u4e2d\uff0copcode
\u3001funct3
\u548cfunct7
\u5b57\u6bb5\u662f\u6784\u6210\u4e00\u6761\u6307\u4ee4\u7684\u57fa\u672c\u7ec4\u6210\u90e8\u5206\uff0c\u5b83\u4eec\u5171\u540c\u5b9a\u4e49\u4e86\u6307\u4ee4\u7684\u7c7b\u578b\u548c\u884c\u4e3a\u3002\u4e0b\u9762\u662f\u5bf9\u8fd9\u4e9b\u5b57\u6bb5\u7684\u7406\u89e3:
-
Opcode:\u64cd\u4f5c\u7801\u662f\u4e00\u4e2a\u56fa\u5b9a\u7684\u4f4d\u6a21\u5f0f\uff0c\u7528\u4e8e\u6807\u8bc6\u6307\u4ee4\u7684\u7c7b\u522b\u3002\u4f8b\u5982\uff0c\u6240\u6709R\u578b\uff08\u5bc4\u5b58\u5668-\u5bc4\u5b58\u5668\uff09\u7c7b\u578b\u7684\u6307\u4ee4\u90fd\u6709\u4e00\u4e2a\u7279\u5b9a\u7684\u64cd\u4f5c\u7801\u6765\u533a\u5206\u5b83\u4eec\u4e0eI\u578b\uff08\u5bc4\u5b58\u5668-\u7acb\u5373\u6570\uff09\u6216S\u578b\uff08\u5b58\u50a8\uff09\u6307\u4ee4\u7b49\u3002
-
Funct3:\u529f\u80fd\u7801\u7684\u4f4e\u4e09\u4f4d\uff08funct3\uff09\u63d0\u4f9b\u4e86\u989d\u5916\u7684\u4fe1\u606f\uff0c\u7528\u4e8e\u5728\u5177\u6709\u591a\u79cd\u53d8\u4f53\u7684\u6307\u4ee4\u4e2d\u9009\u62e9\u7279\u5b9a\u7684\u64cd\u4f5c\u3002\u4f8b\u5982\uff0c\u5728RISC-V\u4e2d\uff0cadd
\u548csub
\u64cd\u4f5c\u90fd\u4f7f\u7528\u76f8\u540c\u7684\u64cd\u4f5c\u7801\uff0c\u4f46\u662f\u901a\u8fc7funct3
\u5b57\u6bb5\u6765\u533a\u5206\u662f\u6267\u884c\u52a0\u6cd5\u8fd8\u662f\u51cf\u6cd5\u3002
-
Funct7:\u529f\u80fd\u7801\u7684\u9ad8\u4e03\u4f4d\uff08funct7\uff09\u4e3a\u67d0\u4e9b\u6307\u4ee4\u63d0\u4f9b\u4e86\u66f4\u591a\u7684\u7f16\u7801\u7a7a\u95f4\uff0c\u5141\u8bb8\u540c\u4e00\u64cd\u4f5c\u7801\u4e0b\u6709\u66f4\u591a\u7684\u64cd\u4f5c\u53d8\u4f53\u3002\u4f8b\u5982\uff0c\u5728\u6d6e\u70b9\u6307\u4ee4\u4e2d\uff0cfunct7
\u5b57\u6bb5\u53ef\u4ee5\u7528\u4e8e\u9009\u62e9\u4e0d\u540c\u7684\u6d6e\u70b9\u8fd0\u7b97\u3002
\u5728RISC-V\u768432\u4f4d\u6307\u4ee4\u7f16\u7801\u4e2d\uff0c\u8fd9\u4e9b\u5b57\u6bb5\u901a\u5e38\u6309\u5982\u4e0b\u65b9\u5f0f\u7ec4\u7ec7:
- \u524d7\u4f4d\u662f
opcode
\u3002 - \u63a5\u4e0b\u6765\u76843\u4f4d\u662f
funct3
\u3002 - \u7136\u540e\u662f5\u4f4d\u64cd\u4f5c\u6570\u7f16\u7801\uff0c\u5bf9\u4e8eR\u578b\u6307\u4ee4\u662f
rs1
\u548crs2
\uff0c\u5bf9\u4e8eI\u578b\u6307\u4ee4\u662frs1
\u548c\u7acb\u5373\u6570
\u3002 - \u5bf9\u4e8eR\u578b\u6307\u4ee4\uff0c\u540e\u9762\u662f3\u4f4d
rd
\u7f16\u7801\u3002 - \u5bf9\u4e8eI\u578b\u548cS\u578b\u6307\u4ee4\uff0c\u63a5\u4e0b\u6765\u768412\u4f4d\u662f\u7acb\u5373\u6570\u7f16\u7801\u3002
\u4f8b\u5982\uff0c\u5728R\u578b\u6307\u4ee4\u4e2d\uff0c\u683c\u5f0f\u5982\u4e0b:
Text Only
|---7---|---3---|---5---|---3---|---5---|\n| opcode| 000 | rs2 | funct3| rd |\n
\u5728I\u578b\u6307\u4ee4\u4e2d\uff0c\u683c\u5f0f\u5982\u4e0b:
Text Only
|---7---|---3---|---5---|---13--|\n| opcode| 000 | rs1 | immed |\n
\u5728\u7406\u89e3RISC-V\u6307\u4ee4\u65f6\uff0c\u91cd\u8981\u7684\u662f\u8981\u53c2\u8003\u5b98\u65b9\u7684\u6307\u4ee4\u96c6\u6587\u6863\uff0c\u56e0\u4e3a\u4e0d\u540c\u7684\u6307\u4ee4\u548c\u6307\u4ee4\u7c7b\u522b\u53ef\u80fd\u6709\u4e0d\u540c\u7684funct3
\u548cfunct7
\u7f16\u7801\u3002\u8fd9\u4e9b\u7f16\u7801\u5b9a\u4e49\u4e86\u6307\u4ee4\u7684\u5177\u4f53\u884c\u4e3a\uff0c\u4f8b\u5982\u7b97\u672f\u8fd0\u7b97\u3001\u903b\u8f91\u8fd0\u7b97\u3001\u4f4d\u79fb\u8fd0\u7b97\u7b49\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#7-i","title":"7. I \u683c\u5f0f","text":"
- I \u683c\u5f0f\u662f\u5bc4\u5b58\u5668-\u7acb\u5373\u6570\u7c7b\u578b\u7684\u6307\u4ee4\uff0c\u6d89\u53ca\u4e00\u4e2a\u5bc4\u5b58\u5668\u548c\u4e00\u4e2a\u7acb\u5373\u6570\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#8-i","title":"8. I \u683c\u5f0f\u5e03\u5c40","text":"
- \u4ecb\u7ecd\u4e86 I \u683c\u5f0f\u7684\u5b57\u6bb5\u5e03\u5c40\uff0c\u5305\u62ec
imm[11:0]
\u3001rs1
\u3001funct3
\u3001rd
\u548c opcode
\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#9-i","title":"9. I \u683c\u5f0f\u6307\u4ee4","text":"
- \u8ba8\u8bba\u4e86\u7acb\u5373\u6570\u7684\u8868\u793a\u8303\u56f4\u548c\u5982\u4f55\u8fdb\u884c\u7b26\u53f7\u6269\u5c55\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#10-i","title":"10. I \u683c\u5f0f\u793a\u4f8b","text":"
- \u901a\u8fc7\u793a\u4f8b
addi x15, x18, -50
\u5c55\u793a\u4e86 I \u683c\u5f0f\u6307\u4ee4\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#11","title":"11. \u52a0\u8f7d\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86\u52a0\u8f7d\u6307\u4ee4\u7684\u4e0d\u540c\u7c7b\u578b\uff0c\u5305\u62ec\u52a0\u8f7d\u5b57\uff08
lw
\uff09\u3001\u52a0\u8f7d\u5b57\u8282\uff08lb
\uff09\u3001\u52a0\u8f7d\u65e0\u7b26\u53f7\u5b57\u8282\uff08lbu
\uff09\u548c\u52a0\u8f7d\u534a\u5b57\uff08lh
\u3001lhu
\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#12","title":"12. \u52a0\u8f7d\u6307\u4ee4\u7684\u5185\u5b58\u8868\u793a","text":"
- \u89e3\u91ca\u4e86\u52a0\u8f7d\u6307\u4ee4\u5982\u4f55\u4ece\u5185\u5b58\u4e2d\u52a0\u8f7d\u4e0d\u540c\u5927\u5c0f\u7684\u6570\u636e\u5230\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#13-s","title":"13. S \u683c\u5f0f","text":"
- S \u683c\u5f0f\u662f\u5b58\u50a8\u6307\u4ee4\u7684\u683c\u5f0f\uff0c\u6d89\u53ca\u4e24\u4e2a\u6e90\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#14","title":"14. \u5b58\u50a8\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86\u5b58\u50a8\u6307\u4ee4\u7684\u4e0d\u540c\u7c7b\u578b\uff0c\u5305\u62ec\u5b58\u50a8\u5b57\uff08
sw
\uff09\u3001\u5b58\u50a8\u5b57\u8282\uff08sb
\uff09\u548c\u5b58\u50a8\u534a\u5b57\uff08sh
\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#15","title":"15. \u5b58\u50a8\u6307\u4ee4\u7684\u5185\u5b58\u8868\u793a","text":"
- \u89e3\u91ca\u4e86\u5b58\u50a8\u6307\u4ee4\u5982\u4f55\u5c06\u6570\u636e\u4ece\u5bc4\u5b58\u5668\u5b58\u50a8\u5230\u5185\u5b58\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#16","title":"16. \u5206\u652f\u6307\u4ee4","text":"
- \u8ba8\u8bba\u4e86\u6761\u4ef6\u5206\u652f\u6307\u4ee4\u7684\u7528\u6cd5\uff0c\u5305\u62ec
beq
\uff08\u5982\u679c\u76f8\u7b49\u5219\u5206\u652f\uff09\u3001bne
\uff08\u5982\u679c\u4e0d\u76f8\u7b49\u5219\u5206\u652f\uff09\u7b49\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#17","title":"17. \u5206\u652f\u6307\u4ee4\u7684\u5730\u5740\u8303\u56f4","text":"
- \u4ecb\u7ecd\u4e86\u5206\u652f\u6307\u4ee4\u53ef\u4ee5\u8df3\u8f6c\u7684\u8303\u56f4\uff0c\u57fa\u4e8e PC \u76f8\u5bf9\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#18","title":"18. \u5206\u652f\u6307\u4ee4\u7684\u7f16\u7801","text":"
- \u8be6\u7ec6\u89e3\u91ca\u4e86\u5206\u652f\u6307\u4ee4\u7684\u7acb\u5373\u6570\u5b57\u6bb5\u5982\u4f55\u7f16\u7801\uff0c\u4ee5\u53ca\u5982\u4f55\u8ba1\u7b97\u8df3\u8f6c\u504f\u79fb\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#19-risc-v-16","title":"19. RISC-V \u7684 16 \u4f4d\u6307\u4ee4\u6269\u5c55","text":"
- \u4ecb\u7ecd\u4e86 RISC-V \u652f\u6301\u7684 16 \u4f4d\u538b\u7f29\u6307\u4ee4\uff0c\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u589e\u52a0\u6307\u4ee4\u7684\u5bc6\u5ea6\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#20-j","title":"20. J \u683c\u5f0f","text":"
- J \u683c\u5f0f\u662f\u8df3\u8f6c\u6307\u4ee4\u7684\u683c\u5f0f\uff0c\u5141\u8bb8\u8df3\u8f6c\u5230\u66f4\u8fdc\u7684\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#21-jalr","title":"21. JALR \u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86
jalr
\u6307\u4ee4\uff0c\u5b83\u7528\u4e8e\u76f8\u5bf9\u5730\u5740\u7684\u8df3\u8f6c\uff0c\u5e76\u53ef\u4ee5\u4f5c\u4e3a\u8fd4\u56de\u6307\u4ee4\u4f7f\u7528\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#22-pc","title":"22. PC \u76f8\u5bf9\u5730\u5740\u4e0e\u7edd\u5bf9\u5730\u5740","text":"
- \u5bf9\u6bd4\u4e86 PC \u76f8\u5bf9\u5730\u5740\u8df3\u8f6c\u548c\u7edd\u5bf9\u5730\u5740\u8df3\u8f6c\u7684\u6982\u5ff5\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#23-u","title":"23. U \u683c\u5f0f","text":"
- U \u683c\u5f0f\u662f\u7528\u4e8e\u52a0\u8f7d\u7acb\u5373\u6570\u5230\u5bc4\u5b58\u5668\u7684\u6307\u4ee4\u683c\u5f0f\uff0c\u5982
lui
\uff08\u52a0\u8f7d\u4e0a\u7acb\u5373\u6570\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#24-lui-auipc","title":"24. LUI \u548c AUIPC \u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86
lui
\u6307\u4ee4\u5982\u4f55\u52a0\u8f7d\u7acb\u5373\u6570\u7684\u4e0a 20 \u4f4d\u5230\u5bc4\u5b58\u5668\uff0c\u4ee5\u53ca auipc
\uff08\u52a0\u7acb\u5373\u6570\u5230 PC\uff09\u5982\u4f55\u7528\u4e8e\u8ba1\u7b97 PC \u76f8\u5bf9\u7684\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#25","title":"25. \u603b\u7ed3","text":"
- \u5bf9 RISC-V \u6307\u4ee4\u683c\u5f0f\u8fdb\u884c\u4e86\u603b\u7ed3\uff0c\u5f3a\u8c03\u4e86\u5b83\u4eec\u5728\u4e0d\u540c\u573a\u666f\u4e0b\u7684\u5e94\u7528\u3002
\u8fd9\u4efd\u8bb2\u4e49\u6df1\u5165\u63a2\u8ba8\u4e86 RISC-V \u6307\u4ee4\u96c6\u7684\u4e0d\u540c\u683c\u5f0f\uff0c\u5305\u62ec\u5b83\u4eec\u7684\u5b57\u6bb5\u5e03\u5c40\u3001\u64cd\u4f5c\u548c\u5e94\u7528\u573a\u666f\u3002\u901a\u8fc7\u8fd9\u4e9b\u5185\u5bb9\uff0c\u5b66\u751f\u53ef\u4ee5\u66f4\u6df1\u5165\u5730\u7406\u89e3 RISC-V \u6307\u4ee4\u96c6\u7684\u5de5\u4f5c\u539f\u7406\u548c\u5982\u4f55\u6709\u6548\u5730\u4f7f\u7528\u5404\u79cd\u6307\u4ee4\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec09/","title":"Cs61c lec09","text":"
\u7ea6 1004 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec09.pdf
\u6587\u4ef6\u662f\u5173\u4e8e\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531McMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u8ba8\u8bba\u4e86\u7f16\u8bd1\u3001\u6c47\u7f16\u3001\u94fe\u63a5\u548c\u52a0\u8f7d\uff08CALL\uff09\u7684\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u5982\u4f55\u5c06\u9ad8\u7ea7\u8bed\u8a00\u7ffb\u8bd1\u6210RISC-V\u6c47\u7f16\u8bed\u8a00\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
CALL\u94fe\u4ecb\u7ecd: - CALL\u94fe\u662f\u6307\u5c06\u9ad8\u7ea7\u8bed\u8a00\u4ee3\u7801\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u6240\u7ecf\u5386\u7684\u4e00\u7cfb\u5217\u6b65\u9aa4\uff0c\u5305\u62ec\u7f16\u8bd1\uff08Compiler\uff09\u3001\u6c47\u7f16\uff08Assembler\uff09\u3001\u94fe\u63a5\uff08Linker\uff09\u548c\u52a0\u8f7d\uff08Loader\uff09\u3002
-
\u7ffb\u8bd1\u590d\u6742\u793a\u4f8b: - \u901a\u8fc7\u4e00\u4e2aC\u8bed\u8a00\u7684map
\u51fd\u6570\u793a\u4f8b\uff0c\u5c55\u793a\u4e86\u5982\u4f55\u5c06\u5176\u7ffb\u8bd1\u6210RISC-V\u6c47\u7f16\u8bed\u8a00\u3002\u8fd9\u4e2a\u51fd\u6570\u901a\u8fc7\u9012\u5f52\u65b9\u5f0f\uff0c\u5bf9\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u5e94\u7528\u4e00\u4e2a\u51fd\u6570\u3002
-
\u89e3\u91ca\u4e0e\u7f16\u8bd1: - \u89e3\u91ca\u4e86\u89e3\u91ca\u578b\u8bed\u8a00\u548c\u7f16\u8bd1\u578b\u8bed\u8a00\u7684\u533a\u522b\u3002\u89e3\u91ca\u578b\u8bed\u8a00\u76f4\u63a5\u6267\u884c\u6e90\u4ee3\u7801\uff0c\u800c\u7f16\u8bd1\u578b\u8bed\u8a00\u5148\u5c06\u6e90\u4ee3\u7801\u8f6c\u6362\u6210\u53e6\u4e00\u79cd\u8bed\u8a00\u7684\u7b49\u4ef7\u7a0b\u5e8f\u3002
-
\u5b58\u50a8\u65b9\u6848\u51b3\u7b56: - \u786e\u5b9a\u4e86\u54ea\u4e9b\u53d8\u91cf\u5e94\u8be5\u653e\u5728\u5bc4\u5b58\u5668\u4e2d\u3002\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\uff0clst
\u3001f
\u548cnewcell
\u662f\u5c40\u90e8\u53d8\u91cf\uff0c\u9700\u8981\u5728\u51fd\u6570\u8c03\u7528\u4e4b\u95f4\u4fdd\u6301\u5b58\u6d3b\uff0c\u56e0\u6b64\u5b83\u4eec\u88ab\u653e\u5728\u4e86callee-saved\u5bc4\u5b58\u5668\u4e2d\u3002
-
\u51fd\u6570\u5e8f\u8a00\uff08Preamble\uff09: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u5f00\u59cb\u65f6\u8c03\u6574\u6808\u6307\u9488\u3001\u4fdd\u5b58ra
\u548c\u5176\u5b83\u9700\u8981\u7684\u5bc4\u5b58\u5668\u3002
-
\u9012\u5f52\u8c03\u7528map: - \u8be6\u7ec6\u89e3\u91ca\u4e86\u5982\u4f55\u8fdb\u884c\u65e9\u671f\u9000\u51fa\uff08\u5982\u679clst
\u4e3aNULL\uff09\u3001\u5982\u4f55\u8c03\u7528malloc
\u5206\u914d\u5185\u5b58\u3001\u5982\u4f55\u8c03\u7528\u51fd\u6570f
\u4ee5\u53ca\u5982\u4f55\u9012\u5f52\u8c03\u7528map
\u51fd\u6570\u3002
-
\u6e05\u7406\u4e0e\u8fd4\u56de: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u7ed3\u675f\u524d\u6062\u590d\u5bc4\u5b58\u5668\u72b6\u6001\u3001\u8c03\u6574\u6808\u6307\u9488\uff0c\u5e76\u4f7f\u7528jr
\u6307\u4ee4\u8fd4\u56de\u3002
-
\u5b8c\u6574\u4ee3\u7801\u793a\u4f8b: - \u63d0\u4f9b\u4e86\u4e0a\u8ff0map
\u51fd\u6570\u7684\u5b8c\u6574RISC-V\u6c47\u7f16\u8bed\u8a00\u5b9e\u73b0\u3002
-
\u4e0d\u540c\u7ea7\u522b\u7684\u8868\u793a/\u89e3\u91ca: - \u8ba8\u8bba\u4e86\u4ece\u9ad8\u7ea7\u8bed\u8a00\u5230\u6c47\u7f16\u8bed\u8a00\uff0c\u518d\u5230\u673a\u5668\u8bed\u8a00\u7684\u4e0d\u540c\u8868\u793a\u7ea7\u522b\uff0c\u4ee5\u53ca\u7f16\u8bd1\u5668\u3001\u6c47\u7f16\u5668\u548c\u673a\u5668\u89e3\u91ca\u5668\u7684\u89d2\u8272\u3002
-
\u8bed\u8a00\u6267\u884c\u8fde\u7eed\u4f53:
- \u63cf\u8ff0\u4e86\u4ece\u6613\u7f16\u7a0b\u4f46\u6548\u7387\u8f83\u4f4e\u7684\u89e3\u91ca\u578b\u8bed\u8a00\u5230\u96be\u7f16\u7a0b\u4f46\u6548\u7387\u8f83\u9ad8\u7684\u7f16\u8bd1\u578b\u8bed\u8a00\u7684\u8fde\u7eed\u4f53\u3002
-
\u89e3\u91ca\u4e0e\u7ffb\u8bd1:
- \u5bf9\u6bd4\u4e86\u89e3\u91ca\u5668\u548c\u7ffb\u8bd1\u5668\u7684\u4f18\u7f3a\u70b9\uff0c\u89e3\u91ca\u5668\u63d0\u4f9b\u66f4\u597d\u7684\u9519\u8bef\u6d88\u606f\u548c\u8de8\u5e73\u53f0\u517c\u5bb9\u6027\uff0c\u800c\u7ffb\u8bd1\u5668\u901a\u5e38\u63d0\u4f9b\u66f4\u9ad8\u7684\u6027\u80fd\u3002
-
\u7f16\u8bd1C\u7a0b\u5e8f\u7684\u6b65\u9aa4:
- \u63cf\u8ff0\u4e86\u4eceC\u8bed\u8a00\u4ee3\u7801\u5230\u6c47\u7f16\u8bed\u8a00\u4ee3\u7801\u7684\u7f16\u8bd1\u8fc7\u7a0b\uff0c\u5305\u62ec\u8bcd\u6cd5\u5206\u6790\u3001\u8bed\u6cd5\u5206\u6790\u3001\u8bed\u4e49\u5206\u6790\u548c\u4f18\u5316\u3001\u4ee3\u7801\u751f\u6210\u7b49\u6b65\u9aa4\u3002
-
\u6c47\u7f16\u5668:
- \u6c47\u7f16\u5668\u5c06\u6c47\u7f16\u8bed\u8a00\u4ee3\u7801\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u4ee3\u7801\uff0c\u5e76\u521b\u5efa\u5bf9\u8c61\u6587\u4ef6\u3002
-
\u4f2a\u6307\u4ee4\u66ff\u6362:
- \u6c47\u7f16\u5668\u5982\u4f55\u5904\u7406\u4f2a\u6307\u4ee4\uff0c\u4f8b\u5982
j
\u6807\u7b7e\u8f6c\u6362\u4e3ajal x0 \u6807\u7b7e
\u3002
-
\u4ea7\u751f\u673a\u5668\u8bed\u8a00:
- \u8ba8\u8bba\u4e86\u5982\u4f55\u5c06\u6c47\u7f16\u6307\u4ee4\u8f6c\u6362\u4e3a\u673a\u5668\u8bed\u8a00\uff0c\u5305\u62ec\u5904\u7406\u5206\u652f\u3001\u8df3\u8f6c\u548c\u7edd\u5bf9\u5730\u5740\u5f15\u7528\u3002
-
\u7b26\u53f7\u8868\u548c\u91cd\u5b9a\u4f4d\u8868:
- \u7b26\u53f7\u8868\u5217\u51fa\u4e86\u5f53\u524d\u6587\u4ef6\u4e2d\u53ef\u80fd\u88ab\u5176\u4ed6\u6587\u4ef6\u4f7f\u7528\u7684\u9879\uff0c\u800c\u91cd\u5b9a\u4f4d\u8868\u5217\u51fa\u4e86\u5f53\u524d\u6587\u4ef6\u7a0d\u540e\u9700\u8981\u5730\u5740\u7684\u9879\u3002
-
\u5bf9\u8c61\u6587\u4ef6\u683c\u5f0f:
- \u63cf\u8ff0\u4e86\u5bf9\u8c61\u6587\u4ef6\u7684\u683c\u5f0f\uff0c\u5305\u62ec\u5bf9\u8c61\u6587\u4ef6\u5934\u3001\u6587\u672c\u6bb5\u3001\u6570\u636e\u6bb5\u3001\u91cd\u5b9a\u4f4d\u4fe1\u606f\u3001\u7b26\u53f7\u8868\u548c\u8c03\u8bd5\u4fe1\u606f\u3002
-
\u94fe\u63a5\u5668:
- \u94fe\u63a5\u5668\u5982\u4f55\u5c06\u591a\u4e2a\u5bf9\u8c61\u6587\u4ef6\u7ec4\u5408\u6210\u4e00\u4e2a\u53ef\u6267\u884c\u6587\u4ef6\uff0c\u5e76\u89e3\u51b3\u7edd\u5bf9\u5730\u5740\u3002
-
\u52a0\u8f7d\u5668:
- \u52a0\u8f7d\u5668\u8d1f\u8d23\u5c06\u53ef\u6267\u884c\u6587\u4ef6\u52a0\u8f7d\u5230\u5185\u5b58\u4e2d\u5e76\u5f00\u59cb\u6267\u884c\u3002
-
\u6574\u6570\u4e58\u6cd5\u548c\u9664\u6cd5:
- \u8ba8\u8bba\u4e86RISC-V\u4e2d\u6574\u6570\u4e58\u6cd5\u548c\u9664\u6cd5\u7684\u5b9e\u73b0\uff0c\u5305\u62ec\u4f7f\u7528
mul
\u3001mulh
\u3001div
\u548crem
\u6307\u4ee4\u3002
-
\u53ef\u9009\u7684RISC-V 16\u4f4d\u538b\u7f29ISA:
- \u63d0\u4f9b\u4e86\u5173\u4e8eRISC-V 16\u4f4d\u538b\u7f29\u6307\u4ee4\u96c6\u7684\u989d\u5916\u4fe1\u606f\uff0c\u8fd9\u662f\u4e00\u79cd\u4f18\u5316\uff0c\u7528\u4e8e\u6700\u5e38\u89c1\u7684\u6307\u4ee4\u6a21\u5f0f\u3002
\u8fd9\u4e2a\u8bb2\u5ea7\u6db5\u76d6\u4e86\u8ba1\u7b97\u673a\u7cfb\u7edf\u5e95\u5c42\u7684\u8bb8\u591a\u5173\u952e\u6982\u5ff5\uff0c\u5bf9\u4e8e\u7406\u89e3\u7a0b\u5e8f\u662f\u5982\u4f55\u88ab\u7f16\u8bd1\u3001\u94fe\u63a5\u548c\u6267\u884c\u7684\u975e\u5e38\u6709\u5e2e\u52a9\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec10/","title":"Cs61c lec10","text":"
\u7ea6 632 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u8fd9\u4efd\u6587\u4ef6\u662f\u5173\u4e8e\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u5e74McMahon\u548cWeaver\u8bfe\u7a0b\u7684\u4e00\u7cfb\u5217\u8bb2\u4e49\uff0c\u4e3b\u8981\u4ecb\u7ecd\u4e86\u6570\u5b57\u7cfb\u7edf\u7684\u57fa\u7840\u77e5\u8bc6\u548c\u5e03\u5c14\u4ee3\u6570\u53ca\u5176\u5728\u7535\u8def\u8bbe\u8ba1\u4e2d\u7684\u5e94\u7528\u3002\u4ee5\u4e0b\u662f\u6838\u5fc3\u5185\u5bb9\u7684\u6982\u8ff0:
-
\u6570\u5b57\u7cfb\u7edf\u4ecb\u7ecd: - \u6570\u5b57\u7cfb\u7edf\u4f7f\u7528\u79bb\u6563\u503c\uff0c\u53ef\u4ee5\u662f\u5f00\uff081\uff09\u6216\u5173\uff080\uff09\uff0c\u4e0e\u6a21\u62df\u7cfb\u7edf\u76f8\u5bf9\uff0c\u540e\u8005\u5177\u6709\u8fde\u7eed\u7684\u503c\u8303\u56f4\u3002
-
\u903b\u8f91\u95e8: - \u903b\u8f91\u95e8\u662f\u6570\u5b57\u7535\u8def\u7684\u6784\u5efa\u5757\uff0c\u5305\u62ecAND\u3001OR\u3001XOR\u3001NOT\u3001NAND\u3001NOR\u548cXNOR\u7b49\u3002
-
\u5e03\u5c14\u4ee3\u6570: - \u5e03\u5c14\u4ee3\u6570\u662f\u6570\u5b66\u7684\u4e00\u4e2a\u5206\u652f\uff0c\u4e13\u95e8\u5904\u74060\u548c1\u7684\u8fd0\u7b97\uff0c\u57fa\u672c\u64cd\u4f5c\u5305\u62ecAND\uff08&\uff09\u3001OR\uff08|\uff09\u548cNOT\uff08~\uff09\u3002
-
\u5e03\u5c14\u4ee3\u6570\u7684\u89c4\u5219: - \u5305\u62ec\u4e92\u8865\u5f8b\u3001\u96f6\u5f8b\u3001\u6052\u7b49\u5f8b\u3001\u5e42\u7b49\u5f8b\u3001\u4ea4\u6362\u5f8b\u3001\u7ed3\u5408\u5f8b\u548c\u5206\u914d\u5f8b\u7b49\u3002
-
\u5fb7\u6469\u6839\u5b9a\u5f8b: - \u63cf\u8ff0\u4e86AND\u548cOR\u64cd\u4f5c\u7684\u5bf9\u5076\u6027\uff0c\u5982A(B + C)
\u7b49\u540c\u4e8eAB + AC
\u3002
-
\u5e03\u5c14\u4ee3\u6570\u7684\u5e94\u7528: - \u4f7f\u7528\u5e03\u5c14\u4ee3\u6570\u7b80\u5316\u7535\u8def\uff0c\u5982\u901a\u8fc7\u5e03\u5c14\u4ee3\u6570\u89c4\u5219\u7b80\u5316\u8868\u8fbe\u5f0fout = AB + B + C
\u4e3aout = B + C
\u3002
-
\u771f\u503c\u8868: - \u7528\u4e8e\u8868\u793a\u5e03\u5c14\u65b9\u7a0b\u7684\u6240\u6709\u53ef\u80fd\u8f93\u5165\u548c\u8f93\u51fa\uff0c\u662f\u8bbe\u8ba1\u548c\u9a8c\u8bc1\u903b\u8f91\u7535\u8def\u7684\u91cd\u8981\u5de5\u5177\u3002
-
\u903b\u8f91\u7535\u8def\u56fe: - \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u903b\u8f91\u95e8\u5b9e\u73b0\u5e03\u5c14\u65b9\u7a0b\uff0c\u5982out = AB + CD
\u3002
-
\u5f02\u6216\uff08XOR\uff09\u548c\u540c\u6216\uff08XNOR\uff09\u7684\u5b9e\u73b0: - \u63cf\u8ff0\u4e86\u5982\u4f55\u4ec5\u4f7f\u7528AND\u548cOR\u95e8\u6765\u6784\u5efaXOR\u548cXNOR\u903b\u8f91\u3002
-
\u52a0\u6cd5\u5668\u7684\u6784\u5efa:
- \u5305\u62ec\u534a\u52a0\u5668\uff08Half Adder\uff09\u548c\u5168\u52a0\u5668\uff08Full Adder\uff09\u7684\u8bbe\u8ba1\uff0c\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u5b83\u4eec\u6784\u5efa\u591a\u4f4d\u52a0\u6cd5\u5668\u3002
-
\u7b97\u672f\u903b\u8f91\u5355\u5143\uff08ALU\uff09:
- \u4ecb\u7ecdALU\u7684\u4f5c\u7528\uff0c\u5b83\u53ef\u4ee5\u6267\u884c\u6574\u6570\u4e8c\u8fdb\u5236\u6570\u7684\u7b97\u672f\u548c\u903b\u8f91\u64cd\u4f5c\u3002
-
\u7ec4\u5408\u903b\u8f91:
- \u63cf\u8ff0\u4e86\u7ec4\u5408\u903b\u8f91\u7684\u7279\u6027\uff0c\u5373\u8f93\u51fa\u4ec5\u4f9d\u8d56\u4e8e\u5f53\u524d\u8f93\u5165\uff0c\u5e76\u4e14\u4e00\u65e6\u8f93\u5165\u53ef\u7528\uff0c\u8f93\u51fa\u5c31\u5f00\u59cb\u88ab\u8ba1\u7b97\u3002
-
\u591a\u8def\u590d\u7528\u5668\uff08Multiplexer\uff09:
- 2:1\u591a\u8def\u590d\u7528\u5668\u7684\u9009\u62e9\u903b\u8f91\uff0c\u53ef\u4ee5\u6839\u636e\u9009\u62e9\u4fe1\u53f7\u4ece\u4e24\u4e2a\u8f93\u5165\u4e2d\u9009\u62e9\u4e00\u4e2a\u8f93\u51fa\u3002
-
\u5b58\u50a8\u683c\u5f0f\u793a\u4f8b:
- \u5c55\u793a\u4e86\u5982\u4f55\u5728RISC-V\u6c47\u7f16\u8bed\u8a00\u4e2d\u5b58\u50a8\u6307\u4ee4\uff0c\u4f8b\u5982
sw x14, 36(x5)
\u7684\u4e8c\u8fdb\u5236\u683c\u5f0f\u3002
-
\u4e0d\u540c\u8868\u793a/\u89e3\u91ca\u5c42\u6b21:
- \u4ece\u9ad8\u7ea7\u8bed\u8a00\u7a0b\u5e8f\u5230\u6c47\u7f16\u8bed\u8a00\u7a0b\u5e8f\uff0c\u518d\u5230\u673a\u5668\u8bed\u8a00\u7a0b\u5e8f\uff0c\u4ee5\u53ca\u786c\u4ef6\u67b6\u6784\u63cf\u8ff0\u3002
\u8fd9\u4e9b\u8bb2\u4e49\u63d0\u4f9b\u4e86\u5bf9\u6570\u5b57\u7cfb\u7edf\u8bbe\u8ba1\u7684\u6df1\u5165\u7406\u89e3\uff0c\u5305\u62ec\u5e03\u5c14\u4ee3\u6570\u7684\u539f\u7406\u3001\u903b\u8f91\u95e8\u7684\u5de5\u4f5c\u539f\u7406\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u8fd9\u4e9b\u5de5\u5177\u6765\u6784\u5efa\u548c\u7b80\u5316\u6570\u5b57\u7535\u8def\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec11/","title":"Cs61c lec11","text":"
\u7ea6 640 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u6587\u4ef6\u662f\u5173\u4e8e\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u5e74McMahon\u548cWeaver\u8bfe\u7a0b\u7684\u4e00\u7cfb\u5217\u8bb2\u4e49\uff0c\u6db5\u76d6\u4e86\u6570\u5b57\u7cfb\u7edf\u7684\u540c\u6b65\u7279\u6027\u3001\u89e6\u53d1\u5668\u3001\u65f6\u949f\u4fe1\u53f7\u3001\u7ec4\u5408\u903b\u8f91\u4e0e\u65f6\u5e8f\u903b\u8f91\u3001\u4ee5\u53ca\u6676\u4f53\u7ba1\u7684\u57fa\u7840\u77e5\u8bc6\u3002\u4ee5\u4e0b\u662f\u6838\u5fc3\u5185\u5bb9\u7684\u6982\u8ff0:
-
\u540c\u6b65\u6570\u5b57\u7cfb\u7edf: - \u6240\u6709\u64cd\u4f5c\u90fd\u7531\u65f6\u949f\u4fe1\u53f7\u534f\u8c03\u3002
-
\u7d2f\u52a0\u5668\uff08Accumulator\uff09\u793a\u4f8b: - \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u7d2f\u52a0\u5668\u9010\u6b65\u7d2f\u52a0\u8f93\u5165\u503c\u3002
-
\u65f6\u949f\u4fe1\u53f7\uff08Clock Signal\uff09: - \u65f6\u949f\u4fe1\u53f7\u5728\u9ad8\u4f4e\u72b6\u6001\u4e4b\u95f4\u632f\u8361\uff0c\u5b9a\u4e49\u4e86\u5468\u671f\uff08Period\uff09\u548c\u9891\u7387\uff08Frequency\uff09\u3002
-
D\u89e6\u53d1\u5668\uff08D Flip-Flops\uff09: - \u7528\u4e8e\u5b58\u50a8\u6570\u636e\uff0c\u4f9d\u8d56\u4e8e\u65f6\u949f\u4fe1\u53f7\u7684\u4e0a\u5347\u6cbf\u6216\u4e0b\u964d\u6cbf\u6765\u66f4\u65b0\u8f93\u51fa\u3002
-
\u89e6\u53d1\u5668\u7c7b\u578b: - \u540c\u6b65\u89e6\u53d1\u5668:\u4f9d\u8d56\u4e8e\u65f6\u949f\u4fe1\u53f7\u3002 - \u5f02\u6b65\u89e6\u53d1\u5668:\u72ec\u7acb\u4e8e\u65f6\u949f\u4fe1\u53f7\u3002
-
\u89e6\u53d1\u5668\u7684\u65f6\u5e8f: - \u5305\u62ecClock-to-Q\u5ef6\u8fdf\u3001\u5efa\u7acb\u65f6\u95f4\uff08Set-up Time\uff09\u3001\u4fdd\u6301\u65f6\u95f4\uff08Hold Time\uff09\u3002
-
\u5bc4\u5b58\u5668\uff08Registers\uff09: - \u7531\u591a\u4e2a\u89e6\u53d1\u5668\u7ec4\u6210\uff0c\u7528\u4e8e\u5b58\u50a832\u4f4d\u6570\u503c\u3002
-
\u7ec4\u5408\u903b\u8f91\uff08Combinational Logic\uff09: - \u63cf\u8ff0\u4e86\u7ec4\u5408\u903b\u8f91\u7684\u5ef6\u8fdf\u548c\u5982\u4f55\u901a\u8fc7\u7ec4\u5408\u903b\u8f91\u4f20\u64ad\u503c\u3002
-
\u65f6\u949f\u5468\u671f\u65f6\u95f4\uff08Clock Cycle Time\uff09: - \u5b9a\u4e49\u4e86\u6700\u5c0f\u65f6\u949f\u5468\u671f\u65f6\u95f4\uff0c\u5373\u4ece\u4e00\u4e2a\u72b6\u6001\u5143\u7d20\u7684\u8f93\u5165\u5230\u8fbe\u4e0b\u4e00\u4e2a\u72b6\u6001\u5143\u7d20\u7684\u8f93\u5165\u6240\u9700\u7684\u65f6\u95f4\u3002
-
\u7535\u8def\u65f6\u5e8f\u5206\u6790:
- \u8ba8\u8bba\u4e86\u5982\u4f55\u5206\u6790\u7535\u8def\u7684\u65f6\u5e8f\uff0c\u4f46\u6ca1\u6709\u6db5\u76d6\u66f4\u590d\u6742\u7684\u4f8b\u5b50\u3002
-
\u7ec4\u5408\u903b\u8f91\u4e0e\u65f6\u5e8f\u903b\u8f91\uff08Combinational vs Sequential Logic\uff09:
- \u7ec4\u5408\u903b\u8f91:\u8f93\u51fa\u4ec5\u4f9d\u8d56\u4e8e\u5f53\u524d\u8f93\u5165\u3002
- \u65f6\u5e8f\u903b\u8f91:\u4e0e\u65f6\u949f\u4fe1\u53f7\u540c\u6b65\uff0c\u8f93\u51fa\u4f9d\u8d56\u4e8e\u8f93\u5165\u548c\u5148\u524d\u72b6\u6001\u7684\u7ec4\u5408\u3002
-
\u6676\u4f53\u7ba1\uff08Transistors\uff09:
- \u8ba8\u8bba\u4e86\u91d1\u5c5e\u6c27\u5316\u7269\u534a\u5bfc\u4f53\u573a\u6548\u5e94\u6676\u4f53\u7ba1\uff08MOSFET\uff09\u7684\u5de5\u4f5c\u539f\u7406\u3002
-
CMOS\uff08\u4e92\u8865\u91d1\u5c5e\u6c27\u5316\u7269\u534a\u5bfc\u4f53\uff09:
- \u4f7f\u7528p\u578b\u548cn\u578bMOSFET\u7684\u4e92\u8865\u548c\u5bf9\u79f0\u5bf9\u6765\u6784\u5efa\u903b\u8f91\u529f\u80fd\u3002
-
\u903b\u8f91\u95e8\u7684\u6676\u4f53\u7ba1\u5b9e\u73b0:
- \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u6676\u4f53\u7ba1\u6784\u5efa\u975e\u95e8\uff08Inverter\uff09\u3001\u4e0e\u95e8\uff08AND Gate\uff09\u3001\u6216\u95e8\uff08OR Gate\uff09\u3001\u4e0e\u975e\u95e8\uff08NAND Gate\uff09\u548c\u6216\u975e\u95e8\uff08NOR Gate\uff09\u3002
-
\u5fb7\u6469\u6839\u5b9a\u5f8b\uff08DeMorgan\u2019s Law\uff09:
- \u63cf\u8ff0\u4e86\u5982\u4f55\u4f7f\u7528\u975e\u95e8\u3001\u4e0e\u95e8\u548c\u6216\u95e8\u6765\u5b9e\u73b0\u903b\u8f91\u529f\u80fd\u3002
-
\u6676\u4f53\u7ba1\u6570\u91cf\u7684\u4f18\u5316:
- \u8ba8\u8bba\u4e86\u5982\u4f55\u901a\u8fc7\u5fb7\u6469\u6839\u5b9a\u5f8b\u5c06\u4e0e\u95e8\u548c\u6216\u95e8\u8f6c\u6362\u4e3a\u4e0e\u975e\u95e8\u548c\u6216\u975e\u95e8\u6765\u51cf\u5c11\u6676\u4f53\u7ba1\u6570\u91cf\u3002
\u8fd9\u4e9b\u8bb2\u4e49\u63d0\u4f9b\u4e86\u5bf9\u6570\u5b57\u7cfb\u7edf\u8bbe\u8ba1\u7684\u6df1\u5165\u7406\u89e3\uff0c\u5305\u62ec\u540c\u6b65\u64cd\u4f5c\u3001\u89e6\u53d1\u5668\u7684\u5de5\u4f5c\u539f\u7406\u3001\u65f6\u949f\u4fe1\u53f7\u7684\u91cd\u8981\u6027\u3001\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u6676\u4f53\u7ba1\u6784\u5efa\u57fa\u672c\u7684\u903b\u8f91\u95e8\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec12/","title":"Cs61c lec12","text":"
\u7ea6 911 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec12.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531McMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u805a\u7126\u4e8eRISC-V\u5904\u7406\u5668\u8bbe\u8ba1\uff0c\u7279\u522b\u662f\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u548c\u5b9e\u73b0\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
CMOS\u7535\u8def\u7684\u73b0\u5b9e\u95ee\u9898: - \u8ba8\u8bba\u4e86CMOS\uff08\u4e92\u8865\u91d1\u5c5e\u6c27\u5316\u7269\u534a\u5bfc\u4f53\uff09\u7535\u8def\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\u9762\u4e34\u7684\u4e00\u4e9b\u6311\u6218\uff0c\u4f8b\u5982\u6676\u4f53\u7ba1\u4e0d\u662f\u5b8c\u7f8e\u7684\u5f00\u5173\uff0c\u5b58\u5728\u6f0f\u7535\u6d41\u548c\u6709\u9650\u7684\u5bfc\u901a\u7535\u963b\uff1b\u7535\u8def\u8282\u70b9\u5177\u6709\u7535\u5bb9\uff0c\u6539\u53d8\u7535\u538b\u9700\u8981\u5145\u653e\u7535\u3002
-
\u6676\u4f53\u7ba1\u4f5c\u4e3a\u6c34\u9600\u7684\u7c7b\u6bd4: - \u4f7f\u7528\u6c34\u9600\u548c\u6c34\u7ba1\u7684\u7c7b\u6bd4\u6765\u89e3\u91ca\u6676\u4f53\u7ba1\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u5176\u4e2d\u7535\u5b50\u50cf\u6c34\u5206\u5b50\uff0c\u6676\u4f53\u7ba1\u7684\u7535\u963b\u7c7b\u4f3c\u4e8e\u6c34\u7ba1\u76f4\u5f84\uff0c\u7535\u5bb9\u50cf\u6c34\u6876\u3002
-
\u903b\u8f91\u95e8\u7684\u5ef6\u8fdf: - \u63cf\u8ff0\u4e86\u903b\u8f91\u95e8\uff08\u5982\u4e0e\u95e8\u3001\u6216\u95e8\u3001\u975e\u95e8\u7b49\uff09\u5728\u8f93\u5165\u53d8\u5316\u5230\u8f93\u51fa\u53d8\u5316\u4e4b\u95f4\u7684\u5ef6\u8fdf\uff0c\u8fd9\u79cd\u5ef6\u8fdf\u53d6\u51b3\u4e8e\u95e8\u7684\u7c7b\u578b\u3001\u8fde\u63a5\u5230\u7684\u5176\u5b83\u95e8\u7684\u6570\u91cf\u4ee5\u53ca\u96c6\u6210\u7535\u8def\u5de5\u827a\u7ec6\u8282\u3002
-
CMOS\u7535\u8def\u7684\u80fd\u8017: - \u8ba8\u8bba\u4e86CMOS\u7535\u8def\u5728\u8fd0\u884c\u65f6\u6d88\u8017\u7535\u80fd\u7684\u95ee\u9898\uff0c\u7279\u522b\u662f\u5bf9\u4e8e\u624b\u6301\u8bbe\u5907\u548c\u670d\u52a1\u5668\u7b49\u4e0d\u540c\u5e94\u7528\u573a\u666f\u4e0b\u7684\u80fd\u6548\u548c\u6563\u70ed\u95ee\u9898\u3002
-
\u5f00\u5173\u80fd\u91cf: - \u57fa\u4e8e\u57fa\u672c\u7269\u7406\u539f\u7406\uff0c\u89e3\u91ca\u4e86\u6bcf\u6b21\u903b\u8f91\u72b6\u6001\u8f6c\u6362\u90fd\u4f1a\u6d88\u8017\u80fd\u91cf\uff0c\u4ee5\u53ca\u5982\u4f55\u8ba1\u7b97\u95e8\u7684\u5f00\u5173\u80fd\u8017\u3002
-
\u964d\u4f4e\u80fd\u8017\u7684\u65b9\u6cd5: - \u63d0\u51fa\u4e86\u964d\u4f4e\u7535\u6e90\u7535\u538b\u548c\u4f7f\u7528\u5e76\u884c\u6027\u6765\u63d0\u9ad8\u80fd\u6548\u7684\u65b9\u6cd5\uff0c\u89e3\u91ca\u4e86\u4e3a\u4ec0\u4e48\u964d\u4f4e\u9891\u7387\u5e76\u4e0d\u63d0\u9ad8\u80fd\u6548\u3002
-
\u62bd\u8c61\u7684\u6982\u5ff5: - \u8ba8\u8bba\u4e86\u5728\u5904\u7406\u5668\u8bbe\u8ba1\u4e2d\u4f7f\u7528\u62bd\u8c61\u7684\u6982\u5ff5\uff0c\u4ece\u9ad8\u7ea7\u8bed\u8a00\u5230\u6c47\u7f16\u8bed\u8a00\uff0c\u518d\u5230\u673a\u5668\u8bed\u8a00\u548c\u786c\u4ef6\u67b6\u6784\u63cf\u8ff0\u3002
-
RV32I\u6307\u4ee4\u96c6\u67b6\u6784\uff08ISA\uff09\u7684\u72b6\u6001\u9700\u6c42: - \u63cf\u8ff0\u4e86RV32I ISA\u5728\u6267\u884c\u6307\u4ee4\u65f6\u9700\u8981\u8bfb\u53d6\u548c\u66f4\u65b0\u7684\u72b6\u6001\uff0c\u5305\u62ec\u5bc4\u5b58\u5668\u3001\u7a0b\u5e8f\u8ba1\u6570\u5668\uff08PC\uff09\u548c\u5185\u5b58\u3002
-
\u5355\u6307\u4ee4\u5468\u671fRISC-V\u673a\u5668: - \u89e3\u91ca\u4e86\u5728\u5355\u6307\u4ee4\u5468\u671fRISC-V\u673a\u5668\u4e2d\uff0c\u5982\u4f55\u901a\u8fc7\u7ec4\u5408\u903b\u8f91\u548c\u65f6\u949f\u4fe1\u53f7\u5728\u6bcf\u4e2a\u65f6\u949f\u5468\u671f\u6267\u884c\u4e00\u6761\u6307\u4ee4\u3002
-
\u6307\u4ee4\u6267\u884c\u7684\u57fa\u672c\u9636\u6bb5:
- \u63cf\u8ff0\u4e86\u6307\u4ee4\u6267\u884c\u7684\u4e94\u4e2a\u57fa\u672c\u9636\u6bb5:\u6307\u4ee4\u83b7\u53d6\uff08IF\uff09\u3001\u6307\u4ee4\u89e3\u7801/\u5bc4\u5b58\u5668\u8bfb\u53d6\uff08ID\uff09\u3001\u6267\u884c\uff08EX\uff09\u3001\u5185\u5b58\u8bbf\u95ee\uff08MEM\uff09\u548c\u5bc4\u5b58\u5668\u5199\u56de\uff08WB\uff09\u3002
-
\u5b9e\u73b0\u7279\u5b9aRISC-V\u6307\u4ee4:
- \u901a\u8fc7
add
\u3001sub
\u3001addi
\u3001lw
\u3001sw
\u7b49\u6307\u4ee4\u7684\u4f8b\u5b50\uff0c\u5c55\u793a\u4e86\u5982\u4f55\u5728\u6570\u636e\u8def\u5f84\u4e2d\u5b9e\u73b0\u8fd9\u4e9b\u6307\u4ee4\u3002
-
\u6570\u636e\u8def\u5f84\u7684\u6269\u5c55:
- \u5c55\u793a\u4e86\u5982\u4f55\u5c06\u6570\u636e\u8def\u5f84\u6269\u5c55\u4ee5\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u6307\u4ee4\uff0c\u4f8b\u5982\u7acb\u5373\u6570\u751f\u6210\u3001\u5206\u652f\u6307\u4ee4\u548c\u8df3\u8f6c\u6307\u4ee4\u3002
-
\u63a7\u5236\u903b\u8f91:
- \u8ba8\u8bba\u4e86\u63a7\u5236\u903b\u8f91\u5982\u4f55\u6839\u636e\u6307\u4ee4\u6765\u6307\u5bfc\u6570\u636e\u8def\u5f84\u7684\u64cd\u4f5c\uff0c\u5305\u62ecALU\u9009\u62e9\u3001\u5185\u5b58\u8bfb\u5199\u9009\u62e9\u548c\u5bc4\u5b58\u5668\u5199\u56de\u9009\u62e9\u3002
-
\u901a\u7528\u6570\u636e\u8def\u5f84:
- \u5f3a\u8c03\u4e86\u6570\u636e\u8def\u5f84\u662f\u6240\u6709\u6307\u4ee4\u6240\u9700\u5355\u5143\u7684\u201c\u8054\u5408\u201d\uff0c\u901a\u8fc7\u591a\u8def\u9009\u62e9\u5668\u63d0\u4f9b\u9009\u9879\uff0c\u4f46\u5e76\u975e\u6240\u6709\u786c\u4ef6\u5355\u5143\u5728\u6240\u6709\u6307\u4ee4\u4e2d\u90fd\u88ab\u4f7f\u7528\u3002
-
\u6267\u884c\u9636\u6bb5:
- \u63cf\u8ff0\u4e86\u6307\u4ee4\u6267\u884c\u7684\u4e94\u4e2a\u9636\u6bb5\uff0c\u4ee5\u53ca\u4e0d\u662f\u6240\u6709\u6307\u4ee4\u5728\u6240\u6709\u9636\u6bb5\u90fd\u6d3b\u8dc3\u3002
-
\u63a7\u5236\u903b\u8f91\u7684\u5b9e\u73b0:
- \u8ba8\u8bba\u4e86\u63a7\u5236\u903b\u8f91\u53ef\u4ee5\u901a\u8fc7\u67e5\u627e\u8868\uff08\u4f8b\u5982ROM\uff09\u6216\u7ec4\u5408\u903b\u8f91\u6765\u5b9e\u73b0\uff0c\u5e76\u5c55\u793a\u4e86\u63a7\u5236\u4fe1\u53f7\u7684\u771f\u503c\u8868\u3002
\u901a\u8fc7\u8fd9\u4e9b\u5185\u5bb9\uff0clec12.pdf
\u63d0\u4f9b\u4e86\u5bf9RISC-V\u5904\u7406\u5668\u6570\u636e\u8def\u5f84\u8bbe\u8ba1\u7684\u6df1\u5165\u7406\u89e3\uff0c\u5305\u62ec\u5982\u4f55\u5904\u7406\u4e0d\u540c\u7c7b\u578b\u7684\u6307\u4ee4\u4ee5\u53ca\u5982\u4f55\u8bbe\u8ba1\u63a7\u5236\u903b\u8f91\u4ee5\u9a71\u52a8\u6570\u636e\u8def\u5f84\u7684\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec13/","title":"Cs61c lec13","text":"
\u7ea6 891 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec13.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632020\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531Kolb\u548cWeaver\u4ee5\u53caMcMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u8bb2\u89e3\u4e86RISC-V\u6307\u4ee4\u96c6\u67b6\u6784\u4e2d\u5355\u5468\u671f(Single-Cycle)\u548c\u6d41\u6c34\u7ebf(Pipelined)\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u548c\u63a7\u5236\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
\u5355\u5468\u671fRISC-V\u6570\u636e\u8def\u5f84\u5b8c\u6210: - \u4ecb\u7ecd\u4e86\u5982\u4f55\u5b8c\u6210\u5355\u5468\u671fRISC-V\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\uff0c\u786e\u4fdd\u6bcf\u4e2aRISC-V\u6307\u4ee4\u53ef\u4ee5\u5728\u4e00\u4e2a\u65f6\u949f\u5468\u671f\u5185\u6267\u884c\u3002
-
\u63a7\u5236\u5668(Controller): - \u63a7\u5236\u5668\u662f\u544a\u8bc9\u901a\u7528\u6570\u636e\u8def\u5f84\u5982\u4f55\u6267\u884c\u6bcf\u6761\u6307\u4ee4\u7684\u90e8\u5206\u3002\u5b83\u6839\u636e\u6307\u4ee4\u7684\u7c7b\u578b\u751f\u6210\u76f8\u5e94\u7684\u63a7\u5236\u4fe1\u53f7\u3002
-
\u6307\u4ee4\u5b9a\u65f6(Instruction Timing): - \u8ba8\u8bba\u4e86\u4e0d\u540c\u7c7b\u578b\u7684\u6307\u4ee4\u5728\u6267\u884c\u65f6\u6240\u9700\u7684\u65f6\u95f4\uff0c\u5305\u62ec\u53d6\u6307(IF)\u3001\u8bd1\u7801(ID)\u3001\u6267\u884c(EX)\u3001\u8bbf\u5b58(MEM)\u548c\u5199\u56de(WB)\u9636\u6bb5\u3002
-
\u6027\u80fd\u5ea6\u91cf(Performance Measures): - \u4ecb\u7ecd\u4e86\u8bc4\u4f30\u5904\u7406\u5668\u6027\u80fd\u7684\u4e0d\u540c\u6307\u6807\uff0c\u5982\u65f6\u949f\u9891\u7387\u3001\u6307\u4ee4\u6267\u884c\u65f6\u95f4\u3001\u541e\u5410\u91cf\u7b49\u3002
-
\u6d41\u6c34\u7ebf\u4ecb\u7ecd(Introduction to Pipelining): - \u8bb2\u89e3\u4e86\u6d41\u6c34\u7ebf\u7684\u6982\u5ff5\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u6d41\u6c34\u7ebf\u63d0\u9ad8\u5904\u7406\u5668\u7684\u6307\u4ee4\u541e\u5410\u91cf\u3002
-
\u6d41\u6c34\u7ebfRISC-V\u6570\u636e\u8def\u5f84(Pipelined RISC-V Datapath): - \u8be6\u7ec6\u4ecb\u7ecd\u4e86\u6d41\u6c34\u7ebfRISC-V\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\uff0c\u5305\u62ec\u6d41\u6c34\u7ebf\u7684\u5404\u4e2a\u9636\u6bb5\u548c\u5b83\u4eec\u5982\u4f55\u534f\u540c\u5de5\u4f5c\u3002
-
\u5b9e\u73b0jal\u6307\u4ee4: - \u7279\u522b\u4ecb\u7ecd\u4e86jal\uff08\u8df3\u8f6c\u5e76\u94fe\u63a5\uff09\u6307\u4ee4\u7684\u5b9e\u73b0\uff0c\u5305\u62ec\u5982\u4f55\u5728\u5bc4\u5b58\u5668\u4e2d\u4fdd\u5b58\u8fd4\u56de\u5730\u5740\uff0c\u4ee5\u53ca\u5982\u4f55\u8bbe\u7f6e\u7a0b\u5e8f\u8ba1\u6570\u5668\u4ee5\u5b9e\u73b0\u8df3\u8f6c\u3002
-
\u6570\u636e\u8def\u5f84\u6dfb\u52a0jal: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u6570\u636e\u8def\u5f84\u4e2d\u6dfb\u52a0\u5bf9jal\u6307\u4ee4\u7684\u652f\u6301\uff0c\u5305\u62ec\u6240\u9700\u7684\u63a7\u5236\u4fe1\u53f7\u548c\u6570\u636e\u8def\u5f84\u7684\u53d8\u5316\u3002
-
\u5355\u5468\u671fRV32I\u6570\u636e\u8def\u5f84\u56de\u987e: - \u56de\u987e\u4e86\u5355\u5468\u671fRV32I\u6307\u4ee4\u96c6\u67b6\u6784\u7684\u6570\u636e\u8def\u5f84\u8bbe\u8ba1\uff0c\u5305\u62ecALU\u3001\u5bc4\u5b58\u5668\u3001\u5185\u5b58\u7b49\u7ec4\u4ef6\u3002
-
\u901a\u7528\u6570\u636e\u8def\u5f84: - \u8ba8\u8bba\u4e86\u901a\u7528\u6570\u636e\u8def\u5f84\u7684\u6982\u5ff5\uff0c\u5373\u6570\u636e\u8def\u5f84\u80fd\u591f\u6267\u884c\u6240\u6709RISC-V\u6307\u4ee4\uff0c\u4ee5\u53ca\u5b83\u662f\u5982\u4f55\u901a\u8fc7\u591a\u8def\u9009\u62e9\u5668\u5b9e\u73b0\u4e0d\u540c\u6307\u4ee4\u7684\u6267\u884c\u3002
-
\u63a7\u5236\u903b\u8f91: - \u4ecb\u7ecd\u4e86\u63a7\u5236\u903b\u8f91\u7684\u8bbe\u8ba1\uff0c\u5305\u62ec\u5982\u4f55\u4f7f\u7528\u771f\u503c\u8868\u6765\u786e\u5b9a\u6bcf\u6761\u6307\u4ee4\u6240\u9700\u7684\u63a7\u5236\u4fe1\u53f7\u3002
-
\u63a7\u5236\u5668\u5b9e\u73b0\u9009\u9879:
- \u8ba8\u8bba\u4e86\u63a7\u5236\u5668\u7684\u4e24\u79cd\u5b9e\u73b0\u65b9\u5f0f:\u53ea\u8bfb\u5b58\u50a8\u5668(ROM)\u548c\u7ec4\u5408\u903b\u8f91(Combinatorial Logic)\u3002
-
ROM\u63a7\u5236\u5668\u5b9e\u73b0:
- \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528ROM\u6765\u5b9e\u73b0\u63a7\u5236\u5668\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u5730\u5740\u89e3\u7801\u6765\u751f\u6210\u63a7\u5236\u4fe1\u53f7\u3002
-
\u6307\u4ee4\u5b9a\u65f6:
- \u5206\u6790\u4e86\u4e0d\u540c\u6307\u4ee4\u5728\u6267\u884c\u65f6\u7684\u5178\u578b\u6700\u574f\u60c5\u51b5\u65f6\u95f4\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u6d41\u6c34\u7ebf\u6765\u63d0\u9ad8\u65f6\u949f\u9891\u7387\u3002
-
\u6027\u80fd\u5ea6\u91cf:
- \u8fdb\u4e00\u6b65\u8ba8\u8bba\u4e86\u6027\u80fd\u5ea6\u91cf\u7684\u6982\u5ff5\uff0c\u5305\u62ec\u5982\u4f55\u7406\u89e3\u6307\u4ee4\u6267\u884c\u65f6\u95f4\u3001\u541e\u5410\u91cf\u548c\u80fd\u6548\u3002
-
\u8fd0\u8f93\u7c7b\u6bd4:
- \u4f7f\u7528\u8d5b\u8f66\u548c\u516c\u4ea4\u8f66\u7684\u7c7b\u6bd4\u6765\u89e3\u91ca\u6307\u4ee4\u6267\u884c\u65f6\u95f4\uff08\u5ef6\u8fdf\uff09\u3001\u6307\u4ee4\u6267\u884c\u603b\u91cf\uff08\u541e\u5410\u91cf\uff09\u548c\u6bcf\u6761\u6307\u4ee4\u7684\u80fd\u8017\uff08\u80fd\u6548\uff09\u3002
-
\u5904\u7406\u5668\u6027\u80fd\u7684\u201c\u94c1\u5f8b\u201d:
- \u8ba8\u8bba\u4e86\u7a0b\u5e8f\u6267\u884c\u65f6\u95f4\u7531\u6307\u4ee4\u6570\u3001\u6bcf\u6761\u6307\u4ee4\u7684\u65f6\u949f\u5468\u671f\u6570\u548c\u6bcf\u4e2a\u65f6\u949f\u5468\u671f\u7684\u65f6\u95f4\u5171\u540c\u51b3\u5b9a\u7684\u539f\u7406\u3002
-
\u7ed3\u675f\u8bed:
- \u603b\u7ed3\u4e86\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u3001\u63a7\u5236\u5668\u7684\u4f5c\u7528\u3001\u6307\u4ee4\u5b9a\u65f6\u7684\u91cd\u8981\u6027\u4ee5\u53ca\u6d41\u6c34\u7ebf\u5982\u4f55\u63d0\u9ad8\u6027\u80fd\u3002
\u8fd9\u4efd\u8bb2\u5ea7\u5e7b\u706f\u7247\u4e3a\u7406\u89e3RISC-V\u67b6\u6784\u4e2d\u5355\u5468\u671f\u548c\u6d41\u6c34\u7ebf\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u63d0\u4f9b\u4e86\u6df1\u5165\u7684\u5206\u6790\uff0c\u6db5\u76d6\u4e86\u4ece\u6307\u4ee4\u6267\u884c\u7684\u57fa\u7840\u77e5\u8bc6\u5230\u9ad8\u7ea7\u6027\u80fd\u4f18\u5316\u7684\u591a\u4e2a\u65b9\u9762\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec14/","title":"Cs61c lec14","text":"
\u7ea6 916 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec14.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u8bfe\u7a0b\u7684\u7b2c14\u8bb2\uff0c\u7531Wawrzynek\u548cWeaver\u57282021\u5e74\u79cb\u5b63\u5b66\u671f\u8bb2\u6388\uff0c\u4e3b\u8981\u5185\u5bb9\u5305\u62ecRISC-V\u6d41\u6c34\u7ebf\u5904\u7406\u7684\u6df1\u5165\u63a2\u8ba8\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
\u8bfe\u7a0b\u56de\u987e: - \u56de\u987e\u4e86\u63a7\u5236\u5668\u7684\u4f5c\u7528\uff0c\u6307\u4ee4\u5b9a\u65f6\uff0c\u4ee5\u53ca\u6d41\u6c34\u7ebf\u5982\u4f55\u63d0\u9ad8\u6307\u4ee4\u7684\u541e\u5410\u91cf\uff0c\u4f46\u5e76\u4e0d\u51cf\u5c11\u5b8c\u6210\u5355\u6761\u6307\u4ee4\u6240\u9700\u7684\u65f6\u95f4\u3002 - \u8ba8\u8bba\u4e86\u4e0d\u540c\u7684\u6027\u80fd\u5ea6\u91cf\u6307\u6807\uff0c\u5982\u54cd\u5e94\u65f6\u95f4\u3001\u4efb\u52a1/\u79d2\u548c\u80fd\u6548\u3002
-
\u5904\u7406\u5668\u7ec4\u6210: - \u4ecb\u7ecd\u4e86\u5904\u7406\u5668\u7684\u57fa\u672c\u7ec4\u6210\u90e8\u5206\uff0c\u5305\u62ec\u63a7\u5236\u5355\u5143\u3001\u6570\u636e\u8def\u5f84\u3001\u7a0b\u5e8f\u8ba1\u6570\u5668(PC)\u3001\u5bc4\u5b58\u5668\u3001\u7b97\u672f\u903b\u8f91\u5355\u5143(ALU)\u3001\u5185\u5b58\u4ee5\u53ca\u5904\u7406\u5668-\u5185\u5b58\u63a5\u53e3\u3002
-
\u6d41\u6c34\u7ebf\u6982\u8ff0: - \u89e3\u91ca\u4e86\u6d41\u6c34\u7ebf\u5982\u4f55\u5e2e\u52a9\u63d0\u9ad8\u6574\u4e2a\u5de5\u4f5c\u8d1f\u8f7d\u7684\u541e\u5410\u91cf\uff0c\u800c\u4e0d\u662f\u5355\u4e2a\u4efb\u52a1\u7684\u5ef6\u8fdf\u3002 - \u8ba8\u8bba\u4e86\u6f5c\u5728\u7684\u52a0\u901f\u6bd4\uff0c\u4ee5\u53ca\u586b\u6ee1\u6d41\u6c34\u7ebf\u548c\u6392\u7a7a\u5b83\u6240\u9700\u7684\u65f6\u95f4\u5982\u4f55\u5f71\u54cd\u52a0\u901f\u6bd4\u3002
-
RISC-V\u6d41\u6c34\u7ebf: - \u901a\u8fc7\u793a\u4f8b\u4ee3\u7801\uff0c\u5c55\u793a\u4e86RISC-V\u6307\u4ee4\u5728\u6d41\u6c34\u7ebf\u4e2d\u7684\u6267\u884c\u8fc7\u7a0b\uff0c\u5305\u62ec\u6307\u4ee4\u83b7\u53d6\u3001\u89e3\u7801/\u5bc4\u5b58\u5668\u8bfb\u53d6\u3001ALU\u6267\u884c\u3001\u5185\u5b58\u8bbf\u95ee\u548c\u5199\u56de\u9636\u6bb5\u3002
-
\u5355\u5468\u671fRISC-V RV32I \u6570\u636e\u8def\u5f84: - \u63cf\u8ff0\u4e86\u5355\u5468\u671f\u6570\u636e\u8def\u5f84\u7684\u7ec4\u6210\uff0c\u5305\u62ec\u6307\u4ee4\u5185\u5b58(IMEM)\u3001ALU\u3001\u7acb\u5373\u6570\u751f\u6210\u5668(Imm. Gen)\u3001\u6570\u636e\u5185\u5b58(DMEM)\u3001\u5206\u652f\u6bd4\u8f83\u5668\u7b49\u3002
-
\u6d41\u6c34\u7ebfRISC-V RV32I \u6570\u636e\u8def\u5f84: - \u8be6\u7ec6\u89e3\u91ca\u4e86\u6d41\u6c34\u7ebf\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\uff0c\u5305\u62ec\u6d41\u6c34\u7ebf\u5bc4\u5b58\u5668\u5982\u4f55\u5206\u9694\u4e0d\u540c\u7684\u9636\u6bb5\uff0c\u5e76\u4fdd\u6301\u6bcf\u6761\u6307\u4ee4\u7684\u6570\u636e\u3002
-
\u6d41\u6c34\u7ebf\u63a7\u5236: - \u8ba8\u8bba\u4e86\u63a7\u5236\u4fe1\u53f7\u662f\u5982\u4f55\u4ece\u6307\u4ee4\u4e2d\u6d3e\u751f\u51fa\u6765\u7684\uff0c\u4ee5\u53ca\u5982\u4f55\u5728\u6d41\u6c34\u7ebf\u7684\u5404\u4e2a\u9636\u6bb5\u4e2d\u4f7f\u7528\u6d41\u6c34\u7ebf\u5bc4\u5b58\u5668\u5b58\u50a8\u4fe1\u606f\u3002
-
\u6d41\u6c34\u7ebf\u6027\u80fd\u63d0\u5347: - \u901a\u8fc7\u516c\u5f0f\u89e3\u91ca\u4e86\u6d41\u6c34\u7ebf\u5982\u4f55\u901a\u8fc7\u51cf\u5c11\u6bcf\u4e2a\u5468\u671f\u7684\u65f6\u95f4\u6765\u63d0\u9ad8\u5904\u7406\u5668\u6027\u80fd\u3002
-
\u98ce\u9669(Hazards): - \u4ecb\u7ecd\u4e86\u6d41\u6c34\u7ebf\u4e2d\u53ef\u80fd\u51fa\u73b0\u7684\u98ce\u9669\uff0c\u5305\u62ec\u7ed3\u6784\u6027\u98ce\u9669\u3001\u6570\u636e\u98ce\u9669\u548c\u63a7\u5236\u98ce\u9669\uff0c\u5e76\u8ba8\u8bba\u4e86\u5982\u4f55\u5904\u7406\u8fd9\u4e9b\u98ce\u9669\u3002
-
\u7ed3\u6784\u6027\u98ce\u9669:
- \u89e3\u91ca\u4e86\u5f53\u6d41\u6c34\u7ebf\u4e2d\u7684\u591a\u6761\u6307\u4ee4\u7ade\u4e89\u5355\u4e00\u7269\u7406\u8d44\u6e90\u65f6\u51fa\u73b0\u7684\u95ee\u9898\uff0c\u4ee5\u53ca\u5982\u4f55\u89e3\u51b3\u8fd9\u4e9b\u95ee\u9898\u3002
-
\u6570\u636e\u98ce\u9669:
- \u8ba8\u8bba\u4e86\u5f53\u6307\u4ee4\u4f9d\u8d56\u4e8e\u524d\u4e00\u6761\u6307\u4ee4\u7684\u7ed3\u679c\u65f6\u5982\u4f55\u5904\u7406\uff0c\u5305\u62ec\u6682\u505c(Stalling)\u548c\u8f6c\u53d1(Forwarding)\u6280\u672f\u3002
-
\u63a7\u5236\u98ce\u9669:
- \u63cf\u8ff0\u4e86\u5206\u652f\u6307\u4ee4\u5982\u4f55\u5904\u7406\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u5206\u652f\u9884\u6d4b\u6765\u51cf\u5c11\u5206\u652f\u6307\u4ee4\u5e26\u6765\u7684\u6027\u80fd\u635f\u5931\u3002
-
\u8d85\u6807\u91cf\u5904\u7406\u5668(Superscalar processors):
- \u4ecb\u7ecd\u4e86\u8d85\u6807\u91cf\u5904\u7406\u5668\u7684\u6982\u5ff5\uff0c\u5305\u62ec\u590d\u5236\u6d41\u6c34\u7ebf\u9636\u6bb5\u4ee5\u542f\u52a8\u591a\u4e2a\u6307\u4ee4\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u6307\u4ee4\u7ea7\u5e76\u884c\u6027\u6765\u63d0\u9ad8\u6027\u80fd\u3002
-
\u6027\u80fd\u63d0\u5347\u7b56\u7565:
- \u8ba8\u8bba\u4e86\u63d0\u9ad8\u5355\u5904\u7406\u5668\u6838\u5fc3\u6027\u80fd\u7684\u7b56\u7565\uff0c\u5305\u62ec\u63d0\u9ad8\u65f6\u949f\u9891\u7387\u3001\u6d41\u6c34\u7ebf\u6df1\u5ea6\u548c\u8d85\u6807\u91cf\u6267\u884c\u3002
-
\u591a\u6838\u5904\u7406\u5668:
- \u8ba8\u8bba\u4e86\u591a\u6838\u5904\u7406\u5668\u7684\u6982\u5ff5\uff0c\u4ee5\u53ca\u5982\u4f55\u5728\u4e0d\u9700\u8981\u7edd\u5bf9\u6027\u80fd\u65f6\uff0c\u5728\u80fd\u6548\u4f18\u5316\u7684\u6838\u5fc3\u4e0a\u8fd0\u884c\u4efb\u52a1\u3002
-
\u6d41\u6c34\u7ebf\u4e0eISA\u8bbe\u8ba1:
- \u8ba8\u8bba\u4e86RISC-V ISA\u5982\u4f55\u4e3a\u6d41\u6c34\u7ebf\u8bbe\u8ba1\uff0c\u4ee5\u53ca\u5b83\u4e0ex86\u67b6\u6784\u7684\u5bf9\u6bd4\u3002
-
\u7ed3\u8bba:
- \u603b\u7ed3\u4e86\u6d41\u6c34\u7ebf\u901a\u8fc7\u91cd\u53e0\u591a\u6761\u6307\u4ee4\u7684\u6267\u884c\u6765\u63d0\u9ad8\u541e\u5410\u91cf\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u7a0b\u5e8f\u5458/\u7f16\u8bd1\u5668\u7684\u5e2e\u52a9\u6765\u6700\u5927\u5316\u6027\u80fd\u3002
\u8fd9\u4efd\u8bb2\u5ea7\u5e7b\u706f\u7247\u4e3a\u7406\u89e3RISC-V\u6d41\u6c34\u7ebf\u5904\u7406\u5668\u7684\u8bbe\u8ba1\u548c\u6027\u80fd\u4f18\u5316\u63d0\u4f9b\u4e86\u6df1\u5165\u7684\u5206\u6790\uff0c\u6db5\u76d6\u4e86\u4ece\u57fa\u672c\u6982\u5ff5\u5230\u9ad8\u7ea7\u6280\u672f\u591a\u4e2a\u65b9\u9762\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec15/","title":"Cs61c lec15","text":"
\u7ea6 918 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec15.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531McMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u8ba8\u8bba\u4e86\u8ba1\u7b97\u673a\u7f13\u5b58\uff08Caches\uff09\u7684\u6982\u5ff5\u3001\u5de5\u4f5c\u539f\u7406\u4ee5\u53ca\u5b83\u4eec\u5728\u73b0\u4ee3\u8ba1\u7b97\u673a\u67b6\u6784\u4e2d\u7684\u91cd\u8981\u6027\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
\u8ba1\u7b97\u673a\u7ec4\u6210\u90e8\u5206: - \u4ecb\u7ecd\u4e86\u8ba1\u7b97\u673a\u7684\u57fa\u672c\u7ec4\u6210\u90e8\u5206\uff0c\u5305\u62ec\u5904\u7406\u5668\u3001\u63a7\u5236\u5355\u5143\u3001\u6570\u636e\u8def\u5f84\u3001\u7a0b\u5e8f\u8ba1\u6570\u5668\uff08PC\uff09\u3001\u5bc4\u5b58\u5668\u3001\u7b97\u672f\u903b\u8f91\u5355\u5143\uff08ALU\uff09\u3001\u5185\u5b58\u4ee5\u53ca\u8f93\u5165/\u8f93\u51fa\u63a5\u53e3\u3002
-
\u5904\u7406\u5668\u4e0eDRAM\u5ef6\u8fdf\u5dee\u8ddd: - \u8ba8\u8bba\u4e86\u5904\u7406\u5668\u4e0e\u52a8\u6001\u968f\u673a\u5b58\u53d6\u5b58\u50a8\u5668\uff08DRAM\uff09\u4e4b\u95f4\u7684\u8bbf\u95ee\u901f\u5ea6\u5dee\u5f02\uff0c\u4ee5\u53ca\u8fd9\u79cd\u5dee\u5f02\u5bf9CPU\u6027\u80fd\u7684\u6f5c\u5728\u5f71\u54cd\u3002
-
\u56fe\u4e66\u9986\u7c7b\u6bd4: - \u4f7f\u7528\u56fe\u4e66\u9986\u627e\u4e66\u7684\u7c7b\u6bd4\u6765\u89e3\u91ca\u7f13\u5b58\u7684\u6982\u5ff5\uff0c\u8bf4\u660e\u4e86\u5728\u5927\u56fe\u4e66\u9986\u4e2d\u67e5\u627e\u4e66\u7c4d\u7684\u65f6\u95f4\u5ef6\u8fdf\u95ee\u9898\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u5728\u684c\u9762\u4e0a\u4fdd\u7559\u4e00\u4e9b\u4e66\u7c4d\u6765\u51cf\u5c11\u67e5\u627e\u65f6\u95f4\u3002
-
\u5185\u5b58\u7f13\u5b58: - \u4ecb\u7ecd\u4e86\u5185\u5b58\u7f13\u5b58\u7684\u6982\u5ff5\uff0c\u5305\u62ec\u5b83\u7684\u529f\u80fd\u3001\u901a\u5e38\u4f4d\u4e8eCPU\u540c\u4e00\u82af\u7247\u4e0a\u7684\u7279\u70b9\uff0c\u4ee5\u53ca\u5b83\u6bd4DRAM\u66f4\u5feb\u4f46\u66f4\u6602\u8d35\u7684\u539f\u56e0\u3002
-
\u5185\u5b58\u5c42\u6b21\u7ed3\u6784: - \u63cf\u8ff0\u4e86\u4ece\u5bc4\u5b58\u5668\u5230\u7f13\u5b58\u3001\u4e3b\u5185\u5b58\u3001\u78c1\u76d8\u7684\u5185\u5b58\u5c42\u6b21\u7ed3\u6784\uff0c\u4ee5\u53ca\u6bcf\u4e2a\u5c42\u6b21\u7684\u7279\u70b9\uff0c\u5982\u5927\u5c0f\u3001\u901f\u5ea6\u548c\u6210\u672c\u3002
-
\u7f13\u5b58\u539f\u7406: - \u89e3\u91ca\u4e86\u7f13\u5b58\u5de5\u4f5c\u7684\u4e24\u4e2a\u57fa\u672c\u539f\u5219:\u65f6\u95f4\u5c40\u90e8\u6027\uff08Temporal Locality\uff09\u548c\u7a7a\u95f4\u5c40\u90e8\u6027\uff08Spatial Locality\uff09\u3002
-
\u5229\u7528\u5c40\u90e8\u6027: - \u8fdb\u4e00\u6b65\u8ba8\u8bba\u4e86\u5982\u4f55\u901a\u8fc7\u65f6\u95f4\u5c40\u90e8\u6027\u548c\u7a7a\u95f4\u5c40\u90e8\u6027\u6765\u4f18\u5316\u7f13\u5b58\u6027\u80fd\u3002
-
\u6dfb\u52a0\u7f13\u5b58\u5230\u8ba1\u7b97\u673a: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u8ba1\u7b97\u673a\u67b6\u6784\u4e2d\u6dfb\u52a0\u7f13\u5b58\uff0c\u5e76\u8ba8\u8bba\u4e86\u5b83\u5982\u4f55\u4e0e\u5904\u7406\u5668\u548c\u5185\u5b58\u4ea4\u4e92\u3002
-
\u5185\u5b58\u5f15\u7528\u6a21\u5f0f: - \u901a\u8fc7\u56fe\u5f62\u5c55\u793a\u4e86\u826f\u597d\u7684\u5185\u5b58\u5f15\u7528\u6a21\u5f0f\uff0c\u5305\u62ec\u6307\u4ee4\u83b7\u53d6\u3001\u6808\u8bbf\u95ee\u3001\u6570\u636e\u8bbf\u95ee\u7b49\u3002
-
\u6ca1\u6709\u7f13\u5b58\u7684\u5185\u5b58\u8bbf\u95ee:
- \u63cf\u8ff0\u4e86\u5728\u6ca1\u6709\u7f13\u5b58\u7684\u60c5\u51b5\u4e0b\uff0c\u5904\u7406\u5668\u5982\u4f55\u901a\u8fc7\u5185\u5b58\u5730\u5740\u6765\u52a0\u8f7d\u6570\u636e\u3002
-
\u6709\u7f13\u5b58\u7684\u5185\u5b58\u8bbf\u95ee:
- \u8be6\u7ec6\u89e3\u91ca\u4e86\u5f53\u7f13\u5b58\u4ecb\u5165\u65f6\uff0c\u5185\u5b58\u8bbf\u95ee\u7684\u8fc7\u7a0b\uff0c\u5305\u62ec\u7f13\u5b58\u547d\u4e2d\u548c\u7f13\u5b58\u672a\u547d\u4e2d\u7684\u60c5\u51b5\u3002
-
\u7f13\u5b58\u547d\u4e2d\u4e0e\u7f13\u5b58\u672a\u547d\u4e2d:
- \u5bf9\u6bd4\u4e86\u7f13\u5b58\u547d\u4e2d\u548c\u672a\u547d\u4e2d\u65f6\u7684\u5904\u7406\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u5b83\u4eec\u5bf9\u6027\u80fd\u7684\u5f71\u54cd\u3002
-
\u7f13\u5b58\u5b58\u50a8\u65b9\u5f0f:
- \u4ecb\u7ecd\u4e86\u7f13\u5b58\u4e2d\u7684\u4e09\u79cd\u6570\u636e\u5b58\u50a8\u65b9\u5f0f:\u5168\u5173\u8054\uff08Fully Associative\uff09\u3001\u76f4\u63a5\u6620\u5c04\uff08Direct Mapped\uff09\u548c\u96c6\u5408\u5173\u8054\uff08Set-Associative\uff09\u3002
-
\u5168\u5173\u8054\u7f13\u5b58:
- \u8be6\u7ec6\u8ba8\u8bba\u4e86\u5168\u5173\u8054\u7f13\u5b58\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u5305\u62ec\u6807\u7b7e\uff08Tag\uff09\u3001\u6570\u636e\uff08Data\uff09\u3001\u6709\u6548\u4f4d\uff08Valid Bit\uff09\u548c\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\uff08LRU\uff09\u66ff\u6362\u7b56\u7565\u3002
-
\u76f4\u63a5\u6620\u5c04\u7f13\u5b58:
- \u89e3\u91ca\u4e86\u76f4\u63a5\u6620\u5c04\u7f13\u5b58\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u5305\u62ec\u5b83\u7684\u5730\u5740\u5206\u89e3\u548c\u786c\u4ef6\u5b9e\u73b0\u3002
-
\u96c6\u5408\u5173\u8054\u7f13\u5b58:
- \u8ba8\u8bba\u4e86\u96c6\u5408\u5173\u8054\u7f13\u5b58\u4f5c\u4e3a\u5168\u5173\u8054\u548c\u76f4\u63a5\u6620\u5c04\u7f13\u5b58\u4e4b\u95f4\u7684\u6298\u8877\u65b9\u6848\uff0c\u4ee5\u53ca\u5b83\u7684\u5de5\u4f5c\u539f\u7406\u3002
-
\u7f13\u5b58\u66ff\u6362\u7b56\u7565:
- \u4ecb\u7ecd\u4e86\u4e0d\u540c\u7684\u7f13\u5b58\u66ff\u6362\u7b56\u7565\uff0c\u5982\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\uff08LRU\uff09\u548c\u6700\u4e0d\u5e38\u7528\uff08LFU\uff09\u3002
-
\u7f13\u5b58\u4e00\u81f4\u6027:
- \u8ba8\u8bba\u4e86\u5728\u5b58\u50a8\u6307\u4ee4\u6539\u53d8\u5185\u5b58\u503c\u65f6\uff0c\u5982\u4f55\u786e\u4fdd\u7f13\u5b58\u548c\u5185\u5b58\u4e4b\u95f4\u7684\u4fe1\u606f\u4e00\u81f4\u6027\u3002
-
\u5199\u5165\u7b56\u7565:
- \u5bf9\u6bd4\u4e86\u5199\u901a\u8fc7\uff08Write-through\uff09\u548c\u5199\u56de\uff08Write-back\uff09\u4e24\u79cd\u7f13\u5b58\u5199\u5165\u7b56\u7565\u3002
-
\u4e0b\u8282\u8bfe\u9884\u544a:
- \u9884\u544a\u4e86\u4e0b\u4e00\u8282\u8bfe\u7684\u5185\u5bb9\uff0c\u5305\u62ec\u7f13\u5b58\u6027\u80fd\u3001\u591a\u7ea7\u7f13\u5b58\u7b49\u4e3b\u9898\u3002
\u8fd9\u4e2a\u8bb2\u5ea7\u63d0\u4f9b\u4e86\u5bf9\u8ba1\u7b97\u673a\u7f13\u5b58\u7cfb\u7edf\u7684\u5168\u9762\u7406\u89e3\uff0c\u5305\u62ec\u5b83\u4eec\u7684\u8bbe\u8ba1\u3001\u5de5\u4f5c\u539f\u7406\u4ee5\u53ca\u5728\u63d0\u5347\u8ba1\u7b97\u673a\u6027\u80fd\u65b9\u9762\u7684\u4f5c\u7528\u3002
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/","title":"\u8df3\u8f6c\u548c\u8fd4\u56de\u7684\u51fd\u6570","text":"
\u5728\u6c47\u7f16\u8bed\u8a00\u4e2d\uff0c\u8df3\u8f6c\u548c\u8fd4\u56de\u662f\u63a7\u5236\u7a0b\u5e8f\u6d41\u7a0b\u7684\u57fa\u672c\u673a\u5236\uff0c\u5c24\u5176\u662f\u5728\u51fd\u6570\u8c03\u7528\u548c\u5b50\u7a0b\u5e8f\u6267\u884c\u4e2d\u3002\u4ee5\u4e0b\u662f\u4e00\u4e9b\u8be6\u7ec6\u7684\u89e3\u91ca\u548c\u4f8b\u5b50\uff1a
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/#jal-jalr","title":"\u8df3\u8f6c\u6307\u4ee4\uff08
jal
\u548c
jalr
\uff09","text":"
-
jal
- Jump-and-link: - \u8fd9\u4e2a\u6307\u4ee4\u7528\u4e8e\u65e0\u6761\u4ef6\u8df3\u8f6c\u5230\u7a0b\u5e8f\u7684\u53e6\u4e00\u4e2a\u4f4d\u7f6e\uff0c\u5e76\u4e14\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230\u5bc4\u5b58\u5668\u4e2d\u3002\u901a\u5e38\uff0c\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5728ra
\uff08\u8fd4\u56de\u5730\u5740\u5bc4\u5b58\u5668\uff09\u4e2d\u3002 - \u683c\u5f0f\uff1ajal rd, label
- \u4f8b\u5b50\uff1a Text Only
jal ra, func # \u8c03\u7528func\u51fd\u6570\uff0c\u5e76\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230ra\n
-
jalr
- Jump-and-link-register: - \u8fd9\u4e2a\u6307\u4ee4\u7528\u4e8e\u6839\u636e\u5bc4\u5b58\u5668\u7684\u503c\u8df3\u8f6c\u5230\u4e00\u4e2a\u5730\u5740\uff0c\u5e76\u5c06\u8df3\u8f6c\u524d\u7684\u5bc4\u5b58\u5668\u503c\u4fdd\u5b58\u5230\u53e6\u4e00\u4e2a\u5bc4\u5b58\u5668\u3002\u5f53imm
\uff08\u7acb\u5373\u6570\uff09\u4e3a0\u65f6\uff0c\u5b83\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u51fd\u6570\u8fd4\u56de\u3002 - \u683c\u5f0f\uff1ajalr rd, rs, imm
- \u4f8b\u5b50\uff1a Text Only
jalr x0, ra, 0 # \u4ecera\u5bc4\u5b58\u5668\u8df3\u8f6c\uff0c\u5e76\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230x0\uff08\u901a\u5e38x0\u59cb\u7ec8\u4e3a0\uff09\n
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/#jr-ret","title":"\u8fd4\u56de\u6307\u4ee4\uff08
jr
\u548c
ret
\uff09","text":"
-
jr
- Jump-register: - \u8fd9\u4e2a\u6307\u4ee4\u7528\u4e8e\u6839\u636e\u5bc4\u5b58\u5668\u7684\u503c\u8df3\u8f6c\u5230\u7a0b\u5e8f\u7684\u53e6\u4e00\u4e2a\u4f4d\u7f6e\u3002\u5b83\u4e0d\u4fdd\u5b58\u8fd4\u56de\u5730\u5740\uff0c\u56e0\u6b64\u4e0d\u80fd\u76f4\u63a5\u7528\u4e8e\u51fd\u6570\u8fd4\u56de\u3002 - \u683c\u5f0f\uff1ajr rs
- \u4f8b\u5b50\uff1a Text Only
jr ra # \u8df3\u8f6c\u5230ra\u5bc4\u5b58\u5668\u6307\u5411\u7684\u5730\u5740\n
-
ret
: - ret
\u4e0d\u662f\u4e00\u4e2a\u72ec\u7acb\u7684\u6c47\u7f16\u6307\u4ee4\uff0c\u800c\u662fjalr
\u7684\u4e00\u79cd\u7279\u6b8a\u7528\u6cd5\uff0c\u7528\u4e8e\u4ece\u51fd\u6570\u8c03\u7528\u8fd4\u56de\u3002\u5b83\u901a\u8fc7\u5c06jalr
\u7684rd
\u8bbe\u7f6e\u4e3a\u76ee\u6807\u5bc4\u5b58\u5668\uff08\u901a\u5e38\u662fzero
\u6216x0
\uff09\uff0crs
\u8bbe\u7f6e\u4e3a\u5305\u542b\u8fd4\u56de\u5730\u5740\u7684\u5bc4\u5b58\u5668\uff08\u901a\u5e38\u662fra
\uff09\uff0cimm
\u8bbe\u7f6e\u4e3a0\u6765\u5b9e\u73b0\u3002 - \u4f8b\u5b50\uff1a Text Only
jalr x0, ra, 0 # \u7b49\u540c\u4e8eret\u6307\u4ee4\uff0c\u4ecera\u8fd4\u56de\uff0c\u4e0d\u4fdd\u5b58\u8fd4\u56de\u5730\u5740\u5230\u4efb\u4f55\u5730\u65b9\n
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/#_1","title":"\u51fd\u6570\u8c03\u7528\u548c\u8fd4\u56de\u7684\u4f8b\u5b50","text":"
\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u7b80\u5355\u7684\u51fd\u6570\u8c03\u7528\u548c\u8fd4\u56de\u6d41\u7a0b\uff1a
Text Only
# \u51fd\u6570\u5b9a\u4e49\n<div markdown=\"1\" style=\"margin-top: -30px; font-size: 0.75em; opacity: 0.7;\">\n:material-circle-edit-outline: \u7ea6 466 \u4e2a\u5b57 :fontawesome-solid-code: 27 \u884c\u4ee3\u7801 :material-clock-time-two-outline: \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f\n</div>\nfunc:\n # \u51fd\u6570\u4f53\u7684\u4ee3\u7801\n # ...\n\n # \u8fd4\u56de\u8bed\u53e5\n ret\n\n# \u4e3b\u7a0b\u5e8f\nmain:\n # \u4fdd\u5b58\u8fd4\u56de\u5730\u5740\u5230ra\n addi sp, sp, -4 # \u4e3a\u8fd4\u56de\u5730\u5740\u5206\u914d\u6808\u7a7a\u95f4\n sw ra, 0(sp) # \u5c06ra\u5b58\u50a8\u5230\u6808\u4e0a\n\n # \u8c03\u7528\u51fd\u6570\n jal ra, func\n\n # \u6062\u590d\u8fd4\u56de\u5730\u5740\n lw ra, 0(sp) # \u4ece\u6808\u4e0a\u52a0\u8f7d\u8fd4\u56de\u5730\u5740\u5230ra\n addi sp, sp, 4 # \u6062\u590d\u6808\u6307\u9488\n\n # \u4e3b\u7a0b\u5e8f\u7ee7\u7eed\u6267\u884c\n # ...\n
\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\uff0cfunc
\u662f\u4e00\u4e2a\u51fd\u6570\uff0c\u5b83\u4f7f\u7528ret
\u6307\u4ee4\u6765\u8fd4\u56de\u5230\u8c03\u7528\u5b83\u7684\u4ee3\u7801\u3002\u5728\u4e3b\u7a0b\u5e8f\u4e2d\uff0c\u6211\u4eec\u9996\u5148\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230\u6808\u4e0a\uff0c\u7136\u540e\u8c03\u7528func
\u51fd\u6570\u3002\u8c03\u7528\u5b8c\u6210\u540e\uff0c\u6211\u4eec\u4ece\u6808\u4e0a\u6062\u590d\u8fd4\u56de\u5730\u5740\uff0c\u5e76\u7ee7\u7eed\u6267\u884c\u4e3b\u7a0b\u5e8f\u3002
\u8bf7\u6ce8\u610f\uff0c\u5177\u4f53\u7684\u6c47\u7f16\u8bed\u6cd5\u53ef\u80fd\u56e0\u4e0d\u540c\u7684\u67b6\u6784\u548c\u6c47\u7f16\u5668\u800c\u5f02\uff0c\u4e0a\u8ff0\u4f8b\u5b50\u4ec5\u4f9b\u53c2\u8003\u3002
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/","title":"\u8ba1\u7b97\u673a\u7f51\u7edc\u5b89\u5168\u57fa\u7840","text":"
\u7ea6 368 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/#_1","title":"\u5e38\u89c1\u7684\u5bc6\u7801\u7b97\u6cd5","text":"
- \u54c8\u5e0c\u7b97\u6cd5\uff08\u5982MD5,SHA256\uff09
- \u5bf9\u79f0\u52a0\u5bc6\u7b97\u6cd5 \uff08\u5982AES,DES\uff09
- \u975e\u5bf9\u79f0\u52a0\u5bc6\u7b97\u6cd5 \uff08\u5982RSA\uff09
[[\u52a0\u5bc6\u539f\u7406]]
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/#_2","title":"\u5f31\u53e3\u4ee4","text":"
- \u8f83\u77ed\u7684\u5bc6\u7801
- \u6613\u88ab\u731c\u6d4b\u6216\u4fe1\u9053\u653b\u51fb\u7684\u5bc6\u7801 - \u98ce\u9669
- ssh\u4e2d\u5982\u679c\u8bbe\u7f6e\u4e86password\u8ba4\u8bc1\u4e14\u8bbe\u7f6e\u5f31\u53e3\u4ee4\uff0c\u5c06\u4f1a\u5bfc\u81f4\u670d\u52a1\u5668\u88ab\u672a\u7ecf\u6388\u6743\u767b\u5f55\uff0c\u4e14\u653b\u51fb\u8005\u53ef\u4ee5\u8fdb\u884c\u4e0e\u4f60\u540c\u6743\u9650\u7684\u4efb\u610f\u64cd\u4f5c
- \u65e0\u7ebf\u5c40\u57df\u7f51\u4e2d\u5982\u679c\u8bbe\u7f6e\u4e86\u5f31\u53e3\u4ee4\u88ab\u731c\u6d4b\u6210\u529f\u540e\uff0c\u653b\u51fb\u8005\u5c06\u53ef\u4ee5\u8fdb\u5165\u5c40\u57df\u7f51\u4e2d\u5bf9\u5c40\u57df\u7f51\u5176\u4ed6\u8bbe\u5907\u8fdb\u884c\u653b\u51fb
- \u9632\u8303\u65b9\u5f0f
- \u91c7\u7528\u5176\u4ed6\u66f4\u4e3a\u5b89\u5168\u7684\u8eab\u4efd\u8ba4\u8bc1\u65b9\u6cd5\uff08\u5982ssh\u4e2d\u91c7\u7528publickey\u8ba4\u8bc1\uff09
- \u8bbe\u7f6e\u968f\u673a\u5b57\u7b26\u4e32\u4f5c\u4e3a\u5bc6\u7801\uff0c\u5e76\u4e14\u957f\u5ea6\u8d85\u8fc78\u4f4d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/#ip","title":"\u516c\u7f51 IP","text":"
- \u6211\u4eec\u5e0c\u671b\u4ece\u4efb\u610f\u63a5\u5165\u4e92\u8054\u7f51\u7684\u5730\u65b9\u4f7f\u7528ssh\u8fde\u63a5\u5230\u670d\u52a1\u5668\uff0c\u4e00\u4e2a\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u8ba9\u670d\u52a1\u5668\u62e5\u6709\u4e00\u4e2a\u516c\u7f51IP\u5e76\u8fd0\u884csshd\u670d\u52a1\u3002
- \u5e38\u89c1\u7684\u653b\u51fb\u65b9\u5f0f
- \u626b\u63cf\u5f00\u653e\u7aef\u53e3\u4fe1\u606f\uff0c\u5e76\u786e\u5b9a\u7aef\u53e3\u4e0a\u8fd0\u884c\u7684\u670d\u52a1
- \u5bf9\u53ef\u80fd\u5b58\u5728\u7684\u670d\u52a1\u8fdb\u884c\u653b\u51fb\uff0c\u5c1d\u8bd5\u5229\u7528\u670d\u52a1\u7684\u6f0f\u6d1e\uff08\u5982\u5f31\u53e3\u4ee4\uff09\u83b7\u53d6\u670d\u52a1\u5668\u7684\u8bbf\u95ee\u6743\u9650
- \u5e38\u89c1\u7684\u9632\u8303\u65b9\u5f0f
- \u4f7f\u7528\u9632\u706b\u5899\u3002\u914d\u7f6e\u9632\u706b\u5899\u89c4\u5219\uff0c\u4ec5\u5141\u8bb8\u5fc5\u8981\u7684\u670d\u52a1\u548c\u7aef\u53e3\u5bf9\u5916\u5f00\u653e\u3002
- \u5ba1\u67e5\u5f00\u653e\u7684\u670d\u52a1\u7684\u5b89\u5168\u6027\u3002\u786e\u4fdd\u5f53\u524d\u4e3b\u673a\u5f00\u653e\u7684\u6240\u6709\u670d\u52a1\u5747\u662f\u5b89\u5168\u7684\u3002
"},{"location":"Environment/Ubuntu_setup/","title":"Ubuntu \u914d\u7f6e","text":"
\u7ea6 77 \u4e2a\u5b57 14 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- \u5728 Ubuntu \u5b89\u88c5\u914d\u7f6e Fcitx 5 \u4e2d\u6587\u8f93\u5165\u6cd5 - muzing\u7684\u6742\u8d27\u94fa
- fcitx5-rime \u6302\u63a5\u5c0f\u9e64\u97f3\u5f62 | rovo98's Blog
- zhuanlan.zhihu.com/p/660191327#:~:text=Tabby\uff08\u4ee5\u524d\u79f0\u4e3a
- Zsh \u5b89\u88c5\u4e0e\u914d\u7f6e\uff0c\u4f7f\u7528 Oh-My-Zsh \u7f8e\u5316\u7ec8\u7aef | Leehow\u7684\u5c0f\u7ad9
- zhuanlan.zhihu.com/p/658811059
- PKMer_TiddyWiki \u7b80\u6613\u6307\u5357
- Site Unreachable
- Jedsek | Blog
Bash
visudo /etc/sudoers \n%sudo ALL=(ALL:ALL) NOPASSWD: ALL\n
Bash
git clone https://github.com/zsh-users/zsh-syntax-highlighting.git ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-syntax-highlighting\n\ngit clone https://github.com/zsh-users/zsh-autosuggestions ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-autosuggestions\n\ngit clone git://github.com/joelthelion/autojump.git\ncd autojump\n./install.py\n\n[[ -s ~/.autojump/etc/profile.d/autojump.sh ]] && . ~/.autojump/etc/profile.d/autojump.sh\n
Bash
sudo apt-get install flameshot\nflameshot gui\n
- \u5728 Ubuntu 22.04|20.04|18.04 \u4e0a\u5b89\u88c5 Node.js 20
"},{"location":"Environment/obsidian_setup/","title":"obsidian \u914d\u7f6e","text":"
\u7ea6 301 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
Note
\u5982\u679c\u61d2\u5f97\u641e\uff0c\u53ef\u4ee5\u76f4\u63a5 clone \u6211\u7684\u914d\u7f6e\uff0c\u653e\u5230 .obsidian \u6587\u4ef6\u91cc\u3002 \u8fd9\u662f\u914d\u7f6e\u6587\u4ef6\u3002
"},{"location":"Environment/obsidian_setup/#1","title":"1 \u4f7f\u7528\u8bed\u8a00","text":"
- \u4e3b\u8981\u662f Markdown
- \u914d\u7f6e\u63d2\u4ef6\u4e5f\u4f1a\u6d89\u53ca\u4e00\u4e9b javascript
"},{"location":"Environment/obsidian_setup/#2","title":"2 \u63d2\u4ef6","text":""},{"location":"Environment/obsidian_setup/#21-displaystyle-latex","title":"2.1 \\(\\displaystyle \\LaTeX\\)","text":"
- Latex Suite
- LaTex-like Theorem & Equation Referencer
- MathLinks
\u642d\u914d simpleTex \u4f7f\u7528
"},{"location":"Environment/obsidian_setup/#22","title":"2.2 \u7f16\u8f91\u589e\u5f3a","text":"
- Easy Typing
- Linter
- Remember cursor position
- PDF++
- Code Styler
- Number Headings
- Outliner
- Completr
- Mind map
- Excalidraw
"},{"location":"Environment/obsidian_setup/#23","title":"2.3 \u56fe\u7247","text":"
- Paste image rename
- Auto Link Title
- Image auto upload Plugin
\u642d\u914d Picgo + GitHub \u4f7f\u7528
"},{"location":"Environment/obsidian_setup/#24","title":"2.4 \u540c\u6b65\u5907\u4efd","text":"
"},{"location":"Environment/obsidian_setup/#25","title":"2.5 \u65e5\u7a0b","text":"
- Calendar
- Periodic Notes
- Tasks Progress Bar
- Tasks
- Tasks Calendar Wrapper
"},{"location":"Environment/obsidian_setup/#26","title":"2.6 \u4ecd\u5728\u63a2\u7d22","text":"
- Local REST API + \u7b80\u7ea6
- RSS Reader
"},{"location":"Environment/obsidian_setup/#_1","title":"\u6211\u7684\u6a21\u677f","text":"
\u9700\u8981\u5b89\u88c5 dataview + periodic notes \u63d2\u4ef6\u3002
Note
\u7531\u4e8e markdown \u4ee3\u7801\u5757\u5d4c\u5957\u4e0d\u592a\u884c\uff0c\u6240\u4ee5\u8981\u624b\u52a8\u4fee\u590d\u3002\u6ce8\u610f\u4fee\u590d '' \u5e26\u6765\u7684\u4ee3\u7801\u5757\u95ee\u9898
dailyweekly Note Text Only
# {{date:YYYY}}-{{date:WW}}-{{date:DD}}-{{date:HH}}-{{date:d}}\n\n## 1. \u8ba1\u5212\n\n### \ud83c\udf05 \u65e9\u6668\n\n#### \u8ba1\u5212 \n\n#### \u590d\u76d8 \n\n---\n\n### \u2600\ufe0f \u4e2d\u5348\n\n#### \u8ba1\u5212 \n\n#### \u590d\u76d8 \n\n---\n\n### \ud83c\udf07 \u665a\u4e0a\n\n#### \u8ba1\u5212\n\n#### \u590d\u76d8 \n\n---\n\n## 2. \u7b14\u8bb0\u7d22\u5f15\n\n``dataview\nLIST FROM \"\"\nWHERE file.cday = date(\"{{date:YYYY}}-{{date:MM}}-{{date:DD}}\")\n``\n\n---\n\n## 3. \u8d44\u6e90\u4e0e\u94fe\u63a5\n\n---\n\n## 4. \u672a\u5b8c\u6210\u7684\u4efb\u52a1\n\n``dataview\nTASK FROM \"dairy\"\nWHERE !completed\nAND file.cday >= (this.file.cday - dur(7 days))\nAND file.cday <= this.file.cday\nSORT file.cday DESC\n``\n\n---\n\n## 5. \u53cd\u601d\n
Note Text Only
# {{date:YYYY}}-W{{date:WW}}-{{date:DD}}\n\n## 1. \u672c\u5468\u590d\u76d8\n\n---\n\n## 2. \u4e0b\u5468\u8ba1\u5212\n
"},{"location":"Environment/obsidian_setup/#3","title":"3 \u76f8\u5173\u94fe\u63a5","text":"
- PKMer_PKMer
- Obsidian \u4e2d\u6587\u8bba\u575b - Obsidian \u77e5\u8bc6\u7ba1\u7406 \u7b14\u8bb0
- Obsidian\u6587\u6863\u5496\u5561\u8c46\u7248 | Obsidian Docs by CoffeeBean
- zhuanlan.zhihu.com/p/619960525
"},{"location":"Environment/%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AE/","title":"\u5f00\u53d1\u73af\u5883\u914d\u7f6e","text":"
\u7ea6 227 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
- \u5f00\u53d1\u73af\u5883\u6784\u5efa\u6307\u5357
- \u4ece\u96f6\u5f00\u59cb\u914d\u7f6e Windows \u2022 Arthals' ink
- \u4ece\u96f6\u5f00\u59cb\u914d\u7f6e Linux \u2022 Arthals' ink
- \u670d\u52a1\u5668\u73af\u5883\u914d\u7f6e Cheat Sheet | Yi Pan (Conless)
- clash
- powertoy
- gsudo
- git
- GitHub - Wybxc/git-remake-guide: Git \u91cd\u5f00/\u91cd\u5b66\u6307\u5357
- picgo
- picgo + github + obsidian
- vscode
- \u7cfb\u7edf + \u4ee3\u7801\u5b57\u4f53\u8bbe\u7f6e
- zhuanlan.zhihu.com/p/603687041#:~:text=clangd\u5b98\u65b9vs
- zhuanlan.zhihu.com/p/398790625#:~:text=\u5176\u4e2d VS Code
- tools
- GitHub - jenius-apps/ambie: An app that uses white noise, nature sounds, and focus features to boost your productivity.
- clash
- GitHub - Loyalsoldier/clash-rules: \ud83e\udd84\ufe0f\ud83c\udf83\ud83d\udc7b Clash Premium \u89c4\u5219\u96c6(RULE-SET)\uff0c\u517c\u5bb9 ClashX Pro\u3001Clash for Windows \u7b49\u57fa\u4e8e Clash Premium \u5185\u6838\u7684\u5ba2\u6237\u7aef\u3002
- Site Unreachable
- \u7ffb\u5899 | Blog
- GitHub - vpncn/vpncn.github.io: 2024\u4e2d\u56fd\u7ffb\u5899\u8f6f\u4ef6VPN\u63a8\u8350\u4ee5\u53ca\u79d1\u5b66\u4e0a\u7f51\u907f\u5751\uff0c\u7a33\u5b9a\u597d\u7528\u3002\u5bf9\u6bd4SSR\u673a\u573a\u3001\u84dd\u706f\u3001V2ray\u3001\u8001\u738bVPN\u3001VPS\u642d\u5efa\u68af\u5b50\u7b49\u79d1\u5b66\u4e0a\u7f51\u4e0e\u7ffb\u5899\u8f6f\u4ef6\uff0c\u4e2d\u56fd\u6700\u65b0\u79d1\u5b66\u4e0a\u7f51\u7ffb\u5899\u68af\u5b50VPN\u4e0b\u8f7d\u63a8\u8350\uff0c\u8bbf\u95eeChatgpt\u3002
- Typora
- GitHub - sylviaxgj/typora-forest-theme: another typora theme
- GitHub - HappySimple/Typora-theme-Happysimple: \u4e00\u6b3e\u81ea\u5236\u7684Markdown\u4e3b\u9898\uff01
- github profiles
- GitHub - anuraghazra/github-readme-stats: Dynamically generated stats for your github readmes
- github action
- gsudo
- openArk
"},{"location":"Robot/pnp/","title":"pnp","text":"
\u7ea6 79 \u4e2a\u5b57 55 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
- \u5df2\u77e5
- \u76ee\u6807\u7269\u4f53\u7279\u5b9a\u70b9\u7684\u50cf\u7d20\u5750\u6807
- \u76ee\u6807\u7269\u4f53\u7279\u5b9a\u70b9\u7684\u771f\u5b9e\u5c3a\u5bf8
- \u76f8\u673a\u5185\u53c2
- \u6c42
- \u76ee\u6807\u7269\u4f53\u5728\u76f8\u673a\u5750\u6807\u7cfb\u4e0b\u7684 6d pose
\u50cf\u7d20\u5750\u6807\u548c\u7269\u4f53\u5750\u6807\u7684\u5bf9\u70b9 \u4f46\u662f\u4e00\u822c\u53ea\u7528 t, \u56e0\u4e3a R \u7684\u7cbe\u5ea6\u4e0d\u591f\u9ad8 Fetching Title#g70i
![[Pasted image 20241008201602.png]]
C++
#include <iostream>\n#include <opencv2/opencv.hpp>\n#include <opencv2/imgproc/imgproc.hpp>\n#include <opencv2/calib3d/calib3d.hpp>\n#include <opencv2/core/core.hpp>\nusing namespace cv;\n\nbool findCorners(const cv::Mat &src, std::vector<cv::Point2f> &corners) {\n std::vector<cv::Point2f> pts;\n corners.clear();\n bool flag = cv::findChessboardCorners(src, {9, 6}, pts);\n if (!flag)\n return false;\n corners.push_back(pts[0]);\n corners.push_back(pts[9 - 1]);\n corners.push_back(pts[pts.size() - 9]);\n corners.push_back(pts[pts.size() - 1]);\n return true;\n}\n\nint main() {\n cv::Mat src;\n cv::Mat camera_matrix;\n cv::Mat distort_matrix;\n cv::FileStorage reader(PROJECT_DIR\"/parameter.txt\", cv::FileStorage::READ);\n reader[\"C\"] >> camera_matrix;\n reader[\"D\"] >> distort_matrix;\n\n for (int i = 0; i <= 40; i++) {\n src = imread(std::__cxx11::to_string(i).append(\".jpg\"));\n std::vector<cv::Point2f> corners;\n bool flag = findCorners(src, corners);\n imshow(\"Opencv Demo\", src);\n cv::waitKey(100);\n if (flag == false) {\n std::cout << \"failed to find all corners\\n\";\n continue;\n }\n std::vector<cv::Point3f> dst;\n dst.push_back({0, 0, 0});\n dst.push_back({8 * 1, 0, 0});\n dst.push_back({0, 5 * 1, 0});\n dst.push_back({8 * 1, 5 * 1, 0});\n cv::Mat rvec, tvec;\n cv::solvePnP(dst, corners, camera_matrix, distort_matrix, rvec, tvec);\n std::cout << \"t:\" << std::endl << -tvec << std::endl << std::endl;\n cv::Mat drawer;\n drawer = src.clone();\n for (int j = 0; j < 4; j++)\n cv::circle(drawer, corners[j], 2, {0, 255, 0}, 2);\n cv::imshow(\"corners\", drawer);\n cv::waitKey(5);\n }\n return 0;\n}\n
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/","title":"\u5361\u5c14\u66fc\u6ee4\u6ce2","text":"
\u7ea6 193 \u4e2a\u5b57 115 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#1-why","title":"1 Why","text":"
- \u5dee\u5206
- \u53d7\u566a\u58f0\u5e72\u6270\u5927
- \u6709\u5ef6\u8fdf
- \u901f\u5ea6\u4e0d\u8fde\u7eed\uff08\u4e0d\u80fd\u5f97\u5230\u77ac\u65f6\u901f\u5ea6\uff09
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#2-how","title":"2 How","text":""},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#21","title":"2.1 \u5361\u5c14\u66fc\u6ee4\u6ce2","text":"
- \u5408\u7406\u5730\u6839\u636e\u8bef\u5dee\u6765\u63a8\u5bfc\uff0c\u800c\u4e0d\u662f\u76f4\u63a5\u5ffd\u89c6\u5f71\u54cd\u6700\u7ec8\u91cf
- \u65e0\u4eba\u9a7e\u9a76\u6280\u672f\u5165\u95e8\uff08\u5341\u4e09\uff09| \u624b\u628a\u624b\u6559\u4f60\u5199\u5361\u5c14\u66fc\u6ee4\u6ce2\u5668 - \u77e5\u4e4e
\\[ \\begin{array}{|c|}\\hline\\textbf{Prediction}\\\\\\hline x^{'}=Ax+u\\\\P^{'}=APA^{T}+R\\\\\\hline\\textbf{Measurement update}\\\\\\hline y=z-Cx^{'}\\\\S=CPC^{T}+Q\\\\K=PC^{T}S^{-1}\\\\x=x^{'}+Ky\\\\P=(I-KC)P\\\\\\hline\\end{array} \\] C++
#include <iostream>\n#include <cstdio>\n#include <string>\n#include <vector>\n#include <ctime>\n#include <opencv2/core/core.hpp>\n#include <opencv2/highgui/highgui.hpp>\n#include <opencv2/imgproc/imgproc.hpp>\n#include <Eigen/Dense>\n#include <opencv2/core/eigen.hpp>\nusing namespace std;\nusing namespace cv;\nusing namespace Eigen;\n\nint main() {\nsrand((unsigned int) time(NULL));\n// generate data with noise\nconst int N = 20;\nconst double k = 2.5;\nMatrix<double, 1, N> noise = Matrix<double, 1, N>::Random();\nMatrix<double, 1, N> data = Matrix<double, 1, N>::LinSpaced(0, k * (N - 1));\ndata += noise;\nstd::cout << data << std::endl;\n// calculate speed\nconst int Z_N = 1, X_N = 2;\nMatrix<double, X_N, 1> X;\nMatrix<double, X_N, X_N> A;\nMatrix<double, X_N, X_N> P;\nMatrix<double, X_N, X_N> R;\nMatrix<double, X_N, Z_N> K;\nMatrix<double, Z_N, X_N> C;\nMatrix<double, Z_N, Z_N> Q;\n\nX << data[0], 0;\nA << 1, 1, 0, 1;\nC << 1, 0;\nR << 2, 0, 0, 2;\nQ << 10;\nfor (int i = 1; i < N; i++) {\n // \u66f4\u65b0\u9884\u6d4b\n Matrix<double, X_N, 1> X_k = A * X;\n P = A * P * A.transpose() + R;\n // \u66f4\u65b0\u89c2\u6d4b\n K = P * C.transpose() * (C * P * C.transpose() + Q).inverse();\n Matrix<double, Z_N, 1> Z{data[i]};\n X = X_k + K * (Z - C * X_k);\n P = (Matrix<double, X_N, X_N>::Identity() - K * C) * P;\n std::cout << \"step \" << i << \": \" << X[1] << std::endl;\n}\nstd:cout << \"final speed: \" << X[1] << std::endl;\nreturn 0;\n}\n
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#22-ekf","title":"2.2 EKF \u7b97\u6cd5\u7684\u5b9e\u73b0","text":"C++
#include <ceres/jet.h>\n#include <Eigen/Dense>\n\ntemplate<int N_X, int N_Y>\nclass AdaptiveEKF {\n using MatrixXX = Eigen::Matrix<double, N_X, N_X>;\n using MatrixYX = Eigen::Matrix<double, N_Y, N_X>;\n using MatrixXY = Eigen::Matrix<double, N_X, N_Y>;\n using MatrixYY = Eigen::Matrix<double, N_Y, N_Y>;\n using VectorX = Eigen::Matrix<double, N_X, 1>;\n using VectorY = Eigen::Matrix<double, N_Y, 1>;\n\npublic:\n explicit AdaptiveEKF(const VectorX &X0 = VectorX::Zero())\n : Xe(X0), P(MatrixXX::Identity()), Q(MatrixXX::Identity()), R(MatrixYY::Identity()) {}\n\n // \u9884\u6d4b\u51fd\u6570\n template<class Func>\n VectorX predict(Func &&func) {\n calculateJacobian(Xe, func, Xp, F);\n P = F * P * F.transpose() + Q;\n return Xp;\n }\n\n // \u66f4\u65b0\u51fd\u6570\n template<class Func>\n VectorX update(Func &&func, const VectorY &Y) {\n calculateJacobian(Xp, func, Yp, H);\n MatrixYY S = H * P * H.transpose() + R; // \u521b\u65b0\u534f\u65b9\u5dee\n K = P * H.transpose() * S.inverse(); // \u5361\u5c14\u66fc\u589e\u76ca\n Xe = Xp + K * (Y - Yp); // \u66f4\u65b0\u72b6\u6001\u4f30\u8ba1\n P = (MatrixXX::Identity() - K * H) * P; // \u66f4\u65b0\u72b6\u6001\u534f\u65b9\u5dee\n return Xe;\n }\n\nprivate:\n // \u8ba1\u7b97\u96c5\u514b\u6bd4\u77e9\u9635\u7684\u8f85\u52a9\u51fd\u6570\n template<class Func, int N_IN, int N_OUT>\n void calculateJacobian(const Eigen::Matrix<double, N_IN, 1> &input, Func &&func, Eigen::Matrix<double, N_OUT, 1> &output, Eigen::Matrix<double, N_OUT, N_IN> &jacobian) {\n ceres::Jet<double, N_IN> input_auto_jet[N_IN];\n for (int i = 0; i < N_IN; i++) {\n input_auto_jet[i].a = input[i];\n input_auto_jet[i].v[i] = 1;\n }\n ceres::Jet<double, N_OUT> output_auto_jet[N_OUT];\n func(input_auto_jet, output_auto_jet);\n for (int i = 0; i < N_OUT; i++) {\n output[i] = output_auto_jet[i].a;\n jacobian.block(i, 0, 1, N_IN) = output_auto_jet[i].v.transpose();\n }\n }\n\npublic:\n VectorX Xe; // \u4f30\u8ba1\u72b6\u6001\u53d8\u91cf\n VectorX Xp; // \u9884\u6d4b\u72b6\u6001\u53d8\u91cf\n MatrixXX F; // \u9884\u6d4b\u96c5\u514b\u6bd4\u77e9\u9635\n MatrixYX H; // \u89c2\u6d4b\u96c5\u514b\u6bd4\u77e9\u9635\n MatrixXX P; // \u72b6\u6001\u534f\u65b9\u5dee\n MatrixXX Q; // \u9884\u6d4b\u8fc7\u7a0b\u534f\u65b9\u5dee\n MatrixYY R; // \u89c2\u6d4b\u8fc7\u7a0b\u534f\u65b9\u5dee\n MatrixXY K; // \u5361\u5c14\u66fc\u589e\u76ca\n VectorY Yp; // \u9884\u6d4b\u89c2\u6d4b\u91cf\n};\n
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#23","title":"2.3 \u975e\u7ebf\u6027\u4f18\u5316","text":"
TODO
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#_2","title":"\u4e00\u4e9b\u8d44\u6599","text":"
- zhuanlan.zhihu.com/p/45238681
- \u5361\u5c14\u66fc\u6ee4\u6ce2(Kalman Filter)\u6982\u5ff5\u4ecb\u7ecd\u53ca\u8be6\u7ec6\u516c\u5f0f\u63a8\u5bfc-CSDN\u535a\u5ba2
- \u8c03\u8282\u8bef\u5dee\u77e9\u9635\u7684\u5b9e\u9645\u610f\u4e49
- \u975e\u7ebf\u6027\u62d3\u5c55
- \u81ea\u9002\u5e94\u4f18\u5316
- \u4f5c\u4e1a\u4e2d\u6709\u4e00\u4e2a\u5929\u4f53\u8fd0\u52a8\u7684\u4f8b\u5b50
"},{"location":"Robot/%E7%9B%B8%E6%9C%BA%E6%A0%87%E5%AE%9A/","title":"\u76f8\u673a\u6807\u5b9a","text":"
\u7ea6 73 \u4e2a\u5b57 1 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
Calibration
- GitHub - SHU-FLYMAN/CalibCamera: \u57fa\u4e8e\u5f20\u6b63\u53cb\u6807\u5b9a\u6cd5\u7684\u5355\u76ee\u76f8\u673a\u6807\u5b9a\u7406\u8bba\u5230\u5b9e\u8df5
- \u4e00\u6587\u5403\u900f\u76f8\u673a\u6807\u5b9a\uff08Camera calibration\uff09-CSDN\u535a\u5ba2
- \u6700\u8be6\u7ec6\u3001\u6700\u5b8c\u6574\u7684\u76f8\u673a\u6807\u5b9a\u8bb2\u89e3-CSDN\u535a\u5ba2
- \u76f8\u673a\u6807\u5b9a\uff08Camera calibration\uff09\u539f\u7406\u3001\u6b65\u9aa4_\u89c6\u89c9\u76f8\u673a \u793a\u6559\u76ee\u7684-CSDN\u535a\u5ba2
"},{"location":"Technology/AI%20usage/","title":"AI \u4f7f\u7528","text":"
\u7ea6 3315 \u4e2a\u5b57 157 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 13 \u5206\u949f
"},{"location":"Technology/AI%20usage/#1-prompt","title":"1 \u5982\u4f55\u5199\u4e00\u4e2a Prompt","text":""},{"location":"Technology/AI%20usage/#11-prompt","title":"1.1 Prompt \u7684\u57fa\u672c\u539f\u5219","text":""},{"location":"Technology/AI%20usage/#111","title":"1.1.1 \u660e\u786e\u9700\u6c42","text":""},{"location":"Technology/AI%20usage/#1111","title":"1.1.1.1 \u4ec0\u4e48\u662f\u6e05\u6670\u7684\u6307\u4ee4\uff1f","text":"
\u6e05\u6670\u7684\u6307\u4ee4\u662f\u6307\u80fd\u591f\u51c6\u786e\u4f20\u8fbe\u4efb\u52a1\u610f\u56fe\u7684\u63cf\u8ff0\uff0c\u907f\u514d\u6b67\u4e49\uff0c\u8ba9\u6a21\u578b\u7406\u89e3\u5e76\u751f\u6210\u671f\u671b\u7684\u7ed3\u679c\u3002 \u5b83\u7684\u6838\u5fc3\u5728\u4e8e\u5177\u4f53\u5316\u9700\u6c42\uff0c\u901a\u8fc7\u660e\u786e\u7684\u8bed\u8a00\u548c\u7ed3\u6784\u5316\u7684\u63cf\u8ff0\uff0c\u8ba9\u4efb\u52a1\u76ee\u6807\u6613\u4e8e\u88ab\u6a21\u578b\u89e3\u6790\u3002
"},{"location":"Technology/AI%20usage/#1112","title":"1.1.1.2 \u5982\u4f55\u8868\u8fbe\u9700\u6c42\u65e0\u6b67\u4e49\uff1f","text":"
- \u4f7f\u7528\u5177\u4f53\u7684\u8bed\u8a00 \u4f8b\u5982\uff0c\u4e0d\u8981\u7b80\u5355\u8bf4\u201c\u751f\u6210\u6458\u8981\u201d\uff0c\u800c\u662f\u660e\u786e\u5185\u5bb9\u5f62\u5f0f\u548c\u8981\u6c42\uff1a
- \u274c \u4e0d\u6e05\u6670\uff1a\u603b\u7ed3\u4e00\u4e0b\u8fd9\u7bc7\u6587\u7ae0\u3002
- \u2705 \u6e05\u6670\uff1a\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\u5c06\u4ee5\u4e0b\u6587\u7ae0\u603b\u7ed3\u4e3a 3 \u70b9\uff0c\u5e76\u4ee5 Markdown \u5217\u8868\u7684\u5f62\u5f0f\u8f93\u51fa\u3002
- \u8bbe\u5b9a\u6e05\u6670\u7684\u8fb9\u754c\u548c\u9650\u5236 \u7ed9\u51fa\u660e\u786e\u7684\u8303\u56f4\uff0c\u907f\u514d\u6a21\u578b\u8f93\u51fa\u65e0\u5173\u4fe1\u606f\u3002
- \u274c \u4e0d\u6e05\u6670\uff1a\u89e3\u91ca AI\u3002
- \u2705 \u6e05\u6670\uff1a\u8bf7\u7528 2-3 \u53e5\u8bdd\u5411\u9ad8\u4e2d\u751f\u89e3\u91ca\u4ec0\u4e48\u662f AI\uff0c\u907f\u514d\u4f7f\u7528\u8fc7\u4e8e\u4e13\u4e1a\u7684\u672f\u8bed\u3002
- \u4f7f\u7528\u4efb\u52a1\u6307\u5411\u6027\u5f3a\u7684\u8bcd\u8bed \u5f3a\u8c03\u4efb\u52a1\u7684\u6838\u5fc3\uff0c\u4f8b\u5982\u201c\u8be6\u7ec6\u8bf4\u660e\u201d\u201c\u4ee5\u7b80\u6d01\u8bed\u8a00\u603b\u7ed3\u201d\u201c\u5217\u51fa\u5177\u4f53\u6b65\u9aa4\u201d\u7b49\u3002
"},{"location":"Technology/AI%20usage/#1113","title":"1.1.1.3 \u793a\u4f8b\uff1a\u6e05\u6670\u4e0e\u6a21\u7cca\u6307\u4ee4\u7684\u5bf9\u6bd4","text":"\u6a21\u7cca\u6307\u4ee4 \u6e05\u6670\u6307\u4ee4 \u603b\u7ed3\u4f1a\u8bae\u8bb0\u5f55\u3002 \u7528\u4e00\u4e2a\u6bb5\u843d\u603b\u7ed3\u4f1a\u8bae\u8bb0\u5f55\uff0c\u5e76\u5217\u51fa\u53d1\u8a00\u4eba\u53ca\u5176\u5efa\u8bae\u7684\u884c\u52a8\u9879\u76ee\uff0c\u4ee5 Markdown \u5217\u8868\u683c\u5f0f\u8f93\u51fa\u3002 \u89e3\u91ca\u5927\u6570\u636e\u3002 \u7528\u4e09\u53e5\u8bdd\u5411\u4e2d\u5b66\u751f\u89e3\u91ca\u5927\u6570\u636e\u7684\u5b9a\u4e49\u53ca\u4f5c\u7528\uff0c\u5e76\u63d0\u4f9b\u4e00\u4e2a\u4e0e\u65e5\u5e38\u751f\u6d3b\u76f8\u5173\u7684\u4f8b\u5b50\u3002 \u751f\u6210\u4e00\u4efd\u65c5\u884c\u8ba1\u5212\u3002 \u8bf7\u4e3a\u5317\u4eac\u4e09\u65e5\u6e38\u751f\u6210\u4e00\u4efd\u8be6\u7ec6\u7684\u65c5\u884c\u8ba1\u5212\uff0c\u5305\u542b\u6bcf\u5929\u7684\u884c\u7a0b\u3001\u666f\u70b9\u4ecb\u7ecd\u3001\u9884\u7b97\u8303\u56f4\u548c\u63a8\u8350\u7f8e\u98df\u3002"},{"location":"Technology/AI%20usage/#112","title":"1.1.2 \u7b80\u6d01\u4e0e\u7cbe\u70bc","text":""},{"location":"Technology/AI%20usage/#1121","title":"1.1.2.1 \u907f\u514d\u5197\u957f\u4e0e\u65e0\u6548\u4fe1\u606f\u7684\u65b9\u6cd5","text":"
\u5728 Prompt \u4e2d\uff0c\u5197\u957f\u7684\u63cf\u8ff0\u4f1a\u589e\u52a0\u6a21\u578b\u7684\u7406\u89e3\u96be\u5ea6\uff0c\u540c\u65f6\u53ef\u80fd\u5f15\u5165\u65e0\u5173\u5185\u5bb9\u3002\u4ee5\u4e0b\u6280\u5de7\u53ef\u4ee5\u5e2e\u52a9\u4f18\u5316\u8868\u8fbe\uff1a
- \u5220\u51cf\u65e0\u7528\u4fe1\u606f\uff1a\u53bb\u6389\u4e0d\u5fc5\u8981\u7684\u4fee\u9970\u8bcd\u6216\u91cd\u590d\u5185\u5bb9\u3002
-
- \u274c \u5197\u957f\uff1a\u5728\u7528\u6765\u5199\u8fd9\u7bc7\u6587\u7ae0\u7684\u6458\u8981\u65f6\uff0c\u4f60\u53ef\u4ee5\u53c2\u8003\u4ee5\u4e0b\u8fd9\u4e9b\u6587\u7ae0\u7684\u5185\u5bb9\u2026\u2026
- \u2705 \u7cbe\u70bc\uff1a\u4e3a\u4ee5\u4e0b\u6587\u7ae0\u5199\u6458\u8981\u3002
- \u76f4\u63a5\u5207\u5165\u91cd\u70b9\uff1a\u4f18\u5148\u63cf\u8ff0\u4efb\u52a1\u7684\u6838\u5fc3\u9700\u6c42\uff0c\u907f\u514d\u80cc\u666f\u4fe1\u606f\u8fc7\u591a\u5e72\u6270\u4efb\u52a1\u3002
- \u5c42\u7ea7\u5206\u660e\uff1a\u4f7f\u7528\u7ed3\u6784\u5316\u683c\u5f0f\uff0c\u907f\u514d\u5c06\u591a\u6761\u6307\u4ee4\u6df7\u4e3a\u4e00\u8c08\u3002
"},{"location":"Technology/AI%20usage/#1122","title":"1.1.2.2 \u201c\u5965\u5361\u59c6\u5243\u5200\u201d\u539f\u5219\u7684\u5b9e\u9645\u5e94\u7528","text":"
\u5965\u5361\u59c6\u5243\u5200\u539f\u5219\u5f3a\u8c03\u201c\u5982\u65e0\u5fc5\u8981\uff0c\u52ff\u589e\u5b9e\u4f53\u201d\uff0c\u5728 Prompt \u4e2d\uff0c\u8868\u73b0\u4e3a\u5c3d\u91cf\u51cf\u5c11\u4e0d\u5fc5\u8981\u7684\u7ea6\u675f\u548c\u9644\u52a0\u8981\u6c42\u3002
- \u793a\u4f8b\uff1a
- \u4e0d\u5fc5\u8981\u7684\u7ea6\u675f\uff1a \u8bf7\u7528 500 \u5b57\u5de6\u53f3\u603b\u7ed3\u4ee5\u4e0b\u6587\u672c\uff0c\u4e0d\u8981\u63d0\u5230\u4e0e\u6587\u672c\u65e0\u5173\u7684\u5185\u5bb9\uff0c\u4e5f\u4e0d\u8981\u52a0\u5165\u4e2a\u4eba\u89c2\u70b9\uff0c\u53ea\u9700\u7b80\u6d01\u6982\u62ec\u4e3b\u8981\u89c2\u70b9\u2026\u2026
- \u4f18\u5316\u540e\uff1a \u8bf7\u7528 500 \u5b57\u603b\u7ed3\u4ee5\u4e0b\u6587\u672c\u7684\u4e3b\u8981\u89c2\u70b9\uff0c\u8bed\u8a00\u7b80\u6d01\u660e\u4e86\u3002
"},{"location":"Technology/AI%20usage/#113","title":"1.1.3 \u8bed\u6c14\u4e0e\u98ce\u683c","text":""},{"location":"Technology/AI%20usage/#1131","title":"1.1.3.1 \u4f7f\u7528\u6b63\u5f0f\u3001\u793c\u8c8c\u7684\u8bed\u8a00\u63d0\u9ad8\u751f\u6210\u51c6\u786e\u6027","text":"
\u5728 Prompt \u4e2d\uff0c\u8bed\u6c14\u548c\u8bed\u8a00\u98ce\u683c\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u751f\u6210\u8d28\u91cf\u3002
- \u6b63\u5f0f\u8bed\u8a00\u901a\u5e38\u66f4\u7b26\u5408\u5927\u6a21\u578b\u7684\u8bad\u7ec3\u6570\u636e\u5206\u5e03\uff0c\u6709\u52a9\u4e8e\u751f\u6210\u66f4\u4e25\u8c28\u7684\u5185\u5bb9\u3002
- \u793a\u4f8b\uff1a
- \u6b63\u5f0f\uff1a\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\u89e3\u91ca\u4ee5\u4e0b\u6280\u672f\u6982\u5ff5\u3002
- \u975e\u6b63\u5f0f\uff1a\u5e2e\u6211\u628a\u8fd9\u6bb5\u8bdd\u7b80\u5355\u8bf4\u4e00\u4e0b\u3002
"},{"location":"Technology/AI%20usage/#1132","title":"1.1.3.2 \u9488\u5bf9\u4e0d\u540c\u4efb\u52a1\u8c03\u6574\u8bed\u6c14\u7684\u6848\u4f8b","text":"
- \u521b\u610f\u4efb\u52a1\uff1a \u6307\u4ee4\u5e94\u66f4\u5177\u611f\u67d3\u529b\uff0c\u4ee5\u6fc0\u53d1\u6a21\u578b\u751f\u6210\u66f4\u5177\u60f3\u8c61\u529b\u7684\u5185\u5bb9\u3002
- \u793a\u4f8b\uff1a
- \u4f60\u662f\u4e00\u4f4d\u5c0f\u7ea2\u4e66\u7206\u6b3e\u6587\u6848\u4e13\u5bb6\uff0c\u8bf7\u4e3a\u5e74\u8f7b\u4eba\u8bbe\u8ba1\u4e00\u4e2a\u5177\u6709\u5438\u5f15\u529b\u7684\u9752\u5c9b\u65c5\u6e38\u653b\u7565\u3002
- \u6559\u80b2\u4efb\u52a1\uff1a \u8bed\u6c14\u9700\u8981\u5faa\u5faa\u5584\u8bf1\uff0c\u5185\u5bb9\u7ed3\u6784\u6e05\u6670\u660e\u4e86\u3002
- \u793a\u4f8b\uff1a
- \u4f60\u662f\u4e00\u540d\u9ad8\u4e2d\u6570\u5b66\u8001\u5e08\uff0c\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u65b9\u5f0f\u8bb2\u89e3\u4e8c\u6b21\u51fd\u6570\u7684\u6982\u5ff5\u3002
- \u4e13\u4e1a\u4efb\u52a1\uff1a \u8bed\u6c14\u5e94\u4e25\u8c28\uff0c\u4fe1\u606f\u9700\u7cbe\u786e\uff0c\u907f\u514d\u4e3b\u89c2\u6027\u8868\u8fbe\u3002
- \u793a\u4f8b\uff1a
- \u8bf7\u4ece\u5b9a\u4e49\u3001\u7279\u6027\u548c\u5e94\u7528\u4e09\u4e2a\u65b9\u9762\u8be6\u7ec6\u8bf4\u660e\u533a\u5757\u94fe\u6280\u672f\uff0c\u5e76\u63d0\u4f9b\u76f8\u5173\u7684\u884c\u4e1a\u5b9e\u4f8b\u3002
"},{"location":"Technology/AI%20usage/#12","title":"1.2 \u9ad8\u7ea7\u6280\u5de7","text":""},{"location":"Technology/AI%20usage/#121","title":"1.2.1 \u63d0\u4f9b\u4e0a\u4e0b\u6587\u4e0e\u793a\u4f8b","text":""},{"location":"Technology/AI%20usage/#1211-few-shot-prompt","title":"1.2.1.1 \u4f7f\u7528 Few-shot Prompt \u63d0\u4f9b\u6709\u6548\u793a\u4f8b","text":"
Few-shot Prompt \u662f\u6307\u5728\u63d0\u793a\u8bed\u4e2d\u63d0\u4f9b\u793a\u4f8b\u4ee5\u5f15\u5bfc\u6a21\u578b\u751f\u6210\u7c7b\u4f3c\u7684\u5185\u5bb9\u3002\u8fd9\u79cd\u65b9\u6cd5\u7279\u522b\u9002\u5408\u590d\u6742\u4efb\u52a1\u6216\u9700\u6c42\u4e0d\u660e\u786e\u7684\u573a\u666f\u3002
- \u4e3a\u4f55\u4f7f\u7528 Few-shot Prompt\uff1f
- \u964d\u4f4e\u6a21\u578b\u7684\u81ea\u7531\u53d1\u6325\u5ea6\uff1a\u901a\u8fc7\u63d0\u4f9b\u793a\u4f8b\uff0c\u9650\u5236\u6a21\u578b\u7684\u8f93\u51fa\u98ce\u683c\u548c\u7ed3\u6784\u3002
- \u63d0\u5347\u4efb\u52a1\u51c6\u786e\u6027\uff1a\u901a\u8fc7\u793a\u4f8b\u4f20\u9012\u660e\u786e\u7684\u6807\u51c6\uff0c\u51cf\u5c11\u504f\u5dee\u3002
- \u6269\u5c55\u6a21\u578b\u7684\u9002\u5e94\u80fd\u529b\uff1a\u5e2e\u52a9\u6a21\u578b\u9002\u5e94\u4e00\u4e9b\u8bad\u7ec3\u6570\u636e\u4e2d\u53ef\u80fd\u672a\u89c1\u8fc7\u7684\u573a\u666f\u3002
- \u8bbe\u8ba1 Few-shot Prompt \u7684\u5173\u952e\u70b9
- \u793a\u4f8b\u6570\u91cf\uff1a\u901a\u5e38 2-5 \u4e2a\u793a\u4f8b\u5373\u53ef\uff0c\u8fc7\u591a\u53ef\u80fd\u5bfc\u81f4\u63d0\u793a\u8fc7\u957f\uff0c\u589e\u52a0\u566a\u58f0\u3002
- \u8986\u76d6\u4e0d\u540c\u96be\u5ea6\u7684\u6848\u4f8b\uff1a\u5305\u62ec\u7b80\u5355\u573a\u666f\uff08easy case\uff09\u3001\u590d\u6742\u573a\u666f\uff08hard case\uff09\u4ee5\u53ca\u8fb9\u7f18\u60c5\u51b5\uff08corner case\uff09\u3002
- \u793a\u4f8b\u8d28\u91cf\uff1a\u786e\u4fdd\u63d0\u4f9b\u7684\u793a\u4f8b\u4e0e\u9884\u671f\u4efb\u52a1\u9ad8\u5ea6\u76f8\u5173\u3002
- \u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u5224\u65ad\u8f93\u5165\u662f\u5426\u5c5e\u4e8e\u77e5\u8bc6\u95ee\u7b54\u7c7b\u95ee\u9898\u3002
Few-shot Prompt\uff1a
Text Only
\u8bf7\u5224\u65ad\u4ee5\u4e0b\u95ee\u9898\u662f\u5426\u5c5e\u4e8e\u77e5\u8bc6\u95ee\u7b54\u7c7b\u95ee\u9898\u3002\n\n\u95ee\u9898\uff1a\u4e16\u754c\u4e0a\u6700\u9ad8\u7684\u5c71\u662f\u4ec0\u4e48\uff1f # easy case\uff0c\u5c5e\u4e8e\u5ba2\u89c2\u77e5\u8bc6\u95ee\u7b54\n\u7b54\u6848\uff1a\u662f\n\n\u95ee\u9898\uff1a\u4e3a\u4ec0\u4e48\u6c34\u80fd\u4f20\u5bfc\u7535\uff1f # hard case\uff0c\u5c5e\u4e8e\u79d1\u5b66\u539f\u7406\u95ee\u7b54\n\u7b54\u6848\uff1a\u662f\n\n\u95ee\u9898\uff1a\u5e2e\u6211\u5199\u4e00\u7bc7\u65c5\u884c\u65e5\u8bb0\u3002 # easy case\uff0c\u5c5e\u4e8e\u521b\u4f5c\u7c7b\u4efb\u52a1\n\u7b54\u6848\uff1a\u5426\n\n\u95ee\u9898\uff1a\u4ec0\u4e48\u662f\u5d4c\u5957\u5b57\u5178\uff1f # hard case\uff0c\u5c5e\u4e8e\u6280\u672f\u77e5\u8bc6\u95ee\u7b54\n\u7b54\u6848\uff1a\u662f\n\n\u95ee\u9898\uff1a{\u8f93\u5165}\n\u7b54\u6848\uff1a\n
"},{"location":"Technology/AI%20usage/#1212","title":"1.2.1.2 \u53c2\u8003\u6587\u672c\u7684\u4f7f\u7528\u4e0e\u5f15\u7528\u6280\u5de7","text":"
\u53c2\u8003\u6587\u672c\u80fd\u4e3a\u6a21\u578b\u63d0\u4f9b\u660e\u786e\u7684\u77e5\u8bc6\u57fa\u7840\uff0c\u5c24\u5176\u5728\u9700\u8981\u53ef\u9760\u6027\u548c\u51c6\u786e\u6027\u7684\u4efb\u52a1\u4e2d\u6548\u679c\u663e\u8457\u3002
- \u8ba9\u6a21\u578b\u4f7f\u7528\u53c2\u8003\u6587\u672c\u4f5c\u7b54
- \u5f15\u7528\u53c2\u8003\u6587\u672c\u4e2d\u7684\u6bb5\u843d
"},{"location":"Technology/AI%20usage/#122","title":"1.2.2 \u4efb\u52a1\u5206\u89e3","text":""},{"location":"Technology/AI%20usage/#1221","title":"1.2.2.1 \u5c06\u590d\u6742\u4efb\u52a1\u62c6\u89e3\u4e3a\u5b50\u4efb\u52a1\u7684\u6700\u4f73\u5b9e\u8df5","text":"
\u590d\u6742\u4efb\u52a1\u53ef\u80fd\u6d89\u53ca\u591a\u4e2a\u5b50\u76ee\u6807\uff0c\u5c06\u5176\u5206\u89e3\u4e3a\u6e05\u6670\u7684\u6b65\u9aa4\u53ef\u4ee5\u63d0\u9ad8\u6a21\u578b\u7684\u8868\u73b0\u3002
- \u4e3a\u4f55\u5206\u89e3\u4efb\u52a1\uff1f
- \u964d\u4f4e\u6a21\u578b\u7406\u89e3\u96be\u5ea6\u3002
- \u66f4\u5bb9\u6613\u5bf9\u751f\u6210\u7ed3\u679c\u8fdb\u884c\u9a8c\u8bc1\u3002
- \u589e\u5f3a Prompt \u7684\u590d\u7528\u6027\u3002
- \u4efb\u52a1\u5206\u89e3\u65b9\u6cd5
- \u660e\u786e\u6bcf\u4e00\u6b65\u7684\u76ee\u6807\uff1a\u9010\u5c42\u5256\u6790\u95ee\u9898\uff0c\u5c06\u590d\u6742\u4efb\u52a1\u5206\u89e3\u4e3a\u7b80\u5355\u5b50\u4efb\u52a1\u3002
- \u4efb\u52a1\u4f9d\u8d56\u7ba1\u7406\uff1a\u786e\u4fdd\u6bcf\u4e00\u6b65\u4e3a\u4e0b\u4e00\u6b65\u63d0\u4f9b\u5fc5\u8981\u7684\u8f93\u5165\u3002
- \u793a\u4f8b\uff1a
\u4efb\u52a1\uff1a\u751f\u6210\u4f1a\u8bae\u7eaa\u8981\u3002
\u4efb\u52a1\u5206\u89e3 Prompt\uff1a
Text Only
\u8bf7\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u5b8c\u6210\u4efb\u52a1\uff1a\n1. \u9605\u8bfb\u4ee5\u4e0b\u4f1a\u8bae\u8bb0\u5f55\u6587\u672c\u3002\n2. \u63d0\u53d6\u53d1\u8a00\u4eba\u53ca\u5176\u89c2\u70b9\u3002\n3. \u7528 Markdown \u5217\u8868\u683c\u5f0f\u603b\u7ed3\u4f1a\u8bae\u7684\u4e3b\u8981\u7ed3\u8bba\u3002\n\u6587\u672c\uff1a{\u4f1a\u8bae\u8bb0\u5f55}\n
"},{"location":"Technology/AI%20usage/#1222-chain-of-thought-cot","title":"1.2.2.2 \u8fde\u7eed\u751f\u6210\u4efb\u52a1\u7684\u94fe\u5f0f\u601d\u8003\uff08Chain of Thought, CoT\uff09","text":"
CoT \u662f\u4e00\u79cd\u9010\u6b65\u601d\u8003\u7684\u63d0\u793a\u7b56\u7565\uff0c\u9002\u7528\u4e8e\u9700\u8981\u903b\u8f91\u63a8\u7406\u7684\u4efb\u52a1\u3002
- \u4e3a\u4f55\u4f7f\u7528 CoT\uff1f
- \u5e2e\u52a9\u6a21\u578b\u5c06\u590d\u6742\u4efb\u52a1\u5206\u89e3\u4e3a\u4e00\u7cfb\u5217\u6613\u4e8e\u89e3\u51b3\u7684\u5c0f\u4efb\u52a1\u3002
- \u63d0\u5347\u903b\u8f91\u63a8\u7406\u80fd\u529b\uff0c\u5c24\u5176\u9002\u7528\u4e8e\u6570\u5b66\u3001\u63a8\u7406\u6216\u590d\u6742\u95ee\u9898\u3002
- \u8bbe\u8ba1 CoT Prompt \u7684\u5173\u952e
- \u6307\u5bfc\u6a21\u578b\u9010\u6b65\u5b8c\u6210\u4efb\u52a1\u3002
- \u5f3a\u8c03\u201c\u601d\u8003\u8fc7\u7a0b\u201d\u5e76\u8f93\u51fa\u6b65\u9aa4\u3002
- \u793a\u4f8b\uff1a
\u4efb\u52a1\uff1a\u8ba1\u7b97 \\((1362+5145)*145-(1517*42+24)\\) \u7684\u7ed3\u679c\u3002
CoT Prompt\uff1a
Text Only
\u8bf7\u5e2e\u6211\u8ba1\u7b97\u4ee5\u4e0b\u95ee\u9898\u7684\u7ed3\u679c\uff1a$(1362+5145)*145-(1517*42+24)$\u3002\n\u5c55\u793a\u4f60\u7684\u6bcf\u4e00\u6b65\u8ba1\u7b97\u8fc7\u7a0b\uff0c\u5e76\u786e\u4fdd\u8ba1\u7b97\u6b63\u786e\u3002\n
\u6a21\u578b\u751f\u6210\u793a\u4f8b\uff1a
Text Only
\u7b2c\u4e00\u6b65\uff1a\u8ba1\u7b97 (1362+5145)\uff0c\u7ed3\u679c\u4e3a 6507\u3002\n\u7b2c\u4e8c\u6b65\uff1a\u8ba1\u7b97 6507*145\uff0c\u7ed3\u679c\u4e3a 943515\u3002\n\u7b2c\u4e09\u6b65\uff1a\u8ba1\u7b97 1517*42\uff0c\u7ed3\u679c\u4e3a 63654\u3002\n\u7b2c\u56db\u6b65\uff1a\u8ba1\u7b97 63654+24\uff0c\u7ed3\u679c\u4e3a 63678\u3002\n\u7b2c\u4e94\u6b65\uff1a\u8ba1\u7b97 943515-63678\uff0c\u7ed3\u679c\u4e3a 879837\u3002\n\u7b54\u6848\uff1a879837\u3002\n
"},{"location":"Technology/AI%20usage/#1223","title":"1.2.2.3 \u793a\u4f8b\uff1a\u591a\u6b65\u9aa4\u4efb\u52a1\u7684\u5206\u89e3\u4e0e\u4f18\u5316","text":"
\u4efb\u52a1\uff1a\u64b0\u5199\u4e00\u4efd\u4ea7\u54c1\u8bbe\u8ba1\u6587\u6863\uff0c\u5305\u62ec\u9700\u6c42\u3001\u529f\u80fd\u5217\u8868\u3001\u8bbe\u8ba1\u65b9\u6848\u3002
\u591a\u6b65\u9aa4 Prompt\uff1a
Text Only
\u8bf7\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u64b0\u5199\u4e00\u4efd\u4ea7\u54c1\u8bbe\u8ba1\u6587\u6863\uff1a\n1. \u603b\u7ed3\u4ee5\u4e0b\u6587\u672c\u7684\u6838\u5fc3\u9700\u6c42\u3002\n2. \u6839\u636e\u9700\u6c42\u751f\u6210\u529f\u80fd\u5217\u8868\u3002\n3. \u4e3a\u6bcf\u4e2a\u529f\u80fd\u8bbe\u8ba1\u4e00\u4e2a\u8be6\u7ec6\u7684\u65b9\u6848\u3002\n\u6587\u672c\uff1a{\u8f93\u5165}\n
\u6a21\u578b\u8f93\u51fa\u793a\u4f8b\uff1a
Text Only
\u6838\u5fc3\u9700\u6c42\uff1a\u7528\u6237\u5e0c\u671b\u901a\u8fc7\u5e94\u7528\u5feb\u901f\u83b7\u53d6\u9644\u8fd1\u7684\u9910\u996e\u63a8\u8350\u3002\n\u529f\u80fd\u5217\u8868\uff1a\n- \u9910\u996e\u63a8\u8350\u7cfb\u7edf\n- \u7528\u6237\u504f\u597d\u8bbe\u7f6e\n- \u5730\u56fe\u5bfc\u822a\n\n\u8bbe\u8ba1\u65b9\u6848\uff1a\n- \u9910\u996e\u63a8\u8350\u7cfb\u7edf\uff1a\u6839\u636e\u7528\u6237\u4f4d\u7f6e\u548c\u504f\u597d\u5b9e\u65f6\u63a8\u8350\u9644\u8fd1\u7684\u9910\u9986\u3002\n- \u7528\u6237\u504f\u597d\u8bbe\u7f6e\uff1a\u5141\u8bb8\u7528\u6237\u81ea\u5b9a\u4e49\u53e3\u5473\u3001\u9884\u7b97\u548c\u83dc\u7cfb\u3002\n- \u5730\u56fe\u5bfc\u822a\uff1a\u63d0\u4f9b\u9910\u9986\u7684\u5b9e\u65f6\u4f4d\u7f6e\u548c\u6700\u4f73\u8def\u7ebf\u3002\n
"},{"location":"Technology/AI%20usage/#123","title":"1.2.3 \u89d2\u8272\u626e\u6f14","text":""},{"location":"Technology/AI%20usage/#1231","title":"1.2.3.1 \u6307\u5b9a\u6a21\u578b\u8eab\u4efd\u7684\u4f18\u52bf","text":"
\u901a\u8fc7\u4e3a\u6a21\u578b\u8bbe\u7f6e\u89d2\u8272\uff0c\u53ef\u4ee5\u5e2e\u52a9\u5176\u4ee5\u66f4\u9002\u5408\u4efb\u52a1\u7684\u65b9\u5f0f\u751f\u6210\u5185\u5bb9\u3002\u6a21\u578b\u89d2\u8272\u7684\u6307\u5b9a\u7c7b\u4f3c\u4e8e\u8bbe\u5b9a\u8bed\u5883\uff0c\u80fd\u591f\u66f4\u7cbe\u51c6\u5730\u63a7\u5236\u751f\u6210\u5185\u5bb9\u7684\u8bed\u8a00\u98ce\u683c\u3001\u7ec6\u8282\u548c\u4e13\u4e1a\u6027\u3002
- \u4e3a\u4ec0\u4e48\u9700\u8981\u89d2\u8272\u626e\u6f14\uff1f
- \u63d0\u9ad8\u751f\u6210\u51c6\u786e\u6027\uff1a\u6307\u5b9a\u89d2\u8272\u540e\uff0c\u6a21\u578b\u7684\u56de\u7b54\u4f1a\u66f4\u805a\u7126\u4e8e\u8be5\u89d2\u8272\u7684\u77e5\u8bc6\u9886\u57df\u3002
- \u589e\u5f3a\u8f93\u51fa\u98ce\u683c\u7684\u4e00\u81f4\u6027\uff1a\u6839\u636e\u89d2\u8272\u7684\u8bbe\u5b9a\uff0c\u8f93\u51fa\u4f1a\u7b26\u5408\u9884\u671f\u7684\u4e13\u4e1a\u6027\u6216\u521b\u610f\u6027\u3002
- \u793a\u4f8b
-
\u4efb\u52a1\uff1a\u64b0\u5199\u65c5\u6e38\u653b\u7565\u3002
Prompt\uff1a
Text Only\u4f60\u662f\u4e00\u4f4d\u64c5\u957f\u64b0\u5199\u65c5\u6e38\u6587\u6848\u7684\u5c0f\u7ea2\u4e66\u5185\u5bb9\u521b\u4f5c\u8005\uff0c\u8bf7\u64b0\u5199\u4e00\u4efd\u5173\u4e8e\u9752\u5c9b\u4e09\u65e5\u6e38\u7684\u653b\u7565\uff0c\u5f3a\u8c03\u666f\u70b9\u63a8\u8350\u3001\u7f8e\u98df\u5206\u4eab\u548c\u6444\u5f71\u6280\u5de7\u3002\n
-
\u4efb\u52a1\uff1a\u89e3\u91ca\u7f16\u7a0b\u6982\u5ff5\u3002
Prompt\uff1a
Text Only\u4f60\u662f\u4e00\u540d\u7ecf\u9a8c\u4e30\u5bcc\u7684 Python \u5f00\u53d1\u8005\uff0c\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\u89e3\u91ca\u4ee5\u4e0b\u4ee3\u7801\u7684\u529f\u80fd\uff0c\u5e76\u63d0\u4f9b\u6539\u8fdb\u5efa\u8bae\uff1a\n
\u4ee3\u7801\u793a\u4f8b\uff1a
Pythonnested_dict = lambda: defaultdict(nested_dict)\n
- \u591a\u89d2\u8272\u7ed3\u5408
"},{"location":"Technology/AI%20usage/#124","title":"1.2.4 \u683c\u5f0f\u5316\u4e0e\u7ed3\u6784\u5316\u8f93\u51fa","text":""},{"location":"Technology/AI%20usage/#1241-json","title":"1.2.4.1 JSON\u3001\u8868\u683c\u3001\u6e05\u5355\u7b49\u8f93\u51fa\u683c\u5f0f\u7684\u5e94\u7528\u573a\u666f","text":"
\u4e3a\u4fdd\u8bc1\u8f93\u51fa\u7684\u6613\u8bfb\u6027\u548c\u4fbf\u4e8e\u540e\u7eed\u5904\u7406\uff0c\u53ef\u4ee5\u660e\u786e\u8981\u6c42\u6a21\u578b\u8fd4\u56de\u7ed3\u679c\u7684\u683c\u5f0f\u5316\u8f93\u51fa\u3002\u4f8b\u5982\uff0cJSON \u683c\u5f0f\u9002\u5408\u6570\u636e\u5904\u7406\uff0c\u8868\u683c\u9002\u5408\u603b\u7ed3\u5206\u6790\uff0c\u6e05\u5355\u9002\u5408\u4efb\u52a1\u5206\u89e3\u3002
- \u4e3a\u4ec0\u4e48\u9700\u8981\u7ed3\u6784\u5316\u8f93\u51fa\uff1f
- \u63d0\u9ad8\u53ef\u8bfb\u6027\uff1a\u8f93\u51fa\u6613\u4e8e\u76f4\u63a5\u67e5\u770b\u548c\u7406\u89e3\u3002
- \u4fbf\u4e8e\u540e\u7eed\u5904\u7406\uff1a\u5c24\u5176\u5728\u6570\u636e\u5904\u7406\u6216\u7f16\u7a0b\u4efb\u52a1\u4e2d\uff0c\u7ed3\u6784\u5316\u6570\u636e\u53ef\u76f4\u63a5\u7528\u4e8e\u5176\u4ed6\u5de5\u5177\u6216\u4ee3\u7801\u3002
- \u793a\u4f8b
-
\u4efb\u52a1\uff1a\u63d0\u53d6\u6587\u672c\u4e2d\u7684\u5173\u952e\u4fe1\u606f\u5e76\u8fd4\u56de JSON \u683c\u5f0f\u3002
Prompt\uff1a
Text Only\u8bf7\u4ece\u4ee5\u4e0b\u6587\u672c\u4e2d\u63d0\u53d6\u5173\u952e\u4fe1\u606f\uff0c\u5305\u62ec\u4eba\u540d\u3001\u5730\u540d\u548c\u4e8b\u4ef6\uff0c\u4ee5 JSON \u683c\u5f0f\u8fd4\u56de\uff1a\n\u6587\u672c\uff1a{\u6587\u672c\u5185\u5bb9}\n\u8f93\u51fa\u683c\u5f0f\uff1a\n{\n \"\u4eba\u540d\": [\"\u4eba\u540d1\", \"\u4eba\u540d2\"],\n \"\u5730\u540d\": [\"\u5730\u540d1\", \"\u5730\u540d2\"],\n \"\u4e8b\u4ef6\": [\"\u4e8b\u4ef61\", \"\u4e8b\u4ef62\"]\n}\n
-
\u4efb\u52a1\uff1a\u603b\u7ed3\u4f1a\u8bae\u8bb0\u5f55\u5e76\u751f\u6210\u8868\u683c\u3002
Prompt\uff1a
Text Only\u8bf7\u603b\u7ed3\u4ee5\u4e0b\u4f1a\u8bae\u8bb0\u5f55\uff0c\u5e76\u5c06\u53d1\u8a00\u4eba\u53ca\u5176\u89c2\u70b9\u4ee5 Markdown \u8868\u683c\u7684\u5f62\u5f0f\u8f93\u51fa\u3002\n
\u6a21\u578b\u751f\u6210\u793a\u4f8b\uff1a
Markdown| \u53d1\u8a00\u4eba | \u89c2\u70b9 |\n|----------|-----------------------|\n| \u5f20\u4e09 | \u5f3a\u8c03\u5e02\u573a\u6269\u5f20\u7684\u91cd\u8981\u6027 |\n| \u674e\u56db | \u63d0\u8bae\u63d0\u9ad8\u7814\u53d1\u9884\u7b97 |\n
"},{"location":"Technology/AI%20usage/#1242","title":"1.2.4.2 \u4f7f\u7528\u5206\u9694\u7b26\uff08\u5982\u4e09\u5f15\u53f7\uff09\u660e\u786e\u4efb\u52a1\u7ed3\u6784","text":"
\u5206\u9694\u7b26\u53ef\u4ee5\u5e2e\u52a9\u533a\u5206\u4efb\u52a1\u63cf\u8ff0\u548c\u8f93\u5165\u5185\u5bb9\uff0c\u51cf\u8f7b\u6a21\u578b\u7684\u7406\u89e3\u8d1f\u62c5\u3002
- \u5178\u578b\u7528\u6cd5
-
\u660e\u786e\u8f93\u5165\u4e0e\u8f93\u51fa\u90e8\u5206\uff1a
Text Only\u4f7f\u7528\u4e09\u5f15\u53f7\u5206\u9694\u7684\u6587\u672c\u5b8c\u6210\u4efb\u52a1\uff1a\n\"\"\"\n{\u8f93\u5165\u5185\u5bb9}\n\"\"\"\n\u8bf7\u4e3a\u4e0a\u8ff0\u5185\u5bb9\u64b0\u5199\u6458\u8981\uff0c\u6458\u8981\u9700\u5305\u542b\u4e3b\u8981\u89c2\u70b9\uff0c\u5e76\u4ee5 Markdown \u5217\u8868\u5f62\u5f0f\u8f93\u51fa\u3002\n
- \u51cf\u5c11\u566a\u58f0\u5e72\u6270
-
\u5c06\u591a\u6bb5\u8f93\u5165\u5206\u5757\uff1a
Text Only\u7b2c1\u90e8\u5206\uff1a\n\"\"\"\n{\u7b2c\u4e00\u6bb5\u5185\u5bb9}\n\"\"\"\n\u7b2c2\u90e8\u5206\uff1a\n\"\"\"\n{\u7b2c\u4e8c\u6bb5\u5185\u5bb9}\n\"\"\"\n\u8bf7\u5206\u522b\u603b\u7ed3\u4ee5\u4e0a\u4e24\u90e8\u5206\u5185\u5bb9\uff0c\u5e76\u4ee5 Markdown \u5217\u8868\u5f62\u5f0f\u8f93\u51fa\u3002\n
"},{"location":"Technology/AI%20usage/#1243","title":"1.2.4.3 \u793a\u4f8b\uff1a\u4ece\u65e0\u683c\u5f0f\u5230\u6807\u51c6\u5316\u8f93\u51fa\u7684\u8f6c\u53d8","text":"
\u4efb\u52a1\uff1a\u4e3a\u4e00\u6bb5\u4ea7\u54c1\u8bc4\u8bba\u751f\u6210\u7ed3\u6784\u5316\u6458\u8981\u3002
\u65e0\u683c\u5f0f\u7684\u6307\u4ee4\uff1a
Text Only
\u8bf7\u603b\u7ed3\u4ee5\u4e0b\u4ea7\u54c1\u8bc4\u8bba\uff1a\n{\u8bc4\u8bba\u5185\u5bb9}\n
\u6807\u51c6\u5316\u7684\u6307\u4ee4\uff1a
Text Only
\u8bf7\u603b\u7ed3\u4ee5\u4e0b\u4ea7\u54c1\u8bc4\u8bba\uff0c\u5e76\u4ee5\u8868\u683c\u5f62\u5f0f\u8f93\u51fa\u3002\u8868\u683c\u5e94\u5305\u542b\u4ee5\u4e0b\u5b57\u6bb5\uff1a\u4f18\u70b9\u3001\u7f3a\u70b9\u3001\u5efa\u8bae\u3002\n\u8bc4\u8bba\uff1a\n\"\"\"\n{\u8bc4\u8bba\u5185\u5bb9}\n\"\"\"\n
\u8f93\u51fa\u793a\u4f8b\uff1a
Markdown
| \u4f18\u70b9 | \u7f3a\u70b9 | \u5efa\u8bae |\n|-----------------|---------------|--------------------|\n| \u4ef7\u683c\u4fbf\u5b9c | \u505a\u5de5\u4e00\u822c | \u6539\u5584\u4ea7\u54c1\u5916\u89c2\u8bbe\u8ba1 |\n| \u529f\u80fd\u9f50\u5168 | \u64cd\u4f5c\u590d\u6742 | \u7b80\u5316\u7528\u6237\u64cd\u4f5c\u6d41\u7a0b |\n
"},{"location":"Technology/AI%20usage/#13","title":"1.3 \u4f18\u5316\u4e0e\u8fed\u4ee3","text":""},{"location":"Technology/AI%20usage/#131-ai-prompt","title":"1.3.1 \u5982\u4f55\u901a\u8fc7 AI \u5e2e\u52a9\u6539\u5199\u6216\u4f18\u5316 Prompt\uff1f","text":""},{"location":"Technology/AI%20usage/#1311-ai-prompt","title":"1.3.1.1 \u4e3a\u4ec0\u4e48\u8ba9 AI \u4f18\u5316 Prompt\uff1f","text":"
AI \u64c5\u957f\u4ece\u5c11\u91cf\u8f93\u5165\u4e2d\u63d0\u53d6\u89c4\u5f8b\uff0c\u53ef\u4ee5\u5feb\u901f\u8c03\u6574\u8bed\u8a00\u98ce\u683c\u548c\u7ec6\u8282\uff0c\u5e2e\u52a9\u7528\u6237\u4f18\u5316 Prompt\uff0c\u5c24\u5176\u5728\u4efb\u52a1\u9700\u6c42\u6a21\u7cca\u6216\u7f3a\u4e4f\u6e05\u6670\u6307\u4ee4\u7684\u60c5\u51b5\u4e0b\u3002
"},{"location":"Technology/AI%20usage/#1312","title":"1.3.1.2 \u5177\u4f53\u65b9\u6cd5","text":"
- \u76f4\u63a5\u8bf7\u6c42 AI \u6539\u8fdb
- \u63d0\u4f9b\u521d\u59cb Prompt\uff0c\u8ba9 AI \u63d0\u51fa\u4f18\u5316\u5efa\u8bae\u3002
-
\u793a\u4f8b\uff1a \u539f\u59cb Prompt\uff1a
Text Only\u8bf7\u7528\u7b80\u5355\u7684\u8bed\u8a00\u89e3\u91ca\u4ee5\u4e0b\u6570\u5b66\u9898\u7684\u89e3\u6cd5\u3002\n
\u8bf7\u6c42\u4f18\u5316\uff1a
Text Only\u8bf7\u5e2e\u52a9\u4f18\u5316\u8fd9\u6bb5 Prompt\uff0c\u8ba9\u5b83\u66f4\u9002\u5408\u5c0f\u5b66\u516d\u5e74\u7ea7\u5b66\u751f\u3002\n
\u4f18\u5316\u7ed3\u679c\uff1a
Text Only\u4f60\u662f\u4e00\u4f4d\u5c0f\u5b66\u6570\u5b66\u8001\u5e08\uff0c\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\uff0c\u7ed3\u5408\u751f\u6d3b\u4e2d\u7684\u4f8b\u5b50\uff0c\u89e3\u91ca\u4ee5\u4e0b\u6570\u5b66\u9898\u7684\u89e3\u6cd5\u3002\n
- \u901a\u8fc7\u51e0\u8f6e\u4ea4\u4e92\u5fae\u8c03 Prompt
-
\u793a\u4f8b\uff1a \u7b2c1\u8f6e\u4f18\u5316\uff1a
Text Only\u8fd9\u4e2a Prompt \u6bd4\u8f83\u9002\u5408\u521d\u5b66\u8005\uff0c\u4f46\u53ef\u4ee5\u589e\u52a0\u4e00\u4e9b\u751f\u6d3b\u5316\u7684\u4f8b\u5b50\u6765\u63d0\u5347\u5438\u5f15\u529b\u3002\n
-
\u7b2c2\u8f6e\u4f18\u5316\uff1a
Text Only\u7ed3\u5408\u751f\u6d3b\u4e2d\u7684\u5b9e\u4f8b\u8865\u5145\uff0c\u5982\u201c\u901a\u8fc7\u4e70\u82f9\u679c\u6765\u8ba1\u7b97\u603b\u4ef7\u201d\uff0c\u4f7f\u5f97\u8bb2\u89e3\u66f4\u52a0\u751f\u52a8\u3002\n
- \u81ea\u52a8\u5316\u4f18\u5316\u5de5\u5177
- \u4f7f\u7528\u5982 OpenAI \u63d0\u4f9b\u7684 API\uff0c\u901a\u8fc7\u52a8\u6001\u8c03\u6574\u6d4b\u8bd5\u591a\u4e2a\u7248\u672c\u7684 Prompt\uff0c\u627e\u5230\u6700\u4f73\u89e3\u51b3\u65b9\u6848\u3002
"},{"location":"Technology/AI%20usage/#132","title":"1.3.2 \u7ed3\u5408\u5916\u90e8\u5de5\u5177\u63d0\u5347\u6548\u7387","text":""},{"location":"Technology/AI%20usage/#1321-api","title":"1.3.2.1 \u8c03\u7528 API \u6216\u4ee3\u7801\u6267\u884c\u5b9e\u73b0\u590d\u6742\u529f\u80fd","text":"
\u5927\u6a21\u578b\u5bf9\u8ba1\u7b97\u548c\u5b9e\u65f6\u6570\u636e\u7684\u652f\u6301\u6709\u9650\uff0c\u56e0\u6b64\u7ed3\u5408\u5916\u90e8\u5de5\u5177\uff0c\u5982 API \u8c03\u7528\u6216\u4ee3\u7801\u6267\u884c\uff0c\u53ef\u4ee5\u63d0\u5347\u4efb\u52a1\u7684\u51c6\u786e\u6027\u3002
- \u8bf7\u6c42\u751f\u6210\u4ee3\u7801\u6765\u6267\u884c\u8ba1\u7b97
-
\u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u6c42\u89e3\u591a\u9879\u5f0f\u7684\u6240\u6709\u5b9e\u6839\u3002 Prompt\uff1a
Text Only\u8bf7\u7528 Python \u7f16\u5199\u4ee3\u7801\u6765\u8ba1\u7b97\u4ee5\u4e0b\u591a\u9879\u5f0f\u7684\u6240\u6709\u5b9e\u6839\uff1a\n\u591a\u9879\u5f0f\uff1a3x^3 - 5x^2 + 2x - 7\n\u8f93\u51fa Python \u4ee3\u7801\u5e76\u89e3\u91ca\u5176\u4f5c\u7528\u3002\n
\u8f93\u51fa\u7ed3\u679c\uff1a
Pythonimport numpy as np\ncoefficients = [3, -5, 2, -7]\nroots = np.roots(coefficients)\nprint(\"\u5b9e\u6839\u4e3a\uff1a\", [r for r in roots if np.isreal(r)])\n
\u89e3\u91ca\uff1a\u6b64\u4ee3\u7801\u4f7f\u7528 NumPy \u7684 roots
\u51fd\u6570\u8ba1\u7b97\u591a\u9879\u5f0f\u7684\u6240\u6709\u6839\uff0c\u5e76\u8fc7\u6ee4\u51fa\u5b9e\u6839\u3002
- \u7ed3\u5408\u5916\u90e8\u6570\u636e\u6216\u5de5\u5177
- \u793a\u4f8b\uff1a\u4f7f\u7528\u5411\u91cf\u6570\u636e\u5e93\u67e5\u8be2\u77e5\u8bc6\u5e93\u4e2d\u7684\u4fe1\u606f\uff0c\u4f5c\u4e3a\u751f\u6210\u7b54\u6848\u7684\u8865\u5145\u3002
"},{"location":"Technology/AI%20usage/#1322-markdown-latex","title":"1.3.2.2 \u8f93\u51fa\u6210 Markdown \u6216 LaTeX \u6587\u6863\u7684\u573a\u666f\u4e0e\u6280\u5de7","text":"
- Markdown \u683c\u5f0f\u5316
-
\u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u751f\u6210\u4f1a\u8bae\u7eaa\u8981\u3002 Prompt\uff1a
Text Only\u8bf7\u5c06\u4ee5\u4e0b\u4f1a\u8bae\u8bb0\u5f55\u603b\u7ed3\u4e3a Markdown \u683c\u5f0f\uff0c\u5305\u62ec\u53d1\u8a00\u4eba\u3001\u4e3b\u8981\u89c2\u70b9\u548c\u540e\u7eed\u4efb\u52a1\u3002\n
\u8f93\u51fa\uff1a
Markdown### \u4f1a\u8bae\u7eaa\u8981\n\n#### \u53d1\u8a00\u4eba\u53ca\u89c2\u70b9\n- **\u5f20\u4e09**\uff1a\u5efa\u8bae\u589e\u52a0\u5e02\u573a\u8425\u9500\u9884\u7b97\u3002\n- **\u674e\u56db**\uff1a\u5f3a\u8c03\u4f18\u5316\u4ea7\u54c1\u8d28\u91cf\u7684\u91cd\u8981\u6027\u3002\n\n#### \u540e\u7eed\u4efb\u52a1\n- \u5236\u5b9a\u65b0\u4e00\u5b63\u5ea6\u7684\u8425\u9500\u7b56\u7565\uff08\u8d1f\u8d23\u4eba\uff1a\u5f20\u4e09\uff09\u3002\n- \u8c03\u67e5\u7528\u6237\u5bf9\u5f53\u524d\u4ea7\u54c1\u7684\u6ee1\u610f\u5ea6\uff08\u8d1f\u8d23\u4eba\uff1a\u674e\u56db\uff09\u3002\n
- LaTeX \u683c\u5f0f\u5316
-
\u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u751f\u6210\u6570\u5b66\u516c\u5f0f\u3002 Prompt\uff1a
Text Only\u8bf7\u7528 LaTeX \u683c\u5f0f\u4e66\u5199\u4ee5\u4e0b\u516c\u5f0f\u5e76\u89e3\u91ca\uff1a$(a+b)^2 = a^2 + 2ab + b^2$\u3002\n
\u8f93\u51fa\uff1a
TeX\\[\n(a+b)^2 = a^2 + 2ab + b^2\n\\]\n\u8fd9\u662f\u4e00\u4e2a\u57fa\u672c\u7684\u5e73\u65b9\u5c55\u5f00\u516c\u5f0f\uff0c\u5e38\u7528\u4e8e\u591a\u9879\u5f0f\u7684\u8ba1\u7b97\u3002\n
"},{"location":"Technology/AI%20usage/#133-prompt","title":"1.3.3 \u589e\u5f3a Prompt \u7684\u7075\u6d3b\u6027","text":""},{"location":"Technology/AI%20usage/#1331","title":"1.3.3.1 \u4e3a\u5f00\u653e\u5f0f\u4efb\u52a1\u8bbe\u7f6e\u515c\u5e95\u7b56\u7565","text":"
\u5f00\u653e\u5f0f\u4efb\u52a1\uff08\u5982\u5199\u6545\u4e8b\u6216\u63a8\u8350\u65b9\u6848\uff09\u5bb9\u6613\u5bfc\u81f4\u6a21\u578b\u201c\u8dd1\u9898\u201d\uff0c\u901a\u8fc7\u515c\u5e95\u7b56\u7565\u53ef\u63d0\u9ad8\u7a33\u5b9a\u6027\u3002
- \u660e\u786e\u4e0d\u7b26\u5408\u6761\u4ef6\u65f6\u7684\u56de\u590d
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u73b0\u5728\u4f60\u662f\u4e00\u4e2a\u5411\u5ba2\u6237\u63a8\u8350\u7535\u5f71\u7684\u52a9\u624b\u3002\u5982\u679c\u5ba2\u6237\u7684\u4fe1\u606f\u4e0d\u8db3\u4ee5\u7ed9\u51fa\u63a8\u8350\uff0c\u8bf7\u56de\u7b54\uff1a\u201c\u62b1\u6b49\uff0c\u6211\u65e0\u6cd5\u6839\u636e\u60a8\u7684\u63cf\u8ff0\u63a8\u8350\u7535\u5f71\u3002\u201d\u3002\n
\u8f93\u5165\uff1a
Text Only\u5ba2\u6237\uff1a\u5e2e\u6211\u63a8\u8350\u4e00\u90e8\u7535\u5f71\u3002\n
\u8f93\u51fa\uff1a
Text Only\u62b1\u6b49\uff0c\u6211\u65e0\u6cd5\u6839\u636e\u60a8\u7684\u63cf\u8ff0\u63a8\u8350\u7535\u5f71\u3002\n
- \u5b9a\u4e49\u5bb9\u9519\u673a\u5236
-
\u793a\u4f8b\uff1a\u5f53\u751f\u6210\u7ed3\u679c\u4e0d\u7b26\u5408\u683c\u5f0f\u65f6\uff0c\u8981\u6c42\u91cd\u65b0\u751f\u6210\u3002
Text Only\u5982\u679c\u4ee5\u4e0b\u5185\u5bb9\u7684\u8f93\u51fa\u683c\u5f0f\u9519\u8bef\uff0c\u8bf7\u91cd\u65b0\u751f\u6210\u5e76\u786e\u4fdd\u7b26\u5408\u8981\u6c42\uff1a\n\u8f93\u51fa\u683c\u5f0f\uff1a\n- \u4efb\u52a1\u63cf\u8ff0\n- \u4efb\u52a1\u8981\u70b9\n- \u4efb\u52a1\u5efa\u8bae\n
"},{"location":"Technology/AI%20usage/#1332","title":"1.3.3.2 \u6dfb\u52a0\u5f3a\u8c03\u8bcd\u4e0e\u7b26\u53f7\u63d0\u5347\u6307\u4ee4\u6743\u91cd","text":"
\u4f7f\u7528\u7279\u6b8a\u7b26\u53f7\uff08\u5982\u52a0\u7c97\uff09\u6216\u5f3a\u8c03\u8bcd\uff08\u5982\u201c\u52a1\u5fc5\u201d\u3001\u201c\u4e25\u683c\u201d\uff09\u6807\u6ce8\u5173\u952e\u5185\u5bb9\u3002
- \u793a\u4f8b\uff1a
\u4efb\u52a1\uff1a\u603b\u7ed3\u6587\u7ae0\u5e76\u5f3a\u8c03\u5173\u952e\u6982\u5ff5\u3002 Prompt\uff1a
Text Only
```text\n \u8bf7\u603b\u7ed3\u4ee5\u4e0b\u6587\u7ae0\uff0c\u5e76**\u52a0\u7c97**\u6bcf\u4e2a\u8981\u70b9\u4e2d\u7684\u5173\u952e\u6982\u5ff5\uff0c\u4ee5 Markdown \u5217\u8868\u5f62\u5f0f\u8f93\u51fa\u3002\n ```\n\n **\u8f93\u51fa**\uff1a\n\n ```markdown\n - **\u8981\u70b9\u4e00**\uff1a\u673a\u5668\u5b66\u4e60\u662f\u901a\u8fc7\u6570\u636e\u8bad\u7ec3\u6a21\u578b\u7684**\u65b9\u6cd5**\u3002\n - **\u8981\u70b9\u4e8c**\uff1a\u6df1\u5ea6\u5b66\u4e60\u662f\u673a\u5668\u5b66\u4e60\u7684**\u5206\u652f**\uff0c\u4ee5\u591a\u5c42\u795e\u7ecf\u7f51\u7edc\u4e3a\u6838\u5fc3\u3002\n ```\n
"},{"location":"Technology/AI%20usage/#14","title":"1.4 \u5b9e\u7528\u6848\u4f8b","text":""},{"location":"Technology/AI%20usage/#141","title":"1.4.1 \u5e38\u89c1\u573a\u666f\u4e0e\u89e3\u51b3\u65b9\u6848","text":""},{"location":"Technology/AI%20usage/#1411","title":"1.4.1.1 \u751f\u6210\u957f\u7bc7\u7684\u6587\u7ae0","text":"
- \u9010\u6b65\u751f\u6210\u957f\u6587\u5185\u5bb9
- \u65b9\u6cd5\uff1a\u5148\u751f\u6210\u76ee\u5f55\uff0c\u518d\u9010\u90e8\u5206\u6269\u5c55\u5185\u5bb9\u3002
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u8bf7\u4e3a\u4ee5\u4e0b\u4e3b\u9898\u751f\u6210\u4e00\u4efd\u8be6\u7ec6\u7684\u6587\u7ae0\u76ee\u5f55\uff0c\u7136\u540e\u57fa\u4e8e\u76ee\u5f55\u9010\u6bb5\u6269\u5c55\u5185\u5bb9\uff1a\n\u4e3b\u9898\uff1a\u5982\u4f55\u4f18\u5316\u4e2a\u4eba\u65f6\u95f4\u7ba1\u7406\n
\u8f93\u51fa\u76ee\u5f55\u793a\u4f8b\uff1a
Markdown- \u7b2c\u4e00\u90e8\u5206\uff1a\u65f6\u95f4\u7ba1\u7406\u7684\u91cd\u8981\u6027\n- \u7b2c\u4e8c\u90e8\u5206\uff1a\u5e38\u89c1\u65f6\u95f4\u7ba1\u7406\u8bef\u533a\n- \u7b2c\u4e09\u90e8\u5206\uff1a\u9ad8\u6548\u65f6\u95f4\u7ba1\u7406\u7684\u65b9\u6cd5\n - 1. \u8bbe\u5b9a\u76ee\u6807\u4e0e\u4f18\u5148\u7ea7\n - 2. \u4f7f\u7528\u5de5\u5177\u4e0e\u6280\u672f\n - 3. \u57f9\u517b\u65f6\u95f4\u7ba1\u7406\u4e60\u60ef\n- \u7b2c\u56db\u90e8\u5206\uff1a\u6848\u4f8b\u5206\u6790\u4e0e\u5e94\u7528\n
\u6269\u5c55\u5185\u5bb9 Prompt\uff1a
Text Only\u8bf7\u8be6\u7ec6\u64b0\u5199\u7b2c\u4e00\u90e8\u5206\u201c\u65f6\u95f4\u7ba1\u7406\u7684\u91cd\u8981\u6027\u201d\u7684\u5185\u5bb9\uff0c\u63a7\u5236\u5728 300 \u5b57\u5de6\u53f3\u3002\n
- \u5728\u751f\u6210\u65f6\u6dfb\u52a0\u5f15\u7528\u6587\u732e
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u8bf7\u4e3a\u4ee5\u4e0b\u4e3b\u9898\u751f\u6210\u4e00\u7bc7 500 \u5b57\u7684\u6587\u7ae0\uff0c\u5e76\u5728\u6587\u7ae0\u672b\u5c3e\u9644\u4e0a\u76f8\u5173\u53c2\u8003\u6587\u732e\uff1a\n\u4e3b\u9898\uff1a\u4eba\u5de5\u667a\u80fd\u5982\u4f55\u6539\u53d8\u6559\u80b2\u884c\u4e1a\n
\u8f93\u51fa\uff1a
Markdown### \u4eba\u5de5\u667a\u80fd\u5982\u4f55\u6539\u53d8\u6559\u80b2\u884c\u4e1a\n\uff08\u6587\u7ae0\u5185\u5bb9\uff09\n#### \u53c2\u8003\u6587\u732e\n- \u674e\u56db\uff0c\u300a\u4eba\u5de5\u667a\u80fd\u4e0e\u6559\u80b2\u300b\uff0c2023\u5e74\u51fa\u7248\u3002\n- OpenAI\uff0c\u300aAI\u5728\u6559\u80b2\u9886\u57df\u7684\u5e94\u7528\u300b\uff0c2021\u5e74\u3002\n
"},{"location":"Technology/AI%20usage/#1412","title":"1.4.1.2 \u89e3\u91ca\u4ee3\u7801\u5e76\u751f\u6210\u8f85\u52a9\u56fe\u8868","text":"
- \u751f\u6210\u4ee3\u7801\u89e3\u91ca
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u4ee5\u4e0b\u662f Python \u4ee3\u7801\u7247\u6bb5\uff0c\u8bf7\u89e3\u91ca\u5176\u4f5c\u7528\uff1a\n```python\nnested_dict = lambda: defaultdict(nested_dict)\n
Text Only**\u8f93\u51fa**\uff1a\n```text\n\u6b64\u4ee3\u7801\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5d4c\u5957\u5b57\u5178\u7684\u9012\u5f52\u7ed3\u6784\uff0c\u53ef\u4ee5\u52a8\u6001\u521b\u5efa\u4efb\u610f\u6df1\u5ea6\u7684\u5b57\u5178\u5c42\u7ea7\u3002\n\u793a\u4f8b\u7528\u6cd5\uff1a\ndata = nested_dict()\ndata['level1']['level2'] = \"value\"\n
- \u751f\u6210\u8f85\u52a9\u56fe\u8868
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u8bf7\u6839\u636e\u4ee5\u4e0b\u63cf\u8ff0\u751f\u6210\u4e00\u6bb5 mermaid \u683c\u5f0f\u7684\u4ee3\u7801\uff0c\u7528\u4e8e\u5c55\u793a\u51fd\u6570\u8c03\u7528\u5173\u7cfb\uff1a\n\u63cf\u8ff0\uff1a\u51fd\u6570 A \u8c03\u7528\u51fd\u6570 B\uff0c\u51fd\u6570 B \u8c03\u7528\u51fd\u6570 C \u548c D\uff0c\u51fd\u6570 D \u8fd4\u56de\u7ed3\u679c\u3002\n
\u8f93\u51fa\uff1a
Text Onlygraph TD\nA --> B\nB --> C\nB --> D\nD --> Result\n
"},{"location":"Technology/AI%20usage/#142-prompt","title":"1.4.2 Prompt \u7684\u9650\u5236\u4e0e\u5e94\u5bf9\u7b56\u7565","text":""},{"location":"Technology/AI%20usage/#1421","title":"1.4.2.1 \u8bbe\u8ba1\u62d2\u7b54\u7b56\u7565\u63d0\u5347\u53ef\u9760\u6027","text":"
- \u907f\u514d\u5e7b\u89c9\u73b0\u8c61
-
\u63d0\u793a\u6a21\u578b\u4e0d\u8981\u56de\u7b54\u5176\u65e0\u6cd5\u786e\u5b9a\u7684\u5185\u5bb9\u3002 \u793a\u4f8b\uff1a
Text Only\u5982\u679c\u4f60\u4e0d\u77e5\u9053\u4ee5\u4e0b\u95ee\u9898\u7684\u7b54\u6848\uff0c\u8bf7\u56de\u590d\u201c\u4fe1\u606f\u4e0d\u8db3\u201d\u3002\n\u95ee\u9898\uff1a\u8c01\u662f\u7b2c\u4e00\u4e2a\u767b\u4e0a\u6708\u7403\u7684\u673a\u5668\u4eba\uff1f\n
\u8f93\u51fa\uff1a
Text Only\u4fe1\u606f\u4e0d\u8db3\u3002\n
- \u591a\u6b21\u751f\u6210\u4ee5\u786e\u8ba4\u7b54\u6848\u4e00\u81f4\u6027
"},{"location":"Technology/AI%20usage/#1422-ai","title":"1.4.2.2 \u591a\u4e2a AI \u534f\u4f5c","text":"
- \u6846\u67b6\u4e0e\u5185\u5bb9\u534f\u4f5c
-
\u901a\u8fc7\u4e0d\u540c\u6a21\u578b\u534f\u4f5c\u4f18\u5316\u5185\u5bb9\u751f\u6210\u3002 \u793a\u4f8b\u6d41\u7a0b\uff1a
- Prompt 1\uff1a\u8ba9 ChatGPT \u63d0\u4f9b\u6587\u7ae0\u6846\u67b6\u3002
Text Only\u8bf7\u4e3a\u4ee5\u4e0b\u4e3b\u9898\u751f\u6210\u8be6\u7ec6\u7684\u6587\u7ae0\u6846\u67b6\uff1a\n\u4e3b\u9898\uff1a\u5982\u4f55\u63d0\u5347\u56e2\u961f\u5408\u4f5c\u6548\u7387\n
- Prompt 2\uff1a\u5c06\u6846\u67b6\u5185\u5bb9\u4ea4\u7ed9\u53e6\u4e00\u4e2a\u6a21\u578b\u4f18\u5316\u8868\u8fbe\u3002
Text Only\u8bf7\u6839\u636e\u4ee5\u4e0b\u6846\u67b6\u64b0\u5199\u8be6\u7ec6\u5185\u5bb9\uff0c\u5e76\u8c03\u6574\u4e3a\u66f4\u4e13\u4e1a\u7684\u8bed\u8a00\u3002\n
- Prompt 3\uff1a\u4f7f\u7528\u53e6\u4e00\u4e2a\u5de5\u5177\uff08\u5982 Grammarly \u6216\u5176\u4ed6 AI\uff09\u6821\u5bf9\u548c\u4f18\u5316\u8bed\u8a00\u98ce\u683c\u3002
- \u4ee3\u7801\u4f18\u5316\u534f\u4f5c
Text Only
\u8bf7\u4f18\u5316\u4ee5\u4e0b\u4ee3\u7801\uff0c\u4f7f\u5176\u8fd0\u884c\u6548\u7387\u66f4\u9ad8\uff0c\u5e76\u63d0\u4f9b\u6ce8\u91ca\u8bf4\u660e\uff1a\n ```python\n def factorial(n):\n if n == 0:\n return 1\n else:\n return n * factorial(n-1)\n ```\n
"},{"location":"Technology/AI%20usage/#15","title":"1.5 \u6211\u66fe\u7ecf\u7528\u6cd5","text":"
- \u8f93\u51fa\u6587\u6863\uff1a\u901a\u8fc7 Markdown \u6216 LaTeX \u751f\u6210\u683c\u5f0f\u5316\u6587\u6863\u3002
- \u751f\u6210 README\uff1a\u8ba9 AI \u9605\u8bfb\u4ee3\u7801\u5e76\u64b0\u5199\u8bf4\u660e\u3002
- \u5f15\u7528\u6587\u732e\u5199\u8bba\u6587\uff1a\u5229\u7528 AI \u4e0a\u7f51\u67e5\u8be2\u8d44\u6599\uff0c\u63d0\u9ad8\u5b66\u672f\u5185\u5bb9\u8d28\u91cf\u3002
"},{"location":"Technology/AI%20usage/#2-prompt","title":"2 \u5e38\u7528\u7684 Prompt","text":"
\u8bf7\u53c2\u8003 \u5e38\u7528 prompt \u8bb0\u5f55 - wnc \u7684\u5496\u5561\u9986
"},{"location":"Technology/CMake/","title":"CMake \u76f8\u5173","text":"
\u7ea6 161 \u4e2a\u5b57 13 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
"},{"location":"Technology/CMake/#1","title":"1 \u6784\u5efa\u6700\u5c0f\u9879\u76ee","text":"
- CMake \u652f\u6301\u5927\u5199\u3001\u5c0f\u5199\u548c\u6df7\u5408\u5927\u5c0f\u5199\u547d\u4ee4\u3001
Text Only
mkdir build\ncd build\ncmake -G\"MinGW Makefiles\" ..\ncmake --build .\n
\u4e4b\u540e\u4f1a\u751f\u6210\u53ef\u6267\u884c\u6587\u4ef6
Text Only
step1/\n build/\n CMakeLists.txt\n tutorial.cpp\n
"},{"location":"Technology/CMake/#2-cmakelists-txt","title":"2 \u4f18\u5316 CMakeLists. txt \u6587\u4ef6","text":"CMake
cmake_minimum_required(VERSION 3.15)\n\n# set the project name\nproject(Tutorial)\n\nSET(SRC_LIST tutorial.cpp)\n\n# add the executable\nadd_executable(${PROJECT_NAME} ${SRC_LIST})\n
1.0.2 \u5206\u522b\u5bf9\u5e94 MAJOR MINOR PATCH
- set \u548c PROJECT_NAME
- \u6dfb\u52a0\u7248\u672c\u53f7\u548c\u914d\u7f6e\u5934\u6587\u4ef6
- \u6dfb\u52a0\u7f16\u8bd1\u65f6\u95f4\u6233
- \u6307\u5b9a C++\u6807\u51c6
- \u6dfb\u52a0\u5e93\uff08\u6dfb\u52a0\u5e93\u7684\u4f4d\u7f6e\uff0c\u5e93\u6587\u4ef6\u540d\uff0c\u5934\u6587\u4ef6\u540d\uff09
- \u5c06\u5e93\u8bbe\u7f6e\u4e3a\u53ef\u9009\u9879\uff08\u5206\u7ecf\u5178\u548c\u73b0\u4ee3\uff09
- \u6dfb\u52a0\u5e93\u7684\u4f7f\u7528\u8981\u6c42
- INTERFACE
- PRIVATE
- PUBLIC
- \u9759\u6001\u94fe\u63a5\u5e93/\u52a8\u6001\u94fe\u63a5\u5e93
- build \u76ee\u5f55\u4ecb\u7ecd
"},{"location":"Technology/CMake/#links","title":"links","text":"
- Site Unreachable
- IPADS\u65b0\u4eba\u57f9\u8bad\u7b2c\u4e8c\u8bb2\uff1aCMake_\u54d4\u54e9\u54d4\u54e9_bilibili
"},{"location":"Technology/Makeflie/","title":"Makeflie","text":"
\u7ea6 220 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
"},{"location":"Technology/Makeflie/#make","title":"Make \u57fa\u7840","text":""},{"location":"Technology/Makeflie/#make_1","title":"\u4ec0\u4e48\u662f Make","text":"
Make \u662f\u4e00\u4e2a\u81ea\u52a8\u5316\u6784\u5efa\u5de5\u5177\uff0c\u4f7f\u7528 Makefile \u6587\u4ef6\u6765\u5b9a\u4e49\u5982\u4f55\u7f16\u8bd1\u548c\u94fe\u63a5\u7a0b\u5e8f\u3002\u5b83\u901a\u8fc7\u68c0\u67e5\u6587\u4ef6\u7684\u65f6\u95f4\u6233\u6765\u51b3\u5b9a\u54ea\u4e9b\u6587\u4ef6\u9700\u8981\u91cd\u65b0\u7f16\u8bd1\u3002
"},{"location":"Technology/Makeflie/#makefile","title":"Makefile \u7684\u57fa\u672c\u7ed3\u6784","text":"
Makefile \u7684\u57fa\u672c\u7ed3\u6784\u7531\u76ee\u6807\u3001\u4f9d\u8d56\u548c\u547d\u4ee4\u7ec4\u6210\uff0c\u901a\u5e38\u5f62\u5f0f\u4e3a\uff1a
Text Only
target: dependencies \n command\n
"},{"location":"Technology/Makeflie/#makefile_1","title":"Makefile \u793a\u4f8b","text":"
\u8ba9\u6211\u4eec\u8003\u8651\u4e00\u4e2a\u7b80\u5355\u7684 C \u8bed\u8a00\u9879\u76ee\uff0c\u8be5\u793a\u4f8b\u5c06\u5c55\u793a\u5982\u4f55\u4f7f\u7528 Makefile \u6765\u7f16\u8bd1\u4e00\u4e2a\u5177\u6709\u591a\u4e2a\u6e90\u6587\u4ef6\u548c\u5934\u6587\u4ef6\u7684\u7a0b\u5e8f\uff0c\u5e76\u5c55\u793a Makefile \u76f8\u6bd4\u624b\u52a8\u547d\u4ee4\u884c\u7f16\u8bd1\u7684\u4f18\u52bf\u3002 \u7f16\u8bd1\u8fdb\u9636 - HPC\u5165\u95e8\u6307\u5357
"},{"location":"Technology/Makeflie/#make_2","title":"Make \u7684\u5e38\u7528\u547d\u4ee4","text":"
make
\uff1a\u6267\u884c\u9ed8\u8ba4\u76ee\u6807\uff0c\u4e0emake all
\u7b49\u6548\u3002 make <target>
\uff1a\u6267\u884c\u5b9a\u4e49\u7684<target>
\u76ee\u6807\uff0c\u5982\u679c\u6ca1\u6709\u8fd9\u4e2a\u76ee\u6807\u5c06\u8fd4\u56de\u9519\u8bef\u4fe1\u606f\u3002 make -j
\uff1a\u5e76\u884c\u6267\u884c\u6784\u5efa\uff0c\u4f7f\u7528\u672c\u673a\u7684\u5168\u90e8\u7ebf\u7a0b
"},{"location":"Technology/SSH/","title":"SSH\u914d\u7f6e\u6307\u5357","text":"
\u7ea6 641 \u4e2a\u5b57 195 \u884c\u4ee3\u7801 1 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
"},{"location":"Technology/SSH/#ssh_1","title":"\u4e00\u3001SSH\u57fa\u7840\u6982\u5ff5","text":""},{"location":"Technology/SSH/#1-ssh","title":"1. SSH\u5de5\u4f5c\u539f\u7406","text":"
SSH(Secure Shell)\u662f\u4e00\u79cd\u52a0\u5bc6\u7684\u7f51\u7edc\u534f\u8bae\uff0c\u901a\u8fc7\u5728\u4e0d\u5b89\u5168\u7684\u7f51\u7edc\u4e0a\u4e3a\u7f51\u7edc\u670d\u52a1\u63d0\u4f9b\u5b89\u5168\u7684\u4f20\u8f93\u73af\u5883\u3002SSH\u901a\u8fc7\u4f7f\u7528\u52a0\u5bc6\u6280\u672f\uff0c\u80fd\u591f\u6709\u6548\u9632\u6b62\u4e2d\u95f4\u4eba\u653b\u51fb\uff0c\u4fdd\u62a4\u6570\u636e\u4f20\u8f93\u7684\u5b89\u5168\u3002
SSH\u5de5\u4f5c\u6d41\u7a0b\uff1a 1. TCP\u8fde\u63a5\u5efa\u7acb\uff1a\u5ba2\u6237\u7aef\u548c\u670d\u52a1\u5668\u5efa\u7acbTCP\u8fde\u63a5\uff08\u9ed8\u8ba4\u7aef\u53e322\uff09 2. \u7248\u672c\u534f\u5546\uff1a\u53cc\u65b9\u4ea4\u6362\u7248\u672c\u4fe1\u606f\uff0c\u786e\u5b9a\u4f7f\u7528\u7684SSH\u534f\u8bae\u7248\u672c 3. \u5bc6\u94a5\u4ea4\u6362\uff1a\u4f7f\u7528Diffie-Hellman\u7b97\u6cd5\u4ea4\u6362\u4f1a\u8bdd\u5bc6\u94a5 4. \u8ba4\u8bc1\uff1a\u4f7f\u7528\u516c\u94a5\u6216\u5bc6\u7801\u8fdb\u884c\u8eab\u4efd\u9a8c\u8bc1 5. \u4f1a\u8bdd\uff1a\u5efa\u7acb\u52a0\u5bc6\u901a\u4fe1\u901a\u9053
"},{"location":"Technology/SSH/#2","title":"2. \u8ba4\u8bc1\u65b9\u5f0f\u8be6\u89e3","text":""},{"location":"Technology/SSH/#21","title":"2.1 \u5bc6\u7801\u8ba4\u8bc1","text":"
- \u6700\u7b80\u5355\u4f46\u6700\u4e0d\u5b89\u5168\u7684\u8ba4\u8bc1\u65b9\u5f0f
- \u5bb9\u6613\u53d7\u5230\u66b4\u529b\u7834\u89e3\u653b\u51fb
- \u4e0d\u63a8\u8350\u5728\u751f\u4ea7\u73af\u5883\u4e2d\u4f7f\u7528
"},{"location":"Technology/SSH/#22","title":"2.2 \u516c\u94a5\u8ba4\u8bc1","text":"
\u8ba4\u8bc1\u6d41\u7a0b 1. \u5ba2\u6237\u7aef\u53d1\u9001\u516c\u94a5\u4fe1\u606f\u7ed9\u670d\u52a1\u5668 2. \u670d\u52a1\u5668\u68c0\u67e5authorized_keys\u6587\u4ef6 3. \u670d\u52a1\u5668\u751f\u6210\u968f\u673a\u5b57\u7b26\u4e32\uff0c\u7528\u516c\u94a5\u52a0\u5bc6\u540e\u53d1\u9001\u7ed9\u5ba2\u6237\u7aef 4. \u5ba2\u6237\u7aef\u7528\u79c1\u94a5\u89e3\u5bc6\uff0c\u5c06\u7ed3\u679c\u8fd4\u56de\u670d\u52a1\u5668 5. \u670d\u52a1\u5668\u9a8c\u8bc1\u7ed3\u679c\uff0c\u5b8c\u6210\u8ba4\u8bc1
"},{"location":"Technology/SSH/#3","title":"3. \u5b89\u5168\u5efa\u8bae","text":""},{"location":"Technology/SSH/#31","title":"3.1 \u57fa\u672c\u5b89\u5168\u8bbe\u7f6e","text":"Bash
# /etc/ssh/sshd_config \u5b89\u5168\u914d\u7f6e\nPermitRootLogin no # \u7981\u6b62root\u76f4\u63a5\u767b\u5f55\nPasswordAuthentication no # \u7981\u7528\u5bc6\u7801\u8ba4\u8bc1\nPubkeyAuthentication yes # \u542f\u7528\u516c\u94a5\u8ba4\u8bc1\nPermitEmptyPasswords no # \u7981\u6b62\u7a7a\u5bc6\u7801\nProtocol 2 # \u53ea\u4f7f\u7528SSH2\u534f\u8bae\nMaxAuthTries 3 # \u6700\u5927\u8ba4\u8bc1\u5c1d\u8bd5\u6b21\u6570\nLoginGraceTime 30 # \u767b\u5f55\u8d85\u65f6\u65f6\u95f4\nX11Forwarding no # \u7981\u7528X11\u8f6c\u53d1\uff08\u9664\u975e\u9700\u8981\uff09\nAllowUsers user1 user2 # \u9650\u5236\u5141\u8bb8\u767b\u5f55\u7684\u7528\u6237\n
"},{"location":"Technology/SSH/#32","title":"3.2 \u5bc6\u94a5\u7ba1\u7406","text":"Bash
# \u751f\u6210\u5f3a\u5bc6\u94a5\nssh-keygen -t ed25519 -C \"your_email@example.com\" -a 100\n\n# \u5bc6\u94a5\u6743\u9650\u8bbe\u7f6e\nchmod 700 ~/.ssh\nchmod 600 ~/.ssh/id_ed25519\nchmod 644 ~/.ssh/id_ed25519.pub\nchmod 600 ~/.ssh/authorized_keys\nchmod 600 ~/.ssh/known_hosts\n
"},{"location":"Technology/SSH/#ssh_2","title":"\u5e38\u7528\u7684 SSH \u547d\u4ee4","text":"
SSH \u6559\u7a0b \u83dc\u9e1f\u6559\u7a0b
"},{"location":"Technology/SSH/#_1","title":"\u4e8c\u3001\u5b8c\u6574\u914d\u7f6e\u6307\u5357","text":""},{"location":"Technology/SSH/#1-linux","title":"1. Linux\u670d\u52a1\u5668\u914d\u7f6e","text":"Bash
# 1. \u5b89\u88c5SSH\u670d\u52a1\u5668\nsudo apt update\nsudo apt install openssh-server\n\n# 2. \u914d\u7f6eSSH\u670d\u52a1\nsudo nano /etc/ssh/sshd_config\n\n# 3. \u57fa\u672c\u5b89\u5168\u914d\u7f6e\nPort 22 # \u53ef\u4ee5\u4fee\u6539\u4e3a\u975e\u6807\u51c6\u7aef\u53e3\nListenAddress 0.0.0.0 # \u76d1\u542c\u5730\u5740\nProtocol 2\nPermitRootLogin no\nPasswordAuthentication no\nPubkeyAuthentication yes\nAuthorizedKeysFile .ssh/authorized_keys\nUsePAM yes\nX11Forwarding no\nPrintMotd no\nAcceptEnv LANG LC_*\nSubsystem sftp /usr/lib/openssh/sftp-server\n\n# 4. \u91cd\u542fSSH\u670d\u52a1\nsudo systemctl restart sshd\n\n# 5. \u68c0\u67e5\u670d\u52a1\u72b6\u6001\nsudo systemctl status sshd\n
"},{"location":"Technology/SSH/#2-windows-ssh","title":"2. Windows SSH\u914d\u7f6e","text":""},{"location":"Technology/SSH/#21-openssh","title":"2.1 \u5b89\u88c5OpenSSH","text":"
PowerShell
# \u4f7f\u7528PowerShell\u5b89\u88c5OpenSSH\n# \u68c0\u67e5OpenSSH\u72b6\u6001\nGet-WindowsCapability -Online | Where-Object Name -like 'OpenSSH*'\n\n# \u5b89\u88c5\u5ba2\u6237\u7aef\u548c\u670d\u52a1\u5668\nAdd-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0\nAdd-WindowsCapability -Online -Name OpenSSH.Server~~~~0.0.1.0\n\n# \u542f\u52a8SSH\u670d\u52a1\nStart-Service sshd\nSet-Service -Name sshd -StartupType 'Automatic'\n
\u5982\u679c\u6709\u7f51\u7edc\u95ee\u9898\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u5b89\u88c5 OpenSSH \u7684\u79bb\u7ebf\u5b89\u88c5\u5305\uff1a
- \u60a8\u53ef\u4ee5\u5c1d\u8bd5\u4ece GitHub \u4e0a\u4e0b\u8f7d OpenSSH \u7684\u79bb\u7ebf\u5b89\u88c5\u5305\uff0c\u5e76\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u8fdb\u884c\u5b89\u88c5\uff1a
- \u8bbf\u95ee GitHub \u4e0a\u7684 Win32-OpenSSH \u53d1\u5e03\u9875\u9762\uff1aWin32-OpenSSH Releases
- \u4e0b\u8f7d\u9002\u7528\u4e8e\u60a8\u7684\u7cfb\u7edf\u7684\u5b89\u88c5\u5305\uff08Win32 \u6216 Win64\uff09\u3002
- \u89e3\u538b\u4e0b\u8f7d\u7684\u6587\u4ef6\u5230\u4e00\u4e2a\u76ee\u5f55\u3002
- \u4ee5\u7ba1\u7406\u5458\u6743\u9650\u6253\u5f00\u547d\u4ee4\u63d0\u793a\u7b26\uff08cmd\uff09\uff0c\u5e76\u5bfc\u822a\u5230\u89e3\u538b\u7684\u76ee\u5f55\u3002
- \u8fd0\u884c\u00a0
powershell.exe -ExecutionPolicy Bypass -File install-sshd.ps1
\u00a0\u6765\u5b89\u88c5 OpenSSH \u670d\u52a1\u3002
"},{"location":"Technology/SSH/#22-windows-ssh","title":"2.2 \u914d\u7f6eWindows SSH\u670d\u52a1","text":"PowerShell
# \u7f16\u8f91SSH\u914d\u7f6e\u6587\u4ef6\nnotepad \"$env:ProgramData\\ssh\\sshd_config\"\n\n# \u57fa\u672c\u914d\u7f6e\u5185\u5bb9\u4e0eLinux\u7c7b\u4f3c\uff0c\u4f46\u8def\u5f84\u9700\u8981\u8c03\u6574\nPubkeyAuthentication yes\nPasswordAuthentication no\nSubsystem sftp sftp-server.exe\n
"},{"location":"Technology/SSH/#3-ssh","title":"3. SSH\u5ba2\u6237\u7aef\u914d\u7f6e","text":""},{"location":"Technology/SSH/#31-ssh","title":"3.1 \u521b\u5efaSSH\u914d\u7f6e\u6587\u4ef6","text":"Bash
# ~/.ssh/config\n# \u5168\u5c40\u8bbe\u7f6e\nHost *\n ServerAliveInterval 60\n ServerAliveCountMax 3\n HashKnownHosts yes\n GSSAPIAuthentication no\n\n# GitHub\nHost github.com\n HostName github.com\n User git\n IdentityFile ~/.ssh/github_ed25519\n AddKeysToAgent yes\n\n# \u5f00\u53d1\u670d\u52a1\u5668\nHost dev\n HostName dev.example.com\n User developer\n Port 22\n IdentityFile ~/.ssh/dev_ed25519\n ForwardAgent yes\n\n# \u751f\u4ea7\u670d\u52a1\u5668\nHost prod\n HostName prod.example.com\n User deployer\n Port 22\n IdentityFile ~/.ssh/prod_ed25519\n ForwardAgent no\n
"},{"location":"Technology/SSH/#_2","title":"\u4e09\u3001\u5177\u4f53\u5b9e\u8df5\uff0c\u7528\u7b14\u8bb0\u672c\u8fde\u53f0\u5f0f\u673a","text":""},{"location":"Technology/SSH/#_3","title":"\u53f0\u5f0f\u7535\u8111\uff08\u670d\u52a1\u7aef\uff09\u914d\u7f6e\uff1a","text":"
- \u5b89\u88c5\u5e76\u542f\u52a8SSH\u670d\u52a1:
Bash
# Ubuntu/Debian\u7cfb\u7edf\nsudo apt install openssh-server\nsudo systemctl enable ssh\nsudo systemctl start ssh\n\n# \u68c0\u67e5SSH\u670d\u52a1\u72b6\u6001\nsudo systemctl status ssh\n
- \u914d\u7f6eSSH\u670d\u52a1:
Bash
# \u7f16\u8f91SSH\u670d\u52a1\u5668\u914d\u7f6e\nsudo nano /etc/ssh/sshd_config\n\n# \u6dfb\u52a0\u6216\u4fee\u6539\u4ee5\u4e0b\u914d\u7f6e\nPermitRootLogin no\nPasswordAuthentication no\nPubkeyAuthentication yes\nAllowUsers your_username # \u66ff\u6362\u4e3a\u60a8\u7684\u7528\u6237\u540d\n
- \u8bbe\u7f6e\u56fa\u5b9aIP\u6216\u52a8\u6001DNS:
Bash
# \u67e5\u770b\u5f53\u524dIP\nip addr show\n\n# \u5982\u679c\u662f\u52a8\u6001IP\uff0c\u5efa\u8bae\u8bbe\u7f6e\u9759\u6001IP\u6216\u4f7f\u7528\u52a8\u6001DNS\u670d\u52a1\n
"},{"location":"Technology/SSH/#_4","title":"\u7b14\u8bb0\u672c\uff08\u5ba2\u6237\u7aef\uff09\u914d\u7f6e\uff1a","text":"
- \u751f\u6210SSH\u5bc6\u94a5\u5bf9\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09:
Bash
ssh-keygen -t ed25519 -C \"your_laptop\"\n
- \u5c06\u516c\u94a5\u590d\u5236\u5230\u53f0\u5f0f\u673a:
Bash
# \u65b9\u6cd51\uff1a\u4f7f\u7528ssh-copy-id\nssh-copy-id -i ~/.ssh/id_ed25519.pub username@desktop_ip\n\n# \u65b9\u6cd52\uff1a\u624b\u52a8\u590d\u5236\ncat ~/.ssh/id_ed25519.pub | ssh username@desktop_ip \"mkdir -p ~/.ssh && cat >> ~/.ssh/authorized_keys\"\n
- \u914d\u7f6eSSH\u5ba2\u6237\u7aef:
Bash
# \u7f16\u8f91 ~/.ssh/config\nnano ~/.ssh/config\n\n# \u6dfb\u52a0\u4ee5\u4e0b\u914d\u7f6e\nHost desktop\n HostName 192.168.1.xxx # \u66ff\u6362\u4e3a\u53f0\u5f0f\u673a\u7684IP\n User your_username # \u66ff\u6362\u4e3a\u60a8\u7684\u7528\u6237\u540d\n Port 22\n IdentityFile ~/.ssh/id_ed25519\n ForwardX11 yes # \u5982\u679c\u9700\u8981\u56fe\u5f62\u754c\u9762\u8f6c\u53d1\n ForwardAgent yes\n Compression yes\n ServerAliveInterval 60\n
"},{"location":"Technology/SSH/#_5","title":"\u5e38\u7528\u8fde\u63a5\u547d\u4ee4\uff1a","text":"
- \u57fa\u672c\u8fde\u63a5:
Bash
# \u4ece\u7b14\u8bb0\u672c\u8fde\u63a5\u5230\u53f0\u5f0f\u673a\nssh desktop\n\n# \u4f7f\u7528\u56fe\u5f62\u754c\u9762\u8f6c\u53d1\nssh -X desktop\n
- \u6587\u4ef6\u4f20\u8f93:
Bash
# \u4ece\u7b14\u8bb0\u672c\u590d\u5236\u6587\u4ef6\u5230\u53f0\u5f0f\u673a\nscp /path/to/local/file desktop:/path/to/remote/\n\n# \u4ece\u53f0\u5f0f\u673a\u590d\u5236\u6587\u4ef6\u5230\u7b14\u8bb0\u672c\nscp desktop:/path/to/remote/file /path/to/local/\n
- \u7aef\u53e3\u8f6c\u53d1:
Bash
# \u672c\u5730\u7aef\u53e3\u8f6c\u53d1\nssh -L 8080:localhost:80 desktop\n\n# \u8fdc\u7a0b\u7aef\u53e3\u8f6c\u53d1\nssh -R 8080:localhost:80 desktop\n
"},{"location":"Technology/SSH/#_6","title":"\u56db\u3001\u9ad8\u7ea7\u64cd\u4f5c","text":""},{"location":"Technology/SSH/#1-ssh_1","title":"1. SSH\u7aef\u53e3\u8f6c\u53d1","text":""},{"location":"Technology/SSH/#11","title":"1.1 \u672c\u5730\u7aef\u53e3\u8f6c\u53d1","text":"Bash
# \u5c06\u672c\u57308080\u7aef\u53e3\u8f6c\u53d1\u5230\u8fdc\u7a0b80\u7aef\u53e3\nssh -L 8080:localhost:80 user@remote\n\n# \u4f7f\u7528\u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost tunnel\n HostName remote.example.com\n LocalForward 8080 localhost:80\n
"},{"location":"Technology/SSH/#12","title":"1.2 \u8fdc\u7a0b\u7aef\u53e3\u8f6c\u53d1","text":"Bash
# \u5c06\u8fdc\u7a0b3000\u7aef\u53e3\u8f6c\u53d1\u5230\u672c\u57303000\u7aef\u53e3\nssh -R 3000:localhost:3000 user@remote\n\n# \u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost remote-tunnel\n HostName remote.example.com\n RemoteForward 3000 localhost:3000\n
"},{"location":"Technology/SSH/#2-ssh","title":"2. SSH\u4ee3\u7406\u8f6c\u53d1","text":"Bash
# \u542f\u7528\u4ee3\u7406\u8f6c\u53d1\nssh -A user@remote\n\n# \u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost *\n ForwardAgent yes\n AddKeysToAgent yes\n
"},{"location":"Technology/SSH/#3_1","title":"3. \u8df3\u677f\u673a\u914d\u7f6e","text":"Bash
# \u901a\u8fc7\u8df3\u677f\u673a\u8fde\u63a5\nssh -J jumphost user@target\n\n# \u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost target\n HostName target.example.com\n ProxyJump jumphost\n
"},{"location":"Technology/SSH/#_7","title":"\u4e94\u3001\u6545\u969c\u6392\u67e5","text":""},{"location":"Technology/SSH/#1","title":"1. \u6700\u4f73\u5b9e\u8df5","text":"Bash
# 1. \u4f7f\u7528SSH\u914d\u7f6e\u6587\u4ef6\u7ba1\u7406\u8fde\u63a5\n# 2. \u4e3a\u4e0d\u540c\u7528\u9014\u4f7f\u7528\u4e0d\u540c\u7684\u5bc6\u94a5\n# 3. \u5b9a\u671f\u8f6e\u6362\u5bc6\u94a5\n# 4. \u4f7f\u7528ssh-agent\u7ba1\u7406\u5bc6\u94a5\n# 5. \u5907\u4efdSSH\u914d\u7f6e\u548c\u5bc6\u94a5\n
"},{"location":"Technology/SSH/#2_1","title":"2. \u5e38\u89c1\u95ee\u9898\u89e3\u51b3","text":"Bash
# \u8fde\u63a5\u88ab\u62d2\u7edd\nssh -v user@host # \u67e5\u770b\u8be6\u7ec6\u8fde\u63a5\u4fe1\u606f\n\n# \u6743\u9650\u95ee\u9898\nls -la ~/.ssh # \u68c0\u67e5\u6743\u9650\nchmod 600 ~/.ssh/id_ed25519\n\n# \u5bc6\u94a5\u95ee\u9898\nssh-add -l # \u67e5\u770b\u5df2\u52a0\u8f7d\u7684\u5bc6\u94a5\nssh-add ~/.ssh/id_ed25519 # \u6dfb\u52a0\u5bc6\u94a5\u5230agent\n
"},{"location":"Technology/SSH/#3_2","title":"3. \u65e5\u5fd7\u67e5\u770b","text":"Bash
# \u670d\u52a1\u5668\u7aef\nsudo tail -f /var/log/auth.log # Debian/Ubuntu\nsudo tail -f /var/log/secure # CentOS/RHEL\n\n# \u5ba2\u6237\u7aef\u8c03\u8bd5\nssh -vvv user@host # \u6700\u8be6\u7ec6\u7684\u8c03\u8bd5\u4fe1\u606f\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/","title":"Tabby + Zsh \u914d\u7f6e\u6307\u5357","text":"
\u7ea6 236 \u4e2a\u5b57 789 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 11 \u5206\u949f
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_1","title":"\u524d\u7f6e\u51c6\u5907","text":"
\u7cfb\u7edf\u8981\u6c42
Bash
# Ubuntu/Debian\nsudo apt update\nsudo apt install -y \\\n git \\\n curl \\\n wget \\\n build-essential \\\n cmake \\\n python3-pip \\\n pkg-config \\\n libssl-dev\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#zsh","title":"ZSH \u57fa\u7840\u914d\u7f6e","text":"
ZSH \u5b89\u88c5
Bash
# \u5b89\u88c5zsh\nsudo apt install zsh\n\n# \u8bbe\u7f6e\u4e3a\u9ed8\u8ba4shell\nchsh -s $(which zsh)\n\n# \u786e\u8ba4\u8bbe\u7f6e\necho $SHELL\n# \u5e94\u8be5\u8f93\u51fa: /usr/bin/zsh\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#1-oh-my-zsh","title":"1. Oh My Zsh \u5b89\u88c5","text":"Bash
# \u5b89\u88c5Oh My Zsh\nsh -c \"$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)\"\n\n# \u5907\u4efd\u9ed8\u8ba4\u914d\u7f6e\ncp ~/.zshrc ~/.zshrc.backup\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2","title":"2. \u63d2\u4ef6\u7ba1\u7406\u5668\u5b89\u88c5","text":"Bash
# \u5b89\u88c5zinit\nbash -c \"$(curl --fail --show-error --silent --location https://raw.githubusercontent.com/zdharma-continuum/zinit/HEAD/scripts/install.sh)\"\n\n# \u7b49\u5f85\u5b89\u88c5\u5b8c\u6210\u540e\u91cd\u542f\u7ec8\u7aef\nexec zsh\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3","title":"3. \u57fa\u7840\u914d\u7f6e\u6587\u4ef6","text":"Bash
# \u521b\u5efa\u65b0\u7684\u914d\u7f6e\u6587\u4ef6\ncat << 'EOF' > ~/.zshrc\n# \u57fa\u7840\u8bbe\u7f6e\nexport ZSH=\"$HOME/.oh-my-zsh\"\nexport LANG=en_US.UTF-8\nexport EDITOR='nvim'\nexport VISUAL='nvim'\n\n# zinit\u914d\u7f6e\nsource \"$HOME/.local/share/zinit/zinit.git/zinit.zsh\"\nautoload -Uz _zinit\n(( ${+_comps} )) && _comps[zinit]=_zinit\n\n# \u52a0\u8f7d\u6838\u5fc3\u63d2\u4ef6\nzinit ice depth=1; zinit light romkatv/powerlevel10k # \u4e3b\u9898\nzinit light zsh-users/zsh-autosuggestions # \u547d\u4ee4\u5efa\u8bae\nzinit light zsh-users/zsh-syntax-highlighting # \u8bed\u6cd5\u9ad8\u4eae\nzinit light zsh-users/zsh-completions # \u8865\u5168\u589e\u5f3a\nzinit light agkozak/zsh-z # \u76ee\u5f55\u8df3\u8f6c\n\n# \u5386\u53f2\u8bb0\u5f55\u8bbe\u7f6e\nHISTFILE=\"$HOME/.zsh_history\"\nHISTSIZE=50000\nSAVEHIST=50000\nsetopt EXTENDED_HISTORY # \u8bb0\u5f55\u547d\u4ee4\u65f6\u95f4\u6233\nsetopt HIST_EXPIRE_DUPS_FIRST # \u4f18\u5148\u5220\u9664\u91cd\u590d\u547d\u4ee4\nsetopt HIST_IGNORE_DUPS # \u5ffd\u7565\u8fde\u7eed\u91cd\u590d\u547d\u4ee4\nsetopt HIST_IGNORE_SPACE # \u5ffd\u7565\u4ee5\u7a7a\u683c\u5f00\u5934\u7684\u547d\u4ee4\nsetopt HIST_VERIFY # \u6267\u884c\u5386\u53f2\u547d\u4ee4\u524d\u5c55\u793a\nsetopt INC_APPEND_HISTORY # \u5b9e\u65f6\u6dfb\u52a0\u5386\u53f2\u8bb0\u5f55\nsetopt SHARE_HISTORY # \u5171\u4eab\u5386\u53f2\u8bb0\u5f55\n\n# \u76ee\u5f55\u8bbe\u7f6e\nsetopt AUTO_CD \nsetopt AUTO_PUSHD \nsetopt PUSHD_IGNORE_DUPS \nsetopt PUSHD_MINUS \nDIRSTACKSIZE=20\n\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#4","title":"4. \u5b9e\u7528\u522b\u540d\u8bbe\u7f6e","text":"Bash
# \u6dfb\u52a0\u5230~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u57fa\u7840\u547d\u4ee4\u589e\u5f3a\nalias ls='ls --color=auto'\nalias ll='ls -lah'\nalias la='ls -A'\nalias l='ls -CF'\nalias grep='grep --color=auto'\nalias rm='rm -i'\nalias cp='cp -i'\nalias mv='mv -i'\nalias mkdir='mkdir -p'\nalias df='df -h'\nalias free='free -m'\nalias duf='du -sh *'\nalias ps='ps auxf'\nalias ping='ping -c 5'\nalias root='sudo -i'\nalias reboot='sudo reboot'\nalias poweroff='sudo poweroff'\n\n# Git\u5feb\u6377\u547d\u4ee4\nalias gs='git status'\nalias ga='git add'\nalias gaa='git add --all'\nalias gc='git commit -m'\nalias gp='git push'\nalias gl='git pull'\nalias gd='git diff'\nalias gco='git checkout'\nalias gb='git branch'\nalias gm='git merge'\nalias glog='git log --oneline --decorate --graph'\n\n# Docker\u5feb\u6377\u547d\u4ee4\nalias dk='docker'\nalias dkc='docker-compose'\nalias dkps='docker ps'\nalias dkst='docker stats'\nalias dktop='docker top'\nalias dkimg='docker images'\nalias dkpull='docker pull'\nalias dkex='docker exec -it'\n\n# \u5feb\u901f\u7f16\u8f91\nalias zshconfig=\"$EDITOR ~/.zshrc\"\nalias zshreload=\"source ~/.zshrc\"\nalias vimconfig=\"$EDITOR ~/.vimrc\"\nalias tmuxconfig=\"$EDITOR ~/.tmux.conf\"\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#5","title":"5. \u5b9e\u7528\u51fd\u6570","text":"Bash
# \u6dfb\u52a0\u5230~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u521b\u5efa\u5e76\u8fdb\u5165\u76ee\u5f55\nmkcd() {\n mkdir -p \"$1\" && cd \"$1\"\n}\n\n# \u63d0\u53d6\u538b\u7f29\u6587\u4ef6\nextract() {\n if [ -f $1 ]; then\n case $1 in\n *.tar.bz2) tar xjf $1 ;;\n *.tar.gz) tar xzf $1 ;;\n *.bz2) bunzip2 $1 ;;\n *.rar) unrar e $1 ;;\n *.gz) gunzip $1 ;;\n *.tar) tar xf $1 ;;\n *.tbz2) tar xjf $1 ;;\n *.tgz) tar xzf $1 ;;\n *.zip) unzip $1 ;;\n *.Z) uncompress $1 ;;\n *.7z) 7z x $1 ;;\n *) echo \"'$1' cannot be extracted\" ;;\n esac\n else\n echo \"'$1' is not a valid file\"\n fi\n}\n\n# \u5feb\u901f\u67e5\u627e\u6587\u4ef6\nff() { find . -type f -iname \"*$1*\" ; }\nfd() { find . -type d -iname \"*$1*\" ; }\n\n# \u5feb\u901f\u67e5\u770b\u8fdb\u7a0b\npsg() { ps aux | grep -v grep | grep -i -e VSZ -e \"$1\"; }\n\n# \u7f51\u7edc\u5de5\u5177\nmyip() {\n curl -s http://ipecho.net/plain\n echo\n}\n\n# \u5feb\u901fHTTP\u670d\u52a1\u5668\nserve() {\n local port=\"${1:-8000}\"\n python3 -m http.server \"$port\"\n}\n\n# Git\u65e5\u5fd7\u7f8e\u5316\ngll() {\n git log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit\n}\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_2","title":"\u4e3b\u9898\u7f8e\u5316\u4e0e\u63d2\u4ef6\u589e\u5f3a","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#powerlevel10k","title":"\u4e00\u3001Powerlevel10k \u4e3b\u9898\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1","title":"1. \u5b89\u88c5\u5fc5\u8981\u5b57\u4f53","text":"Bash
# \u521b\u5efa\u5b57\u4f53\u76ee\u5f55\nmkdir -p ~/.local/share/fonts\n\n# \u4e0b\u8f7d\u63a8\u8350\u5b57\u4f53\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Regular.ttf\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Bold.ttf\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Italic.ttf\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Bold%20Italic.ttf\n\n# \u79fb\u52a8\u5b57\u4f53\u6587\u4ef6\nmv /tmp/MesloLGS*.ttf ~/.local/share/fonts/\n\n# \u66f4\u65b0\u5b57\u4f53\u7f13\u5b58\nfc-cache -f -v\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2_1","title":"2. \u4e3b\u9898\u914d\u7f6e","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# Powerlevel10k \u914d\u7f6e\n# \u542f\u7528 Powerlevel10k \u5373\u65f6\u63d0\u793a\nif [[ -r \"${XDG_CACHE_HOME:-$HOME/.cache}/p10k-instant-prompt-${(%):-%n}.zsh\" ]]; then\n source \"${XDG_CACHE_HOME:-$HOME/.cache}/p10k-instant-prompt-${(%):-%n}.zsh\"\nfi\n\n# \u52a0\u8f7d\u4e3b\u9898\nsource ~/.oh-my-zsh/custom/themes/powerlevel10k/powerlevel10k.zsh-theme\n\n# \u4e3b\u9898\u4e2a\u6027\u5316\u8bbe\u7f6e\nPOWERLEVEL9K_MODE='nerdfont-complete'\nPOWERLEVEL9K_LEFT_PROMPT_ELEMENTS=(\n os_icon # \u64cd\u4f5c\u7cfb\u7edf\u56fe\u6807\n dir # \u5f53\u524d\u76ee\u5f55\n vcs # git\u72b6\u6001\n newline # \u6362\u884c\n prompt_char # \u63d0\u793a\u7b26\n)\nPOWERLEVEL9K_RIGHT_PROMPT_ELEMENTS=(\n status # \u4e0a\u4e00\u4e2a\u547d\u4ee4\u7684\u72b6\u6001\n background_jobs # \u540e\u53f0\u4efb\u52a1\n load # \u7cfb\u7edf\u8d1f\u8f7d\n ram # \u5185\u5b58\u4f7f\u7528\n time # \u65f6\u95f4\n)\n\n# \u76ee\u5f55\u663e\u793a\u8bbe\u7f6e\nPOWERLEVEL9K_DIR_BACKGROUND='blue'\nPOWERLEVEL9K_DIR_FOREGROUND='black'\nPOWERLEVEL9K_SHORTEN_DIR_LENGTH=2\nPOWERLEVEL9K_SHORTEN_STRATEGY=\"truncate_middle\"\n\n# Git\u72b6\u6001\u8bbe\u7f6e\nPOWERLEVEL9K_VCS_CLEAN_BACKGROUND='green'\nPOWERLEVEL9K_VCS_UNTRACKED_BACKGROUND='yellow'\nPOWERLEVEL9K_VCS_MODIFIED_BACKGROUND='red'\nEOF\n\n# \u8fd0\u884c\u914d\u7f6e\u5411\u5bfc\uff08\u9996\u6b21\u4f7f\u7528\uff09\np10k configure\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_3","title":"\u4e8c\u3001\u9ad8\u7ea7\u63d2\u4ef6\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_1","title":"1. \u9ad8\u7ea7\u8865\u5168\u7cfb\u7edf","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u8865\u5168\u7cfb\u7edf\u914d\u7f6e\nautoload -Uz compinit\ncompinit\n\n# \u8865\u5168\u83dc\u5355\u8bbe\u7f6e\nzstyle ':completion:*' menu select\nzstyle ':completion:*' matcher-list 'm:{a-zA-Z}={A-Za-z}' # \u5ffd\u7565\u5927\u5c0f\u5199\nzstyle ':completion:*' list-colors ${(s.:.)LS_COLORS} # \u8865\u5168\u83dc\u5355\u7740\u8272\nzstyle ':completion:*' verbose yes # \u8be6\u7ec6\u8865\u5168\u83dc\u5355\nzstyle ':completion:*:descriptions' format '%U%B%d%b%u' # \u8865\u5168\u83dc\u5355\u683c\u5f0f\nzstyle ':completion:*:warnings' format '%BSorry, no matches for: %d%b'\nzstyle ':completion:*:*:kill:*:processes' list-colors '=(#b) #([0-9]#)*=0=01;31'\nzstyle ':completion:*:kill:*' command 'ps -u $USER -o pid,%cpu,tty,cputime,cmd'\n\n# \u4f7f\u7528\u7f13\u5b58\u52a0\u901f\u8865\u5168\nzstyle ':completion:*' use-cache on\nzstyle ':completion:*' cache-path ~/.zsh/cache\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-fzf","title":"2. FZF \u96c6\u6210\u914d\u7f6e","text":"Bash
# \u5b89\u88c5FZF\ngit clone --depth 1 https://github.com/junegunn/fzf.git ~/.fzf\n~/.fzf/install\n\n# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# FZF \u914d\u7f6e\nexport FZF_DEFAULT_COMMAND='fd --type f --hidden --follow --exclude .git'\nexport FZF_DEFAULT_OPTS='--height 40% --layout=reverse --border --preview \"bat --style=numbers --color=always --line-range :500 {}\"'\n\n# FZF \u5feb\u6377\u952e\nbindkey '^T' fzf-file-widget\nbindkey '^R' fzf-history-widget\nbindkey '^[c' fzf-cd-widget\n\n# FZF \u51fd\u6570\n# \u5feb\u901f\u6253\u5f00\u6587\u4ef6\nfe() {\n local file\n file=$(fzf --query=\"$1\" --select-1 --exit-0)\n [ -n \"$file\" ] && ${EDITOR:-vim} \"$file\"\n}\n\n# \u5feb\u901f\u5207\u6362\u76ee\u5f55\nfd() {\n local dir\n dir=$(find ${1:-.} -path '*/\\.*' -prune -o -type d -print 2> /dev/null | fzf +m)\n [ -n \"$dir\" ] && cd \"$dir\"\n}\n\n# \u641c\u7d22\u5386\u53f2\u547d\u4ee4\nfh() {\n print -z $( ([ -n \"$ZSH_NAME\" ] && fc -l 1 || history) | fzf +s --tac | sed -E 's/ *[0-9]*\\*? *//' | sed -E 's/\\\\/\\\\\\\\/g')\n}\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3_1","title":"3. \u589e\u5f3a\u76ee\u5f55\u5bfc\u822a","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u76ee\u5f55\u4e66\u7b7e\nhash -d proj=~/projects\nhash -d docs=~/Documents\nhash -d dl=~/Downloads\nhash -d pics=~/Pictures\n\n# z \u63d2\u4ef6\u914d\u7f6e\nZSHZ_DATA=~/.local/share/z/data\nZSHZ_MAX_SCORE=5000\nZSHZ_CASE=smart\n\n# \u76ee\u5f55\u5806\u6808\u5bfc\u822a\nsetopt AUTO_PUSHD # \u81ea\u52a8\u5c06\u76ee\u5f55\u52a0\u5165\u5806\u6808\nsetopt PUSHD_IGNORE_DUPS # \u5ffd\u7565\u91cd\u590d\u76ee\u5f55\nsetopt PUSHD_SILENT # \u9759\u9ed8\u6a21\u5f0f\nsetopt PUSHD_TO_HOME # pushd \u4e0d\u5e26\u53c2\u6570\u65f6\u7b49\u540c\u4e8e pushd $HOME\n\n# \u76ee\u5f55\u522b\u540d\nalias -g ...='../..'\nalias -g ....='../../..'\nalias -g .....='../../../..'\nalias d='dirs -v'\nfor index ({1..9}) alias \"$index\"=\"cd +${index}\"; unset index\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#4_1","title":"4. \u589e\u5f3a\u5386\u53f2\u8bb0\u5f55\u641c\u7d22","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u5386\u53f2\u8bb0\u5f55\u641c\u7d22\u914d\u7f6e\nbindkey '^[[A' history-substring-search-up\nbindkey '^[[B' history-substring-search-down\nbindkey '^P' history-substring-search-up\nbindkey '^N' history-substring-search-down\n\n# \u5386\u53f2\u8bb0\u5f55\u683c\u5f0f\u5316\nHIST_STAMPS=\"yyyy-mm-dd\"\nHISTORY_IGNORE=\"(ls|ls *|cd|cd *|pwd|exit|date|* --help)\"\n\n# \u547d\u4ee4\u6267\u884c\u65f6\u95f4\u663e\u793a\nREPORTTIME=10\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#tabby","title":"Tabby \u7ec8\u7aef\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#_4","title":"\u4e00\u3001\u5b89\u88c5\u548c\u521d\u59cb\u5316","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1-tabby","title":"1. \u5b89\u88c5 Tabby","text":"Bash
# Ubuntu/Debian\nwget https://github.com/Eugeny/tabby/releases/latest/download/tabby-1.0.0-linux-x64.deb\nsudo dpkg -i tabby-*.deb\nsudo apt-get install -f\n\n# \u786e\u4fdd\u5b57\u4f53\u652f\u6301\nfc-cache -fv\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2_2","title":"2. \u521d\u59cb\u914d\u7f6e","text":"YAML
# ~/.config/tabby/config.yaml\nconfig:\n version: 3\n\nterminal:\n shell: zsh # \u4f7f\u7528\u524d\u9762\u914d\u7f6e\u7684zsh\n fontSize: 14\n lineHeight: 1.2\n bell: 'off'\n copyOnSelect: true\n rightClick: menu\n\n # \u57fa\u7840\u73af\u5883\u53d8\u91cf\n environment:\n TERM: xterm-256color\n COLORTERM: truecolor\n\n # \u6027\u80fd\u8bbe\u7f6e\n performanceMode: true\n gpuAcceleration: true\n webGL: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_5","title":"\u4e8c\u3001\u5916\u89c2\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_2","title":"1. \u5b57\u4f53\u8bbe\u7f6e","text":"YAML
terminal:\n font: JetBrainsMono Nerd Font # \u786e\u4fdd\u5df2\u5b89\u88c5\n fontSize: 14\n lineHeight: 1.2\n ligatures: true # \u8fde\u5b57\u652f\u6301\n\n # \u5b57\u4f53\u56de\u9000\n fallbackFont: 'Sarasa Mono SC' # \u4e2d\u6587\u652f\u6301\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-dracula","title":"2. Dracula \u4e3b\u9898\u914d\u7f6e","text":"YAML
profiles:\n - name: Default\n theme:\n name: 'Dracula'\n\n colors:\n background: '#282a36'\n foreground: '#f8f8f2'\n cursor: '#f8f8f2'\n\n selection:\n background: '#44475a'\n foreground: '#f8f8f2'\n\n # ANSI Colors\n black: '#21222c'\n red: '#ff5555'\n green: '#50fa7b'\n yellow: '#f1fa8c'\n blue: '#bd93f9'\n magenta: '#ff79c6'\n cyan: '#8be9fd'\n white: '#f8f8f2'\n\n # Bright Colors\n brightBlack: '#6272a4'\n brightRed: '#ff6e6e'\n brightGreen: '#69ff94'\n brightYellow: '#ffffa5'\n brightBlue: '#d6acff'\n brightMagenta: '#ff92df'\n brightCyan: '#a4ffff'\n brightWhite: '#ffffff'\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3_2","title":"3. \u900f\u660e\u80cc\u666f\u914d\u7f6e","text":"YAML
terminal:\n background:\n type: 'image' # \u6216 'color'\n image: '~/.config/tabby/backgrounds/bg.jpg' # \u81ea\u5b9a\u4e49\u80cc\u666f\u56fe\u7247\n opacity: 0.85 # \u900f\u660e\u5ea6\n\n # \u4e9a\u514b\u529b\u6548\u679c\uff08Windows\uff09\n experimental:\n vibrancy: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_6","title":"\u4e09\u3001\u5feb\u6377\u952e\u914d\u7f6e","text":"YAML
hotkeys:\n # \u6807\u7b7e\u7ba1\u7406\n new-tab: ['Ctrl+T']\n close-tab: ['Ctrl+W']\n previous-tab: ['Ctrl+Shift+Tab']\n next-tab: ['Ctrl+Tab']\n\n # \u5206\u5c4f\u64cd\u4f5c\n split-right: ['Ctrl+Shift+E']\n split-bottom: ['Ctrl+Shift+O']\n split-nav-left: ['Alt+Left']\n split-nav-right: ['Alt+Right']\n split-nav-up: ['Alt+Up']\n split-nav-down: ['Alt+Down']\n\n # \u7ec8\u7aef\u64cd\u4f5c\n clear: ['Ctrl+L']\n copy: ['Ctrl+C']\n paste: ['Ctrl+V']\n search: ['Ctrl+Shift+F']\n\n # \u89c6\u56fe\u63a7\u5236\n zoom-in: ['Ctrl+Plus']\n zoom-out: ['Ctrl+Minus']\n reset-zoom: ['Ctrl+0']\n toggle-fullscreen: ['F11']\n\n # \u5feb\u901f\u547d\u4ee4\n command-palette: ['Ctrl+Shift+P']\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#ssh","title":"\u56db\u3001SSH \u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1-ssh","title":"1. \u57fa\u7840 SSH \u914d\u7f6e","text":"YAML
ssh:\n auth:\n agent: true\n privateKeys:\n - ~/.ssh/id_ed25519\n - ~/.ssh/id_rsa\n\n # \u8fde\u63a5\u4fdd\u6301\n keepaliveInterval: 30\n keepaliveCountMax: 3\n\n # \u8f6c\u53d1\u8bbe\u7f6e\n forwardAgent: true\n x11: false\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-ssh","title":"2. SSH \u8fde\u63a5\u914d\u7f6e","text":"YAML
ssh:\n profiles:\n - name: \"\u5f00\u53d1\u670d\u52a1\u5668\"\n group: \"\u5f00\u53d1\u73af\u5883\"\n host: dev.example.com\n port: 22\n user: username\n auth: publicKey\n privateKey: ~/.ssh/id_ed25519\n\n - name: \"\u751f\u4ea7\u670d\u52a1\u5668\"\n group: \"\u751f\u4ea7\u73af\u5883\"\n host: prod.example.com\n port: 22\n user: username\n auth: agent\n\n - name: \"\u8df3\u677f\u673a\"\n host: jump.example.com\n forwardAgent: true\n jumpHost: true # \u6807\u8bb0\u4e3a\u8df3\u677f\u673a\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_7","title":"\u4e94\u3001\u63d2\u4ef6\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_3","title":"1. \u6838\u5fc3\u63d2\u4ef6","text":"YAML
plugins:\n # SSH\u7ba1\u7406\n ssh:\n enabled: true\n\n # \u7ec8\u7aef\u5f55\u5236\n record:\n enabled: true\n directory: ~/terminal-records\n\n # \u547d\u4ee4\u9762\u677f\n commander:\n enabled: true\n\n # \u4e3b\u9898\u63d2\u4ef6\n community-color-schemes:\n enabled: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2_3","title":"2. \u6269\u5c55\u529f\u80fd","text":"YAML
# \u641c\u7d22\u589e\u5f3a\nsearch:\n enabled: true\n searchOptions:\n regex: true\n wholeWord: false\n caseSensitive: false\n\n# \u7ec8\u7aef\u5206\u5272\nsplit:\n autoRemove: true # \u81ea\u52a8\u5173\u95ed\u7a7a\u7ec8\u7aef\n copyOnSelect: true\n pasteOnMiddleClick: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_8","title":"\u516d\u3001\u6027\u80fd\u4f18\u5316","text":"YAML
# \u6027\u80fd\u76f8\u5173\u914d\u7f6e\nterminal:\n # \u57fa\u7840\u4f18\u5316\n performanceMode: true\n gpuAcceleration: true\n webGL: true\n\n # \u5386\u53f2\u8bb0\u5f55\n scrollback: 5000\n\n # \u8fdb\u7a0b\u7ba1\u7406\n autoClose: true\n closeOnExit: true\n\n # \u6e32\u67d3\u4f18\u5316\n smoothScroll: false\n experimentalFontRendering: false\n\n # \u8d44\u6e90\u9650\u5236\n environment:\n LIMIT_MEMORY: 512 # MB\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_9","title":"\u5f00\u53d1\u5de5\u5177\u4e0e\u7ec8\u7aef\u5de5\u5177\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#_10","title":"\u4e00\u3001\u73b0\u4ee3\u547d\u4ee4\u884c\u5de5\u5177","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_4","title":"1. \u57fa\u7840\u5de5\u5177\u5b89\u88c5","text":"Bash
# \u5b89\u88c5\u57fa\u7840\u5de5\u5177\nsudo apt install -y \\\n exa `# \u73b0\u4ee3ls\u66ff\u4ee3\u54c1` \\\n bat `# \u73b0\u4ee3cat\u66ff\u4ee3\u54c1` \\\n ripgrep `# \u73b0\u4ee3grep\u66ff\u4ee3\u54c1` \\\n fd-find `# \u73b0\u4ee3find\u66ff\u4ee3\u54c1` \\\n duf `# \u73b0\u4ee3df\u66ff\u4ee3\u54c1` \\\n ncdu `# \u78c1\u76d8\u4f7f\u7528\u5206\u6790` \\\n tldr `# \u547d\u4ee4\u7b80\u5316\u8bf4\u660e` \\\n jq `# JSON\u5904\u7406` \\\n fzf `# \u6a21\u7cca\u641c\u7d22`\n\n# \u521b\u5efa\u522b\u540d\ncat << 'EOF' >> ~/.zshrc\n# \u73b0\u4ee3\u547d\u4ee4\u884c\u5de5\u5177\u522b\u540d\nalias ls='exa --icons'\nalias ll='exa -l --icons --git'\nalias la='exa -la --icons --git'\nalias lt='exa -T --icons --git-ignore'\nalias cat='batcat'\nalias find='fd'\nalias du='ncdu'\nalias df='duf'\nalias help='tldr'\n\n# fzf \u914d\u7f6e\nexport FZF_DEFAULT_OPTS=\"--height 40% --layout=reverse --border \\\n --preview 'batcat --style=numbers --color=always --line-range :500 {}'\"\nexport FZF_DEFAULT_COMMAND='fd --type f --hidden --follow --exclude .git'\nexport FZF_CTRL_T_COMMAND=\"$FZF_DEFAULT_COMMAND\"\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-ranger","title":"2. \u6587\u4ef6\u7ba1\u7406\u5668 - Ranger","text":"Bash
# \u5b89\u88c5ranger\u548c\u4f9d\u8d56\nsudo apt install ranger python3-pillow ueberzug\n\n# \u751f\u6210\u914d\u7f6e\u6587\u4ef6\nranger --copy-config=all\n\n# \u914d\u7f6eRanger\ncat << 'EOF' > ~/.config/ranger/rc.conf\n# \u57fa\u7840\u8bbe\u7f6e\nset preview_images true\nset preview_images_method ueberzug\nset show_hidden true\nset hostname_in_titlebar false\nset tilde_in_titlebar true\nset line_numbers relative\nset mouse_enabled true\n\n# \u914d\u8272\u65b9\u6848\nset colorscheme solarized\n\n# \u6587\u4ef6\u9884\u89c8\nset use_preview_script true\nset preview_files true\nset preview_directories true\nset collapse_preview true\n\n# \u5feb\u6377\u952e\nmap <C-f> fzf_select\nmap <C-p> shell -w echo %d/%f | xsel -b\nmap <C-g> shell lazygit\nEOF\n\n# \u6dfb\u52a0FZF\u96c6\u6210\ncat << 'EOF' > ~/.config/ranger/commands.py\nfrom ranger.api.commands import Command\nclass fzf_select(Command):\n def execute(self):\n import subprocess\n import os.path\n command=\"find -L . \\( -path '*/\\.*' -o -fstype 'dev' -o -fstype 'proc' \\) -prune \\\n -o -print 2> /dev/null | sed 1d | cut -b3- | fzf +m\"\n fzf = self.fm.execute_command(command, universal_newlines=True, stdout=subprocess.PIPE)\n stdout, stderr = fzf.communicate()\n if fzf.returncode == 0:\n fzf_file = os.path.abspath(stdout.rstrip('\\n'))\n if os.path.isdir(fzf_file):\n self.fm.cd(fzf_file)\n else:\n self.fm.select_file(fzf_file)\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3-htopglances","title":"3. \u7cfb\u7edf\u76d1\u63a7 - htop/glances","text":"Bash
# \u5b89\u88c5\u5de5\u5177\nsudo apt install htop glances\n\n# htop\u914d\u7f6e\nmkdir -p ~/.config/htop\ncat << 'EOF' > ~/.config/htop/htoprc\n# \u57fa\u7840\u663e\u793a\u8bbe\u7f6e\nshow_cpu_frequency=1\nshow_cpu_temperature=1\nshow_program_path=0\nhighlight_base_name=1\nhighlight_megabytes=1\nhighlight_threads=1\n\n# \u663e\u793a\u8bbe\u7f6e\nfields=0 48 17 18 38 39 40 2 46 47 49 1\nsort_key=46\nsort_direction=-1\ntree_view=1\ntree_view_always_by_pid=0\n\n# \u989c\u8272\u8bbe\u7f6e\ncolor_scheme=0\nEOF\n\n# glances\u914d\u7f6e\nmkdir -p ~/.config/glances\ncat << 'EOF' > ~/.config/glances/glances.conf\n[global]\n# \u5237\u65b0\u95f4\u9694\nrefresh=2\n# \u5386\u53f2\u5927\u5c0f\nhistory_size=1200\n\n[cpu]\n# CPU \u8b66\u544a\u9608\u503c\ncareful=50\nwarning=70\ncritical=90\n\n[memory]\n# \u5185\u5b58\u8b66\u544a\u9608\u503c\ncareful=50\nwarning=70\ncritical=90\n\n[network]\n# \u7f51\u7edc\u5e26\u5bbd\u663e\u793a\u5355\u4f4d (bit/sec)\nunit=bit\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#4-git-lazygit","title":"4. Git \u5de5\u5177 - Lazygit","text":"Bash
# \u5b89\u88c5Lazygit\nLAZYGIT_VERSION=$(curl -s \"https://api.github.com/repos/jesseduffield/lazygit/releases/latest\" | grep -Po '\"tag_name\": \"v\\K[^\"]*')\ncurl -Lo lazygit.tar.gz \"https://github.com/jesseduffield/lazygit/releases/latest/download/lazygit_${LAZYGIT_VERSION}_Linux_x86_64.tar.gz\"\nsudo tar xf lazygit.tar.gz -C /usr/local/bin lazygit\n\n# \u914d\u7f6eLazygit\nmkdir -p ~/.config/lazygit\ncat << 'EOF' > ~/.config/lazygit/config.yml\ngui:\n # UI\u4e3b\u9898\n theme:\n lightTheme: false\n activeBorderColor:\n - green\n - bold\n inactiveBorderColor:\n - white\n selectedLineBgColor:\n - reverse\n # \u5e38\u7528\u8bbe\u7f6e \n showFileTree: true\n showRandomTip: false\n showCommandLog: false\n\ngit:\n # git\u8bbe\u7f6e\n paging:\n colorArg: always\n useConfig: true\n # commit\u8bbe\u7f6e\n commits:\n showGraph: always\n showWholeGraph: true\n # \u81ea\u52a8\u83b7\u53d6\n autoFetch: true\n # \u5206\u652f\u663e\u793a\n branchLogCmd: \"git log --graph --color=always --abbrev-commit --decorate --date=relative --pretty=medium {{branchName}} --\"\n\nkeybinding:\n # \u81ea\u5b9a\u4e49\u5feb\u6377\u952e\n universal:\n return: '<c-c>'\n quit: 'q'\n quit-alt1: '<esc>'\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#5_1","title":"5. \u4ee3\u7801\u641c\u7d22\u5de5\u5177","text":"Bash
# ripgrep\u914d\u7f6e\ncat << 'EOF' >> ~/.zshrc\n# ripgrep \u914d\u7f6e\nexport RIPGREP_CONFIG_PATH=\"$HOME/.ripgreprc\"\n\n# ripgrep \u522b\u540d\nalias rg='rg --smart-case'\nalias rgf='rg --files | rg'\nalias rgh='rg --hidden'\nalias rgc='rg --count'\n\n# fzf + ripgrep \u96c6\u6210\nfif() {\n if [ ! \"$#\" -gt 0 ]; then echo \"Need a string to search for!\"; return 1; fi\n rg --files-with-matches --no-messages \"$1\" | fzf --preview \"highlight -O ansi -l {} 2> /dev/null | rg --colors 'match:bg:yellow' --ignore-case --pretty --context 10 '$1' || rg --ignore-case --pretty --context 10 '$1' {}\"\n}\nEOF\n\n# \u521b\u5efaripgrep\u914d\u7f6e\u6587\u4ef6\ncat << 'EOF' > ~/.ripgreprc\n# \u9ed8\u8ba4\u914d\u7f6e\n--smart-case\n--hidden\n--follow\n--glob=!.git/*\n\n# \u641c\u7d22\u914d\u7f6e\n--max-columns=150\n--max-columns-preview\n\n# \u989c\u8272\u914d\u7f6e\n--colors=line:fg:yellow\n--colors=line:style:bold\n--colors=path:fg:green\n--colors=path:style:bold\n--colors=match:fg:black\n--colors=match:bg:yellow\n--colors=match:style:nobold\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#6","title":"6. \u5b9e\u7528\u5f00\u53d1\u5de5\u5177","text":"Bash
# \u5b89\u88c5\u5f00\u53d1\u8f85\u52a9\u5de5\u5177\nsudo apt install -y \\\n shellcheck `# shell\u811a\u672c\u68c0\u67e5` \\\n python3-pip `# Python\u5305\u7ba1\u7406` \\\n nodejs npm `# Node.js\u73af\u5883` \\\n golang `# Go\u8bed\u8a00\u73af\u5883` \\\n docker.io `# Docker\u652f\u6301` \\\n postgresql-client `# \u6570\u636e\u5e93\u5ba2\u6237\u7aef` \\\n redis-tools `# Redis\u5ba2\u6237\u7aef` \\\n mycli `# MySQL\u5ba2\u6237\u7aef` \\\n httpie `# HTTP\u5ba2\u6237\u7aef`\n\n# \u6dfb\u52a0\u5b9e\u7528\u522b\u540d\u548c\u51fd\u6570\ncat << 'EOF' >> ~/.zshrc\n# Docker\u522b\u540d\nalias dk='docker'\nalias dkc='docker-compose'\nalias dkps='docker ps'\nalias dkst='docker stats'\nalias dkimg='docker images'\nalias dkpull='docker pull'\nalias dkexec='docker exec -it'\n\n# \u5f00\u53d1\u8f85\u52a9\u51fd\u6570\n# \u5feb\u901fHTTP\u670d\u52a1\u5668\nserve() {\n local port=\"${1:-8000}\"\n python3 -m http.server \"$port\"\n}\n\n# JSON\u683c\u5f0f\u5316\njson() {\n if [ -t 0 ]; then # \u53c2\u6570\u8f93\u5165\n python -m json.tool <<< \"$*\" | pygmentize -l json\n else # \u7ba1\u9053\u8f93\u5165\n python -m json.tool | pygmentize -l json\n fi\n}\n\n# Git\u5206\u652f\u6e05\u7406\ngit-clean() {\n git branch --merged | egrep -v \"(^\\*|master|main|dev)\" | xargs git branch -d\n}\n\n# \u73af\u5883\u53d8\u91cf\u7ba1\u7406\nenvfile() {\n if [[ -f \"$1\" ]]; then\n set -a\n source \"$1\"\n set +a\n else\n echo \"Error: File $1 not found\"\n return 1\n fi\n}\nEOF\n
"},{"location":"Technology/chezmoi/","title":"\u7528 chezmoi \u5b9e\u73b0\u8de8\u8bbe\u5907\u540c\u6b65\u914d\u7f6e","text":"
\u7ea6 512 \u4e2a\u5b57 142 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
\u672c\u6307\u5357\u5c06\u5e2e\u52a9\u4f60\u4f7f\u7528 chezmoi \u7ba1\u7406\u4f60\u7684\u914d\u7f6e\u6587\u4ef6\uff08dotfiles\uff09\uff0c\u5e76\u4f7f\u7528\u5305\u7ba1\u7406\u5668\u7ef4\u62a4\u8f6f\u4ef6\u5217\u8868\u3002
"},{"location":"Technology/chezmoi/#_1","title":"\u524d\u671f\u51c6\u5907","text":""},{"location":"Technology/chezmoi/#1","title":"1. \u9700\u8981\u7684\u5de5\u5177","text":"
- Git
- GitHub \u8d26\u53f7
- chezmoi
- \u5305\u7ba1\u7406\u5668\uff08Windows: Scoop, Ubuntu: apt/snap\uff09
"},{"location":"Technology/chezmoi/#2","title":"2. \u91cd\u8981\u7684\u914d\u7f6e\u6587\u4ef6","text":"
Windows \u5e38\u7528\u914d\u7f6e\u6587\u4ef6:
Text Only
%USERPROFILE%/\n\u251c\u2500\u2500 .gitconfig # Git\u914d\u7f6e\n\u251c\u2500\u2500 .ssh/ # SSH\u914d\u7f6e\n\u251c\u2500\u2500 Documents/\n\u2502 \u2514\u2500\u2500 PowerShell/\n\u2502 \u2514\u2500\u2500 Microsoft.PowerShell_profile.ps1 # PowerShell\u914d\u7f6e\n\u251c\u2500\u2500 AppData/\n\u2502 \u251c\u2500\u2500 Roaming/\n\u2502 \u2502 \u2514\u2500\u2500 Code/\n\u2502 \u2502 \u2514\u2500\u2500 User/\n\u2502 \u2502 \u2514\u2500\u2500 settings.json # VSCode\u914d\u7f6e\n\u2502 \u2514\u2500\u2500 Local/\n\u2514\u2500\u2500 .config/\n \u2514\u2500\u2500 scoop/\n \u2514\u2500\u2500 config.json # Scoop\u914d\u7f6e\n
Ubuntu \u5e38\u7528\u914d\u7f6e\u6587\u4ef6:
Text Only
~/\n\u251c\u2500\u2500 .bashrc # Bash\u914d\u7f6e\n\u251c\u2500\u2500 .zshrc # Zsh\u914d\u7f6e\n\u251c\u2500\u2500 .gitconfig # Git\u914d\u7f6e\n\u251c\u2500\u2500 .ssh/ # SSH\u914d\u7f6e\n\u2514\u2500\u2500 .config/\n \u251c\u2500\u2500 Code/\n \u2502 \u2514\u2500\u2500 User/\n \u2502 \u2514\u2500\u2500 settings.json # VSCode\u914d\u7f6e\n \u2514\u2500\u2500 tabby/\n \u2514\u2500\u2500 config.yaml # Tabby\u7ec8\u7aef\u914d\u7f6e\n
"},{"location":"Technology/chezmoi/#github","title":"GitHub \u8bbe\u7f6e","text":""},{"location":"Technology/chezmoi/#1-github","title":"1. \u521b\u5efa GitHub \u4ed3\u5e93","text":"
- \u8bbf\u95ee GitHub \u5e76\u767b\u5f55
- \u70b9\u51fb \"New repository\"
- \u4ed3\u5e93\u540d\u79f0\u8bbe\u7f6e\u4e3a
dotfiles
- \u8bbe\u7f6e\u4e3a Public\uff08\u63a8\u8350\uff09
- \u4e0d\u8981\u521d\u59cb\u5316 README\uff08\u6211\u4eec\u5c06\u4ece\u672c\u5730\u521d\u59cb\u5316\uff09
- \u521b\u5efa\u4ed3\u5e93
"},{"location":"Technology/chezmoi/#2-ssh","title":"2. \u914d\u7f6e SSH \u5bc6\u94a5\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09","text":"Bash
# \u751f\u6210SSH\u5bc6\u94a5\nssh-keygen -t ed25519 -C \"your_email@example.com\"\n\n# \u5c06\u516c\u94a5\u6dfb\u52a0\u5230GitHub\n# 1. \u590d\u5236\u516c\u94a5\u5185\u5bb9\ncat ~/.ssh/id_ed25519.pub\n# 2. \u8bbf\u95ee GitHub \u2192 Settings \u2192 SSH and GPG keys \u2192 New SSH key\n# 3. \u7c98\u8d34\u516c\u94a5\u5185\u5bb9\u5e76\u4fdd\u5b58\n
"},{"location":"Technology/chezmoi/#windows","title":"Windows \u914d\u7f6e","text":""},{"location":"Technology/chezmoi/#1_1","title":"1. \u5b89\u88c5\u5fc5\u8981\u5de5\u5177","text":"
\u4f7f\u7528 PowerShell\uff08\u4ee5\u7ba1\u7406\u5458\u8eab\u4efd\u8fd0\u884c\uff09\uff1a
PowerShell
# \u5b89\u88c5Scoop\nSet-ExecutionPolicy RemoteSigned -Scope CurrentUser\nirm get.scoop.sh | iex\n\n# \u5b89\u88c5Git\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09\nscoop install git\n\n# \u5b89\u88c5chezmoi\nscoop install chezmoi\n
"},{"location":"Technology/chezmoi/#2-chezmoi","title":"2. \u521d\u59cb\u5316 chezmoi","text":"PowerShell
# \u521d\u59cb\u5316chezmoi\u5e76\u514b\u9686\u4f60\u7684\u4ed3\u5e93\nchezmoi init --apply https://github.com/yourusername/dotfiles.git\n# \u7528 ssh \u4e5f\u53ef\u4ee5\n\n# \u67e5\u770bchezmoi\u5c06\u8fdb\u884c\u7684\u66f4\u6539\nchezmoi diff\n\n# \u5c06\u73b0\u6709\u914d\u7f6e\u6587\u4ef6\u6dfb\u52a0\u5230chezmoi\nchezmoi add $HOME/.gitconfig\nchezmoi add $HOME/.ssh/config\nchezmoi add $HOME/Documents/PowerShell/Microsoft.PowerShell_profile.ps1\nchezmoi add $HOME/AppData/Roaming/Code/User/settings.json\n\n# \u63d0\u4ea4\u5e76\u63a8\u9001\u66f4\u6539\nchezmoi cd\ngit add .\ngit commit -m \"Initial Windows config\"\ngit push\n
"},{"location":"Technology/chezmoi/#3","title":"3. \u5bfc\u51fa\u8f6f\u4ef6\u5305\u5217\u8868","text":"PowerShell
# \u5bfc\u51faScoop\u5305\u5217\u8868\nscoop export > packages/scoop-packages.txt\n\n# \u63d0\u4ea4\u5305\u5217\u8868\nchezmoi cd\ngit add packages/scoop-packages.txt\ngit commit -m \"Add Windows package list\"\ngit push\n
"},{"location":"Technology/chezmoi/#ubuntu","title":"Ubuntu \u914d\u7f6e","text":""},{"location":"Technology/chezmoi/#1_2","title":"1. \u5b89\u88c5\u5fc5\u8981\u5de5\u5177","text":"Bash
# \u5b89\u88c5Git\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09\nsudo apt update\nsudo apt install git\n\n# \u5b89\u88c5chezmoi\nsh -c \"$(curl -fsLS get.chezmoi.io)\"\n
\u53c2\u8003\u8fd9\u4e2a\u7f51\u7ad9 Install - chezmoi \u8fdb\u884c\u4e0b\u8f7d\uff0c\u6211\u547d\u4ee4\u884c\u4e00\u76f4\u4e0d\u6210\u529f\uff0c\u76f4\u63a5\u9009\u62e9\u5bf9\u5e94\u7684\u5305\u5c31\u884c\u4e86\u3002
Text Only
sudo dpkg -i chezmoi_2.54.0_linux_amd64.deb\nchezmoi --version\n
"},{"location":"Technology/chezmoi/#2-chezmoi_1","title":"2. \u521d\u59cb\u5316 chezmoi","text":"Bash
# \u521d\u59cb\u5316chezmoi\u5e76\u514b\u9686\u4f60\u7684\u4ed3\u5e93\nchezmoi init --apply https://github.com/yourusername/dotfiles.git\n\n# \u67e5\u770bchezmoi\u5c06\u8fdb\u884c\u7684\u66f4\u6539\nchezmoi diff\n\n# \u5c06\u73b0\u6709\u914d\u7f6e\u6587\u4ef6\u6dfb\u52a0\u5230chezmoi\nchezmoi add ~/.bashrc\nchezmoi add ~/.zshrc\nchezmoi add ~/.gitconfig\nchezmoi add ~/.ssh/config\nchezmoi add ~/.config/Code/User/settings.json\n\n# \u63d0\u4ea4\u5e76\u63a8\u9001\u66f4\u6539\nchezmoi cd\ngit add .\ngit commit -m \"Initial Ubuntu config\"\ngit push\n
"},{"location":"Technology/chezmoi/#3_1","title":"3. \u5bfc\u51fa\u8f6f\u4ef6\u5305\u5217\u8868","text":"Bash
chezmoi cd\nmkdir packages\n# \u5bfc\u51faapt\u5305\u5217\u8868\ndpkg --get-selections | grep -v deinstall | awk '{print $1}' > packages/apt-packages.txt\n\n# \u5bfc\u51fasnap\u5305\u5217\u8868\nsnap list | awk '{if (NR>1) print $1}' > packages/snap-packages.txt\n\n# \u63d0\u4ea4\u5305\u5217\u8868\ngit add packages/apt-packages.txt packages/snap-packages.txt\ngit commit -m \"Add Ubuntu package lists\"\ngit push\n
"},{"location":"Technology/chezmoi/#_2","title":"\u65e5\u5e38\u4f7f\u7528","text":""},{"location":"Technology/chezmoi/#1_3","title":"1. \u66f4\u65b0\u914d\u7f6e","text":"
\u5f53\u4f60\u4fee\u6539\u4e86\u914d\u7f6e\u6587\u4ef6\u540e\uff1a
Bash
# \u5c06\u66f4\u6539\u6dfb\u52a0\u5230chezmoi\nchezmoi add ~/.bashrc # \u6216\u5176\u4ed6\u4fee\u6539\u7684\u914d\u7f6e\u6587\u4ef6\n\n# \u67e5\u770b\u66f4\u6539\nchezmoi diff\n\n# \u63d0\u4ea4\u5e76\u63a8\u9001\u66f4\u6539\nchezmoi cd\ngit add .\ngit commit -m \"Update bashrc\"\ngit push\n
"},{"location":"Technology/chezmoi/#2_1","title":"2. \u5728\u5176\u4ed6\u673a\u5668\u4e0a\u540c\u6b65","text":"Bash
# \u62c9\u53d6\u5e76\u5e94\u7528\u6700\u65b0\u66f4\u6539\nchezmoi update\n
"},{"location":"Technology/chezmoi/#3_2","title":"3. \u66f4\u65b0\u8f6f\u4ef6\u5305\u5217\u8868","text":"
Windows:
PowerShell
# \u66f4\u65b0Scoop\u5305\u5217\u8868\nscoop export > packages/scoop-packages.txt\n
Ubuntu:
Bash
# \u66f4\u65b0apt\u5305\u5217\u8868\ndpkg --get-selections | grep -v deinstall | awk '{print $1}' > packages/apt-packages.txt\n\n# \u66f4\u65b0snap\u5305\u5217\u8868\nsnap list | awk '{if (NR>1) print $1}' > packages/snap-packages.txt\n
"},{"location":"Technology/chezmoi/#4","title":"4. \u5728\u65b0\u673a\u5668\u4e0a\u8bbe\u7f6e","text":"
Windows:
PowerShell
# \u5b89\u88c5chezmoi\nscoop install chezmoi\n\n# \u521d\u59cb\u5316\u5e76\u5e94\u7528\u914d\u7f6e\nchezmoi init https://github.com/yourusername/dotfiles.git\nchezmoi apply\n
Ubuntu:
Bash
# \u5b89\u88c5chezmoi\nsh -c \"$(curl -fsLS get.chezmoi.io)\"\n\n# \u521d\u59cb\u5316\u5e76\u5e94\u7528\u914d\u7f6e\nchezmoi init https://github.com/yourusername/dotfiles.git\nchezmoi apply\n
"},{"location":"Technology/chezmoi/#_3","title":"\u5e38\u89c1\u95ee\u9898","text":""},{"location":"Technology/chezmoi/#1_4","title":"1. \u5982\u4f55\u5904\u7406\u4e0d\u540c\u673a\u5668\u7684\u7279\u5b9a\u914d\u7f6e\uff1f","text":"
\u4f7f\u7528\u6a21\u677f\u548c\u6761\u4ef6\u8bed\u53e5\u3002\u5728 .chezmoi.toml.tmpl
\u4e2d\uff1a
TOML
{{- $osid := .chezmoi.os -}}\n[data]\n name = \"Your Name\"\n email = \"your@email.com\"\n {{- if eq .chezmoi.os \"windows\" }}\n is_windows = true\n {{- else if eq .chezmoi.os \"linux\" }}\n is_linux = true\n {{- end }}\n
"},{"location":"Technology/chezmoi/#2_2","title":"2. \u5982\u4f55\u5904\u7406\u654f\u611f\u4fe1\u606f\uff1f","text":"
\u5bf9\u4e8e\u654f\u611f\u4fe1\u606f\uff0c\u53ef\u4ee5\uff1a
- \u4f7f\u7528\u6a21\u677f\u548c\u73af\u5883\u53d8\u91cf
- \u4f7f\u7528 chezmoi \u7684\u52a0\u5bc6\u529f\u80fd
- \u5c06\u654f\u611f\u4fe1\u606f\u5b58\u50a8\u5728\u5355\u72ec\u7684\u79c1\u6709\u4ed3\u5e93\u4e2d
"},{"location":"Technology/chezmoi/#3_3","title":"3. \u5982\u4f55\u64a4\u9500\u66f4\u6539\uff1f","text":"Bash
# \u67e5\u770b\u5c06\u8981\u8fdb\u884c\u7684\u66f4\u6539\nchezmoi diff\n\n# \u5982\u679c\u4e0d\u6ee1\u610f\uff0c\u53ef\u4ee5\u64a4\u9500\nchezmoi forget ~/.bashrc # \u79fb\u9664\u6587\u4ef6\u7684\u7ba1\u7406\n\n# \u6216\u8005\u91cd\u7f6e\u4e3a\u539f\u59cb\u72b6\u6001\nchezmoi apply --force\n
"},{"location":"Technology/chezmoi/#4_1","title":"4. \u914d\u7f6e\u6587\u4ef6\u6743\u9650\u95ee\u9898\uff1f","text":"
chezmoi \u4f1a\u81ea\u52a8\u5904\u7406\u6587\u4ef6\u6743\u9650\u3002\u5bf9\u4e8e\u7279\u6b8a\u6743\u9650\u9700\u6c42\uff0c\u53ef\u4ee5\u5728\u6e90\u6587\u4ef6\u540d\u4e2d\u4f7f\u7528\u7279\u6b8a\u524d\u7f00\uff1a
private_
: \u521b\u5efa\u79c1\u6709\u6587\u4ef6 (chmod 600) executable_
: \u521b\u5efa\u53ef\u6267\u884c\u6587\u4ef6 (chmod 700) readonly_
: \u521b\u5efa\u53ea\u8bfb\u6587\u4ef6 (chmod 400)
"},{"location":"Technology/chezmoi/#5","title":"5. \u5982\u4f55\u67e5\u770b\u7ba1\u7406\u7684\u6587\u4ef6\uff1f","text":"Bash
# \u5217\u51fa\u6240\u6709\u7ba1\u7406\u7684\u6587\u4ef6\nchezmoi managed\n\n# \u67e5\u770b\u6e90\u6587\u4ef6\nchezmoi cd\nls -la\n
"},{"location":"Technology/chezmoi/#6","title":"6. \u66f4\u65b0\u51fa\u9519\u600e\u4e48\u529e\uff1f","text":"Bash
# \u5907\u4efd\u5f53\u524d\u72b6\u6001\nchezmoi archive --output=backup.tar.gz\n\n# \u91cd\u7f6e\u66f4\u6539\nchezmoi init --force\n\n# \u91cd\u65b0\u5e94\u7528\u914d\u7f6e\nchezmoi apply\n
"},{"location":"Technology/mkdocs%20material/","title":"mkdocs material \u8d85\u5168\u914d\u7f6e","text":"
\u7ea6 5956 \u4e2a\u5b57 9393 \u884c\u4ee3\u7801 7 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 137 \u5206\u949f
\u4ecd\u7136\u5728\u4fee\u6539 \u5982\u679c\u9700\u8981\u4efb\u4f55\u7684\u6587\u4ef6\uff0c\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u672c\u535a\u5ba2\u7684 GitHub \u9875\u9762
"},{"location":"Technology/mkdocs%20material/#1","title":"1 \u5165\u95e8\u57fa\u7840","text":""},{"location":"Technology/mkdocs%20material/#11-mkdocs","title":"1.1 \u4ec0\u4e48\u662f MkDocs\uff1f","text":"
MkDocs \u662f\u4e00\u4e2a\u5feb\u901f\u3001\u7b80\u5355\u3001\u534e\u4e3d\u7684\u9759\u6001\u7ad9\u70b9\u751f\u6210\u5668\uff0c\u4e13\u95e8\u7528\u4e8e\u6784\u5efa\u9879\u76ee\u6587\u6863\u3002\u6587\u6863\u6e90\u6587\u4ef6\u4f7f\u7528 Markdown \u7f16\u5199\uff0c\u914d\u7f6e\u6587\u4ef6\u4f7f\u7528 YAML \u683c\u5f0f\u3002
"},{"location":"Technology/mkdocs%20material/#111-mkdocs","title":"1.1.1 MkDocs \u7684\u4f18\u52bf","text":"
-
\u7b80\u5355\u6613\u7528 - \u4f7f\u7528 Markdown \u7f16\u5199\u6587\u6863 - \u914d\u7f6e\u6587\u4ef6\u7b80\u5355\u76f4\u89c2 - \u4e00\u952e\u5f0f\u6784\u5efa\u548c\u90e8\u7f72
-
\u529f\u80fd\u5f3a\u5927 - \u5185\u7f6e\u5f00\u53d1\u670d\u52a1\u5668\uff0c\u652f\u6301\u5b9e\u65f6\u9884\u89c8 - \u591a\u79cd\u4e3b\u9898\u53ef\u9009 - \u652f\u6301\u81ea\u5b9a\u4e49\u4e3b\u9898 - \u81ea\u52a8\u751f\u6210\u5bfc\u822a - \u5168\u6587\u641c\u7d22\u529f\u80fd
-
\u90e8\u7f72\u65b9\u4fbf - \u751f\u6210\u7eaf\u9759\u6001\u9875\u9762 - \u4e00\u884c\u547d\u4ee4\u90e8\u7f72\u5230 GitHub Pages - \u652f\u6301\u81ea\u5b9a\u4e49\u57df\u540d - \u517c\u5bb9\u6240\u6709\u9759\u6001\u7f51\u7ad9\u6258\u7ba1\u5e73\u53f0
"},{"location":"Technology/mkdocs%20material/#112-mkdocs-vs","title":"1.1.2 MkDocs vs \u5176\u4ed6\u6587\u6863\u5de5\u5177","text":"\u5de5\u5177 \u4f18\u52bf \u52a3\u52bf MkDocs - \u7b80\u5355\u6613\u7528- \u4e13\u6ce8\u6587\u6863- \u90e8\u7f72\u65b9\u4fbf- \u4e3b\u9898\u4e30\u5bcc - \u529f\u80fd\u76f8\u5bf9\u7b80\u5355- \u63d2\u4ef6\u751f\u6001\u8f83\u5c0f GitBook - \u754c\u9762\u4f18\u96c5- \u751f\u6001\u5b8c\u6574- \u591a\u4eba\u534f\u4f5c\u597d - \u6784\u5efa\u901f\u5ea6\u6162- \u5b9a\u5236\u6027\u5dee- \u514d\u8d39\u7248\u9650\u5236\u591a Docusaurus - React \u6280\u672f\u6808- \u529f\u80fd\u5f3a\u5927- \u6269\u5c55\u6027\u597d - \u5b66\u4e60\u66f2\u7ebf\u9661- \u914d\u7f6e\u590d\u6742- \u6784\u5efa\u8f83\u6162 VuePress - Vue \u6280\u672f\u6808- \u5b9a\u5236\u6027\u5f3a- \u63d2\u4ef6\u4e30\u5bcc - \u4e3b\u9898\u8f83\u5c11- \u914d\u7f6e\u7e41\u7410- \u5b66\u4e60\u6210\u672c\u9ad8"},{"location":"Technology/mkdocs%20material/#113-mkdocs","title":"1.1.3 MkDocs \u5de5\u4f5c\u539f\u7406","text":"
MkDocs \u7684\u5de5\u4f5c\u6d41\u7a0b\u5982\u4e0b\uff1a
-
\u6587\u6863\u7f16\u5199 - \u4f7f\u7528 Markdown \u683c\u5f0f\u7f16\u5199\u6587\u6863 - \u6587\u6863\u5b58\u653e\u5728 docs
\u76ee\u5f55\u4e0b - \u652f\u6301\u591a\u7ea7\u76ee\u5f55\u7ed3\u6784
-
\u914d\u7f6e\u89e3\u6790 - \u8bfb\u53d6 mkdocs.yml
\u914d\u7f6e\u6587\u4ef6 - \u89e3\u6790\u4e3b\u9898\u8bbe\u7f6e\u3001\u63d2\u4ef6\u914d\u7f6e\u7b49 - \u751f\u6210\u5bfc\u822a\u7ed3\u6784
-
\u6784\u5efa\u8fc7\u7a0b
Text Only
Markdown \u6587\u4ef6 -> \u89e3\u6790\u5668 -> HTML \u6587\u4ef6\n -> \u4e3b\u9898\u6e32\u67d3\n -> \u63d2\u4ef6\u5904\u7406\n -> \u9759\u6001\u8d44\u6e90\u5904\u7406\n
- \u8f93\u51fa\u90e8\u7f72 - \u751f\u6210\u7eaf\u9759\u6001 HTML \u6587\u4ef6 - \u4fdd\u7559\u539f\u59cb\u76ee\u5f55\u7ed3\u6784 - \u81ea\u52a8\u5904\u7406\u5185\u90e8\u94fe\u63a5 - \u590d\u5236\u9759\u6001\u8d44\u6e90
"},{"location":"Technology/mkdocs%20material/#12-material","title":"1.2 \u4e3a\u4ec0\u4e48\u9009\u62e9 Material \u4e3b\u9898","text":"
Material for MkDocs \u662f\u4e00\u4e2a\u57fa\u4e8e Google Material Design \u8bbe\u8ba1\u8bed\u8a00\u7684\u4e3b\u9898\uff0c\u5b83\u4e0d\u4ec5\u7f8e\u89c2\uff0c\u800c\u4e14\u529f\u80fd\u5f3a\u5927\u3002
"},{"location":"Technology/mkdocs%20material/#121-material","title":"1.2.1 Material \u4e3b\u9898\u7279\u6027","text":"
-
\u73b0\u4ee3\u5316\u8bbe\u8ba1 - \u9075\u5faa Material Design \u89c4\u8303 - \u54cd\u5e94\u5f0f\u5e03\u5c40 - \u652f\u6301\u6df1\u8272\u6a21\u5f0f - \u81ea\u52a8\u9002\u914d\u79fb\u52a8\u8bbe\u5907
-
\u5f3a\u5927\u529f\u80fd - \u667a\u80fd\u641c\u7d22 - \u4ee3\u7801\u9ad8\u4eae - \u6807\u7b7e\u9875\u652f\u6301 - \u81ea\u52a8\u76ee\u5f55\u751f\u6210 - \u591a\u8bed\u8a00\u652f\u6301 - \u7248\u672c\u63a7\u5236\u96c6\u6210
-
\u51fa\u8272\u7684\u7528\u6237\u4f53\u9a8c - \u5feb\u901f\u52a0\u8f7d - \u5e73\u6ed1\u52a8\u753b - \u5b9e\u65f6\u641c\u7d22 - \u4ee3\u7801\u590d\u5236\u6309\u94ae - \u8fd4\u56de\u9876\u90e8\u6309\u94ae
"},{"location":"Technology/mkdocs%20material/#122","title":"1.2.2 \u4e0e\u5176\u4ed6\u4e3b\u9898\u5bf9\u6bd4","text":"\u7279\u6027 Material ReadTheDocs mkdocs \u5176\u4ed6\u4e3b\u9898 \u8bbe\u8ba1\u98ce\u683c \u73b0\u4ee3\u7b80\u7ea6 \u4f20\u7edf\u6587\u6863 \u7b80\u5355\u57fa\u7840 \u98ce\u683c\u591a\u6837 \u54cd\u5e94\u5f0f \u2705 \u2705 \u274c \u90e8\u5206\u652f\u6301 \u6df1\u8272\u6a21\u5f0f \u2705 \u274c \u274c \u90e8\u5206\u652f\u6301 \u641c\u7d22\u529f\u80fd \u2705 \u2705 \u274c \u90e8\u5206\u652f\u6301 \u5b9a\u5236\u6027 \u5f3a \u4e2d \u5f31 \u4e0d\u4e00\u81f4 \u63d2\u4ef6\u652f\u6301 \u4e30\u5bcc \u4e00\u822c \u57fa\u7840 \u4e0d\u4e00\u81f4"},{"location":"Technology/mkdocs%20material/#123-material","title":"1.2.3 Material \u4e3b\u9898\u7684\u6280\u672f\u67b6\u6784","text":"Text Only
Material Theme\n\u251c\u2500\u2500 \u6838\u5fc3\u7ec4\u4ef6\n\u2502 \u251c\u2500\u2500 \u5bfc\u822a\u680f\n\u2502 \u251c\u2500\u2500 \u4fa7\u8fb9\u680f\n\u2502 \u251c\u2500\u2500 \u641c\u7d22\u7ec4\u4ef6\n\u2502 \u2514\u2500\u2500 \u5185\u5bb9\u6e32\u67d3\u5668\n\u251c\u2500\u2500 \u6269\u5c55\u529f\u80fd\n\u2502 \u251c\u2500\u2500 \u4ee3\u7801\u9ad8\u4eae\n\u2502 \u251c\u2500\u2500 \u6807\u7b7e\u7cfb\u7edf\n\u2502 \u251c\u2500\u2500 \u76ee\u5f55\u751f\u6210\n\u2502 \u2514\u2500\u2500 \u4e3b\u9898\u5207\u6362\n\u2514\u2500\u2500 \u63d2\u4ef6\u7cfb\u7edf\n \u251c\u2500\u2500 \u5185\u7f6e\u63d2\u4ef6\n \u2514\u2500\u2500 \u7b2c\u4e09\u65b9\u63d2\u4ef6\u96c6\u6210\n
"},{"location":"Technology/mkdocs%20material/#13","title":"1.3 \u73af\u5883\u8981\u6c42","text":""},{"location":"Technology/mkdocs%20material/#131-python","title":"1.3.1 Python \u73af\u5883","text":""},{"location":"Technology/mkdocs%20material/#1311-python","title":"1.3.1.1 Python \u7248\u672c\u9009\u62e9","text":"
MkDocs \u9700\u8981 Python 3.6 \u6216\u66f4\u9ad8\u7248\u672c\uff0c\u63a8\u8350\u4f7f\u7528 Python 3.8+\uff1a
Bash
# \u68c0\u67e5 Python \u7248\u672c\npython --version\n\n# \u63a8\u8350\u7248\u672c\nPython 3.8.x\nPython 3.9.x\nPython 3.10.x\n
"},{"location":"Technology/mkdocs%20material/#1312-pip","title":"1.3.1.2 pip \u914d\u7f6e\u8bf4\u660e","text":"
pip \u662f Python \u7684\u5305\u7ba1\u7406\u5de5\u5177\uff0c\u9700\u8981\u786e\u4fdd\u5176\u6b63\u786e\u5b89\u88c5\uff1a
Bash
# \u68c0\u67e5 pip \u7248\u672c\npip --version\n\n# \u5347\u7ea7 pip\npython -m pip install --upgrade pip\n
"},{"location":"Technology/mkdocs%20material/#1313","title":"1.3.1.3 \u865a\u62df\u73af\u5883\u7ba1\u7406","text":"
\u63a8\u8350\u4f7f\u7528\u865a\u62df\u73af\u5883\u6765\u7ba1\u7406\u9879\u76ee\u4f9d\u8d56\uff1a
Bash
# \u521b\u5efa\u865a\u62df\u73af\u5883\npython -m venv venv\n\n# \u6fc0\u6d3b\u865a\u62df\u73af\u5883\n# Windows\nvenv\\Scripts\\activate\n# Linux/Mac\nsource venv/bin/activate\n\n# \u9000\u51fa\u865a\u62df\u73af\u5883\ndeactivate\n
"},{"location":"Technology/mkdocs%20material/#132-pip","title":"1.3.2 pip \u5305\u7ba1\u7406","text":""},{"location":"Technology/mkdocs%20material/#1321-pip","title":"1.3.2.1 pip \u6e90\u914d\u7f6e","text":"
\u4e3a\u52a0\u5feb\u4e0b\u8f7d\u901f\u5ea6\uff0c\u5efa\u8bae\u4f7f\u7528\u56fd\u5185\u955c\u50cf\u6e90\uff1a
Bash
# \u4e34\u65f6\u4f7f\u7528\npip install -i https://pypi.tuna.tsinghua.edu.cn/simple mkdocs\n\n# \u6c38\u4e45\u914d\u7f6e\npip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n
"},{"location":"Technology/mkdocs%20material/#1322","title":"1.3.2.2 \u4f9d\u8d56\u7ba1\u7406","text":"
\u5b89\u88c5\u5fc5\u8981\u7684\u5305\uff1a
Bash
pip install mkdocs-material\npip install mkdocs-glightbox\npip install mkdocs-git-revision-date-localized-plugin\n
"},{"location":"Technology/mkdocs%20material/#1323-requirements-txt","title":"1.3.2.3 requirements. txt \u4f7f\u7528","text":"
\u7ef4\u62a4\u9879\u76ee\u4f9d\u8d56\uff1a
Bash
# \u751f\u6210\u4f9d\u8d56\u6587\u4ef6\npip freeze > requirements.txt\n\n# \u5b89\u88c5\u4f9d\u8d56\npip install -r requirements.txt\n
"},{"location":"Technology/mkdocs%20material/#133-git","title":"1.3.3 Git \u73af\u5883","text":""},{"location":"Technology/mkdocs%20material/#1331-git","title":"1.3.3.1 Git \u57fa\u7840\u914d\u7f6e","text":"Bash
# \u914d\u7f6e\u7528\u6237\u4fe1\u606f\ngit config --global user.name \"Your Name\"\ngit config --global user.email \"your.email@example.com\"\n\n# \u914d\u7f6e\u9ed8\u8ba4\u5206\u652f\ngit config --global init.defaultBranch main\n
"},{"location":"Technology/mkdocs%20material/#134-ssh","title":"1.3.4 SSH \u5bc6\u94a5\u914d\u7f6e","text":"Bash
# \u751f\u6210 SSH \u5bc6\u94a5\nssh-keygen -t rsa -b 4096 -C \"your.email@example.com\"\n\n# \u67e5\u770b\u516c\u94a5\ncat ~/.ssh/id_rsa.pub\n
\u5c06\u516c\u94a5\u6dfb\u52a0\u5230 GitHub \u8d26\u6237\u7684 SSH keys \u4e2d\u3002
"},{"location":"Technology/mkdocs%20material/#135-gitignore","title":"1.3.5 .gitignore \u914d\u7f6e","text":"
\u521b\u5efa .gitignore
\u6587\u4ef6\uff0c\u6dfb\u52a0\u4ee5\u4e0b\u5185\u5bb9\uff1a
Text Only
# Python\n__pycache__/\n*.py[cod]\n*$py.class\nvenv/\n\n# MkDocs\nsite/\n\n# IDE\n.idea/\n.vscode/\n*.swp\n*.swo\n\n# OS\n.DS_Store\nThumbs.db\n
"},{"location":"Technology/mkdocs%20material/#2","title":"2 \u73af\u5883\u642d\u5efa","text":""},{"location":"Technology/mkdocs%20material/#21-windows","title":"2.1 Windows \u7cfb\u7edf\u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#211-python","title":"2.1.1 Python \u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#2111","title":"2.1.1.1 \u4e0b\u8f7d\u5b89\u88c5\u5305","text":"
- \u8bbf\u95ee Python \u5b98\u7f51 \u4e0b\u8f7d\u6700\u65b0\u7248\u672c
- \u9009\u62e9\u9002\u5408\u4f60\u7684 Windows \u7248\u672c\uff0832 \u4f4d/64 \u4f4d\uff09\u7684\u5b89\u88c5\u5305
- \u4e0b\u8f7d\u5b8c\u6210\u540e\u53cc\u51fb\u5b89\u88c5\u5305\u5f00\u59cb\u5b89\u88c5
"},{"location":"Technology/mkdocs%20material/#2112","title":"2.1.1.2 \u73af\u5883\u53d8\u91cf\u914d\u7f6e","text":"
- \u5b89\u88c5\u65f6\u52fe\u9009 \"Add Python to PATH\"
- \u5982\u679c\u5fd8\u8bb0\u52fe\u9009\uff0c\u53ef\u4ee5\u624b\u52a8\u6dfb\u52a0\uff1a
Text Only
# \u6dfb\u52a0\u5230\u7cfb\u7edf\u73af\u5883\u53d8\u91cf Path\nC:\\Users\\YourUser\\AppData\\Local\\Programs\\Python\\Python3x\\\nC:\\Users\\YourUser\\AppData\\Local\\Programs\\Python\\Python3x\\Scripts\\\n
- \u68c0\u67e5\u73af\u5883\u53d8\u91cf\uff1a
Bash
echo %PATH%\n
"},{"location":"Technology/mkdocs%20material/#2113","title":"2.1.1.3 \u9a8c\u8bc1\u5b89\u88c5","text":"
\u5728\u547d\u4ee4\u63d0\u793a\u7b26\u4e2d\u6267\u884c\uff1a
Bash
# \u68c0\u67e5 Python \u7248\u672c\npython --version\n\n# \u68c0\u67e5 pip \u7248\u672c\npip --version\n
"},{"location":"Technology/mkdocs%20material/#212-mkdocs","title":"2.1.2 MkDocs \u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#2121-pip","title":"2.1.2.1 pip \u5b89\u88c5\u65b9\u6cd5","text":"
\u4f7f\u7528 pip \u5b89\u88c5 MkDocs\uff1a
Bash
# \u5b89\u88c5 MkDocs\npip install mkdocs\n\n# \u9a8c\u8bc1\u5b89\u88c5\nmkdocs --version\n
"},{"location":"Technology/mkdocs%20material/#2122","title":"2.1.2.2 \u5e38\u89c1\u95ee\u9898\u89e3\u51b3","text":"
-
pip \u4e0d\u662f\u5185\u90e8\u547d\u4ee4 - \u89e3\u51b3\u65b9\u6cd5\uff1a\u91cd\u65b0\u6dfb\u52a0 Python Scripts \u76ee\u5f55\u5230 PATH
-
\u6743\u9650\u95ee\u9898 - \u89e3\u51b3\u65b9\u6cd5\uff1a\u4f7f\u7528\u7ba1\u7406\u5458\u6743\u9650\u8fd0\u884c\u547d\u4ee4\u63d0\u793a\u7b26
Bash
# \u7ba1\u7406\u5458\u6743\u9650\u5b89\u88c5\npip install --user mkdocs\n
- SSL \u8bc1\u4e66\u9519\u8bef - \u89e3\u51b3\u65b9\u6cd5\uff1a\u6dfb\u52a0\u4fe1\u4efb\u9009\u9879\u6216\u4f7f\u7528\u56fd\u5185\u955c\u50cf
Bash
pip install --trusted-host pypi.org --trusted-host files.pythonhosted.org mkdocs\n
"},{"location":"Technology/mkdocs%20material/#213","title":"2.1.3 \u7248\u672c\u9009\u62e9","text":"
MkDocs \u7248\u672c\u9009\u62e9\u5efa\u8bae\uff1a
Bash
# \u67e5\u770b\u53ef\u7528\u7248\u672c\npip install mkdocs==\n\n# \u5b89\u88c5\u7279\u5b9a\u7248\u672c\npip install mkdocs==1.5.3 # \u63a8\u8350\u7248\u672c\n
"},{"location":"Technology/mkdocs%20material/#214-material","title":"2.1.4 Material \u4e3b\u9898\u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#2141","title":"2.1.4.1 \u5b89\u88c5\u547d\u4ee4","text":"Bash
# \u5b89\u88c5 Material \u4e3b\u9898\npip install mkdocs-material\n\n# \u9a8c\u8bc1\u5b89\u88c5\npython -c \"import mkdocs_material; print(mkdocs_material.__version__)\"\n
"},{"location":"Technology/mkdocs%20material/#2142","title":"2.1.4.2 \u4f9d\u8d56\u68c0\u67e5","text":"
\u5b89\u88c5\u5fc5\u8981\u7684\u4f9d\u8d56\uff1a
Bash
# \u5b89\u88c5\u6269\u5c55\u652f\u6301\npip install pymdown-extensions\npip install mkdocs-glightbox\npip install mkdocs-git-revision-date-localized-plugin\n
"},{"location":"Technology/mkdocs%20material/#2143","title":"2.1.4.3 \u7248\u672c\u517c\u5bb9\u6027","text":"MkDocs \u7248\u672c Material \u7248\u672c Python \u7248\u672c 1.5. x 9.4. x \u22653.8 1.4. x 9.3. x \u22653.7 1.3. x 9.2. x \u22653.7"},{"location":"Technology/mkdocs%20material/#22-linuxmac","title":"2.2 Linux/Mac \u7cfb\u7edf\u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#221-python","title":"2.2.1 \u5305\u7ba1\u7406\u5668\u5b89\u88c5 Python","text":""},{"location":"Technology/mkdocs%20material/#2211-aptyum","title":"2.2.1.1 apt/yum \u5b89\u88c5\u65b9\u6cd5","text":"
Ubuntu/Debian:
Bash
# \u66f4\u65b0\u5305\u7d22\u5f15\nsudo apt update\n\n# \u5b89\u88c5 Python\nsudo apt install python3 python3-pip\n\n# \u5b89\u88c5\u5f00\u53d1\u5de5\u5177\nsudo apt install python3-dev\n
CentOS/RHEL:
Bash
# \u5b89\u88c5 EPEL \u4ed3\u5e93\nsudo yum install epel-release\n\n# \u5b89\u88c5 Python\nsudo yum install python3 python3-pip\n
"},{"location":"Technology/mkdocs%20material/#2212-brew","title":"2.2.1.2 brew \u5b89\u88c5\u65b9\u6cd5","text":"
macOS:
Bash
# \u5b89\u88c5 Homebrew\uff08\u5982\u679c\u672a\u5b89\u88c5\uff09\n/bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)\"\n\n# \u5b89\u88c5 Python\nbrew install python\n\n# \u66f4\u65b0 pip\npip3 install --upgrade pip\n
"},{"location":"Technology/mkdocs%20material/#2213","title":"2.2.1.3 \u73af\u5883\u53d8\u91cf\u914d\u7f6e","text":"
bash/zsh:
Bash
# \u6dfb\u52a0\u5230 ~/.bashrc \u6216 ~/.zshrc\nexport PATH=\"$HOME/.local/bin:$PATH\"\nexport PYTHONPATH=\"$HOME/.local/lib/python3.x/site-packages:$PYTHONPATH\"\n\n# \u66f4\u65b0\u73af\u5883\u53d8\u91cf\nsource ~/.bashrc # \u6216 source ~/.zshrc\n
"},{"location":"Technology/mkdocs%20material/#222-pip","title":"2.2.2 pip \u5b89\u88c5\u4f9d\u8d56","text":""},{"location":"Technology/mkdocs%20material/#2221","title":"2.2.2.1 \u7cfb\u7edf\u7ea7\u5b89\u88c5","text":"Bash
# \u5168\u5c40\u5b89\u88c5\uff08\u9700\u8981 root \u6743\u9650\uff09\nsudo pip3 install mkdocs mkdocs-material\n\n# \u9a8c\u8bc1\u5b89\u88c5\nmkdocs --version\n
"},{"location":"Technology/mkdocs%20material/#2222","title":"2.2.2.2 \u7528\u6237\u7ea7\u5b89\u88c5","text":"Bash
# \u7528\u6237\u76ee\u5f55\u5b89\u88c5\npip3 install --user mkdocs mkdocs-material\n\n# \u68c0\u67e5\u5b89\u88c5\u8def\u5f84\npython3 -m site --user-site\n
"},{"location":"Technology/mkdocs%20material/#2223","title":"2.2.2.3 \u865a\u62df\u73af\u5883\u5b89\u88c5","text":"Bash
# \u521b\u5efa\u865a\u62df\u73af\u5883\npython3 -m venv mkdocs-env\n\n# \u6fc0\u6d3b\u865a\u62df\u73af\u5883\nsource mkdocs-env/bin/activate\n\n# \u5b89\u88c5\u4f9d\u8d56\npip install mkdocs mkdocs-material\n\n# \u9000\u51fa\u865a\u62df\u73af\u5883\ndeactivate\n
"},{"location":"Technology/mkdocs%20material/#23","title":"2.3 \u9879\u76ee\u521d\u59cb\u5316","text":""},{"location":"Technology/mkdocs%20material/#231","title":"2.3.1 \u521b\u5efa\u9879\u76ee","text":""},{"location":"Technology/mkdocs%20material/#2311-mkdocs-new","title":"2.3.1.1 mkdocs new \u547d\u4ee4\u8be6\u89e3","text":"Bash
# \u57fa\u672c\u8bed\u6cd5\nmkdocs new [\u9879\u76ee\u540d]\n\n# \u521b\u5efa\u65b0\u9879\u76ee\nmkdocs new my-docs\n\n# \u4f7f\u7528\u73b0\u6709\u76ee\u5f55\ncd existing-project\nmkdocs new .\n
"},{"location":"Technology/mkdocs%20material/#2312","title":"2.3.1.2 \u9879\u76ee\u547d\u540d\u89c4\u8303","text":"
- \u4f7f\u7528\u5c0f\u5199\u5b57\u6bcd
- \u5355\u8bcd\u95f4\u7528\u8fde\u5b57\u7b26 (-) \u5206\u9694
- \u907f\u514d\u4f7f\u7528\u7279\u6b8a\u5b57\u7b26
- \u540d\u79f0\u5177\u6709\u63cf\u8ff0\u6027
\u793a\u4f8b\uff1a
Bash
mkdocs new technical-docs # \u597d\u7684\u547d\u540d\nmkdocs new tech_docs # \u907f\u514d\u4f7f\u7528\u4e0b\u5212\u7ebf\nmkdocs new TechDocs # \u907f\u514d\u4f7f\u7528\u5927\u5199\n
"},{"location":"Technology/mkdocs%20material/#2313","title":"2.3.1.3 \u521d\u59cb\u5316\u914d\u7f6e","text":"
\u521b\u5efa\u9879\u76ee\u540e\u7684\u57fa\u672c\u8bbe\u7f6e\uff1a
Bash
cd my-docs\n# \u542f\u52a8\u5f00\u53d1\u670d\u52a1\u5668\nmkdocs serve\n# \u5728\u6d4f\u89c8\u5668\u4e2d\u8bbf\u95ee http://127.0.0.1:8000\n
"},{"location":"Technology/mkdocs%20material/#232","title":"2.3.2 \u76ee\u5f55\u7ed3\u6784\u8bf4\u660e","text":""},{"location":"Technology/mkdocs%20material/#2321","title":"2.3.2.1 \u57fa\u7840\u76ee\u5f55\u7ed3\u6784","text":"Text Only
my-docs/\n\u251c\u2500\u2500 docs/ # \u6587\u6863\u76ee\u5f55\n\u2502 \u251c\u2500\u2500 index.md # \u9996\u9875\n\u2502 \u251c\u2500\u2500 about.md # \u5176\u4ed6\u9875\u9762\n\u2502 \u2514\u2500\u2500 img/ # \u56fe\u7247\u76ee\u5f55\n\u251c\u2500\u2500 mkdocs.yml # \u914d\u7f6e\u6587\u4ef6\n\u2514\u2500\u2500 venv/ # \u865a\u62df\u73af\u5883\uff08\u53ef\u9009\uff09\n
"},{"location":"Technology/mkdocs%20material/#2322-docs","title":"2.3.2.2 docs \u76ee\u5f55\u7ec4\u7ec7","text":"Text Only
docs/\n\u251c\u2500\u2500 index.md # \u9996\u9875\n\u251c\u2500\u2500 guide/ # \u6307\u5357\u76ee\u5f55\n\u2502 \u251c\u2500\u2500 index.md # \u6307\u5357\u9996\u9875\n\u2502 \u251c\u2500\u2500 install.md # \u5b89\u88c5\u8bf4\u660e\n\u2502 \u2514\u2500\u2500 usage.md # \u4f7f\u7528\u8bf4\u660e\n\u251c\u2500\u2500 api/ # API\u6587\u6863\n\u2502 \u2514\u2500\u2500 index.md # API\u9996\u9875\n\u2514\u2500\u2500 examples/ # \u793a\u4f8b\u76ee\u5f55\n \u2514\u2500\u2500 basic.md # \u57fa\u7840\u793a\u4f8b\n
"},{"location":"Technology/mkdocs%20material/#2323","title":"2.3.2.3 \u8d44\u6e90\u6587\u4ef6\u7ba1\u7406","text":"Text Only
docs/\n\u251c\u2500\u2500 assets/ # \u8d44\u6e90\u76ee\u5f55\n\u2502 \u251c\u2500\u2500 images/ # \u56fe\u7247\u8d44\u6e90\n\u2502 \u251c\u2500\u2500 css/ # \u6837\u5f0f\u6587\u4ef6\n\u2502 \u251c\u2500\u2500 js/ # \u811a\u672c\u6587\u4ef6\n\u2502 \u2514\u2500\u2500 fonts/ # \u5b57\u4f53\u6587\u4ef6\n\u2514\u2500\u2500 files/ # \u4e0b\u8f7d\u6587\u4ef6\n \u2514\u2500\u2500 sample.pdf # \u793a\u4f8b\u6587\u4ef6\n
"},{"location":"Technology/mkdocs%20material/#233","title":"2.3.3 \u57fa\u7840\u914d\u7f6e\u6587\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#2331-mkdocs-yml","title":"2.3.3.1 mkdocs. yml \u7ed3\u6784","text":"
\u57fa\u672c\u914d\u7f6e\u6587\u4ef6\u7ed3\u6784\uff1a
YAML
# \u7ad9\u70b9\u4fe1\u606f\nsite_name: \u6211\u7684\u6587\u6863\nsite_url: https://example.com/\nsite_author: \u4f5c\u8005\u540d\nsite_description: \u7ad9\u70b9\u63cf\u8ff0\n\n# \u4e3b\u9898\u8bbe\u7f6e\ntheme:\n name: material\n language: zh\n features:\n - navigation.tabs\n - navigation.top\n\n# \u5bfc\u822a\u8bbe\u7f6e\nnav:\n - \u9996\u9875: index.md\n - \u6307\u5357: \n - guide/index.md\n - \u5b89\u88c5: guide/install.md\n - \u4f7f\u7528: guide/usage.md\n\n# Markdown \u6269\u5c55\nmarkdown_extensions:\n - attr_list\n - md_in_html\n - toc:\n permalink: true\n
"},{"location":"Technology/mkdocs%20material/#2332","title":"2.3.3.2 \u6700\u5c0f\u914d\u7f6e\u793a\u4f8b","text":"
\u6700\u7b80\u5355\u7684\u914d\u7f6e\u6587\u4ef6\uff1a
YAML
site_name: \u6211\u7684\u6587\u6863\ntheme:\n name: material\n
"},{"location":"Technology/mkdocs%20material/#2333","title":"2.3.3.3 \u914d\u7f6e\u6587\u4ef6\u8bed\u6cd5","text":"
YAML \u8bed\u6cd5\u8981\u70b9\uff1a
YAML
# \u5b57\u7b26\u4e32\ntitle: \u6211\u7684\u6587\u6863\n\n# \u5217\u8868\nplugins:\n - search\n - tags\n\n# \u5bf9\u8c61\ntheme:\n name: material\n features:\n - navigation.tabs\n\n# \u591a\u884c\u5b57\u7b26\u4e32\ndescription: >\n \u8fd9\u662f\u4e00\u4e2a\n \u591a\u884c\u63cf\u8ff0\n \u793a\u4f8b\n\n# \u951a\u70b9\u5f15\u7528\ncopyright: ©right 2024 My Docs\nfooter:\n copyright: *copyright\n
"},{"location":"Technology/mkdocs%20material/#3-mkdocs","title":"3 MkDocs \u6838\u5fc3\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#31","title":"3.1 \u7ad9\u70b9\u4fe1\u606f\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#311-site_name","title":"3.1.1 site_name \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3111","title":"3.1.1.1 \u547d\u540d\u89c4\u8303","text":"
\u7f51\u7ad9\u540d\u79f0\u662f\u7ad9\u70b9\u7684\u7b2c\u4e00\u5370\u8c61\uff0c\u5e94\u9075\u5faa\u4ee5\u4e0b\u89c4\u8303\uff1a
YAML
# \u63a8\u8350\u7684\u547d\u540d\u65b9\u5f0f\nsite_name: \u6280\u672f\u6587\u6863\u4e2d\u5fc3\nsite_name: Developer Hub\nsite_name: API Documentation\n\n# \u907f\u514d\u7684\u547d\u540d\u65b9\u5f0f\nsite_name: docs # \u592a\u8fc7\u7b80\u5355\nsite_name: My Doc Site # \u4e0d\u591f\u4e13\u4e1a\nsite_name: TEST # \u7f3a\u4e4f\u63cf\u8ff0\u6027\n
\u547d\u540d\u5efa\u8bae\uff1a
- \u4f7f\u7528\u7b80\u6d01\u660e\u4e86\u7684\u540d\u79f0
- \u53cd\u6620\u6587\u6863\u7684\u4e3b\u8981\u5185\u5bb9
- \u8003\u8651\u54c1\u724c\u8bc6\u522b\u5ea6
- \u907f\u514d\u4f7f\u7528\u7279\u6b8a\u5b57\u7b26
- \u9002\u5f53\u4f7f\u7528\u7a7a\u683c\u5206\u9694\u5355\u8bcd
"},{"location":"Technology/mkdocs%20material/#3112","title":"3.1.1.2 \u591a\u8bed\u8a00\u652f\u6301","text":"
\u53ef\u4ee5\u901a\u8fc7\u914d\u7f6e\u5b9e\u73b0\u591a\u8bed\u8a00\u7ad9\u70b9\uff1a
YAML
# \u57fa\u7840\u914d\u7f6e\nsite_name: My Documentation\ntheme:\n language: zh\n\n# \u591a\u8bed\u8a00\u914d\u7f6e\u793a\u4f8b\nextra:\n alternate:\n - name: English\n link: /en/ \n lang: en\n - name: \u4e2d\u6587\n link: /zh/\n lang: zh\n\n# \u8bed\u8a00\u7279\u5b9a\u7684\u7ad9\u70b9\u540d\u79f0\nsite_name:\n en: My Documentation\n zh: \u6211\u7684\u6587\u6863\n
"},{"location":"Technology/mkdocs%20material/#3113-seo","title":"3.1.1.3 SEO \u4f18\u5316","text":"
\u901a\u8fc7\u5408\u9002\u7684\u7ad9\u70b9\u540d\u79f0\u63d0\u5347 SEO\uff1a
YAML
# SEO \u4f18\u5316\u914d\u7f6e\nsite_name: ProductName Documentation | CompanyName\nextra:\n meta:\n - name: robots\n content: 'index, follow'\n - name: keywords\n content: 'docs, documentation, technical, api'\n
"},{"location":"Technology/mkdocs%20material/#312-site_url","title":"3.1.2 site_url \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3121-url","title":"3.1.2.1 URL \u683c\u5f0f\u8981\u6c42","text":"YAML
# \u6b63\u786e\u7684 URL \u683c\u5f0f\nsite_url: https://example.com/docs/\nsite_url: https://docs.example.com/\n\n# \u907f\u514d\u7684\u683c\u5f0f\nsite_url: http://example.com/docs # \u7f3a\u5c11\u5c3e\u90e8\u659c\u6760\nsite_url: example.com/docs/ # \u7f3a\u5c11\u534f\u8bae\n
"},{"location":"Technology/mkdocs%20material/#3122","title":"3.1.2.2 \u57fa\u7840\u8def\u5f84\u914d\u7f6e","text":"YAML
# \u6839\u76ee\u5f55\u90e8\u7f72\nsite_url: https://example.com/\n\n# \u5b50\u76ee\u5f55\u90e8\u7f72\nsite_url: https://example.com/docs/\nuse_directory_urls: true # \u63a8\u8350\u8bbe\u7f6e\n\n# \u672c\u5730\u5f00\u53d1\nsite_url: http://localhost:8000/\n
"},{"location":"Technology/mkdocs%20material/#3123","title":"3.1.2.3 \u5b50\u76ee\u5f55\u90e8\u7f72\u914d\u7f6e","text":"YAML
# GitHub Pages \u5b50\u76ee\u5f55\u90e8\u7f72\nsite_url: https://username.github.io/repository/\n\n# \u81ea\u5b9a\u4e49\u57df\u540d\u5b50\u76ee\u5f55\nsite_url: https://docs.example.com/project/\nextra:\n base_path: /project/ # \u5982\u679c\u9700\u8981\n
"},{"location":"Technology/mkdocs%20material/#313-site_author","title":"3.1.3 site_author \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3131","title":"3.1.3.1 \u4f5c\u8005\u4fe1\u606f\u8bbe\u7f6e","text":"YAML
# \u57fa\u7840\u4f5c\u8005\u4fe1\u606f\nsite_author: John Doe\n\n# \u6269\u5c55\u4f5c\u8005\u4fe1\u606f\nextra:\n author:\n name: John Doe\n email: john@example.com\n website: https://johndoe.com\n
"},{"location":"Technology/mkdocs%20material/#3132","title":"3.1.3.2 \u7248\u6743\u4fe1\u606f","text":"YAML
# \u7248\u6743\u58f0\u660e\ncopyright: \"© 2024 John Doe\"\n\n# \u9ad8\u7ea7\u7248\u6743\u914d\u7f6e\nextra:\n copyright:\n author: John Doe\n year: 2024\n license: CC BY-NC-SA 4.0\n
"},{"location":"Technology/mkdocs%20material/#3133-meta","title":"3.1.3.3 meta \u4fe1\u606f","text":"YAML
# meta \u4fe1\u606f\u914d\u7f6e\nextra:\n meta:\n - name: author\n content: John Doe\n - name: contact\n content: contact@example.com\n - property: article:author\n content: https://example.com/author\n
"},{"location":"Technology/mkdocs%20material/#314-site_description","title":"3.1.4 site_description \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3141-seo","title":"3.1.4.1 SEO \u63cf\u8ff0","text":"YAML
# \u57fa\u7840\u63cf\u8ff0\nsite_description: \u5168\u9762\u7684\u6280\u672f\u6587\u6863\u4e2d\u5fc3\uff0c\u63d0\u4f9b\u8be6\u7ec6\u7684API\u6587\u6863\u3001\u4f7f\u7528\u6307\u5357\u548c\u6700\u4f73\u5b9e\u8df5\u3002\n\n# \u591a\u8bed\u8a00\u63cf\u8ff0\nextra:\n descriptions:\n en: Comprehensive technical documentation center\n zh: \u5168\u9762\u7684\u6280\u672f\u6587\u6863\u4e2d\u5fc3\n
"},{"location":"Technology/mkdocs%20material/#3142","title":"3.1.4.2 \u5173\u952e\u8bcd\u8bbe\u7f6e","text":"YAML
# \u901a\u8fc7 meta \u6807\u7b7e\u8bbe\u7f6e\u5173\u952e\u8bcd\nextra:\n meta:\n - name: keywords\n content: MkDocs, documentation, technical docs, API, guides\n - name: description\n content: >-\n \u5168\u9762\u7684\u6280\u672f\u6587\u6863\u4e2d\u5fc3\uff0c\u5305\u542b\u8be6\u7ec6\u7684API\u6587\u6863\u3001\n \u4f7f\u7528\u6307\u5357\u548c\u6700\u4f73\u5b9e\u8df5\u793a\u4f8b\u3002\n
"},{"location":"Technology/mkdocs%20material/#3143","title":"3.1.4.3 \u7ad9\u70b9\u6458\u8981","text":"YAML
# \u5b8c\u6574\u7684\u7ad9\u70b9\u4fe1\u606f\u914d\u7f6e\u793a\u4f8b\nsite_name: \u6280\u672f\u6587\u6863\u4e2d\u5fc3\nsite_description: >-\n \u63d0\u4f9b\u5168\u9762\u7684\u6280\u672f\u6587\u6863\u3001API\u53c2\u8003\u548c\u4f7f\u7528\u6307\u5357\uff0c\n \u5e2e\u52a9\u5f00\u53d1\u8005\u5feb\u901f\u4e0a\u624b\u548c\u6df1\u5165\u4e86\u89e3\u4ea7\u54c1\u529f\u80fd\u3002\nsite_author: \u5f00\u53d1\u56e2\u961f\nsite_url: https://docs.example.com/\n\nextra:\n meta:\n - name: keywords\n content: \u6280\u672f\u6587\u6863, API\u6587\u6863, \u5f00\u53d1\u6307\u5357, \u6700\u4f73\u5b9e\u8df5\n - name: author\n content: \u5f00\u53d1\u56e2\u961f\n - name: robots\n content: index, follow\n\n analytics:\n gtag: G-XXXXXXXXXX\n\ncopyright: \"© 2024 Example Company\"\n
"},{"location":"Technology/mkdocs%20material/#315","title":"3.1.5 \u914d\u7f6e\u6700\u4f73\u5b9e\u8df5","text":"
-
SEO \u4f18\u5316\u5efa\u8bae\uff1a - \u4f7f\u7528\u6e05\u6670\u7684\u7ad9\u70b9\u540d\u79f0 - \u7f16\u5199\u6709\u5438\u5f15\u529b\u7684\u63cf\u8ff0 - \u5305\u542b\u76f8\u5173\u5173\u952e\u8bcd - \u786e\u4fdd URL \u7ed3\u6784\u5408\u7406
-
\u591a\u8bed\u8a00\u652f\u6301\uff1a - \u4e3a\u6bcf\u79cd\u8bed\u8a00\u63d0\u4f9b\u72ec\u7acb\u63cf\u8ff0 - \u4f7f\u7528\u6b63\u786e\u7684\u8bed\u8a00\u4ee3\u7801 - \u8bbe\u7f6e\u5408\u9002\u7684\u5b57\u7b26\u7f16\u7801
-
\u7248\u672c\u63a7\u5236\uff1a - \u8bb0\u5f55\u914d\u7f6e\u66f4\u6539 - \u4f7f\u7528\u7248\u672c\u6ce8\u91ca - \u5b9a\u671f\u66f4\u65b0\u7ad9\u70b9\u4fe1\u606f
-
\u53ef\u7ef4\u62a4\u6027\uff1a - \u4f7f\u7528\u6e05\u6670\u7684\u914d\u7f6e\u7ed3\u6784 - \u6dfb\u52a0\u5fc5\u8981\u7684\u6ce8\u91ca - \u4fdd\u6301\u914d\u7f6e\u6587\u4ef6\u6574\u6d01
"},{"location":"Technology/mkdocs%20material/#32","title":"3.2 \u5bfc\u822a\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#321-nav","title":"3.2.1 nav \u7ed3\u6784\u8bbe\u8ba1","text":""},{"location":"Technology/mkdocs%20material/#3211","title":"3.2.1.1 \u57fa\u7840\u5bfc\u822a\u7ed3\u6784","text":"
\u6700\u57fa\u672c\u7684\u5bfc\u822a\u914d\u7f6e\u793a\u4f8b\uff1a
YAML
nav:\n - Home: index.md\n - About: about.md\n - Contact: contact.md\n
\u66f4\u590d\u6742\u7684\u5206\u7ec4\u793a\u4f8b\uff1a
YAML
nav:\n - \u9996\u9875: index.md\n - \u7528\u6237\u6307\u5357:\n - \u4ecb\u7ecd: guide/introduction.md\n - \u5feb\u901f\u5f00\u59cb: guide/getting-started.md\n - \u57fa\u7840\u6559\u7a0b: guide/basics.md\n - API \u6587\u6863:\n - \u6982\u89c8: api/overview.md\n - \u63a5\u53e3\u8bf4\u660e: api/reference.md\n - \u5e38\u89c1\u95ee\u9898: faq.md\n
"},{"location":"Technology/mkdocs%20material/#3212","title":"3.2.1.2 \u5206\u7c7b\u7ec4\u7ec7","text":"
\u63a8\u8350\u7684\u5206\u7c7b\u65b9\u5f0f\uff1a
YAML
nav:\n - \u5f00\u59cb\u4f7f\u7528:\n - \u7b80\u4ecb: getting-started/introduction.md\n - \u5b89\u88c5: getting-started/installation.md\n - \u914d\u7f6e: getting-started/configuration.md\n\n - \u6838\u5fc3\u6982\u5ff5:\n - \u6982\u8ff0: concepts/overview.md\n - \u57fa\u7840\u67b6\u6784: concepts/architecture.md\n - \u5de5\u4f5c\u539f\u7406: concepts/how-it-works.md\n\n - \u9ad8\u7ea7\u6307\u5357:\n - \u81ea\u5b9a\u4e49\u4e3b\u9898: advanced/custom-theme.md\n - \u63d2\u4ef6\u5f00\u53d1: advanced/plugin-development.md\n - \u6027\u80fd\u4f18\u5316: advanced/performance.md\n\n - \u53c2\u8003\u6587\u6863:\n - API: reference/api.md\n - \u914d\u7f6e\u9879: reference/configuration.md\n - \u547d\u4ee4\u884c: reference/cli.md\n
"},{"location":"Technology/mkdocs%20material/#3213","title":"3.2.1.3 \u6743\u91cd\u8bbe\u7f6e","text":"
\u4f7f\u7528\u6587\u4ef6\u540d\u524d\u7f00\u63a7\u5236\u987a\u5e8f\uff1a
YAML
docs/\n\u251c\u2500\u2500 01_introduction.md\n\u251c\u2500\u2500 02_installation.md\n\u251c\u2500\u2500 03_configuration.md\n\u2514\u2500\u2500 04_usage.md\n\n# mkdocs.yml\nnav:\n - \u4ecb\u7ecd: 01_introduction.md\n - \u5b89\u88c5: 02_installation.md\n - \u914d\u7f6e: 03_configuration.md\n - \u4f7f\u7528: 04_usage.md\n
"},{"location":"Technology/mkdocs%20material/#322","title":"3.2.2 \u6587\u4ef6\u7ec4\u7ec7","text":""},{"location":"Technology/mkdocs%20material/#3221","title":"3.2.2.1 \u6587\u4ef6\u547d\u540d\u89c4\u8303","text":"
\u63a8\u8350\u7684\u547d\u540d\u89c4\u8303\uff1a
Text Only
docs/\n\u251c\u2500\u2500 index.md # \u9996\u9875\n\u251c\u2500\u2500 getting-started.md # \u77ed\u6a2a\u7ebf\u5206\u9694\n\u251c\u2500\u2500 advanced_usage.md # \u4e0b\u5212\u7ebf\u5206\u9694\uff08\u53ef\u9009\uff09\n\u2514\u2500\u2500 troubleshooting.md # \u5168\u5c0f\u5199\n
\u6587\u4ef6\u547d\u540d\u5efa\u8bae\uff1a
- \u4f7f\u7528\u5c0f\u5199\u5b57\u6bcd
- \u5355\u8bcd\u95f4\u4f7f\u7528\u8fde\u5b57\u7b26\u6216\u4e0b\u5212\u7ebf
- \u6587\u4ef6\u540d\u5e94\u5177\u6709\u63cf\u8ff0\u6027
- \u4fdd\u6301\u547d\u540d\u4e00\u81f4\u6027
- \u907f\u514d\u4f7f\u7528\u7a7a\u683c\u548c\u7279\u6b8a\u5b57\u7b26
"},{"location":"Technology/mkdocs%20material/#3222","title":"3.2.2.2 \u76ee\u5f55\u7ec4\u7ec7\u539f\u5219","text":"
\u6807\u51c6\u76ee\u5f55\u7ed3\u6784\uff1a
Text Only
docs/\n\u251c\u2500\u2500 index.md # \u7f51\u7ad9\u9996\u9875\n\u251c\u2500\u2500 getting-started/ # \u5165\u95e8\u6307\u5357\n\u2502 \u251c\u2500\u2500 index.md # \u5206\u7c7b\u9996\u9875\n\u2502 \u251c\u2500\u2500 installation.md # \u5b89\u88c5\u8bf4\u660e\n\u2502 \u2514\u2500\u2500 configuration.md # \u914d\u7f6e\u8bf4\u660e\n\u251c\u2500\u2500 user-guide/ # \u7528\u6237\u6307\u5357\n\u2502 \u251c\u2500\u2500 index.md # \u6307\u5357\u9996\u9875\n\u2502 \u251c\u2500\u2500 basic-usage.md # \u57fa\u7840\u7528\u6cd5\n\u2502 \u2514\u2500\u2500 advanced.md # \u9ad8\u7ea7\u7279\u6027\n\u2514\u2500\u2500 api/ # API\u6587\u6863\n \u251c\u2500\u2500 index.md # API\u6982\u89c8\n \u251c\u2500\u2500 endpoints.md # \u63a5\u53e3\u5217\u8868\n \u2514\u2500\u2500 authentication.md # \u8ba4\u8bc1\u8bf4\u660e\n
"},{"location":"Technology/mkdocs%20material/#3223","title":"3.2.2.3 \u7d22\u5f15\u6587\u4ef6\u4f7f\u7528","text":"
\u6bcf\u4e2a\u76ee\u5f55\u7684 index. md \u793a\u4f8b\uff1a
Markdown
# \u7528\u6237\u6307\u5357\n\n\u8fd9\u662f\u7528\u6237\u6307\u5357\u7684\u4e3b\u9875\u9762\uff0c\u5305\u542b\u4ee5\u4e0b\u5185\u5bb9\uff1a\n\n## \u5feb\u901f\u5bfc\u822a\n\n- [\u57fa\u7840\u7528\u6cd5] (basic-usage.md) - \u5165\u95e8\u5fc5\u8bfb\n- [\u9ad8\u7ea7\u7279\u6027] (advanced.md) - \u6df1\u5165\u4e86\u89e3\n\n## \u672c\u8282\u5185\u5bb9\n\n\u6b64\u90e8\u5206\u5c06\u5e2e\u52a9\u60a8\u4e86\u89e3\u4ea7\u54c1\u7684\u6838\u5fc3\u529f\u80fd\u548c\u4f7f\u7528\u65b9\u6cd5...\n
\u5bf9\u5e94\u7684\u5bfc\u822a\u914d\u7f6e\uff1a
YAML
nav:\n - \u7528\u6237\u6307\u5357:\n - \u6982\u8ff0: user-guide/index.md\n - \u57fa\u7840\u7528\u6cd5: user-guide/basic-usage.md\n - \u9ad8\u7ea7\u7279\u6027: user-guide/advanced.md\n
"},{"location":"Technology/mkdocs%20material/#323","title":"3.2.3 \u591a\u7ea7\u76ee\u5f55","text":""},{"location":"Technology/mkdocs%20material/#3231","title":"3.2.3.1 \u5c42\u7ea7\u7ed3\u6784\u8bbe\u8ba1","text":"
\u590d\u6742\u7684\u591a\u7ea7\u76ee\u5f55\u793a\u4f8b\uff1a
YAML
nav:\n - \u9996\u9875: index.md\n - \u5165\u95e8\u6307\u5357:\n - \u6982\u8ff0: getting-started/index.md\n - \u57fa\u7840:\n - \u5b89\u88c5: getting-started/basics/installation.md\n - \u914d\u7f6e: getting-started/basics/configuration.md\n - \u8fdb\u9636:\n - \u81ea\u5b9a\u4e49: getting-started/advanced/customization.md\n - \u4f18\u5316: getting-started/advanced/optimization.md\n - \u5f00\u53d1\u6587\u6863:\n - \u6982\u8ff0: development/index.md\n - API:\n - \u8ba4\u8bc1: development/api/authentication.md\n - \u63a5\u53e3: development/api/endpoints.md\n - SDK:\n - Python: development/sdk/python.md\n - JavaScript: development/sdk/javascript.md\n
"},{"location":"Technology/mkdocs%20material/#3232","title":"3.2.3.2 \u5bfc\u822a\u6df1\u5ea6\u63a7\u5236","text":"YAML
theme:\n name: material\n features:\n - navigation.sections # \u663e\u793a\u7ae0\u8282\n - navigation.expand # \u5c55\u5f00\u5bfc\u822a\n - navigation.indexes # \u4f7f\u7528\u76ee\u5f55\u7d22\u5f15\n - toc.integrate # \u96c6\u6210\u76ee\u5f55\n\nmarkdown_extensions:\n - toc:\n permalink: true\n toc_depth: 3 # \u63a7\u5236\u76ee\u5f55\u6df1\u5ea6\n
"},{"location":"Technology/mkdocs%20material/#3233","title":"3.2.3.3 \u6298\u53e0\u914d\u7f6e","text":"
Material \u4e3b\u9898\u7684\u6298\u53e0\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n features:\n - navigation.sections # \u663e\u793a\u5206\u533a\n - navigation.expand # \u9ed8\u8ba4\u5c55\u5f00\n - navigation.indexes # \u4f7f\u7528\u7d22\u5f15\u9875\n - navigation.top # \u8fd4\u56de\u9876\u90e8\u6309\u94ae\n\n # \u5bfc\u822a\u680f\u8bbe\u7f6e\n nav_style: dark # \u5bfc\u822a\u680f\u6837\u5f0f\n collapse_navigation: true # \u6298\u53e0\u5bfc\u822a\n sticky_navigation: true # \u56fa\u5b9a\u5bfc\u822a\n
"},{"location":"Technology/mkdocs%20material/#324","title":"3.2.4 \u5bfc\u822a\u914d\u7f6e\u6700\u4f73\u5b9e\u8df5","text":"
-
\u7ed3\u6784\u8bbe\u8ba1\u539f\u5219\uff1a - \u4fdd\u6301\u5c42\u7ea7\u6e05\u6670 - \u63a7\u5236\u5bfc\u822a\u6df1\u5ea6\uff08\u5efa\u8bae\u4e0d\u8d85\u8fc7 3 \u5c42\uff09 - \u76f8\u5173\u5185\u5bb9\u5206\u7ec4 - \u4f7f\u7528\u76f4\u89c2\u7684\u547d\u540d
-
\u6587\u4ef6\u7ec4\u7ec7\uff1a - \u4f7f\u7528\u6709\u610f\u4e49\u7684\u76ee\u5f55\u540d - \u4fdd\u6301\u6587\u4ef6\u7ed3\u6784\u6574\u6d01 - \u5408\u7406\u4f7f\u7528\u7d22\u5f15\u6587\u4ef6 - \u9075\u5faa\u4e00\u81f4\u7684\u547d\u540d\u89c4\u8303
-
\u7528\u6237\u4f53\u9a8c\uff1a - \u63d0\u4f9b\u6e05\u6670\u7684\u5bfc\u822a\u8def\u5f84 - \u6dfb\u52a0\u5408\u9002\u7684\u63cf\u8ff0 - \u8003\u8651\u79fb\u52a8\u7aef\u663e\u793a - \u4f18\u5316\u5bfc\u822a\u54cd\u5e94\u901f\u5ea6
-
\u7ef4\u62a4\u5efa\u8bae\uff1a - \u5b9a\u671f\u68c0\u67e5\u6b7b\u94fe\u63a5 - \u66f4\u65b0\u5bfc\u822a\u7ed3\u6784 - \u4fdd\u6301\u6587\u6863\u540c\u6b65 - \u6536\u96c6\u7528\u6237\u53cd\u9988
"},{"location":"Technology/mkdocs%20material/#325","title":"3.2.5 \u7279\u6b8a\u5bfc\u822a\u529f\u80fd","text":"
- \u9690\u85cf\u9875\u9762\uff1a
YAML
nav:\n - \u53ef\u89c1\u9875\u9762: visible.md\n - !hidden \u9690\u85cf\u9875\u9762: hidden.md\n
- \u5916\u90e8\u94fe\u63a5\uff1a
YAML
nav:\n - \u6587\u6863: index.md\n - GitHub: https://github.com/your/repo\n - \u793e\u533a: \n - \u8bba\u575b: https://forum.example.com\n - \u535a\u5ba2: https://blog.example.com\n
- \u522b\u540d\u8bbe\u7f6e\uff1a
YAML
nav:\n - \u5f00\u59cb: \n - \u6982\u8ff0: getting-started/index.md\n - \u5feb\u901f\u5165\u95e8: getting-started/quickstart.md\n - \u540c\u4e00\u6587\u4ef6\u4e0d\u540c\u5165\u53e3: !alias getting-started/quickstart.md\n
"},{"location":"Technology/mkdocs%20material/#33-markdown","title":"3.3 Markdown \u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#331","title":"3.3.1 \u57fa\u7840\u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#3311-meta","title":"3.3.1.1 meta \u6269\u5c55","text":"
\u652f\u6301\u5728 Markdown \u6587\u4ef6\u5934\u90e8\u6dfb\u52a0\u5143\u6570\u636e\uff1a
YAML
# mkdocs.yml \u914d\u7f6e\nmarkdown_extensions:\n - meta\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
---\ntitle: \u6211\u7684\u9875\u9762\u6807\u9898\ndescription: \u9875\u9762\u63cf\u8ff0\nauthor: \u4f5c\u8005\u540d\ndate: 2024-01-01\n---\n\n# \u6b63\u6587\u5185\u5bb9\n
"},{"location":"Technology/mkdocs%20material/#3312-toc","title":"3.3.1.2 toc \u6269\u5c55","text":"
\u81ea\u52a8\u751f\u6210\u76ee\u5f55\uff1a
YAML
markdown_extensions:\n - toc:\n permalink: true # \u6dfb\u52a0\u6bb5\u843d\u94fe\u63a5\n toc_depth: 3 # \u76ee\u5f55\u6df1\u5ea6\n separator: \"_\" # \u6807\u9898\u951a\u70b9\u5206\u9694\u7b26\n title: \"\u76ee\u5f55\" # \u76ee\u5f55\u6807\u9898\n slugify: !!python/object/apply:pymdownx.slugs.slugify\n kwds: {case: lower} # URL \u8f6c\u6362\u89c4\u5219\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
[TOC]\n\n# \u4e00\u7ea7\u6807\u9898\n## \u4e8c\u7ea7\u6807\u9898\n### \u4e09\u7ea7\u6807\u9898\n
"},{"location":"Technology/mkdocs%20material/#3313-tables","title":"3.3.1.3 tables \u6269\u5c55","text":"
\u589e\u5f3a\u7684\u8868\u683c\u652f\u6301\uff1a
YAML
markdown_extensions:\n - tables\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
| \u529f\u80fd | \u57fa\u7840\u7248 | \u4e13\u4e1a\u7248 |\n|-----|:------:|-------:|\n| \u529f\u80fdA | \u2713 | \u2713 |\n| \u529f\u80fdB | \u2717 | \u2713 |\n| \u529f\u80fdC | \u2717 | \u2713 |\n\n: \u8868\u683c\u6807\u9898 {.class-name}\n
"},{"location":"Technology/mkdocs%20material/#332-pymdown-extensions","title":"3.3.2 PyMdown Extensions","text":""},{"location":"Technology/mkdocs%20material/#3321-superfences","title":"3.3.2.1 superfences \u914d\u7f6e","text":"
\u589e\u5f3a\u7684\u4ee3\u7801\u5757\u529f\u80fd\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_div_format\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
```python title=\"example.py\" linenums=\"1\" hl_lines=\"2 3\"\ndef hello_world():\n message = \"Hello, World!\"\n print(message)\n return message\n```\n\n```mermaid\ngraph LR\n A[\u5f00\u59cb] --> B{\u5224\u65ad}\n B --> |Yes| C[\u6267\u884c]\n B --> |No| D[\u8df3\u8fc7]\n```\n
"},{"location":"Technology/mkdocs%20material/#3322-emoji","title":"3.3.2.2 emoji \u652f\u6301","text":"
\u6dfb\u52a0\u8868\u60c5\u7b26\u53f7\u652f\u6301\uff1a
YAML
markdown_extensions:\n - pymdownx.emoji:\n emoji_index: !!python/name:material.extensions.emoji.twemoji\n emoji_generator: !!python/name:material.extensions.emoji.to_svg\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
:smile: :heart: :thumbsup:\n\n:fontawesome-brands-github: GitHub\n:material-account: \u7528\u6237\n:octicons-repo-16: \u4ed3\u5e93\n
"},{"location":"Technology/mkdocs%20material/#3323-tasklist","title":"3.3.2.3 tasklist \u529f\u80fd","text":"
\u4efb\u52a1\u5217\u8868\u652f\u6301\uff1a
YAML
markdown_extensions:\n - pymdownx.tasklist:\n custom_checkbox: true # \u81ea\u5b9a\u4e49\u590d\u9009\u6846\u6837\u5f0f\n clickable_checkbox: true # \u53ef\u70b9\u51fb\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
- [x] \u5df2\u5b8c\u6210\u4efb\u52a1\n- [ ] \u672a\u5b8c\u6210\u4efb\u52a1\n - [x] \u5b50\u4efb\u52a1 1\n - [ ] \u5b50\u4efb\u52a1 2\n
"},{"location":"Technology/mkdocs%20material/#3324-pymdown","title":"3.3.2.4 \u5176\u4ed6\u5e38\u7528 PyMdown \u6269\u5c55","text":"YAML
markdown_extensions:\n - pymdownx.highlight # \u4ee3\u7801\u9ad8\u4eae\n - pymdownx.inlinehilite # \u884c\u5185\u4ee3\u7801\u9ad8\u4eae\n - pymdownx.snippets # \u4ee3\u7801\u7247\u6bb5\n - pymdownx.magiclink # \u81ea\u52a8\u94fe\u63a5\n - pymdownx.mark # ==\u6807\u8bb0==\n - pymdownx.critic # \u7f16\u8f91\u6807\u8bb0\n - pymdownx.tilde # \u5220\u9664\u7ebf\n - pymdownx.caret # \u4e0a\u6807\n - pymdownx.keys # \u952e\u76d8\u6309\u952e\n - pymdownx.tabbed # \u6807\u7b7e\u9875\n
"},{"location":"Technology/mkdocs%20material/#333","title":"3.3.3 \u81ea\u5b9a\u4e49\u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#3331","title":"3.3.3.1 \u6269\u5c55\u5f00\u53d1\u57fa\u7840","text":"
\u521b\u5efa\u81ea\u5b9a\u4e49\u6269\u5c55\uff1a
Python
# custom_extension.py\nfrom markdown.extensions import Extension\nfrom markdown.preprocessors import Preprocessor\n\nclass CustomPreprocessor(Preprocessor):\n def run(self, lines):\n new_lines = []\n for line in lines:\n new_lines.append(line.replace('[[', '**').replace(']]', '**'))\n return new_lines\n\nclass CustomExtension(Extension):\n def extendMarkdown(self, md):\n md.preprocessors.register(CustomPreprocessor(md), 'custom_preprocessor', 175)\n
"},{"location":"Technology/mkdocs%20material/#34","title":"3.4 \u5e38\u7528\u6269\u5c55\u793a\u4f8b","text":"
- \u6dfb\u52a0\u81ea\u5b9a\u4e49 HTML \u5c5e\u6027\uff1a
Python
from markdown.extensions import Extension\nfrom markdown.treeprocessors import Treeprocessor\n\nclass CustomAttributesTreeprocessor(Treeprocessor):\n def run(self, root):\n for elem in root.iter():\n if 'class' in elem.attrib:\n elem.set('data-custom', 'value')\n\nclass CustomAttributesExtension(Extension):\n def extendMarkdown(self, md):\n md.treeprocessors.register(\n CustomAttributesTreeprocessor(md), 'custom_attributes', 15\n )\n
- \u81ea\u5b9a\u4e49\u5bb9\u5668\uff1a
Python
from markdown.extensions import Extension\nfrom markdown.blockprocessors import BlockProcessor\nimport re\n\nclass CustomContainerProcessor(BlockProcessor):\n RE = re.compile(r':{3,}\\ *(warning|note|tip)\\ *')\n\n def run(self, parent, blocks):\n block = blocks.pop(0)\n m = self.RE.match(block)\n\n if m:\n container_type = m.group(1)\n div = etree.SubElement(parent, 'div')\n div.set('class', f'custom-container {container_type}')\n\n # \u5904\u7406\u5bb9\u5668\u5185\u5bb9\n self.parser.parseChunk(div, block[m.end():])\n\nclass CustomContainerExtension(Extension):\n def extendMarkdown(self, md):\n md.parser.blockprocessors.register(\n CustomContainerProcessor(md.parser), 'custom_container', 175\n )\n
"},{"location":"Technology/mkdocs%20material/#341","title":"3.4.1 \u6269\u5c55\u914d\u7f6e\u65b9\u6cd5","text":"
\u5728 mkdocs.yml
\u4e2d\u914d\u7f6e\u81ea\u5b9a\u4e49\u6269\u5c55\uff1a
YAML
markdown_extensions:\n - custom_extension:\n option1: value1\n option2: value2\n\nextra_css:\n - css/custom_extension.css\n\nextra_javascript:\n - js/custom_extension.js\n
"},{"location":"Technology/mkdocs%20material/#342","title":"3.4.2 \u6269\u5c55\u7ec4\u5408\u63a8\u8350","text":""},{"location":"Technology/mkdocs%20material/#3421","title":"3.4.2.1 \u57fa\u7840\u6587\u6863\u914d\u7f6e","text":"YAML
markdown_extensions:\n - meta\n - toc:\n permalink: true\n - tables\n - attr_list\n - def_list\n - footnotes\n
"},{"location":"Technology/mkdocs%20material/#3422","title":"3.4.2.2 \u589e\u5f3a\u529f\u80fd\u914d\u7f6e","text":"YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_div_format\n - pymdownx.highlight:\n anchor_linenums: true\n - pymdownx.inlinehilite\n - pymdownx.snippets\n - pymdownx.tasklist:\n custom_checkbox: true\n - pymdownx.emoji:\n emoji_index: !!python/name:material.extensions.emoji.twemoji\n emoji_generator: !!python/name:material.extensions.emoji.to_svg\n
"},{"location":"Technology/mkdocs%20material/#343","title":"3.4.3 \u5b8c\u6574\u63a8\u8350\u914d\u7f6e","text":"YAML
markdown_extensions:\n # Python Markdown\n - meta\n - toc:\n permalink: true\n toc_depth: 4\n - tables\n - attr_list\n - def_list\n - md_in_html\n - footnotes\n\n # Python Markdown Extensions\n - pymdownx.superfences\n - pymdownx.highlight\n - pymdownx.inlinehilite\n - pymdownx.snippets\n - pymdownx.tasklist\n - pymdownx.emoji\n - pymdownx.mark\n - pymdownx.critic\n - pymdownx.keys\n - pymdownx.tilde\n - pymdownx.caret\n - pymdownx.details\n - pymdownx.magiclink\n - pymdownx.tabbed:\n alternate_style: true\n\n # \u81ea\u5b9a\u4e49\u6269\u5c55\n - custom_extension:\n custom_option: value\n
"},{"location":"Technology/mkdocs%20material/#344","title":"3.4.4 \u4f7f\u7528\u5efa\u8bae","text":"
-
\u6027\u80fd\u8003\u8651\uff1a - \u53ea\u542f\u7528\u9700\u8981\u7684\u6269\u5c55 - \u6ce8\u610f\u6269\u5c55\u4e4b\u95f4\u7684\u4f9d\u8d56\u5173\u7cfb - \u63a7\u5236\u6269\u5c55\u6570\u91cf
-
\u517c\u5bb9\u6027\uff1a - \u6d4b\u8bd5\u6269\u5c55\u7ec4\u5408 - \u68c0\u67e5\u79fb\u52a8\u7aef\u663e\u793a - \u9a8c\u8bc1\u4e0d\u540c\u6d4f\u89c8\u5668
-
\u7ef4\u62a4\u5efa\u8bae\uff1a - \u8bb0\u5f55\u6269\u5c55\u914d\u7f6e - \u4fdd\u6301\u7248\u672c\u66f4\u65b0 - \u76d1\u63a7\u6027\u80fd\u5f71\u54cd
"},{"location":"Technology/mkdocs%20material/#35","title":"3.5 \u63d2\u4ef6\u7cfb\u7edf","text":""},{"location":"Technology/mkdocs%20material/#351","title":"3.5.1 \u63d2\u4ef6\u914d\u7f6e\u65b9\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#3511","title":"3.5.1.1 \u63d2\u4ef6\u5b89\u88c5\u65b9\u6cd5","text":"
\u901a\u8fc7 pip \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
# \u5b89\u88c5\u5355\u4e2a\u63d2\u4ef6\npip install mkdocs-git-revision-date-localized-plugin\n\n# \u5b89\u88c5\u591a\u4e2a\u63d2\u4ef6\npip install mkdocs-minify-plugin mkdocs-git-authors-plugin\n
\u57fa\u7840\u63d2\u4ef6\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - search # \u9ed8\u8ba4\u63d2\u4ef6\n - git-revision-date-localized:\n enable_creation_date: true\n - minify:\n minify_html: true\n
"},{"location":"Technology/mkdocs%20material/#3512","title":"3.5.1.2 \u914d\u7f6e\u8bed\u6cd5","text":"
\u63d2\u4ef6\u914d\u7f6e\u7684\u51e0\u79cd\u65b9\u5f0f\uff1a
YAML
# 1. \u7b80\u5355\u542f\u7528\u63d2\u4ef6\uff08\u4f7f\u7528\u9ed8\u8ba4\u914d\u7f6e\uff09\nplugins:\n - search\n - tags\n\n# 2. \u7981\u7528\u9ed8\u8ba4\u63d2\u4ef6\nplugins:\n - search: false\n\n# 3. \u5e26\u914d\u7f6e\u7684\u63d2\u4ef6\nplugins:\n - search:\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.]+'\n\n# 4. \u591a\u5b9e\u4f8b\u63d2\u4ef6\nplugins:\n - search:\n name: search_1\n config: value\n - search:\n name: search_2\n config: value\n
"},{"location":"Technology/mkdocs%20material/#3513","title":"3.5.1.3 \u4f18\u5148\u7ea7\u63a7\u5236","text":"
\u63d2\u4ef6\u6267\u884c\u987a\u5e8f\u63a7\u5236\uff1a
YAML
plugins:\n - search\n - git-revision-date-localized:\n priority: 80\n - minify:\n priority: 90\n - tags:\n priority: 70\n
"},{"location":"Technology/mkdocs%20material/#352","title":"3.5.2 \u5e38\u7528\u63d2\u4ef6\u4ecb\u7ecd","text":""},{"location":"Technology/mkdocs%20material/#3521","title":"3.5.2.1 \u5b98\u65b9\u63d2\u4ef6","text":"
- search - \u641c\u7d22\u63d2\u4ef6
YAML
plugins:\n - search:\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.]+'\n min_search_length: 2\n prebuild_index: true\n indexing:\n - full_sections: false\n - headings: true\n - content: true\n
- tags - \u6807\u7b7e\u7cfb\u7edf
YAML
plugins:\n - tags:\n tags_file: tags.md\n tags_extra_files:\n cloud: cloud_tags.md\n list: tag_list.md\n
"},{"location":"Technology/mkdocs%20material/#3522","title":"3.5.2.2 \u793e\u533a\u63d2\u4ef6\u63a8\u8350","text":"
- git-revision-date-localized - Git \u65e5\u671f\u4fe1\u606f
YAML
plugins:\n - git-revision-date-localized:\n type: timeago\n enable_creation_date: true\n exclude:\n - index.md\n timezone: Asia/Shanghai\n locale: zh\n
- minify - \u6587\u4ef6\u538b\u7f29
YAML
plugins:\n - minify:\n minify_html: true\n minify_js: true\n minify_css: true\n htmlmin_opts:\n remove_comments: true\n
- social - \u793e\u4ea4\u5206\u4eab
YAML
plugins:\n - social:\n cards: true\n cards_color:\n fill: \"#0FF1CE\"\n text: \"#FFFFFF\"\n
- macros - \u6a21\u677f\u5b8f
YAML
plugins:\n - macros:\n module_name: macros\n include_dir: include\n include_yaml:\n - variables.yml\n
"},{"location":"Technology/mkdocs%20material/#3523","title":"3.5.2.3 \u5b9e\u7528\u63d2\u4ef6\u96c6\u5408","text":"YAML
plugins:\n # \u6838\u5fc3\u529f\u80fd\n - search\n - tags\n\n # \u7248\u672c\u63a7\u5236\n - git-revision-date-localized\n - git-authors\n\n # \u6027\u80fd\u4f18\u5316\n - minify\n - optimize\n\n # \u5185\u5bb9\u589e\u5f3a\n - social\n - macros\n - blogging\n\n # \u591a\u8bed\u8a00\u652f\u6301\n - i18n\n - translations\n\n # \u56fe\u7247\u5904\u7406\n - glightbox\n - img2fig\n\n # \u7edf\u8ba1\u5206\u6790\n - statistics\n - pdf-export\n
"},{"location":"Technology/mkdocs%20material/#353","title":"3.5.3 \u63d2\u4ef6\u7ec4\u5408\u4f7f\u7528","text":""},{"location":"Technology/mkdocs%20material/#3531","title":"3.5.3.1 \u57fa\u7840\u7ec4\u5408\u65b9\u6848","text":"
\u9002\u5408\u4e00\u822c\u6587\u6863\u9879\u76ee\uff1a
YAML
plugins:\n - search:\n lang: zh\n separator: '[\\s\\-\\.]+'\n\n - git-revision-date-localized:\n enable_creation_date: true\n type: date\n\n - minify:\n minify_html: true\n\n - glightbox:\n touchNavigation: true\n loop: false\n effect: zoom\n width: 100%\n height: auto\n zoomable: true\n draggable: true\n
"},{"location":"Technology/mkdocs%20material/#3532","title":"3.5.3.2 \u535a\u5ba2\u7f51\u7ad9\u65b9\u6848","text":"
\u9002\u5408\u535a\u5ba2\u7c7b\u7f51\u7ad9\uff1a
YAML
plugins:\n - blog:\n blog_dir: blog\n post_url_format: \"{slug}\"\n post_excerpt: optional\n\n - social:\n cards: true\n cards_dir: assets/social\n\n - tags:\n tags_file: tags.md\n\n - rss:\n abstract_chars_count: 160\n date_from_meta: true\n\n - statistics:\n page_check: true\n page_count: true\n
"},{"location":"Technology/mkdocs%20material/#3533","title":"3.5.3.3 \u6280\u672f\u6587\u6863\u65b9\u6848","text":"
\u9002\u5408\u5927\u578b\u6280\u672f\u6587\u6863\uff1a
YAML
plugins:\n - search:\n separator: '[\\s\\-\\.]+'\n min_search_length: 2\n lang:\n - en\n - zh\n prebuild_index: true\n\n - git-revision-date-localized:\n type: timeago\n enable_creation_date: true\n\n - minify:\n minify_html: true\n minify_js: true\n minify_css: true\n\n - macros:\n module_name: includes.macros\n include_yaml:\n - includes/variables.yml\n\n - pdf-export:\n combined: true\n combined_output_path: pdf/document.pdf\n
"},{"location":"Technology/mkdocs%20material/#354","title":"3.5.4 \u6027\u80fd\u4f18\u5316\u5efa\u8bae","text":"
-
\u63d2\u4ef6\u9009\u62e9\uff1a - \u53ea\u542f\u7528\u5fc5\u8981\u7684\u63d2\u4ef6 - \u907f\u514d\u529f\u80fd\u91cd\u590d\u7684\u63d2\u4ef6 - \u6ce8\u610f\u63d2\u4ef6\u95f4\u7684\u4f9d\u8d56\u5173\u7cfb
-
\u914d\u7f6e\u4f18\u5316\uff1a
YAML
plugins:\n - search:\n prebuild_index: true # \u9884\u6784\u5efa\u7d22\u5f15\n - minify:\n cache: true # \u542f\u7528\u7f13\u5b58\n cache_dir: .cache # \u7f13\u5b58\u76ee\u5f55\n - optimize: # \u8d44\u6e90\u4f18\u5316\n cache: true\n
- \u6784\u5efa\u4f18\u5316\uff1a
YAML
plugins:\n # \u5e76\u884c\u5904\u7406\u63d2\u4ef6\n - parallel:\n workers: 4\n # \u7f13\u5b58\u63d2\u4ef6\n - cache:\n enabled: true\n
"},{"location":"Technology/mkdocs%20material/#4-material","title":"4 Material \u4e3b\u9898\u5b8c\u5168\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#41","title":"4.1 \u57fa\u7840\u5916\u89c2","text":""},{"location":"Technology/mkdocs%20material/#411","title":"4.1.1 \u914d\u8272\u65b9\u6848","text":""},{"location":"Technology/mkdocs%20material/#4111","title":"4.1.1.1 \u9884\u8bbe\u4e3b\u9898\u8272","text":"
Material \u4e3b\u9898\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684\u9884\u8bbe\u989c\u8272\uff1a
YAML
theme:\n name: material\n palette:\n primary: indigo # \u4e3b\u8272\u8c03\n accent: pink # \u5f3a\u8c03\u8272\n\n# \u53ef\u7528\u7684\u4e3b\u9898\u8272\uff1a\n# red, pink, purple, deep purple, indigo, blue, light blue, \n# cyan, teal, green, light green, lime, yellow, amber, \n# orange, deep orange, brown, grey, blue grey\n
"},{"location":"Technology/mkdocs%20material/#4112","title":"4.1.1.2 \u81ea\u5b9a\u4e49\u914d\u8272","text":"
\u5b8c\u6574\u7684\u81ea\u5b9a\u4e49\u914d\u8272\u914d\u7f6e\uff1a
YAML
theme:\n palette:\n # \u4eae\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n\n # \u6697\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n
"},{"location":"Technology/mkdocs%20material/#4113-css","title":"4.1.1.3 \u81ea\u5b9a\u4e49 CSS \u53d8\u91cf","text":"
\u521b\u5efa docs/stylesheets/extra.css
\uff1a
CSS
:root {\n --md-primary-fg-color: #2196f3;\n --md-primary-fg-color--light: #64b5f6;\n --md-primary-fg-color--dark: #1976d2;\n --md-accent-fg-color: #2196f3;\n}\n\n[data-md-color-scheme=\"slate\"] {\n --md-primary-fg-color: #90caf9;\n --md-primary-fg-color--light: #e3f2fd;\n --md-primary-fg-color--dark: #42a5f5;\n}\n
\u5728 mkdocs.yml
\u4e2d\u5f15\u5165\uff1a
YAML
extra_css:\n - stylesheets/extra.css\n
"},{"location":"Technology/mkdocs%20material/#412","title":"4.1.2 \u4e3b\u9898\u5207\u6362","text":""},{"location":"Technology/mkdocs%20material/#4121","title":"4.1.2.1 \u57fa\u7840\u5207\u6362\u914d\u7f6e","text":"YAML
theme:\n name: material\n palette:\n # \u914d\u7f6e\u5207\u6362\u6309\u94ae\n - scheme: default\n toggle:\n icon: material/brightness-7 \n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n primary: indigo\n accent: indigo\n\n - scheme: slate\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n primary: indigo\n accent: indigo\n
"},{"location":"Technology/mkdocs%20material/#4122","title":"4.1.2.2 \u9ad8\u7ea7\u5207\u6362\u529f\u80fd","text":"
\u6dfb\u52a0\u81ea\u5b9a\u4e49\u5207\u6362\u903b\u8f91\uff1a
YAML
extra_javascript:\n - javascripts/theme-switch.js\n
theme-switch.js
\u5185\u5bb9\uff1a
JavaScript
document.addEventListener('DOMContentLoaded', function() {\n // \u83b7\u53d6\u7cfb\u7edf\u4e3b\u9898\u504f\u597d\n const prefersDark = window.matchMedia('(prefers-color-scheme: dark)');\n\n // \u76d1\u542c\u7cfb\u7edf\u4e3b\u9898\u53d8\u5316\n prefersDark.addListener((e) => {\n const theme = e.matches ? 'slate' : 'default';\n document.body.setAttribute('data-md-color-scheme', theme);\n });\n\n // \u521d\u59cb\u5316\u4e3b\u9898\n const theme = prefersDark.matches ? 'slate' : 'default';\n document.body.setAttribute('data-md-color-scheme', theme);\n});\n
"},{"location":"Technology/mkdocs%20material/#413","title":"4.1.3 \u56fe\u6807\u8bbe\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#4131","title":"4.1.3.1 \u7f51\u7ad9\u56fe\u6807","text":"
\u914d\u7f6e\u7f51\u7ad9\u56fe\u6807\u548c Logo\uff1a
YAML
theme:\n icon:\n logo: material/book-open-page-variant # \u7f51\u7ad9 Logo\n repo: fontawesome/brands/github # \u4ed3\u5e93\u56fe\u6807\n\n favicon: assets/favicon.png # \u7f51\u7ad9\u56fe\u6807\n
"},{"location":"Technology/mkdocs%20material/#4132","title":"4.1.3.2 \u529f\u80fd\u56fe\u6807","text":"
\u4e3a\u4e0d\u540c\u529f\u80fd\u914d\u7f6e\u56fe\u6807\uff1a
YAML
theme:\n icon:\n repo: fontawesome/brands/github # \u4ed3\u5e93\u56fe\u6807\n edit: material/pencil # \u7f16\u8f91\u56fe\u6807\n view: material/eye # \u67e5\u770b\u56fe\u6807\n admonition:\n note: octicons/tag-16 # \u63d0\u793a\u6846\u56fe\u6807\n abstract: octicons/checklist-16\n info: octicons/info-16\n tip: octicons/squirrel-16\n success: octicons/check-16\n question: octicons/question-16\n warning: octicons/alert-16\n failure: octicons/x-circle-16\n danger: octicons/zap-16\n bug: octicons/bug-16\n example: octicons/beaker-16\n quote: octicons/quote-16\n
"},{"location":"Technology/mkdocs%20material/#4133-svg","title":"4.1.3.3 \u81ea\u5b9a\u4e49 SVG \u56fe\u6807","text":"
\u6dfb\u52a0\u81ea\u5b9a\u4e49 SVG \u56fe\u6807\uff1a
- \u521b\u5efa
.icons
\u76ee\u5f55\uff1a
Text Only
.\n\u251c\u2500 .icons/\n\u2502 \u2514\u2500 custom/\n\u2502 \u2514\u2500 logo.svg\n\u2514\u2500 mkdocs.yml\n
- \u914d\u7f6e\u4f7f\u7528\uff1a
YAML
theme:\n icon:\n logo: custom/logo\n
"},{"location":"Technology/mkdocs%20material/#414-logo","title":"4.1.4 Logo \u8bbe\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#4141-logo","title":"4.1.4.1 \u57fa\u7840 Logo \u914d\u7f6e","text":"YAML
theme:\n logo: assets/logo.svg # Logo \u56fe\u7247\n icon:\n logo: material/book # \u6216\u4f7f\u7528\u56fe\u6807\u4f5c\u4e3a Logo\n
"},{"location":"Technology/mkdocs%20material/#4142-logo","title":"4.1.4.2 \u54cd\u5e94\u5f0f Logo","text":"
\u521b\u5efa\u54cd\u5e94\u5f0f Logo\uff1a
YAML
theme:\n logo: assets/logo.svg\nextra_css:\n - stylesheets/logo.css\n
logo.css
\u5185\u5bb9\uff1a
CSS
/* \u9ed8\u8ba4 Logo */\n.md-logo img {\n width: 40px;\n height: 40px;\n}\n\n/* \u79fb\u52a8\u7aef Logo */\n@media screen and (max-width: 76.1875em) {\n .md-logo img {\n width: 32px;\n height: 32px;\n }\n}\n\n/* \u6697\u8272\u4e3b\u9898 Logo */\n[data-md-color-scheme=\"slate\"] .md-logo img {\n filter: invert(1);\n}\n
"},{"location":"Technology/mkdocs%20material/#4143-logo","title":"4.1.4.3 Logo \u52a8\u753b\u6548\u679c","text":"
\u6dfb\u52a0 Logo \u52a8\u753b\uff1a
CSS
.md-logo img {\n transition: transform 0.3s ease;\n}\n\n.md-logo img:hover {\n transform: scale(1.1);\n}\n
"},{"location":"Technology/mkdocs%20material/#415","title":"4.1.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\ntheme:\n name: material\n\n # \u8c03\u8272\u677f\u914d\u7f6e\n palette:\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: blue\n accent: blue\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n\n # \u56fe\u6807\u914d\u7f6e\n icon:\n logo: material/book-open-page-variant\n repo: fontawesome/brands/github\n edit: material/pencil\n view: material/eye\n\n # Logo \u914d\u7f6e\n logo: assets/logo.svg\n favicon: assets/favicon.png\n\n# \u989d\u5916\u6837\u5f0f\nextra_css:\n - stylesheets/extra.css\n - stylesheets/logo.css\n\n# \u989d\u5916\u811a\u672c\nextra_javascript:\n - javascripts/theme-switch.js\n\n# \u4e3b\u9898\u7279\u6027\nfeatures:\n - navigation.instant\n - navigation.tracking\n - navigation.tabs\n - navigation.sections\n - navigation.expand\n - navigation.top\n - toc.integrate\n
"},{"location":"Technology/mkdocs%20material/#42","title":"4.2 \u5bfc\u822a\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#421","title":"4.2.1 \u9876\u90e8\u5bfc\u822a","text":""},{"location":"Technology/mkdocs%20material/#4211","title":"4.2.1.1 \u5bfc\u822a\u680f\u6837\u5f0f","text":"
\u57fa\u7840\u5bfc\u822a\u680f\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n features:\n - navigation.tabs # \u542f\u7528\u6807\u7b7e\u5f0f\u5bfc\u822a\n - navigation.sections # \u663e\u793a\u7ae0\u8282\u5bfc\u822a\n - navigation.expand # \u5c55\u5f00\u5bfc\u822a\n - navigation.indexes # \u7ae0\u8282\u7d22\u5f15\u9875\n
\u81ea\u5b9a\u4e49\u5bfc\u822a\u680f\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/extra.css */\n\n/* \u5bfc\u822a\u680f\u80cc\u666f */\n.md-header {\n background-color: #2196f3;\n box-shadow: 0 2px 4px rgba(0,0,0,.14);\n}\n\n/* \u5bfc\u822a\u9879\u6837\u5f0f */\n.md-tabs__link {\n font-size: .8rem;\n margin-top: .4rem;\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.md-tabs__link--active {\n font-weight: bold;\n border-bottom: 2px solid currentColor;\n}\n
"},{"location":"Technology/mkdocs%20material/#4212","title":"4.2.1.2 \u56fa\u5b9a\u5bfc\u822a\u680f","text":"
\u542f\u7528\u56fa\u5b9a\u5bfc\u822a\uff1a
YAML
theme:\n features:\n - header.autohide # \u81ea\u52a8\u9690\u85cf\n - navigation.sticky # \u56fa\u5b9a\u5bfc\u822a\n
\u81ea\u5b9a\u4e49\u56fa\u5b9a\u5bfc\u822a\u884c\u4e3a\uff1a
CSS
/* \u56fa\u5b9a\u5bfc\u822a\u680f\u6837\u5f0f */\n.md-header--sticky {\n backdrop-filter: blur(8px);\n background-color: rgba(255,255,255,.8);\n}\n\n/* \u6697\u8272\u4e3b\u9898 */\n[data-md-color-scheme=\"slate\"] .md-header--sticky {\n background-color: rgba(0,0,0,.8);\n}\n
"},{"location":"Technology/mkdocs%20material/#4213","title":"4.2.1.3 \u54cd\u5e94\u5f0f\u5bfc\u822a","text":"
\u54cd\u5e94\u5f0f\u914d\u7f6e\uff1a
YAML
theme:\n features:\n - navigation.instant # \u5373\u65f6\u52a0\u8f7d\n - navigation.tracking # \u6eda\u52a8\u8ddf\u8e2a\n
\u54cd\u5e94\u5f0f\u6837\u5f0f\u8c03\u6574\uff1a
CSS
/* \u79fb\u52a8\u7aef\u5bfc\u822a */\n@media screen and (max-width: 76.1875em) {\n .md-nav__title {\n font-size: .9rem;\n padding: 0.5rem 0.8rem;\n }\n\n .md-nav__item {\n padding: 0.2rem 0.8rem;\n }\n}\n\n/* \u5e73\u677f\u5bfc\u822a */\n@media screen and (min-width: 76.25em) {\n .md-nav__link {\n padding: 0.2rem 0;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#422","title":"4.2.2 \u6807\u7b7e\u5bfc\u822a","text":""},{"location":"Technology/mkdocs%20material/#4221","title":"4.2.2.1 \u6807\u7b7e\u9875\u914d\u7f6e","text":"
\u542f\u7528\u6807\u7b7e\u5bfc\u822a\uff1a
YAML
theme:\n features:\n - navigation.tabs\n - navigation.tabs.sticky # \u56fa\u5b9a\u6807\u7b7e\n
\u6807\u7b7e\u9875\u7ed3\u6784\uff1a
YAML
nav:\n - Home: index.md\n - Guide:\n - guide/index.md\n - Installation: guide/installation.md\n - Configuration: guide/configuration.md\n - API:\n - api/index.md\n - Reference: api/reference.md\n
"},{"location":"Technology/mkdocs%20material/#4222","title":"4.2.2.2 \u6807\u7b7e\u6837\u5f0f","text":"
\u81ea\u5b9a\u4e49\u6807\u7b7e\u6837\u5f0f\uff1a
CSS
/* \u6807\u7b7e\u5bb9\u5668 */\n.md-tabs {\n background-color: var(--md-primary-fg-color--dark);\n}\n\n/* \u6807\u7b7e\u9879 */\n.md-tabs__item {\n padding: 0 1rem;\n transition: all 0.2s ease;\n}\n\n/* \u60ac\u505c\u6548\u679c */\n.md-tabs__item:hover {\n background-color: rgba(255,255,255,.1);\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.md-tabs__item--active {\n font-weight: bold;\n}\n
"},{"location":"Technology/mkdocs%20material/#4223","title":"4.2.2.3 \u6807\u7b7e\u4ea4\u4e92","text":"
\u6dfb\u52a0\u6807\u7b7e\u4ea4\u4e92\u6548\u679c\uff1a
JavaScript
// docs/javascripts/tabs.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u6807\u7b7e\u70b9\u51fb\u6548\u679c\n const tabs = document.querySelectorAll('.md-tabs__item');\n tabs.forEach(tab => {\n tab.addEventListener('click', () => {\n // \u6dfb\u52a0\u70b9\u51fb\u6ce2\u7eb9\u6548\u679c\n const ripple = document.createElement('div');\n ripple.classList.add('md-tabs__ripple');\n tab.appendChild(ripple);\n\n // \u79fb\u9664\u6ce2\u7eb9\u6548\u679c\n setTimeout(() => ripple.remove(), 1000);\n });\n });\n});\n
\u5bf9\u5e94\u7684 CSS\uff1a
CSS
/* \u6ce2\u7eb9\u6548\u679c */\n.md-tabs__ripple {\n position: absolute;\n background: rgba(255,255,255,.3);\n border-radius: 50%;\n transform: scale(0);\n animation: ripple 0.6s linear;\n}\n\n@keyframes ripple {\n to {\n transform: scale(4);\n opacity: 0;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#423","title":"4.2.3 \u76ee\u5f55\u5bfc\u822a","text":""},{"location":"Technology/mkdocs%20material/#4231","title":"4.2.3.1 \u76ee\u5f55\u5c42\u7ea7","text":"
\u914d\u7f6e\u76ee\u5f55\u5c42\u7ea7\uff1a
YAML
theme:\n features:\n - toc.integrate # \u96c6\u6210\u76ee\u5f55\n - toc.follow # \u76ee\u5f55\u8ddf\u968f\n\nmarkdown_extensions:\n - toc:\n permalink: true # \u6c38\u4e45\u94fe\u63a5\n toc_depth: 3 # \u76ee\u5f55\u6df1\u5ea6\n title: \u76ee\u5f55 # \u76ee\u5f55\u6807\u9898\n
"},{"location":"Technology/mkdocs%20material/#4232","title":"4.2.3.2 \u76ee\u5f55\u6837\u5f0f","text":"
\u81ea\u5b9a\u4e49\u76ee\u5f55\u6837\u5f0f\uff1a
CSS
/* \u76ee\u5f55\u5bb9\u5668 */\n.md-toc {\n padding: 1rem;\n background-color: var(--md-code-bg-color);\n border-radius: 4px;\n}\n\n/* \u76ee\u5f55\u6807\u9898 */\n.md-toc__title {\n font-weight: bold;\n margin-bottom: 1rem;\n}\n\n/* \u76ee\u5f55\u94fe\u63a5 */\n.md-toc__link {\n color: var(--md-typeset-color);\n text-decoration: none;\n}\n\n/* \u76ee\u5f55\u5c42\u7ea7\u7f29\u8fdb */\n.md-toc__list {\n margin-left: 1.5em;\n}\n
"},{"location":"Technology/mkdocs%20material/#4233","title":"4.2.3.3 \u951a\u70b9\u94fe\u63a5","text":"
\u914d\u7f6e\u951a\u70b9\u94fe\u63a5\uff1a
YAML
markdown_extensions:\n - toc:\n permalink: \u2693\ufe0e # \u951a\u70b9\u7b26\u53f7\n slug: !!python/object/apply:pymdownx.slugs.slugify\n kwds: {case: lower} # URL \u8f6c\u6362\u89c4\u5219\n
\u81ea\u5b9a\u4e49\u951a\u70b9\u6837\u5f0f\uff1a
CSS
/* \u951a\u70b9\u94fe\u63a5 */\n.headerlink {\n opacity: 0;\n margin-left: .5em;\n transition: opacity 0.2s ease;\n}\n\n/* \u6807\u9898\u60ac\u505c\u65f6\u663e\u793a\u951a\u70b9 */\nh1:hover .headerlink,\nh2:hover .headerlink,\nh3:hover .headerlink {\n opacity: 1;\n}\n
"},{"location":"Technology/mkdocs%20material/#424","title":"4.2.4 \u8fd4\u56de\u9876\u90e8","text":""},{"location":"Technology/mkdocs%20material/#4241","title":"4.2.4.1 \u6309\u94ae\u6837\u5f0f","text":"
\u542f\u7528\u8fd4\u56de\u9876\u90e8\u6309\u94ae\uff1a
YAML
theme:\n features:\n - navigation.top # \u8fd4\u56de\u9876\u90e8\u6309\u94ae\n
\u81ea\u5b9a\u4e49\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* \u8fd4\u56de\u9876\u90e8\u6309\u94ae */\n.md-top {\n background-color: var(--md-primary-fg-color);\n border-radius: 50%;\n box-shadow: 0 2px 4px rgba(0,0,0,.14);\n transition: all 0.2s ease;\n}\n\n/* \u60ac\u505c\u6548\u679c */\n.md-top:hover {\n background-color: var(--md-primary-fg-color--dark);\n transform: translateY(-2px);\n}\n
"},{"location":"Technology/mkdocs%20material/#4242","title":"4.2.4.2 \u6eda\u52a8\u884c\u4e3a","text":"
\u81ea\u5b9a\u4e49\u6eda\u52a8\u884c\u4e3a\uff1a
JavaScript
// docs/javascripts/scroll.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const topButton = document.querySelector('.md-top');\n\n // \u5e73\u6ed1\u6eda\u52a8\n if (topButton) {\n topButton.addEventListener('click', (e) => {\n e.preventDefault();\n window.scrollTo({\n top: 0,\n behavior: 'smooth'\n });\n });\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#4243","title":"4.2.4.3 \u663e\u793a\u63a7\u5236","text":"
\u914d\u7f6e\u663e\u793a\u903b\u8f91\uff1a
JavaScript
// \u63a7\u5236\u6309\u94ae\u663e\u793a\nwindow.addEventListener('scroll', () => {\n const topButton = document.querySelector('.md-top');\n if (topButton) {\n if (window.scrollY > 100) {\n topButton.classList.add('md-top--show');\n } else {\n topButton.classList.remove('md-top--show');\n }\n }\n});\n
\u6837\u5f0f\u63a7\u5236\uff1a
CSS
/* \u6309\u94ae\u663e\u793a\u9690\u85cf */\n.md-top {\n opacity: 0;\n visibility: hidden;\n transition: opacity 0.2s ease, visibility 0.2s ease;\n}\n\n.md-top--show {\n opacity: 1;\n visibility: visible;\n}\n
"},{"location":"Technology/mkdocs%20material/#425","title":"4.2.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\ntheme:\n name: material\n features:\n # \u5bfc\u822a\u529f\u80fd\n - navigation.tabs\n - navigation.tabs.sticky\n - navigation.sections\n - navigation.expand\n - navigation.indexes\n - navigation.instant\n - navigation.tracking\n - navigation.sticky\n - header.autohide\n\n # \u76ee\u5f55\u529f\u80fd\n - toc.integrate\n - toc.follow\n\n # \u8fd4\u56de\u9876\u90e8\n - navigation.top\n\n# Markdown \u6269\u5c55\nmarkdown_extensions:\n - toc:\n permalink: true\n toc_depth: 3\n title: \u76ee\u5f55\n slugify: !!python/object/apply:pymdownx.slugs.slugify\n kwds: {case: lower}\n\n# \u989d\u5916\u6837\u5f0f\u548c\u811a\u672c\nextra_css:\n - stylesheets/extra.css\n\nextra_javascript:\n - javascripts/tabs.js\n - javascripts/scroll.js\n
"},{"location":"Technology/mkdocs%20material/#43","title":"4.3 \u641c\u7d22\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#431","title":"4.3.1 \u641c\u7d22\u5f15\u64ce\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#4311","title":"4.3.1.1 \u641c\u7d22\u7b97\u6cd5","text":"
\u57fa\u7840\u641c\u7d22\u914d\u7f6e\uff1a
YAML
plugins:\n - search:\n separator: '[\\\\s\\\\-\\\\.]+' # \u5206\u8bcd\u5206\u9694\u7b26\n min_search_length: 2 # \u6700\u5c0f\u641c\u7d22\u957f\u5ea6\n lang:\n - en\n - zh\n prebuild_index: true # \u9884\u6784\u5efa\u7d22\u5f15\n
\u9ad8\u7ea7\u641c\u7d22\u9009\u9879\uff1a
YAML
plugins:\n - search:\n separator: '[\\\\s\\\\-\\\\.]+\\\\s*'\n min_search_length: 2\n prebuild_index: python\n indexing:\n full_sections: true # \u7d22\u5f15\u5b8c\u6574\u7ae0\u8282\n headings: true # \u7d22\u5f15\u6807\u9898\n content: true # \u7d22\u5f15\u5185\u5bb9\n tags: true # \u7d22\u5f15\u6807\u7b7e\n scoring:\n title_boost: 10 # \u6807\u9898\u6743\u91cd\n heading_boost: 5 # \u6807\u9898\u6743\u91cd\n content_boost: 1 # \u5185\u5bb9\u6743\u91cd\n
"},{"location":"Technology/mkdocs%20material/#4312","title":"4.3.1.2 \u7d22\u5f15\u914d\u7f6e","text":"
\u81ea\u5b9a\u4e49\u7d22\u5f15\u8bbe\u7f6e\uff1a
YAML
plugins:\n - search:\n indexing:\n full_sections: true\n headings: true\n content: true\n tags: true\n attachments: true # \u7d22\u5f15\u9644\u4ef6\n attachments_types: # \u9644\u4ef6\u7c7b\u578b\n - .pdf\n - .doc\n - .docx\n attachments_max_size: 2048 # \u6700\u5927\u5927\u5c0f(KB)\n
"},{"location":"Technology/mkdocs%20material/#4313","title":"4.3.1.3 \u641c\u7d22\u8303\u56f4","text":"
\u914d\u7f6e\u641c\u7d22\u8303\u56f4\uff1a
YAML
plugins:\n - search:\n # \u5305\u542b\u7684\u6587\u4ef6\n include:\n - \"*.md\"\n - \"*.markdown\"\n\n # \u6392\u9664\u7684\u6587\u4ef6\n exclude:\n - drafts/*\n - private/*\n\n # \u5904\u7406\u7279\u5b9a\u8def\u5f84\n ignore:\n - 404.md\n - index.md\n
"},{"location":"Technology/mkdocs%20material/#432","title":"4.3.2 \u641c\u7d22\u63d0\u793a","text":""},{"location":"Technology/mkdocs%20material/#4321","title":"4.3.2.1 \u5feb\u6377\u952e\u8bbe\u7f6e","text":"
\u914d\u7f6e\u641c\u7d22\u5feb\u6377\u952e\uff1a
YAML
theme:\n keyboard:\n search: s, / # \u4f7f\u7528 's' \u6216 '/' \u89e6\u53d1\u641c\u7d22\n
\u81ea\u5b9a\u4e49\u5feb\u6377\u952e\u5904\u7406\uff1a
JavaScript
// docs/javascripts/search.js\n\ndocument.addEventListener('keydown', function(e) {\n // \u81ea\u5b9a\u4e49\u5feb\u6377\u952e\u903b\u8f91\n if ((e.key === 's' || e.key === '/') && !e.ctrlKey && !e.altKey && !e.metaKey) {\n e.preventDefault();\n const search = document.querySelector('.md-search__input');\n if (search) {\n search.focus();\n }\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#4322","title":"4.3.2.2 \u63d0\u793a\u6587\u672c","text":"
\u81ea\u5b9a\u4e49\u641c\u7d22\u63d0\u793a\uff1a
YAML
theme:\n language: zh # \u4f7f\u7528\u4e2d\u6587\u754c\u9762\n\nextra:\n search:\n language: zh\n text:\n placeholder: \u641c\u7d22\u6587\u6863...\n no_results: \u6ca1\u6709\u627e\u5230\u76f8\u5173\u7ed3\u679c\n searching: \u6b63\u5728\u641c\u7d22...\n
\u81ea\u5b9a\u4e49\u63d0\u793a\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/search.css */\n\n/* \u641c\u7d22\u6846\u63d0\u793a\u6587\u672c */\n.md-search__input::placeholder {\n color: var(--md-default-fg-color--lighter);\n}\n\n/* \u65e0\u7ed3\u679c\u63d0\u793a */\n.md-search-result__meta {\n color: var(--md-default-fg-color--light);\n font-size: .8rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#4323","title":"4.3.2.3 \u8f93\u5165\u5efa\u8bae","text":"
\u914d\u7f6e\u641c\u7d22\u5efa\u8bae\uff1a
YAML
plugins:\n - search:\n suggestions: true # \u542f\u7528\u641c\u7d22\u5efa\u8bae\n suggestions_min_length: 2 # \u6700\u5c0f\u5efa\u8bae\u957f\u5ea6\n
\u81ea\u5b9a\u4e49\u5efa\u8bae\u6837\u5f0f\uff1a
CSS
/* \u641c\u7d22\u5efa\u8bae\u6837\u5f0f */\n.md-search-result__item {\n padding: .4rem .8rem;\n transition: background .2s ease;\n}\n\n.md-search-result__item:hover {\n background-color: var(--md-code-bg-color);\n}\n\n/* \u5efa\u8bae\u9879\u56fe\u6807 */\n.md-search-result__icon {\n color: var(--md-default-fg-color--lighter);\n margin-right: .4rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#433","title":"4.3.3 \u641c\u7d22\u9ad8\u4eae","text":""},{"location":"Technology/mkdocs%20material/#4331","title":"4.3.3.1 \u9ad8\u4eae\u6837\u5f0f","text":"
\u914d\u7f6e\u641c\u7d22\u9ad8\u4eae\uff1a
YAML
theme:\n features:\n - search.highlight # \u542f\u7528\u641c\u7d22\u9ad8\u4eae\n - search.share # \u542f\u7528\u641c\u7d22\u5206\u4eab\n - search.suggest # \u542f\u7528\u641c\u7d22\u5efa\u8bae\n
\u81ea\u5b9a\u4e49\u9ad8\u4eae\u6837\u5f0f\uff1a
CSS
/* \u641c\u7d22\u7ed3\u679c\u9ad8\u4eae */\n.md-search-result__item mark {\n background-color: var(--md-accent-fg-color--transparent);\n color: var(--md-accent-fg-color);\n padding: 0 .2em;\n border-radius: .1em;\n}\n\n/* \u6eda\u52a8\u6761\u6837\u5f0f */\n.md-search-result__scrollwrap::-webkit-scrollbar {\n width: 4px;\n height: 4px;\n}\n\n.md-search-result__scrollwrap::-webkit-scrollbar-thumb {\n background-color: var(--md-default-fg-color--lighter);\n border-radius: 2px;\n}\n
"},{"location":"Technology/mkdocs%20material/#4332","title":"4.3.3.2 \u5339\u914d\u89c4\u5219","text":"
\u914d\u7f6e\u641c\u7d22\u5339\u914d\u89c4\u5219\uff1a
YAML
plugins:\n - search:\n # \u6587\u672c\u5339\u914d\u914d\u7f6e\n tokenizer: '[\\s\\-\\.]+' # \u5206\u8bcd\u89c4\u5219\n min_search_length: 2 # \u6700\u5c0f\u641c\u7d22\u957f\u5ea6\n\n # \u6a21\u7cca\u5339\u914d\u8bbe\u7f6e\n fuzzy: false # \u7981\u7528\u6a21\u7cca\u5339\u914d\n\n # \u5339\u914d\u6743\u91cd\n boost: \n title: 10 # \u6807\u9898\u6743\u91cd\n text: 1 # \u6587\u672c\u6743\u91cd\n
"},{"location":"Technology/mkdocs%20material/#4333","title":"4.3.3.3 \u81ea\u5b9a\u4e49\u9ad8\u4eae","text":"
\u5b9e\u73b0\u81ea\u5b9a\u4e49\u9ad8\u4eae\u903b\u8f91\uff1a
JavaScript
// docs/javascripts/search-highlight.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u83b7\u53d6\u641c\u7d22\u7ed3\u679c\u5bb9\u5668\n const searchResults = document.querySelector('.md-search-result');\n\n if (searchResults) {\n // \u76d1\u542c\u641c\u7d22\u7ed3\u679c\u53d8\u5316\n const observer = new MutationObserver(mutations => {\n mutations.forEach(mutation => {\n if (mutation.type === 'childList') {\n // \u5904\u7406\u65b0\u6dfb\u52a0\u7684\u641c\u7d22\u7ed3\u679c\n const newResults = mutation.addedNodes;\n newResults.forEach(node => {\n if (node.nodeType === 1) { // \u5143\u7d20\u8282\u70b9\n customHighlight(node);\n }\n });\n }\n });\n });\n\n // \u542f\u52a8\u89c2\u5bdf\n observer.observe(searchResults, {\n childList: true,\n subtree: true\n });\n }\n});\n\nfunction customHighlight(node) {\n // \u81ea\u5b9a\u4e49\u9ad8\u4eae\u903b\u8f91\n}\n
"},{"location":"Technology/mkdocs%20material/#434","title":"4.3.4 \u641c\u7d22\u8bed\u8a00","text":""},{"location":"Technology/mkdocs%20material/#4341","title":"4.3.4.1 \u4e2d\u6587\u5206\u8bcd","text":"
\u914d\u7f6e\u4e2d\u6587\u5206\u8bcd\uff1a
YAML
plugins:\n - search:\n lang:\n - en\n - zh\n separator: '[\\s\\-\\.,\\!\\/\\?\\u2000-\\u206F\\u3000-\\u303F\\u3040-\\u309F\\u30A0-\\u30FF\\u3100-\\u312F\\u3200-\\u32FF\\u3400-\\u4DBF\\u4E00-\\u9FFF]+'\n
\u4e2d\u6587\u641c\u7d22\u4f18\u5316\uff1a
JavaScript
// docs/javascripts/chinese-search.js\n\nfunction chineseSegment(text) {\n // \u7b80\u5355\u7684\u4e2d\u6587\u5206\u8bcd\u903b\u8f91\n return text.replace(/[\\u4e00-\\u9fa5]/g, function(char) {\n return char + ' ';\n });\n}\n\n// \u6dfb\u52a0\u5230\u641c\u7d22\u5904\u7406\u6d41\u7a0b\ndocument.addEventListener('DOMContentLoaded', function() {\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.addEventListener('input', function(e) {\n const value = e.target.value;\n if (/[\\u4e00-\\u9fa5]/.test(value)) {\n // \u5904\u7406\u4e2d\u6587\u8f93\u5165\n const segmented = chineseSegment(value);\n // TODO: \u4f7f\u7528\u5206\u8bcd\u7ed3\u679c\u8fdb\u884c\u641c\u7d22\n }\n });\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#4342","title":"4.3.4.2 \u591a\u8bed\u8a00\u652f\u6301","text":"
\u914d\u7f6e\u591a\u8bed\u8a00\u641c\u7d22\uff1a
YAML
plugins:\n - search:\n lang:\n - en\n - zh\n - ja\n # \u8bed\u8a00\u7279\u5b9a\u7684\u5206\u8bcd\u89c4\u5219\n separator:\n en: '[\\\\s\\\\-\\\\.]+'\n zh: '[\\u4e00-\\u9fa5]'\n ja: '[\\u3040-\\u309F\\u30A0-\\u30FF]+'\n
"},{"location":"Technology/mkdocs%20material/#4343","title":"4.3.4.3 \u505c\u7528\u8bcd\u914d\u7f6e","text":"
\u914d\u7f6e\u505c\u7528\u8bcd\uff1a
YAML
plugins:\n - search:\n stopwords: \n en:\n - a\n - an\n - the\n - in\n - on\n - at\n zh:\n - \u7684\n - \u4e86\n - \u548c\n - \u4e0e\n - \u6216\n
\u81ea\u5b9a\u4e49\u505c\u7528\u8bcd\u5904\u7406\uff1a
JavaScript
// docs/javascripts/stopwords.js\n\nconst stopwords = {\n en: ['a', 'an', 'the', 'in', 'on', 'at'],\n zh: ['\u7684', '\u4e86', '\u548c', '\u4e0e', '\u6216'],\n};\n\nfunction removeStopwords(text, lang) {\n if (!stopwords[lang]) return text;\n\n const words = text.split(/\\s+/);\n return words\n .filter(word => !stopwords[lang].includes(word))\n .join(' ');\n}\n
"},{"location":"Technology/mkdocs%20material/#435","title":"4.3.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\n\nplugins:\n - search:\n lang:\n - en\n - zh\n separator: '[\\s\\-\\.,\\!\\/\\?\\u2000-\\u206F\\u3000-\\u303F]+'\n prebuild_index: python\n indexing:\n full_sections: true\n headings: true\n content: true\n tags: true\n scoring:\n title_boost: 10\n heading_boost: 5\n content_boost: 1\n\ntheme:\n features:\n - search.highlight\n - search.share\n - search.suggest\n\nextra:\n search:\n language: zh\n text:\n placeholder: \u641c\u7d22\u6587\u6863...\n no_results: \u6ca1\u6709\u627e\u5230\u76f8\u5173\u7ed3\u679c\n searching: \u6b63\u5728\u641c\u7d22...\n\nextra_javascript:\n - javascripts/search.js\n - javascripts/search-highlight.js\n - javascripts/chinese-search.js\n - javascripts/stopwords.js\n\nextra_css:\n - stylesheets/search.css\n
"},{"location":"Technology/mkdocs%20material/#44","title":"4.4 \u4ee3\u7801\u5757\u8bbe\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#441","title":"4.4.1 \u8bed\u6cd5\u9ad8\u4eae","text":""},{"location":"Technology/mkdocs%20material/#4411","title":"4.4.1.1 \u9ad8\u4eae\u4e3b\u9898","text":"
\u57fa\u7840\u9ad8\u4eae\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n features:\n - content.code.annotate # \u542f\u7528\u4ee3\u7801\u6ce8\u91ca\n - content.code.copy # \u542f\u7528\u4ee3\u7801\u590d\u5236\n\nmarkdown_extensions:\n - pymdownx.highlight:\n anchor_linenums: true\n line_spans: __span\n pygments_lang_class: true\n use_pygments: true\n auto_title: true # \u663e\u793a\u8bed\u8a00\u540d\u79f0\n linenums: true # \u663e\u793a\u884c\u53f7\n
\u81ea\u5b9a\u4e49\u9ad8\u4eae\u4e3b\u9898\uff1a
YAML
theme:\n palette:\n # \u4eae\u8272\u4e3b\u9898\n - scheme: default\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u4e3b\u9898\n pygments_style: github-light\n\n # \u6697\u8272\u4e3b\u9898\n - scheme: slate\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u4e3b\u9898\n pygments_style: monokai\n
\u81ea\u5b9a\u4e49\u4ee3\u7801\u5757\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/code.css */\n\n/* \u4ee3\u7801\u5757\u5bb9\u5668 */\n.highlight {\n background-color: var(--md-code-bg-color);\n border-radius: 4px;\n padding: 0.5rem;\n margin: 1rem 0;\n}\n\n/* \u4ee3\u7801\u884c */\n.highlight .code-line {\n display: block;\n padding: 0 1rem;\n border-left: 2px solid transparent;\n}\n\n/* \u9ad8\u4eae\u884c */\n.highlight .code-line.focused {\n background-color: var(--md-code-hl-color);\n border-left: 2px solid var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4412","title":"4.4.1.2 \u8bed\u8a00\u652f\u6301","text":"
\u914d\u7f6e\u652f\u6301\u7684\u8bed\u8a00\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n extend_pygments_lang:\n # \u81ea\u5b9a\u4e49\u8bed\u8a00\u914d\u7f6e\n typescript:\n name: TypeScript\n aliases: [ts]\n jsonc:\n name: JSON with Comments\n aliases: [json5]\n
\u8bed\u8a00\u7279\u5b9a\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n language_prefix: language- # \u8bed\u8a00\u524d\u7f00\n css_class: highlight # CSS\u7c7b\u540d\n code_attr_on_pre: false # \u5c5e\u6027\u4f4d\u7f6e\n extend_pygments_lang: # \u8bed\u8a00\u6269\u5c55\n flow:\n name: Flow\n aliases: [flowtype]\n
"},{"location":"Technology/mkdocs%20material/#4413","title":"4.4.1.3 \u81ea\u5b9a\u4e49\u9ad8\u4eae","text":"
\u81ea\u5b9a\u4e49\u8bed\u6cd5\u9ad8\u4eae\u89c4\u5219\uff1a
Python
# docs/custom_lexer.py\nfrom pygments.lexer import RegexLexer, words\nfrom pygments.token import *\n\nclass CustomLexer(RegexLexer):\n name = 'CustomLanguage'\n aliases = ['custom']\n filenames = ['*.custom']\n\n tokens = {\n 'root': [\n (r'//.*$', Comment.Single),\n (words(('if', 'else', 'while'), suffix=r'\\b'), Keyword),\n (r'\"[^\"]*\"', String),\n (r'\\d+', Number),\n (r'[a-zA-Z_]\\w*', Name),\n (r'[^\\w\\s]', Punctuation),\n ]\n }\n
\u5728 mkdocs.yml
\u4e2d\u4f7f\u7528\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n use_pygments: true\n extend_pygments_lang:\n custom:\n name: CustomLanguage\n aliases: [custom]\n
"},{"location":"Technology/mkdocs%20material/#442","title":"4.4.2 \u884c\u53f7\u663e\u793a","text":""},{"location":"Technology/mkdocs%20material/#4421","title":"4.4.2.1 \u884c\u53f7\u6837\u5f0f","text":"
\u914d\u7f6e\u884c\u53f7\u663e\u793a\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n linenums: true\n linenums_style: table # \u8868\u683c\u5f0f\u884c\u53f7\n anchor_linenums: true # \u884c\u53f7\u94fe\u63a5\n
\u81ea\u5b9a\u4e49\u884c\u53f7\u6837\u5f0f\uff1a
CSS
/* \u884c\u53f7\u5bb9\u5668 */\n.highlighttable {\n width: 100%;\n display: table;\n}\n\n/* \u884c\u53f7\u5217 */\n.linenos {\n color: var(--md-default-fg-color--lighter);\n text-align: right;\n padding-right: 1rem;\n user-select: none;\n}\n\n/* \u4ee3\u7801\u5217 */\n.code {\n padding-left: 1rem;\n border-left: 1px solid var(--md-default-fg-color--lightest);\n}\n
"},{"location":"Technology/mkdocs%20material/#4422","title":"4.4.2.2 \u8d77\u59cb\u884c\u8bbe\u7f6e","text":"
\u8bbe\u7f6e\u4ee3\u7801\u5757\u8d77\u59cb\u884c\u53f7\uff1a
Markdown
```python linenums=\"10\"\ndef hello_world():\n print(\"Hello, World!\")\n```\n
\u914d\u7f6e\u9ed8\u8ba4\u8d77\u59cb\u884c\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n linenums: true\n linenums_start: 1 # \u9ed8\u8ba4\u8d77\u59cb\u884c\u53f7\n
"},{"location":"Technology/mkdocs%20material/#4423","title":"4.4.2.3 \u884c\u53f7\u94fe\u63a5","text":"
\u542f\u7528\u884c\u53f7\u94fe\u63a5\u529f\u80fd\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n anchor_linenums: true # \u542f\u7528\u884c\u53f7\u94fe\u63a5\n line_anchors: L # \u884c\u53f7\u94fe\u63a5\u524d\u7f00\n
\u81ea\u5b9a\u4e49\u94fe\u63a5\u6837\u5f0f\uff1a
CSS
/* \u884c\u53f7\u94fe\u63a5 */\n.md-typeset .highlight [data-linenos]:before {\n content: attr(data-linenos);\n color: var(--md-default-fg-color--lighter);\n padding-right: 1rem;\n}\n\n/* \u94fe\u63a5\u60ac\u505c\u6548\u679c */\n.md-typeset .highlight [data-linenos]:hover:before {\n color: var(--md-accent-fg-color);\n cursor: pointer;\n}\n
"},{"location":"Technology/mkdocs%20material/#443","title":"4.4.3 \u590d\u5236\u6309\u94ae","text":""},{"location":"Technology/mkdocs%20material/#4431","title":"4.4.3.1 \u6309\u94ae\u6837\u5f0f","text":"
\u914d\u7f6e\u590d\u5236\u6309\u94ae\uff1a
YAML
theme:\n features:\n - content.code.copy # \u542f\u7528\u4ee3\u7801\u590d\u5236\n
\u81ea\u5b9a\u4e49\u590d\u5236\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* \u590d\u5236\u6309\u94ae\u5bb9\u5668 */\n.md-clipboard {\n position: absolute;\n top: 0.5rem;\n right: 0.5rem;\n padding: 0.4rem;\n color: var(--md-default-fg-color--lighter);\n background-color: transparent;\n border: none;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n/* \u60ac\u505c\u6548\u679c */\n.md-clipboard:hover {\n color: var(--md-accent-fg-color);\n background-color: var(--md-code-bg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4432","title":"4.4.3.2 \u590d\u5236\u884c\u4e3a","text":"
\u81ea\u5b9a\u4e49\u590d\u5236\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/clipboard.js\n\ndocument.addEventListener('DOMContentLoaded', () => {\n // \u83b7\u53d6\u6240\u6709\u4ee3\u7801\u5757\n const codeBlocks = document.querySelectorAll('pre code');\n\n codeBlocks.forEach(block => {\n // \u521b\u5efa\u590d\u5236\u6309\u94ae\n const button = document.createElement('button');\n button.className = 'md-clipboard';\n button.title = '\u590d\u5236\u5230\u526a\u8d34\u677f';\n\n // \u6dfb\u52a0\u590d\u5236\u56fe\u6807\n button.innerHTML = '<span class=\"md-clipboard__icon\"></span>';\n\n // \u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\n button.addEventListener('click', async () => {\n try {\n // \u590d\u5236\u4ee3\u7801\n await navigator.clipboard.writeText(block.textContent);\n\n // \u663e\u793a\u6210\u529f\u63d0\u793a\n button.classList.add('md-clipboard--success');\n setTimeout(() => {\n button.classList.remove('md-clipboard--success');\n }, 2000);\n } catch (err) {\n console.error('\u590d\u5236\u5931\u8d25:', err);\n }\n });\n\n // \u5c06\u6309\u94ae\u6dfb\u52a0\u5230\u4ee3\u7801\u5757\n block.parentNode.insertBefore(button, block);\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#4433","title":"4.4.3.3 \u63d0\u793a\u914d\u7f6e","text":"
\u914d\u7f6e\u590d\u5236\u63d0\u793a\uff1a
YAML
theme:\n language: zh # \u4f7f\u7528\u4e2d\u6587\u754c\u9762\n\nextra:\n clipboard:\n copy: \u590d\u5236\n copied: \u5df2\u590d\u5236\uff01\n error: \u590d\u5236\u5931\u8d25\n
\u81ea\u5b9a\u4e49\u63d0\u793a\u6837\u5f0f\uff1a
CSS
/* \u590d\u5236\u63d0\u793a */\n.md-clipboard__tooltip {\n position: absolute;\n top: -2rem;\n right: 0;\n padding: 0.4rem 0.8rem;\n color: var(--md-default-bg-color);\n background-color: var(--md-default-fg-color);\n border-radius: 4px;\n font-size: 0.8rem;\n opacity: 0;\n transform: translateY(0.4rem);\n transition: all 0.2s ease;\n}\n\n/* \u663e\u793a\u63d0\u793a */\n.md-clipboard:hover .md-clipboard__tooltip {\n opacity: 1;\n transform: translateY(0);\n}\n
"},{"location":"Technology/mkdocs%20material/#444","title":"4.4.4 \u6ce8\u91ca\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#4441","title":"4.4.4.1 \u884c\u5185\u6ce8\u91ca","text":"
\u4f7f\u7528\u884c\u5185\u6ce8\u91ca\uff1a
Markdown
```python\ndef hello():\n print(\"Hello\") # (1)\n return True # (2)\n```\n\n1. \u6253\u5370\u95ee\u5019\u4fe1\u606f\n2. \u8fd4\u56de\u6210\u529f\u72b6\u6001\n
\u914d\u7f6e\u6ce8\u91ca\u6837\u5f0f\uff1a
CSS
/* \u884c\u5185\u6ce8\u91ca\u6807\u8bb0 */\n.md-annotation {\n color: var(--md-accent-fg-color);\n font-size: 0.8em;\n vertical-align: super;\n}\n
"},{"location":"Technology/mkdocs%20material/#4442","title":"4.4.4.2 \u5757\u7ea7\u6ce8\u91ca","text":"
\u4f7f\u7528\u5757\u7ea7\u6ce8\u91ca\uff1a
Markdown
```python\ndef process_data():\n # (1)!\n data = load_data()\n\n # (2)!\n result = transform(data)\n\n return result\n```\n\n1. \u4ece\u6570\u636e\u6e90\u52a0\u8f7d\u6570\u636e\n \u8fd9\u91cc\u53ef\u4ee5\u662f\u591a\u884c\n \u6ce8\u91ca\u8bf4\u660e\n\n2. \u5bf9\u6570\u636e\u8fdb\u884c\u8f6c\u6362\u5904\u7406\n \u5305\u542b\u6e05\u6d17\u548c\u683c\u5f0f\u5316\n
"},{"location":"Technology/mkdocs%20material/#4443","title":"4.4.4.3 \u6ce8\u91ca\u6837\u5f0f","text":"
\u81ea\u5b9a\u4e49\u6ce8\u91ca\u6837\u5f0f\uff1a
CSS
/* \u6ce8\u91ca\u5bb9\u5668 */\n.md-annotation-wrapper {\n margin: 1rem 0;\n padding: 1rem;\n background-color: var(--md-code-bg-color);\n border-left: 4px solid var(--md-accent-fg-color);\n border-radius: 4px;\n}\n\n/* \u6ce8\u91ca\u6807\u8bb0 */\n.md-annotation-marker {\n color: var(--md-accent-fg-color);\n font-weight: bold;\n}\n\n/* \u6ce8\u91ca\u5185\u5bb9 */\n.md-annotation-content {\n margin-top: 0.5rem;\n color: var(--md-default-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#445","title":"4.4.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\n\ntheme:\n name: material\n features:\n - content.code.annotate\n - content.code.copy\n\nmarkdown_extensions:\n - pymdownx.highlight:\n anchor_linenums: true\n line_spans: __span\n pygments_lang_class: true\n use_pygments: true\n auto_title: true\n linenums: true\n linenums_style: table\n - pymdownx.superfences\n - pymdownx.inlinehilite\n\nextra:\n clipboard:\n copy: \u590d\u5236\n copied: \u5df2\u590d\u5236\uff01\n error: \u590d\u5236\u5931\u8d25\n\nextra_css:\n - stylesheets/code.css\n\nextra_javascript:\n - javascripts/clipboard.js\n
"},{"location":"Technology/mkdocs%20material/#45","title":"4.5 \u5185\u5bb9\u589e\u5f3a","text":""},{"location":"Technology/mkdocs%20material/#451","title":"4.5.1 \u6570\u5b66\u516c\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#4511-katex","title":"4.5.1.1 KaTeX \u914d\u7f6e","text":"
\u5b89\u88c5\u548c\u914d\u7f6e KaTeX\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n\nextra_javascript:\n - javascripts/katex.js \n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js \n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n\nextra_css:\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css\n
\u521b\u5efa docs/javascripts/katex.js
\uff1a
JavaScript
document.addEventListener(\"DOMContentLoaded\", function() {\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true},\n {left: \"$\", right: \"$\", display: false},\n {left: \"\\\\(\", right: \"\\\\)\", display: false},\n {left: \"\\\\[\", right: \"\\\\]\", display: true}\n ],\n throwOnError: false\n });\n});\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
\u5185\u8054\u516c\u5f0f: $E = mc^2$\n\n\u5757\u7ea7\u516c\u5f0f\uff1a\n$$\n\\frac{n!}{k!(n-k)!} = \\binom{n}{k}\n$$\n
"},{"location":"Technology/mkdocs%20material/#4512-mathjax","title":"4.5.1.2 MathJax \u914d\u7f6e","text":"
\u914d\u7f6e MathJax\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n\nextra_javascript:\n - javascripts/mathjax.js\n - https://polyfill.io/v3/polyfill.min.js?features=es6\n - https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js\n
\u521b\u5efa docs/javascripts/mathjax.js
\uff1a
JavaScript
window.MathJax = {\n tex: {\n inlineMath: [[\"\\\\(\", \"\\\\)\"]],\n displayMath: [[\"\\\\[\", \"\\\\]\"]],\n processEscapes: true,\n processEnvironments: true\n },\n options: {\n ignoreHtmlClass: \".*|\",\n processHtmlClass: \"arithmatex\"\n }\n};\n
"},{"location":"Technology/mkdocs%20material/#4513","title":"4.5.1.3 \u516c\u5f0f\u7f16\u53f7","text":"
\u542f\u7528\u516c\u5f0f\u7f16\u53f7\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n numbering: true\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
$$\n\\begin{equation}\nE = mc^2 \\label{eq:einstein}\n\\end{equation}\n$$\n\n\u5f15\u7528\u516c\u5f0f $\\eqref{eq:einstein}$\n
"},{"location":"Technology/mkdocs%20material/#452","title":"4.5.2 \u56fe\u8868\u652f\u6301","text":""},{"location":"Technology/mkdocs%20material/#4521-mermaid","title":"4.5.2.1 Mermaid \u96c6\u6210","text":"
\u914d\u7f6e Mermaid\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n\nextra_javascript:\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Text Only
graph TD\n A[\u5f00\u59cb] --> B{\u5224\u65ad}\n B -->|Yes| C[\u5904\u7406]\n B -->|No| D[\u7ed3\u675f]\n
"},{"location":"Technology/mkdocs%20material/#4522-plantuml","title":"4.5.2.2 PlantUML \u652f\u6301","text":"
\u914d\u7f6e PlantUML\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: plantuml\n class: plantuml\n format: !!python/name:pymdownx.superfences.fence_code_format\n\nextra_javascript:\n - https://cdn.jsdelivr.net/npm/plantuml-encoder@1.4.0/dist/plantuml-encoder.min.js\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Text Only
@startuml\nAlice -> Bob: \u8bf7\u6c42\nBob --> Alice: \u54cd\u5e94\n@enduml\n
"},{"location":"Technology/mkdocs%20material/#4523","title":"4.5.2.3 \u81ea\u5b9a\u4e49\u56fe\u8868","text":"
\u521b\u5efa\u81ea\u5b9a\u4e49\u56fe\u8868\u7ec4\u4ef6\uff1a
JavaScript
// docs/javascripts/charts.js\nimport Chart from 'chart.js/auto';\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const chartElements = document.querySelectorAll('.custom-chart');\n\n chartElements.forEach(element => {\n const ctx = element.getContext('2d');\n const data = JSON.parse(element.dataset.chartData);\n\n new Chart(ctx, {\n type: data.type,\n data: data.data,\n options: data.options\n });\n });\n});\n
\u4f7f\u7528\u793a\u4f8b\uff1a
HTML
<canvas class=\"custom-chart\" data-chart-data='{\n \"type\": \"line\",\n \"data\": {\n \"labels\": [\"1\u6708\", \"2\u6708\", \"3\u6708\"],\n \"datasets\": [{\n \"label\": \"\u6570\u636e\",\n \"data\": [10, 20, 30]\n }]\n }\n}'></canvas>\n
"},{"location":"Technology/mkdocs%20material/#453","title":"4.5.3 \u4efb\u52a1\u5217\u8868","text":""},{"location":"Technology/mkdocs%20material/#4531","title":"4.5.3.1 \u590d\u9009\u6846\u6837\u5f0f","text":"
\u914d\u7f6e\u4efb\u52a1\u5217\u8868\uff1a
YAML
markdown_extensions:\n - pymdownx.tasklist:\n custom_checkbox: true\n clickable_checkbox: true\n
\u81ea\u5b9a\u4e49\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tasklist.css */\n\n.task-list-item {\n list-style-type: none;\n margin-left: -1.6rem;\n}\n\n.task-list-control {\n position: relative;\n display: inline-block;\n width: 1.2rem;\n height: 1.2rem;\n margin-right: 0.5rem;\n vertical-align: middle;\n}\n\n.task-list-indicator {\n position: absolute;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n background-color: var(--md-default-fg-color--lighter);\n border-radius: 2px;\n transition: all 0.2s ease;\n}\n\n.task-list-indicator:checked {\n background-color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4532","title":"4.5.3.2 \u4ea4\u4e92\u884c\u4e3a","text":"
\u6dfb\u52a0\u4ea4\u4e92\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/tasklist.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const taskItems = document.querySelectorAll('.task-list-item input[type=\"checkbox\"]');\n\n taskItems.forEach(item => {\n item.addEventListener('change', function() {\n // \u4fdd\u5b58\u72b6\u6001\n localStorage.setItem(\n `task-${this.closest('.task-list-item').id}`,\n this.checked\n );\n\n // \u66f4\u65b0\u6837\u5f0f\n if (this.checked) {\n this.closest('.task-list-item').classList.add('completed');\n } else {\n this.closest('.task-list-item').classList.remove('completed');\n }\n });\n\n // \u6062\u590d\u72b6\u6001\n const saved = localStorage.getItem(`task-${item.closest('.task-list-item').id}`);\n if (saved === 'true') {\n item.checked = true;\n item.closest('.task-list-item').classList.add('completed');\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#4533","title":"4.5.3.3 \u72b6\u6001\u7ba1\u7406","text":"CSS
/* \u4efb\u52a1\u72b6\u6001\u6837\u5f0f */\n.task-list-item.completed {\n text-decoration: line-through;\n color: var(--md-default-fg-color--light);\n}\n\n.task-list-item.pending {\n font-weight: bold;\n}\n\n.task-list-item.in-progress {\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#454","title":"4.5.4 \u6807\u7b7e\u9875","text":""},{"location":"Technology/mkdocs%20material/#4541","title":"4.5.4.1 \u6807\u7b7e\u7ec4\u6837\u5f0f","text":"
\u914d\u7f6e\u6807\u7b7e\u9875\uff1a
YAML
markdown_extensions:\n - pymdownx.tabbed:\n alternate_style: true \n
\u81ea\u5b9a\u4e49\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tabs.css */\n\n/* \u6807\u7b7e\u7ec4\u5bb9\u5668 */\n.tabbed-set {\n border: 1px solid var(--md-default-fg-color--lightest);\n border-radius: 4px;\n margin: 1rem 0;\n}\n\n/* \u6807\u7b7e\u5217\u8868 */\n.tabbed-labels {\n display: flex;\n background-color: var(--md-code-bg-color);\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u5355\u4e2a\u6807\u7b7e */\n.tabbed-labels > label {\n padding: 0.8rem 1.2rem;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.tabbed-labels > label.tabbed-selected {\n color: var(--md-accent-fg-color);\n border-bottom: 2px solid var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4542","title":"4.5.4.2 \u5207\u6362\u6548\u679c","text":"
\u6dfb\u52a0\u52a8\u753b\u6548\u679c\uff1a
CSS
/* \u6807\u7b7e\u5185\u5bb9\u5207\u6362\u52a8\u753b */\n.tabbed-content {\n padding: 1rem;\n opacity: 0;\n transform: translateY(10px);\n transition: all 0.3s ease;\n}\n\n.tabbed-content.tabbed-selected {\n opacity: 1;\n transform: translateY(0);\n}\n
\u6807\u7b7e\u9875\u4ea4\u4e92\uff1a
JavaScript
// docs/javascripts/tabs.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const tabSets = document.querySelectorAll('.tabbed-set');\n\n tabSets.forEach(tabSet => {\n const tabs = tabSet.querySelectorAll('.tabbed-labels > label');\n const contents = tabSet.querySelectorAll('.tabbed-content');\n\n tabs.forEach((tab, index) => {\n tab.addEventListener('click', () => {\n // \u66f4\u65b0\u6807\u7b7e\u72b6\u6001\n tabs.forEach(t => t.classList.remove('tabbed-selected'));\n tab.classList.add('tabbed-selected');\n\n // \u66f4\u65b0\u5185\u5bb9\u72b6\u6001\n contents.forEach(c => c.classList.remove('tabbed-selected'));\n contents[index].classList.add('tabbed-selected');\n });\n });\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#4543","title":"4.5.4.3 \u54cd\u5e94\u5f0f\u8bbe\u8ba1","text":"
\u6dfb\u52a0\u54cd\u5e94\u5f0f\u652f\u6301\uff1a
CSS
/* \u79fb\u52a8\u7aef\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .tabbed-labels {\n flex-wrap: wrap;\n }\n\n .tabbed-labels > label {\n flex: 1 1 auto;\n text-align: center;\n }\n\n .tabbed-content {\n padding: 0.8rem;\n }\n}\n\n/* \u5e73\u677f\u9002\u914d */\n@media screen and (min-width: 76.25em) {\n .tabbed-set {\n max-width: 80%;\n margin: 1rem auto;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#455","title":"4.5.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\n\nmarkdown_extensions:\n # \u6570\u5b66\u516c\u5f0f\n - pymdownx.arithmatex:\n generic: true\n\n # \u56fe\u8868\u652f\u6301\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n - name: plantuml\n class: plantuml\n format: !!python/name:pymdownx.superfences.fence_code_format\n\n # \u4efb\u52a1\u5217\u8868\n - pymdownx.tasklist:\n custom_checkbox: true\n clickable_checkbox: true\n\n # \u6807\u7b7e\u9875\n - pymdownx.tabbed:\n alternate_style: true\n\nextra_javascript:\n - javascripts/katex.js\n - javascripts/mermaid.js\n - javascripts/charts.js\n - javascripts/tasklist.js\n - javascripts/tabs.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n\nextra_css:\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css\n - stylesheets/tasklist.css\n - stylesheets/tabs.css\n
"},{"location":"Technology/mkdocs%20material/#5","title":"5 \u6837\u5f0f\u5b9a\u5236","text":""},{"location":"Technology/mkdocs%20material/#51-css","title":"5.1 CSS \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#511-css","title":"5.1.1 \u81ea\u5b9a\u4e49 CSS \u6587\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#5111-css","title":"5.1.1.1 CSS \u6587\u4ef6\u7ec4\u7ec7","text":"
- \u63a8\u8350\u7684\u76ee\u5f55\u7ed3\u6784\uff1a
Text Only
docs/\n\u251c\u2500\u2500 stylesheets/\n\u2502 \u251c\u2500\u2500 base/\n\u2502 \u2502 \u251c\u2500\u2500 _variables.css # CSS\u53d8\u91cf\u5b9a\u4e49\n\u2502 \u2502 \u251c\u2500\u2500 _typography.css # \u6392\u7248\u6837\u5f0f\n\u2502 \u2502 \u2514\u2500\u2500 _colors.css # \u989c\u8272\u5b9a\u4e49\n\u2502 \u251c\u2500\u2500 components/\n\u2502 \u2502 \u251c\u2500\u2500 _buttons.css # \u6309\u94ae\u6837\u5f0f\n\u2502 \u2502 \u251c\u2500\u2500 _cards.css # \u5361\u7247\u6837\u5f0f\n\u2502 \u2502 \u2514\u2500\u2500 _tables.css # \u8868\u683c\u6837\u5f0f\n\u2502 \u251c\u2500\u2500 layouts/\n\u2502 \u2502 \u251c\u2500\u2500 _header.css # \u5934\u90e8\u6837\u5f0f\n\u2502 \u2502 \u251c\u2500\u2500 _nav.css # \u5bfc\u822a\u6837\u5f0f\n\u2502 \u2502 \u2514\u2500\u2500 _footer.css # \u9875\u811a\u6837\u5f0f\n\u2502 \u2514\u2500\u2500 extra.css # \u4e3b\u6837\u5f0f\u6587\u4ef6\n
- \u5728
mkdocs.yml
\u4e2d\u5f15\u5165\u6837\u5f0f\uff1a
YAML
extra_css:\n - stylesheets/extra.css\n
- \u5728\u4e3b\u6837\u5f0f\u6587\u4ef6\u4e2d\u5bfc\u5165\u5176\u4ed6\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/extra.css */\n\n/* \u57fa\u7840\u6837\u5f0f */\n@import 'base/_variables.css';\n@import 'base/_typography.css';\n@import 'base/_colors.css';\n\n/* \u7ec4\u4ef6\u6837\u5f0f */\n@import 'components/_buttons.css';\n@import 'components/_cards.css';\n@import 'components/_tables.css';\n\n/* \u5e03\u5c40\u6837\u5f0f */\n@import 'layouts/_header.css';\n@import 'layouts/_nav.css';\n@import 'layouts/_footer.css';\n
"},{"location":"Technology/mkdocs%20material/#5112","title":"5.1.1.2 \u6837\u5f0f\u4f18\u5148\u7ea7","text":"
- \u6837\u5f0f\u4f18\u5148\u7ea7\u89c4\u5219\uff1a
CSS
/* 1. \u884c\u5185\u6837\u5f0f (1000) */\n<div style=\"color: red;\">\n\n/* 2. ID \u9009\u62e9\u5668 (100) */\n#header { }\n\n/* 3. \u7c7b\u9009\u62e9\u5668\u3001\u5c5e\u6027\u9009\u62e9\u5668\u3001\u4f2a\u7c7b (10) */\n.nav-item { }\n[type=\"text\"] { }\n:hover { }\n\n/* 4. \u5143\u7d20\u9009\u62e9\u5668\u3001\u4f2a\u5143\u7d20 (1) */\ndiv { }\n::before { }\n
- Material \u4e3b\u9898\u8986\u76d6\uff1a
CSS
/* \u8986\u76d6\u4e3b\u9898\u6837\u5f0f */\n.md-header {\n /* \u4f7f\u7528 !important \u614e\u91cd */\n background-color: #2196f3 !important;\n}\n\n/* \u4f7f\u7528\u66f4\u5177\u4f53\u7684\u9009\u62e9\u5668 */\n.md-header[data-md-color-scheme=\"default\"] {\n background-color: #2196f3;\n}\n
"},{"location":"Technology/mkdocs%20material/#5113-css","title":"5.1.1.3 CSS \u53d8\u91cf","text":"
- \u5b9a\u4e49\u5168\u5c40\u53d8\u91cf\uff1a
CSS
/* docs/stylesheets/base/_variables.css */\n\n:root {\n /* \u989c\u8272\u53d8\u91cf */\n --primary-color: #2196f3;\n --accent-color: #f50057;\n --text-color: #333333;\n\n /* \u5b57\u4f53\u53d8\u91cf */\n --font-family: \"LXGW WenKai\", -apple-system, sans-serif;\n --code-font: \"JetBrains Mono\", monospace;\n\n /* \u95f4\u8ddd\u53d8\u91cf */\n --spacing-unit: 8px;\n --content-padding: calc(var(--spacing-unit) * 2);\n\n /* \u9634\u5f71\u53d8\u91cf */\n --shadow-sm: 0 1px 2px rgba(0,0,0,0.1);\n --shadow-md: 0 2px 4px rgba(0,0,0,0.1);\n --shadow-lg: 0 4px 8px rgba(0,0,0,0.1);\n}\n
- \u4e3b\u9898\u53d8\u91cf\uff1a
CSS
/* \u4eae\u8272\u4e3b\u9898 */\n[data-md-color-scheme=\"default\"] {\n --md-primary-fg-color: var(--primary-color);\n --md-accent-fg-color: var(--accent-color);\n --md-typeset-color: var(--text-color);\n}\n\n/* \u6697\u8272\u4e3b\u9898 */\n[data-md-color-scheme=\"slate\"] {\n --primary-color: #90caf9;\n --accent-color: #ff4081;\n --text-color: #ffffff;\n}\n
"},{"location":"Technology/mkdocs%20material/#512","title":"5.1.2 \u5e38\u7528\u6837\u5f0f\u4fee\u6539","text":""},{"location":"Technology/mkdocs%20material/#5121","title":"5.1.2.1 \u5b57\u4f53\u8bbe\u7f6e","text":"
- \u5b57\u4f53\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/base/_typography.css */\n\n/* \u57fa\u7840\u5b57\u4f53\u8bbe\u7f6e */\nbody {\n font-family: var(--font-family);\n font-size: 16px;\n line-height: 1.6;\n}\n\n/* \u4ee3\u7801\u5b57\u4f53 */\ncode, pre {\n font-family: var(--code-font);\n font-size: 0.9em;\n}\n\n/* \u6807\u9898\u5b57\u4f53 */\nh1, h2, h3, h4, h5, h6 {\n font-family: var(--font-family);\n font-weight: 600;\n margin: calc(var(--spacing-unit) * 3) 0;\n}\n
"},{"location":"Technology/mkdocs%20material/#5122","title":"5.1.2.2 \u989c\u8272\u5b9a\u5236","text":"CSS
/* docs/stylesheets/base/_colors.css */\n\n/* \u6587\u672c\u989c\u8272 */\n.md-typeset {\n color: var(--text-color);\n}\n\n/* \u94fe\u63a5\u989c\u8272 */\n.md-typeset a {\n color: var(--md-accent-fg-color);\n}\n\n/* \u4ee3\u7801\u5757\u989c\u8272 */\n.highlight {\n background-color: var(--md-code-bg-color);\n}\n\n/* \u5f15\u7528\u5757\u989c\u8272 */\nblockquote {\n border-left: 4px solid var(--md-accent-fg-color);\n background-color: var(--md-code-bg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#5123","title":"5.1.2.3 \u95f4\u8ddd\u8c03\u6574","text":"CSS
/* \u5185\u5bb9\u95f4\u8ddd */\n.md-main__inner {\n padding: var(--content-padding);\n}\n\n/* \u6bb5\u843d\u95f4\u8ddd */\n.md-typeset p {\n margin: var(--spacing-unit) 0;\n}\n\n/* \u5217\u8868\u95f4\u8ddd */\n.md-typeset ul li,\n.md-typeset ol li {\n margin-bottom: calc(var(--spacing-unit) * 0.5);\n}\n\n/* \u6807\u9898\u95f4\u8ddd */\n.md-typeset h1 {\n margin-top: calc(var(--spacing-unit) * 4);\n margin-bottom: calc(var(--spacing-unit) * 2);\n}\n\n.md-typeset h2 {\n margin-top: calc(var(--spacing-unit) * 3);\n margin-bottom: calc(var(--spacing-unit) * 1.5);\n}\n
"},{"location":"Technology/mkdocs%20material/#5124","title":"5.1.2.4 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"
\u5728 mkdocs.yml
\u4e2d\u7684\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n font: false # \u7981\u7528\u9ed8\u8ba4\u5b57\u4f53\n\nextra_css:\n - stylesheets/extra.css\n\nextra:\n css_variables:\n spacing_unit: 8px\n content_width: 960px\n
"},{"location":"Technology/mkdocs%20material/#52","title":"5.2 \u4e3b\u9898\u6837\u5f0f\u8986\u76d6","text":""},{"location":"Technology/mkdocs%20material/#521","title":"5.2.1 \u7ec4\u4ef6\u6837\u5f0f\u4fee\u6539","text":""},{"location":"Technology/mkdocs%20material/#5211","title":"5.2.1.1 \u5bfc\u822a\u680f\u6837\u5f0f","text":"
- \u9876\u90e8\u5bfc\u822a\u680f\uff1a
CSS
/* docs/stylesheets/components/header.css */\n\n/* \u5bfc\u822a\u680f\u5bb9\u5668 */\n.md-header {\n background-color: var(--md-primary-fg-color);\n box-shadow: 0 2px 4px rgba(0,0,0,.14);\n height: 3rem;\n}\n\n/* \u5bfc\u822a\u680f\u6807\u9898 */\n.md-header__title {\n font-size: 1.2rem;\n font-weight: 600;\n margin-left: 1rem;\n}\n\n/* \u5bfc\u822a\u680f\u6309\u94ae */\n.md-header__button {\n padding: .8rem;\n color: var(--md-primary-bg-color);\n}\n\n/* \u5bfc\u822a\u680f\u641c\u7d22\u6846 */\n.md-search__input {\n border-radius: 2rem;\n background-color: rgba(255,255,255,.1);\n padding: 0 2.4rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5212","title":"5.2.1.2 \u4fa7\u8fb9\u680f\u6837\u5f0f","text":"CSS
/* docs/stylesheets/components/sidebar.css */\n\n/* \u4fa7\u8fb9\u680f\u5bb9\u5668 */\n.md-sidebar {\n width: 14rem;\n background-color: var(--md-default-bg-color);\n padding: 1.2rem 0;\n}\n\n/* \u4fa7\u8fb9\u680f\u5bfc\u822a */\n.md-nav--primary {\n padding: 0 .8rem;\n}\n\n/* \u5bfc\u822a\u9879 */\n.md-nav__item {\n padding: .2rem 0;\n}\n\n/* \u5bfc\u822a\u94fe\u63a5 */\n.md-nav__link {\n color: var(--md-default-fg-color);\n padding: .4rem .6rem;\n border-radius: 4px;\n transition: all .2s;\n}\n\n.md-nav__link:hover {\n background-color: var(--md-code-bg-color);\n color: var(--md-accent-fg-color);\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.md-nav__link--active {\n font-weight: 600;\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#5213","title":"5.2.1.3 \u9875\u811a\u6837\u5f0f","text":"CSS
/* docs/stylesheets/components/footer.css */\n\n/* \u9875\u811a\u5bb9\u5668 */\n.md-footer {\n background-color: var(--md-default-bg-color--darkest);\n color: var(--md-footer-fg-color);\n}\n\n/* \u9875\u811a\u5185\u5bb9 */\n.md-footer-meta {\n background-color: rgba(0,0,0,.1);\n padding: 1rem 0;\n}\n\n/* \u9875\u811a\u94fe\u63a5 */\n.md-footer__link {\n padding: .4rem 1rem;\n color: var(--md-footer-fg-color--light);\n}\n\n/* \u7248\u6743\u4fe1\u606f */\n.md-footer-copyright {\n font-size: .8rem;\n color: var(--md-footer-fg-color--lighter);\n}\n
"},{"location":"Technology/mkdocs%20material/#522","title":"5.2.2 \u81ea\u5b9a\u4e49\u8c03\u8272\u677f","text":""},{"location":"Technology/mkdocs%20material/#5221","title":"5.2.2.1 \u4e3b\u9898\u8272\u5b9a\u5236","text":"
- \u57fa\u7840\u989c\u8272\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/theme/colors.css */\n\n:root {\n /* \u4e3b\u8272\u8c03 */\n --md-primary-hue: 210;\n --md-primary-saturation: 80%;\n --md-primary-lightness: 45%;\n\n /* \u5f3a\u8c03\u8272 */\n --md-accent-hue: 340;\n --md-accent-saturation: 90%;\n --md-accent-lightness: 50%;\n}\n
- \u989c\u8272\u53d8\u91cf\u5e94\u7528\uff1a
CSS
:root {\n --md-primary-fg-color: hsl(\n var(--md-primary-hue),\n var(--md-primary-saturation),\n var(--md-primary-lightness)\n );\n\n --md-accent-fg-color: hsl(\n var(--md-accent-hue),\n var(--md-accent-saturation),\n var(--md-accent-lightness)\n );\n}\n
"},{"location":"Technology/mkdocs%20material/#5222","title":"5.2.2.2 \u914d\u8272\u65b9\u6848","text":"YAML
# mkdocs.yml\ntheme:\n palette:\n # \u4eae\u8272\u6a21\u5f0f\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo\n accent: deep purple\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n\n # \u6697\u8272\u6a21\u5f0f\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: blue grey\n accent: deep purple\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n
"},{"location":"Technology/mkdocs%20material/#5223","title":"5.2.2.3 \u6697\u8272\u4e3b\u9898","text":"CSS
/* \u6697\u8272\u4e3b\u9898\u53d8\u91cf */\n[data-md-color-scheme=\"slate\"] {\n --md-default-bg-color: #1a1a1a;\n --md-default-bg-color--light: #222222;\n --md-default-bg-color--lighter: #282828;\n\n --md-default-fg-color: rgba(255,255,255,0.87);\n --md-default-fg-color--light: rgba(255,255,255,0.54);\n --md-default-fg-color--lighter: rgba(255,255,255,0.32);\n\n --md-code-bg-color: #2d2d2d;\n --md-code-fg-color: #f5f5f5;\n}\n
"},{"location":"Technology/mkdocs%20material/#523","title":"5.2.3 \u5b57\u4f53\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#5231","title":"5.2.3.1 \u4e2d\u6587\u5b57\u4f53","text":"
- \u5b57\u4f53\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/theme/fonts.css */\n\n/* \u4e2d\u6587\u5b57\u4f53\u53d8\u91cf */\n:root {\n --md-font-chinese: \"LXGW WenKai\", \"PingFang SC\", \"Microsoft YaHei\";\n}\n\n/* \u5f15\u5165 LXGW WenKai \u5b57\u4f53 */\n@font-face {\n font-family: \"LXGW WenKai\";\n src: url(\"https://cdn.jsdelivr.net/npm/lxgw-wenkai-webfont@1.1.0/style.css\");\n font-display: swap;\n}\n
- \u5b57\u4f53\u5e94\u7528\uff1a
CSS
body {\n font-family: var(--md-font-chinese), -apple-system, sans-serif;\n}\n
"},{"location":"Technology/mkdocs%20material/#5232","title":"5.2.3.2 \u4ee3\u7801\u5b57\u4f53","text":"CSS
/* \u4ee3\u7801\u5b57\u4f53\u914d\u7f6e */\n:root {\n --md-code-font: \"JetBrains Mono\", \"Fira Code\", \"Source Code Pro\", monospace;\n}\n\n/* \u4ee3\u7801\u5757\u6837\u5f0f */\n.md-typeset code,\n.md-typeset pre {\n font-family: var(--md-code-font);\n font-size: 0.9em;\n}\n\n/* \u884c\u5185\u4ee3\u7801 */\n.md-typeset code {\n border-radius: 4px;\n padding: .2em .4em;\n}\n
"},{"location":"Technology/mkdocs%20material/#5233","title":"5.2.3.3 \u5b57\u4f53\u56de\u9000","text":"CSS
/* \u5b57\u4f53\u56de\u9000\u7b56\u7565 */\n:root {\n --md-text-font-fallback: -apple-system, BlinkMacSystemFont, Segoe UI, Helvetica,\n Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji;\n\n --md-code-font-fallback: SFMono-Regular, Consolas, Menlo, monospace;\n}\n\n/* \u5e94\u7528\u56de\u9000\u5b57\u4f53 */\nbody {\n font-family: var(--md-font-chinese), var(--md-text-font-fallback);\n}\n\npre, code {\n font-family: var(--md-code-font), var(--md-code-font-fallback);\n}\n
"},{"location":"Technology/mkdocs%20material/#524","title":"5.2.4 \u5e03\u5c40\u8c03\u6574","text":""},{"location":"Technology/mkdocs%20material/#5241","title":"5.2.4.1 \u54cd\u5e94\u5f0f\u5e03\u5c40","text":"CSS
/* docs/stylesheets/theme/layout.css */\n\n/* \u57fa\u7840\u54cd\u5e94\u5f0f\u5e03\u5c40 */\n.md-grid {\n max-width: 100%;\n margin: 0 auto;\n}\n\n/* \u684c\u9762\u7aef */\n@media screen and (min-width: 76.25em) {\n .md-grid {\n max-width: 76rem;\n }\n\n .md-sidebar--primary {\n width: 14rem;\n }\n\n .md-sidebar--secondary {\n width: 12rem;\n margin-left: 76rem;\n }\n}\n\n/* \u5e73\u677f\u7aef */\n@media screen and (max-width: 76.1875em) {\n .md-grid {\n max-width: 60rem;\n }\n\n .md-header-nav__title {\n display: none;\n }\n}\n\n/* \u79fb\u52a8\u7aef */\n@media screen and (max-width: 44.9375em) {\n .md-grid {\n max-width: 100%;\n padding: 0 1rem;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#5242","title":"5.2.4.2 \u7f51\u683c\u7cfb\u7edf","text":"CSS
/* \u81ea\u5b9a\u4e49\u7f51\u683c\u7cfb\u7edf */\n.grid {\n display: grid;\n gap: 1rem;\n margin: 1rem 0;\n}\n\n/* \u7f51\u683c\u5217\u6570 */\n.grid-cols-1 { grid-template-columns: repeat(1, 1fr); }\n.grid-cols-2 { grid-template-columns: repeat(2, 1fr); }\n.grid-cols-3 { grid-template-columns: repeat(3, 1fr); }\n.grid-cols-4 { grid-template-columns: repeat(4, 1fr); }\n\n/* \u54cd\u5e94\u5f0f\u7f51\u683c */\n@media (min-width: 768px) {\n .md-grid-cols-md-2 { grid-template-columns: repeat(2, 1fr); }\n .md-grid-cols-md-3 { grid-template-columns: repeat(3, 1fr); }\n}\n\n@media (min-width: 1024px) {\n .md-grid-cols-lg-3 { grid-template-columns: repeat(3, 1fr); }\n .md-grid-cols-lg-4 { grid-template-columns: repeat(4, 1fr); }\n}\n
"},{"location":"Technology/mkdocs%20material/#5243","title":"5.2.4.3 \u5bb9\u5668\u5bbd\u5ea6","text":"CSS
/* \u5bb9\u5668\u5bbd\u5ea6\u5b9a\u4e49 */\n:root {\n --md-container-width: 80rem;\n --md-container-padding: 1rem;\n}\n\n/* \u5bb9\u5668\u6837\u5f0f */\n.md-container {\n max-width: var(--md-container-width);\n margin: 0 auto;\n padding: 0 var(--md-container-padding);\n}\n\n/* \u4e0d\u540c\u5c3a\u5bf8\u7684\u5bb9\u5668 */\n.md-container--small {\n max-width: 60rem;\n}\n\n.md-container--medium {\n max-width: 70rem;\n}\n\n.md-container--large {\n max-width: 90rem;\n}\n\n/* \u6d41\u5f0f\u5bb9\u5668 */\n.md-container--fluid {\n max-width: 100%;\n}\n
"},{"location":"Technology/mkdocs%20material/#525","title":"5.2.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\ntheme:\n name: material\n font: false\n features:\n - navigation.tabs\n - navigation.sections\n - navigation.expand\n palette:\n - scheme: default\n primary: indigo\n accent: deep purple\n - scheme: slate\n primary: blue grey\n accent: deep purple\n\nextra_css:\n - stylesheets/theme/colors.css\n - stylesheets/theme/fonts.css\n - stylesheets/theme/layout.css\n - stylesheets/components/header.css\n - stylesheets/components/sidebar.css\n - stylesheets/components/footer.css\n
"},{"location":"Technology/mkdocs%20material/#53","title":"5.3 \u81ea\u5b9a\u4e49\u7ec4\u4ef6\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#531","title":"5.3.1 \u5361\u7247\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5311","title":"5.3.1.1 \u57fa\u7840\u5361\u7247","text":"
\u57fa\u7840\u5361\u7247\u6837\u5f0f\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/components/cards.css */\n\n/* \u57fa\u7840\u5361\u7247\u5bb9\u5668 */\n.card {\n background-color: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n padding: 1.5rem;\n margin: 1rem 0;\n transition: all 0.3s ease;\n}\n\n/* \u5361\u7247\u6807\u9898 */\n.card__title {\n font-size: 1.25rem;\n font-weight: 600;\n margin-bottom: 1rem;\n color: var(--md-typeset-color);\n}\n\n/* \u5361\u7247\u5185\u5bb9 */\n.card__content {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n line-height: 1.6;\n}\n\n/* \u5361\u7247\u5e95\u90e8 */\n.card__footer {\n margin-top: 1rem;\n padding-top: 1rem;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n
\u4f7f\u7528\u793a\u4f8b\uff1a
HTML
<div class=\"card\">\n <div class=\"card__title\">\u5361\u7247\u6807\u9898</div>\n <div class=\"card__content\">\n \u8fd9\u91cc\u662f\u5361\u7247\u5185\u5bb9...\n </div>\n <div class=\"card__footer\">\n \u5361\u7247\u5e95\u90e8\u4fe1\u606f\n </div>\n</div>\n
"},{"location":"Technology/mkdocs%20material/#5312","title":"5.3.1.2 \u56fe\u7247\u5361\u7247","text":"CSS
/* \u56fe\u7247\u5361\u7247\u6837\u5f0f */\n.card--image {\n padding: 0;\n overflow: hidden;\n}\n\n/* \u56fe\u7247\u5bb9\u5668 */\n.card__image {\n width: 100%;\n height: 200px;\n position: relative;\n overflow: hidden;\n}\n\n/* \u56fe\u7247\u6837\u5f0f */\n.card__image img {\n width: 100%;\n height: 100%;\n object-fit: cover;\n transition: transform 0.3s ease;\n}\n\n/* \u56fe\u7247\u60ac\u505c\u6548\u679c */\n.card--image:hover img {\n transform: scale(1.05);\n}\n\n/* \u56fe\u7247\u5361\u7247\u5185\u5bb9\u533a */\n.card--image .card__content {\n padding: 1.5rem;\n}\n\n/* \u56fe\u7247\u6807\u9898\u8986\u76d6 */\n.card__image-title {\n position: absolute;\n bottom: 0;\n left: 0;\n right: 0;\n padding: 1rem;\n background: linear-gradient(to top, rgba(0,0,0,0.7), transparent);\n color: white;\n}\n
"},{"location":"Technology/mkdocs%20material/#5313","title":"5.3.1.3 \u7279\u6548\u5361\u7247","text":"CSS
/* \u60ac\u6d6e\u6548\u679c\u5361\u7247 */\n.card--hover {\n cursor: pointer;\n}\n\n.card--hover:hover {\n transform: translateY(-4px);\n box-shadow: var(--md-shadow-z2);\n}\n\n/* \u6e10\u53d8\u80cc\u666f\u5361\u7247 */\n.card--gradient {\n background: linear-gradient(135deg, \n var(--md-primary-fg-color) 0%,\n var(--md-accent-fg-color) 100%);\n color: white;\n}\n\n/* \u6bdb\u73bb\u7483\u6548\u679c\u5361\u7247 */\n.card--glass {\n background: rgba(255, 255, 255, 0.1);\n backdrop-filter: blur(10px);\n border: 1px solid rgba(255, 255, 255, 0.2);\n}\n
"},{"location":"Technology/mkdocs%20material/#532","title":"5.3.2 \u63d0\u793a\u6846\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5321","title":"5.3.2.1 \u4fe1\u606f\u63d0\u793a","text":"CSS
/* docs/stylesheets/components/alerts.css */\n\n/* \u57fa\u7840\u63d0\u793a\u6846 */\n.alert {\n padding: 1rem 1.5rem;\n margin: 1rem 0;\n border-left: 4px solid;\n border-radius: 4px;\n}\n\n/* \u4fe1\u606f\u63d0\u793a */\n.alert--info {\n background-color: #e3f2fd;\n border-color: #2196f3;\n color: #0d47a1;\n}\n\n.alert--info::before {\n content: \"\u2139\ufe0f\";\n margin-right: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5322","title":"5.3.2.2 \u8b66\u544a\u63d0\u793a","text":"CSS
/* \u8b66\u544a\u63d0\u793a */\n.alert--warning {\n background-color: #fff3e0;\n border-color: #ff9800;\n color: #e65100;\n}\n\n.alert--warning::before {\n content: \"\u26a0\ufe0f\";\n margin-right: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5323","title":"5.3.2.3 \u9519\u8bef\u63d0\u793a","text":"CSS
/* \u9519\u8bef\u63d0\u793a */\n.alert--error {\n background-color: #ffebee;\n border-color: #f44336;\n color: #b71c1c;\n}\n\n.alert--error::before {\n content: \"\u274c\";\n margin-right: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#533","title":"5.3.3 \u53cb\u94fe\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5331","title":"5.3.3.1 \u53cb\u94fe\u5361\u7247","text":"CSS
/* docs/stylesheets/components/friends.css */\n\n/* \u53cb\u94fe\u5bb9\u5668 */\n.friend-links {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));\n gap: 1.5rem;\n margin: 2rem 0;\n}\n\n/* \u53cb\u94fe\u5361\u7247 */\n.friend-link {\n display: flex;\n align-items: center;\n padding: 1rem;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n transition: all 0.3s ease;\n}\n\n/* \u5934\u50cf */\n.friend-link__avatar {\n width: 60px;\n height: 60px;\n border-radius: 50%;\n margin-right: 1rem;\n}\n\n/* \u4fe1\u606f */\n.friend-link__info {\n flex: 1;\n}\n\n.friend-link__name {\n font-weight: 600;\n color: var(--md-typeset-color);\n}\n\n.friend-link__desc {\n font-size: 0.85rem;\n color: var(--md-default-fg-color--light);\n margin-top: 0.25rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5332","title":"5.3.3.2 \u5206\u7c7b\u5c55\u793a","text":"CSS
/* \u53cb\u94fe\u5206\u7c7b */\n.friend-links-section {\n margin: 2rem 0;\n}\n\n/* \u5206\u7c7b\u6807\u9898 */\n.friend-links-section__title {\n font-size: 1.25rem;\n font-weight: 600;\n margin-bottom: 1rem;\n padding-left: 1rem;\n border-left: 4px solid var(--md-accent-fg-color);\n}\n\n/* \u5206\u7c7b\u63cf\u8ff0 */\n.friend-links-section__desc {\n color: var(--md-default-fg-color--light);\n margin-bottom: 1.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5333","title":"5.3.3.3 \u60ac\u505c\u6548\u679c","text":"CSS
/* \u60ac\u505c\u6548\u679c */\n.friend-link:hover {\n transform: translateY(-2px);\n box-shadow: var(--md-shadow-z2);\n}\n\n/* \u5934\u50cf\u52a8\u753b */\n.friend-link:hover .friend-link__avatar {\n transform: rotate(360deg);\n transition: transform 0.6s ease;\n}\n\n/* \u6807\u7b7e\u6548\u679c */\n.friend-link__tag {\n display: inline-block;\n padding: 0.2rem 0.5rem;\n font-size: 0.75rem;\n border-radius: 12px;\n background-color: var(--md-code-bg-color);\n margin-top: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#534","title":"5.3.4 \u65f6\u95f4\u7ebf\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5341","title":"5.3.4.1 \u65f6\u95f4\u8f74\u8bbe\u8ba1","text":"CSS
/* docs/stylesheets/components/timeline.css */\n\n/* \u65f6\u95f4\u7ebf\u5bb9\u5668 */\n.timeline {\n position: relative;\n max-width: 800px;\n margin: 2rem auto;\n padding: 2rem 0;\n}\n\n/* \u65f6\u95f4\u8f74\u7ebf */\n.timeline::before {\n content: '';\n position: absolute;\n top: 0;\n left: calc(50% - 1px);\n width: 2px;\n height: 100%;\n background-color: var(--md-default-fg-color--lightest);\n}\n\n/* \u65f6\u95f4\u7ebf\u9879\u76ee */\n.timeline-item {\n position: relative;\n margin: 2rem 0;\n}\n\n/* \u4ea4\u9519\u5e03\u5c40 */\n.timeline-item:nth-child(odd) {\n padding-right: calc(50% + 2rem);\n}\n\n.timeline-item:nth-child(even) {\n padding-left: calc(50% + 2rem);\n}\n
"},{"location":"Technology/mkdocs%20material/#5342","title":"5.3.4.2 \u8282\u70b9\u6837\u5f0f","text":"CSS
/* \u65f6\u95f4\u8282\u70b9 */\n.timeline-node {\n position: absolute;\n top: 50%;\n width: 16px;\n height: 16px;\n background-color: var(--md-primary-fg-color);\n border-radius: 50%;\n transform: translateY(-50%);\n}\n\n.timeline-item:nth-child(odd) .timeline-node {\n right: calc(50% - 8px);\n}\n\n.timeline-item:nth-child(even) .timeline-node {\n left: calc(50% - 8px);\n}\n\n/* \u8282\u70b9\u5185\u5bb9 */\n.timeline-content {\n background-color: var(--md-default-bg-color);\n padding: 1.5rem;\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n}\n\n/* \u65f6\u95f4\u6807\u7b7e */\n.timeline-date {\n position: absolute;\n top: 50%;\n color: var(--md-default-fg-color--light);\n transform: translateY(-50%);\n}\n\n.timeline-item:nth-child(odd) .timeline-date {\n left: calc(50% + 2rem);\n}\n\n.timeline-item:nth-child(even) .timeline-date {\n right: calc(50% + 2rem);\n}\n
"},{"location":"Technology/mkdocs%20material/#5343","title":"5.3.4.3 \u54cd\u5e94\u5f0f\u9002\u914d","text":"CSS
/* \u79fb\u52a8\u7aef\u9002\u914d */\n@media screen and (max-width: 768px) {\n .timeline::before {\n left: 0;\n }\n\n .timeline-item {\n padding-left: 2rem !important;\n padding-right: 0 !important;\n }\n\n .timeline-node {\n left: -8px !important;\n right: auto !important;\n }\n\n .timeline-date {\n position: relative;\n top: auto;\n left: auto !important;\n right: auto !important;\n margin-bottom: 0.5rem;\n }\n}\n\n/* \u5e73\u677f\u7aef\u9002\u914d */\n@media screen and (min-width: 769px) and (max-width: 1024px) {\n .timeline {\n max-width: 90%;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#5344","title":"5.3.4.4 \u4f7f\u7528\u793a\u4f8b","text":"HTML
<!-- \u65f6\u95f4\u7ebf\u793a\u4f8b -->\n<div class=\"timeline\">\n <div class=\"timeline-item\">\n <div class=\"timeline-node\"></div>\n <div class=\"timeline-date\">2024-01-01</div>\n <div class=\"timeline-content\">\n <h3>\u4e8b\u4ef6\u6807\u9898</h3>\n <p>\u4e8b\u4ef6\u63cf\u8ff0...</p>\n </div>\n </div>\n\n <!-- \u66f4\u591a\u65f6\u95f4\u7ebf\u9879\u76ee -->\n</div>\n\n<!-- \u53cb\u94fe\u793a\u4f8b -->\n<div class=\"friend-links-section\">\n <h2 class=\"friend-links-section__title\">\u6280\u672f\u535a\u5ba2</h2>\n <p class=\"friend-links-section__desc\">\u4f18\u79c0\u7684\u6280\u672f\u535a\u5ba2\u6536\u85cf</p>\n <div class=\"friend-links\">\n <a href=\"#\" class=\"friend-link\">\n <img src=\"avatar.jpg\" class=\"friend-link__avatar\">\n <div class=\"friend-link__info\">\n <div class=\"friend-link__name\">\u535a\u5ba2\u540d\u79f0</div>\n <div class=\"friend-link__desc\">\u535a\u5ba2\u63cf\u8ff0</div>\n <span class=\"friend-link__tag\">\u6807\u7b7e</span>\n </div>\n </a>\n </div>\n</div>\n\n<!-- \u63d0\u793a\u6846\u793a\u4f8b -->\n<div class=\"alert alert--info\">\n \u8fd9\u662f\u4e00\u6761\u4fe1\u606f\u63d0\u793a\n</div>\n\n<div class=\"alert alert--warning\">\n \u8fd9\u662f\u4e00\u6761\u8b66\u544a\u63d0\u793a\n</div>\n\n<div class=\"alert alert--error\">\n \u8fd9\u662f\u4e00\u6761\u9519\u8bef\u63d0\u793a\n</div>\n
"},{"location":"Technology/mkdocs%20material/#535","title":"5.3.5 \u5b8c\u6574\u914d\u7f6e","text":"YAML
# mkdocs.yml\nextra_css:\n - stylesheets/components/cards.css\n - stylesheets/components/alerts.css\n - stylesheets/components/friends.css\n - stylesheets/components/timeline.css\n
"},{"location":"Technology/mkdocs%20material/#6-javascript","title":"6 JavaScript \u589e\u5f3a","text":""},{"location":"Technology/mkdocs%20material/#61","title":"6.1 \u57fa\u7840\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#611-js","title":"6.1.1 \u5f15\u5165 JS \u6587\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#6111","title":"6.1.1.1 \u672c\u5730\u6587\u4ef6","text":"
- \u521b\u5efa\u57fa\u7840\u76ee\u5f55\u7ed3\u6784\uff1a
Text Only
docs/\n\u251c\u2500\u2500 javascripts/\n\u2502 \u251c\u2500\u2500 config/ # \u914d\u7f6e\u6587\u4ef6\n\u2502 \u2502 \u2514\u2500\u2500 main.js\n\u2502 \u251c\u2500\u2500 modules/ # \u529f\u80fd\u6a21\u5757\n\u2502 \u2502 \u251c\u2500\u2500 search.js\n\u2502 \u2502 \u2514\u2500\u2500 theme.js\n\u2502 \u251c\u2500\u2500 utils/ # \u5de5\u5177\u51fd\u6570\n\u2502 \u2502 \u2514\u2500\u2500 helpers.js\n\u2502 \u2514\u2500\u2500 extra.js # \u4e3b\u5165\u53e3\u6587\u4ef6\n
- \u5728
mkdocs.yml
\u4e2d\u5f15\u5165\uff1a
YAML
extra_javascript:\n - javascripts/extra.js\n - javascripts/modules/search.js\n - javascripts/modules/theme.js\n
- JavaScript \u6587\u4ef6\u793a\u4f8b\uff1a
JavaScript
// docs/javascripts/extra.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u521d\u59cb\u5316\u4ee3\u7801\n console.log('Documentation loaded');\n});\n\n// docs/javascripts/modules/theme.js\nconst ThemeManager = {\n init() {\n // \u4e3b\u9898\u521d\u59cb\u5316\n },\n toggle() {\n // \u4e3b\u9898\u5207\u6362\n }\n};\n\n// docs/javascripts/utils/helpers.js\nconst Helpers = {\n debounce(fn, delay) {\n let timer = null;\n return function() {\n clearTimeout(timer);\n timer = setTimeout(() => fn.apply(this, arguments), delay);\n };\n }\n};\n
"},{"location":"Technology/mkdocs%20material/#6112-cdn","title":"6.1.1.2 CDN \u5f15\u5165","text":"
- \u5e38\u7528 CDN \u914d\u7f6e\uff1a
YAML
extra_javascript:\n # KaTeX \u6570\u5b66\u516c\u5f0f\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n\n # Mermaid \u56fe\u8868\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n\n # \u4ee3\u7801\u9ad8\u4eae\n - https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/components/prism-python.min.js\n
- CDN \u52a0\u901f\u914d\u7f6e\uff1a
YAML
extra:\n cdn:\n # \u4f7f\u7528\u56fd\u5185 CDN\n enable: true\n provider: jsdelivr # \u6216 unpkg, cdnjs\n urls:\n katex: https://cdn.jsdelivr.net/npm/katex@0.16.7/dist/katex.min.js\n mermaid: https://cdn.jsdelivr.net/npm/mermaid@9/dist/mermaid.min.js\n
- CDN \u6545\u969c\u5904\u7406\uff1a
JavaScript
// docs/javascripts/config/cdn-fallback.js\nfunction loadFallbackScript(url, fallbackUrl) {\n const script = document.createElement('script');\n script.src = url;\n script.onerror = () => {\n console.warn(`Failed to load ${url}, trying fallback...`);\n const fallback = document.createElement('script');\n fallback.src = fallbackUrl;\n document.head.appendChild(fallback);\n };\n document.head.appendChild(script);\n}\n\n// \u4f7f\u7528\u793a\u4f8b\nloadFallbackScript(\n 'https://cdn.jsdelivr.net/npm/katex@0.16.7/dist/katex.min.js',\n 'https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js'\n);\n
"},{"location":"Technology/mkdocs%20material/#6113","title":"6.1.1.3 \u6a21\u5757\u5316\u7ba1\u7406","text":"
- \u4f7f\u7528 ES6 \u6a21\u5757\uff1a
JavaScript
// docs/javascripts/modules/theme.js\nexport class ThemeManager {\n constructor() {\n this.darkMode = false;\n }\n\n init() {\n this.loadPreference();\n this.bindEvents();\n }\n\n toggle() {\n this.darkMode = !this.darkMode;\n this.savePreference();\n this.applyTheme();\n }\n}\n\n// docs/javascripts/modules/search.js\nexport class SearchManager {\n constructor() {\n this.index = null;\n }\n\n init() {\n this.buildIndex();\n this.bindSearchEvents();\n }\n\n search(query) {\n // \u641c\u7d22\u5b9e\u73b0\n }\n}\n\n// docs/javascripts/extra.js\nimport { ThemeManager } from './modules/theme.js';\nimport { SearchManager } from './modules/search.js';\n\nconst theme = new ThemeManager();\nconst search = new SearchManager();\n\ndocument.addEventListener('DOMContentLoaded', () => {\n theme.init();\n search.init();\n});\n
- \u6a21\u5757\u914d\u7f6e\u6587\u4ef6\uff1a
JavaScript
// docs/javascripts/config/modules.js\nexport const ModuleConfig = {\n theme: {\n enabled: true,\n darkModeClass: 'dark-mode',\n storageKey: 'theme-preference'\n },\n search: {\n enabled: true,\n minChars: 3,\n maxResults: 10\n }\n};\n\n// \u4f7f\u7528\u914d\u7f6e\nimport { ModuleConfig } from '../config/modules.js';\n\nclass ThemeManager {\n constructor() {\n this.config = ModuleConfig.theme;\n if (!this.config.enabled) return;\n // \u521d\u59cb\u5316\u4ee3\u7801\n }\n}\n
- \u5de5\u5177\u51fd\u6570\u6a21\u5757\uff1a
JavaScript
// docs/javascripts/utils/helpers.js\nexport const DOM = {\n // DOM \u64cd\u4f5c\u8f85\u52a9\u51fd\u6570\n select: (selector) => document.querySelector(selector),\n selectAll: (selector) => document.querySelectorAll(selector),\n addClass: (element, className) => element.classList.add(className),\n removeClass: (element, className) => element.classList.remove(className)\n};\n\nexport const Storage = {\n // \u672c\u5730\u5b58\u50a8\u8f85\u52a9\u51fd\u6570\n get: (key) => localStorage.getItem(key),\n set: (key, value) => localStorage.setItem(key, value),\n remove: (key) => localStorage.removeItem(key)\n};\n\nexport const Events = {\n // \u4e8b\u4ef6\u5904\u7406\u8f85\u52a9\u51fd\u6570\n on: (element, event, handler) => element.addEventListener(event, handler),\n off: (element, event, handler) => element.removeEventListener(event, handler),\n trigger: (element, event) => element.dispatchEvent(new Event(event))\n};\n
- \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b\uff1a
YAML
# mkdocs.yml\nextra_javascript:\n # \u6838\u5fc3\u6587\u4ef6\n - javascripts/extra.js\n - javascripts/config/modules.js\n\n # \u529f\u80fd\u6a21\u5757\n - javascripts/modules/theme.js\n - javascripts/modules/search.js\n\n # \u5de5\u5177\u51fd\u6570\n - javascripts/utils/helpers.js\n\n # \u7b2c\u4e09\u65b9\u5e93\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n\n# \u6a21\u5757\u914d\u7f6e\nextra:\n javascript_modules:\n theme:\n enabled: true\n default: light\n search:\n enabled: true\n min_chars: 3\n
"},{"location":"Technology/mkdocs%20material/#62","title":"6.2 \u7b2c\u4e09\u65b9\u5e93\u96c6\u6210","text":""},{"location":"Technology/mkdocs%20material/#621-katex","title":"6.2.1 KaTeX \u6570\u5b66\u516c\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#6211","title":"6.2.1.1 \u57fa\u7840\u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n\nextra_javascript:\n - javascripts/katex.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n\nextra_css:\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css\n
- \u521b\u5efa KaTeX \u914d\u7f6e\u6587\u4ef6\uff1a
JavaScript
// docs/javascripts/katex.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true},\n {left: \"$\", right: \"$\", display: false},\n {left: \"\\\\(\", right: \"\\\\)\", display: false},\n {left: \"\\\\[\", right: \"\\\\]\", display: true}\n ],\n throwOnError: false,\n errorColor: \"#cc0000\",\n strict: \"ignore\"\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6212","title":"6.2.1.2 \u81ea\u52a8\u6e32\u67d3","text":"
- \u914d\u7f6e\u81ea\u52a8\u6e32\u67d3\u9009\u9879\uff1a
JavaScript
// docs/javascripts/katex-auto.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true},\n {left: \"$\", right: \"$\", display: false}\n ],\n // \u81ea\u52a8\u6e32\u67d3\u8bbe\u7f6e\n ignoredTags: [\"script\", \"noscript\", \"style\", \"textarea\", \"pre\", \"code\"],\n ignoredClasses: [\"no-math\"],\n processEscapes: true,\n processEnvironments: true,\n // \u5904\u7406\u81ea\u5b9a\u4e49\u5b8f\n macros: {\n \"\\\\RR\": \"\\\\mathbb{R}\",\n \"\\\\NN\": \"\\\\mathbb{N}\",\n \"\\\\ZZ\": \"\\\\mathbb{Z}\"\n }\n });\n});\n
- \u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
\u884c\u5185\u516c\u5f0f\uff1a$E = mc^2$\n\n\u5757\u7ea7\u516c\u5f0f\uff1a\n$$\n\\frac{n!}{k!(n-k)!} = \\binom{n}{k}\n$$\n\n\u81ea\u5b9a\u4e49\u5b8f\uff1a$\\RR$ \u8868\u793a\u5b9e\u6570\u96c6\n
"},{"location":"Technology/mkdocs%20material/#6213","title":"6.2.1.3 \u516c\u5f0f\u7f16\u53f7","text":"
- \u542f\u7528\u516c\u5f0f\u7f16\u53f7\uff1a
JavaScript
// docs/javascripts/katex-numbering.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n // \u516c\u5f0f\u7f16\u53f7\u8ba1\u6570\u5668\n let equationNumbers = {};\n let numberings = {};\n\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true}\n ],\n // \u516c\u5f0f\u7f16\u53f7\u5904\u7406\n preProcess: (math) => {\n if (math.includes('\\\\label')) {\n const label = math.match(/\\\\label{([^}]*)}/)[1];\n const number = Object.keys(numberings).length + 1;\n numberings[label] = number;\n return math.replace(/\\\\label{[^}]*}/, `(${number})`);\n }\n return math;\n }\n });\n});\n
- \u4f7f\u7528\u7f16\u53f7\u548c\u5f15\u7528\uff1a
Markdown
\u5e26\u7f16\u53f7\u7684\u516c\u5f0f\uff1a\n$$\nE = mc^2 \\label{eq:einstein}\n$$\n\n\u5f15\u7528\u4e0a\u9762\u7684\u516c\u5f0f $\\eqref{eq:einstein}$\n
"},{"location":"Technology/mkdocs%20material/#622-mermaid","title":"6.2.2 Mermaid \u56fe\u8868","text":""},{"location":"Technology/mkdocs%20material/#6221","title":"6.2.2.1 \u521d\u59cb\u5316\u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n\nextra_javascript:\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n - javascripts/mermaid.js\n
- \u521b\u5efa Mermaid \u914d\u7f6e\u6587\u4ef6\uff1a
JavaScript
// docs/javascripts/mermaid.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n mermaid.initialize({\n startOnLoad: true,\n theme: 'default',\n sequence: {\n showSequenceNumbers: true,\n actorMargin: 50,\n messageMargin: 40\n },\n flowchart: {\n useMaxWidth: false,\n htmlLabels: true,\n curve: 'basis'\n },\n gantt: {\n titleTopMargin: 25,\n barHeight: 20,\n barGap: 4\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6222","title":"6.2.2.2 \u4e3b\u9898\u5b9a\u5236","text":"
- \u81ea\u5b9a\u4e49\u4e3b\u9898\u914d\u7f6e\uff1a
JavaScript
// docs/javascripts/mermaid-theme.js\nmermaid.initialize({\n theme: 'base',\n themeVariables: {\n // \u57fa\u7840\u989c\u8272\n primaryColor: '#2196f3',\n primaryTextColor: '#fff',\n primaryBorderColor: '#1976d2',\n lineColor: '#696969',\n\n // \u6d41\u7a0b\u56fe\u989c\u8272\n nodeBkg: '#fff',\n mainBkg: '#f8f9fa',\n nodeTextColor: '#333',\n\n // \u65f6\u5e8f\u56fe\u989c\u8272\n actorBkg: '#f8f9fa',\n actorBorder: '#2196f3',\n actorTextColor: '#333',\n\n // \u7518\u7279\u56fe\u989c\u8272\n sectionBkgColor: '#f8f9fa',\n altSectionBkgColor: '#fff',\n\n // \u6697\u8272\u4e3b\u9898\u652f\u6301\n darkMode: false\n }\n});\n
- \u54cd\u5e94\u4e3b\u9898\u5207\u6362\uff1a
JavaScript
// \u76d1\u542c\u4e3b\u9898\u5207\u6362\ndocument.addEventListener('themeChanged', function(e) {\n const isDark = e.detail.theme === 'dark';\n mermaid.initialize({\n theme: isDark ? 'dark' : 'default',\n themeVariables: {\n darkMode: isDark\n }\n });\n // \u91cd\u65b0\u6e32\u67d3\u56fe\u8868\n mermaid.init(undefined, '.mermaid');\n});\n
"},{"location":"Technology/mkdocs%20material/#6223","title":"6.2.2.3 \u4ea4\u4e92\u529f\u80fd","text":"
- \u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\uff1a
JavaScript
// docs/javascripts/mermaid-interaction.js\nmermaid.initialize({\n securityLevel: 'loose',\n flowchart: {\n htmlLabels: true,\n useMaxWidth: true\n }\n});\n\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n // \u4e3a\u56fe\u8868\u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\n const diagrams = document.querySelectorAll('.mermaid');\n diagrams.forEach(diagram => {\n diagram.addEventListener('click', function(e) {\n const target = e.target;\n if (target.tagName === 'g' && target.classList.contains('node')) {\n const nodeId = target.id;\n console.log('Clicked node:', nodeId);\n // \u5904\u7406\u8282\u70b9\u70b9\u51fb\n handleNodeClick(nodeId);\n }\n });\n });\n});\n\nfunction handleNodeClick(nodeId) {\n // \u8282\u70b9\u70b9\u51fb\u5904\u7406\n const node = document.getElementById(nodeId);\n if (node) {\n // \u6dfb\u52a0\u9ad8\u4eae\u6548\u679c\n node.classList.add('node-highlight');\n setTimeout(() => {\n node.classList.remove('node-highlight');\n }, 1000);\n }\n}\n
- \u6dfb\u52a0\u56fe\u8868\u52a8\u753b\uff1a
CSS
/* docs/stylesheets/mermaid.css */\n.mermaid .node-highlight {\n animation: pulse 1s;\n}\n\n@keyframes pulse {\n 0% { opacity: 1; }\n 50% { opacity: 0.5; }\n 100% { opacity: 1; }\n}\n\n.mermaid .flowchart-link {\n transition: stroke-width 0.3s ease;\n}\n\n.mermaid .flowchart-link:hover {\n stroke-width: 2px;\n cursor: pointer;\n}\n
"},{"location":"Technology/mkdocs%20material/#6224","title":"6.2.2.4 \u4f7f\u7528\u793a\u4f8b","text":"
- \u6d41\u7a0b\u56fe\u793a\u4f8b\uff1a
Markdown
```mermaid\ngraph TD\n A[\u5f00\u59cb] --> B{\u5224\u65ad}\n B -->|Yes| C[\u5904\u7406]\n B -->|No| D[\u7ed3\u675f]\n C --> D\n```\n
- \u65f6\u5e8f\u56fe\u793a\u4f8b\uff1a
Markdown
```mermaid\nsequenceDiagram\n participant \u5ba2\u6237\u7aef\n participant \u670d\u52a1\u5668\n\n \u5ba2\u6237\u7aef->>\u670d\u52a1\u5668: \u8bf7\u6c42\u6570\u636e\n \u670d\u52a1\u5668-->>\u5ba2\u6237\u7aef: \u8fd4\u56de\u54cd\u5e94\n```\n
"},{"location":"Technology/mkdocs%20material/#623","title":"6.2.3 \u4ee3\u7801\u590d\u5236","text":""},{"location":"Technology/mkdocs%20material/#6231","title":"6.2.3.1 \u590d\u5236\u6309\u94ae","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
theme:\n features:\n - content.code.copy\n\nextra_css:\n - stylesheets/code-copy.css\nextra_javascript:\n - javascripts/code-copy.js\n
- \u521b\u5efa\u590d\u5236\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/code-copy.css */\n\n/* \u590d\u5236\u6309\u94ae\u5bb9\u5668 */\n.copy-button {\n position: absolute;\n right: 0.5rem;\n top: 0.5rem;\n padding: 0.4rem;\n background-color: rgba(0, 0, 0, 0.1);\n border: none;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n/* \u6309\u94ae\u60ac\u505c\u6548\u679c */\n.copy-button:hover {\n background-color: rgba(0, 0, 0, 0.2);\n}\n\n/* \u56fe\u6807\u6837\u5f0f */\n.copy-button i {\n font-size: 1rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u6210\u529f\u72b6\u6001 */\n.copy-button.success {\n background-color: var(--md-accent-fg-color);\n}\n\n.copy-button.success i {\n color: white;\n}\n
- \u5b9e\u73b0\u590d\u5236\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/code-copy.js\ndocument.addEventListener('DOMContentLoaded', () => {\n // \u4e3a\u6240\u6709\u4ee3\u7801\u5757\u6dfb\u52a0\u590d\u5236\u6309\u94ae\n const codeBlocks = document.querySelectorAll('pre code');\n\n codeBlocks.forEach((codeBlock) => {\n const container = codeBlock.parentNode;\n const copyButton = document.createElement('button');\n copyButton.className = 'copy-button';\n copyButton.innerHTML = '<i class=\"material-icons\">content_copy</i>';\n container.style.position = 'relative';\n container.appendChild(copyButton);\n\n // \u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\n copyButton.addEventListener('click', async () => {\n try {\n await navigator.clipboard.writeText(codeBlock.textContent);\n showSuccess(copyButton);\n } catch (err) {\n showError(copyButton);\n }\n });\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6232","title":"6.2.3.2 \u63d0\u793a\u6d88\u606f","text":"
- \u521b\u5efa\u63d0\u793a\u6d88\u606f\u6837\u5f0f\uff1a
CSS
/* \u63d0\u793a\u6d88\u606f\u6837\u5f0f */\n.copy-tooltip {\n position: absolute;\n top: -2rem;\n right: 0;\n padding: 0.4rem 0.8rem;\n background-color: var(--md-default-fg-color);\n color: var(--md-default-bg-color);\n border-radius: 4px;\n font-size: 0.8rem;\n opacity: 0;\n transform: translateY(0.4rem);\n transition: all 0.2s ease;\n}\n\n.copy-tooltip.show {\n opacity: 1;\n transform: translateY(0);\n}\n
- \u5b9e\u73b0\u63d0\u793a\u529f\u80fd\uff1a
JavaScript
// \u663e\u793a\u63d0\u793a\u6d88\u606f\nfunction showTooltip(button, message, type = 'success') {\n const tooltip = document.createElement('div');\n tooltip.className = `copy-tooltip ${type}`;\n tooltip.textContent = message;\n button.appendChild(tooltip);\n\n // \u6dfb\u52a0\u663e\u793a\u7c7b\n setTimeout(() => tooltip.classList.add('show'), 10);\n\n // \u81ea\u52a8\u79fb\u9664\n setTimeout(() => {\n tooltip.classList.remove('show');\n setTimeout(() => tooltip.remove(), 200);\n }, 2000);\n}\n\n// \u6210\u529f\u63d0\u793a\nfunction showSuccess(button) {\n button.classList.add('success');\n showTooltip(button, '\u590d\u5236\u6210\u529f\uff01');\n setTimeout(() => button.classList.remove('success'), 2000);\n}\n\n// \u9519\u8bef\u63d0\u793a\nfunction showError(button) {\n button.classList.add('error');\n showTooltip(button, '\u590d\u5236\u5931\u8d25\uff01', 'error');\n setTimeout(() => button.classList.remove('error'), 2000);\n}\n
"},{"location":"Technology/mkdocs%20material/#6233","title":"6.2.3.3 \u590d\u5236\u56de\u8c03","text":"JavaScript
// \u5b9a\u4e49\u590d\u5236\u4e8b\u4ef6\u5904\u7406\u5668\nconst copyHandlers = {\n // \u590d\u5236\u524d\u5904\u7406\n beforeCopy: (code) => {\n // \u53ef\u4ee5\u5728\u8fd9\u91cc\u5bf9\u4ee3\u7801\u8fdb\u884c\u9884\u5904\u7406\n return code.trim();\n },\n\n // \u590d\u5236\u6210\u529f\u56de\u8c03\n onSuccess: (button, code) => {\n console.log('Copied:', code.length, 'characters');\n showSuccess(button);\n\n // \u89e6\u53d1\u81ea\u5b9a\u4e49\u4e8b\u4ef6\n const event = new CustomEvent('codeCopied', {\n detail: { code }\n });\n document.dispatchEvent(event);\n },\n\n // \u590d\u5236\u5931\u8d25\u56de\u8c03\n onError: (button, error) => {\n console.error('Copy failed:', error);\n showError(button);\n }\n};\n\n// \u4f7f\u7528\u56de\u8c03\nasync function copyCode(button, code) {\n try {\n const processedCode = copyHandlers.beforeCopy(code);\n await navigator.clipboard.writeText(processedCode);\n copyHandlers.onSuccess(button, processedCode);\n } catch (err) {\n copyHandlers.onError(button, err);\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#624","title":"6.2.4 \u56fe\u7247\u9884\u89c8","text":""},{"location":"Technology/mkdocs%20material/#6241-lightbox","title":"6.2.4.1 lightbox \u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - attr_list\n - md_in_html\n\nplugins:\n - glightbox\n\nextra_css:\n - stylesheets/glightbox.css\nextra_javascript:\n - javascripts/glightbox.js\n
- \u914d\u7f6e GLightbox\uff1a
JavaScript
// docs/javascripts/glightbox.js\ndocument.addEventListener('DOMContentLoaded', () => {\n const lightbox = GLightbox({\n selector: '.glightbox',\n touchNavigation: true,\n loop: false,\n autoplayVideos: true,\n preload: true,\n // \u57fa\u672c\u8bbe\u7f6e\n height: 'auto',\n zoomable: true,\n draggable: true,\n // \u52a8\u753b\u8bbe\u7f6e\n openEffect: 'zoom',\n closeEffect: 'fade',\n cssEfects: {\n fade: { in: 'fadeIn', out: 'fadeOut' },\n zoom: { in: 'zoomIn', out: 'zoomOut' }\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6242","title":"6.2.4.2 \u7f29\u653e\u529f\u80fd","text":"JavaScript
// \u7f29\u653e\u529f\u80fd\u914d\u7f6e\nconst zoomConfig = {\n // \u7f29\u653e\u9009\u9879\n zoomable: true,\n dragToZoom: true,\n touchToZoom: true,\n\n // \u7f29\u653e\u7ea7\u522b\n minZoom: 0.5,\n maxZoom: 3,\n zoomStep: 0.5,\n\n // \u53cc\u51fb\u7f29\u653e\n doubleTapZoom: 2,\n\n // \u7f29\u653e\u52a8\u753b\n zoomAnimation: true,\n zoomDuration: 300,\n\n // \u7f29\u653e\u63a7\u5236\u5668\n controls: {\n zoom: true,\n zoomIn: true,\n zoomOut: true,\n rotate: true\n }\n};\n\n// \u5e94\u7528\u7f29\u653e\u914d\u7f6e\nconst lightbox = GLightbox({\n ...zoomConfig,\n\n // \u7f29\u653e\u4e8b\u4ef6\u5904\u7406\n onZoom: (slider) => {\n const { zoom, image } = slider;\n console.log(`Current zoom level: ${zoom}`);\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#6243","title":"6.2.4.3 \u624b\u52bf\u652f\u6301","text":"JavaScript
// \u624b\u52bf\u914d\u7f6e\nconst gestureConfig = {\n // \u89e6\u6478\u5bfc\u822a\n touchNavigation: true,\n touchFollowAxis: true,\n\n // \u62d6\u52a8\u8bbe\u7f6e\n draggable: true,\n dragToleranceX: 40,\n dragToleranceY: 65,\n\n // \u624b\u52bf\u4e8b\u4ef6\n gestures: {\n // \u634f\u5408\u7f29\u653e\n pinchToZoom: true,\n pinchThreshold: 50,\n\n // \u53cc\u6307\u65cb\u8f6c\n rotateToZoom: true,\n rotateThreshold: 15,\n\n // \u6ed1\u52a8\u5207\u6362\n swipeThreshold: 50,\n swipeToClose: true\n }\n};\n\n// \u624b\u52bf\u4e8b\u4ef6\u5904\u7406\nconst gestureHandlers = {\n // \u89e6\u6478\u5f00\u59cb\n onTouchStart: (e) => {\n const touch = e.touches[0];\n startX = touch.clientX;\n startY = touch.clientY;\n },\n\n // \u89e6\u6478\u79fb\u52a8\n onTouchMove: (e) => {\n if (!isDragging) return;\n const touch = e.touches[0];\n const deltaX = touch.clientX - startX;\n const deltaY = touch.clientY - startY;\n\n // \u5904\u7406\u79fb\u52a8\n handleImageMove(deltaX, deltaY);\n },\n\n // \u89e6\u6478\u7ed3\u675f\n onTouchEnd: (e) => {\n isDragging = false;\n // \u5904\u7406\u60ef\u6027\u6ed1\u52a8\n handleMomentum();\n }\n};\n\n// \u521b\u5efa\u589e\u5f3a\u7684\u56fe\u7247\u9884\u89c8\nconst enhancedLightbox = GLightbox({\n ...zoomConfig,\n ...gestureConfig,\n\n // \u4e8b\u4ef6\u76d1\u542c\n listeners: {\n touchstart: gestureHandlers.onTouchStart,\n touchmove: gestureHandlers.onTouchMove,\n touchend: gestureHandlers.onTouchEnd\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#6244","title":"6.2.4.4 \u5b8c\u6574\u793a\u4f8b","text":"JavaScript
// docs/javascripts/image-preview.js\ndocument.addEventListener('DOMContentLoaded', () => {\n // \u521d\u59cb\u5316\u914d\u7f6e\n const config = {\n // \u57fa\u7840\u8bbe\u7f6e\n selector: '.glightbox',\n touchNavigation: true,\n loop: false,\n\n // \u7f29\u653e\u8bbe\u7f6e\n zoomable: true,\n draggable: true,\n dragToleranceX: 40,\n dragToleranceY: 65,\n\n // \u52a8\u753b\u8bbe\u7f6e\n openEffect: 'zoom',\n closeEffect: 'fade',\n\n // \u624b\u52bf\u8bbe\u7f6e\n touchFollowAxis: true,\n\n // \u754c\u9762\u8bbe\u7f6e\n preload: true,\n height: 'auto',\n\n // \u4e8b\u4ef6\u5904\u7406\n onOpen: () => {\n console.log('Lightbox opened');\n },\n onClose: () => {\n console.log('Lightbox closed');\n },\n onZoom: (slider) => {\n console.log('Image zoomed');\n }\n };\n\n // \u521d\u59cb\u5316 GLightbox\n const lightbox = GLightbox(config);\n\n // \u6dfb\u52a0\u952e\u76d8\u652f\u6301\n document.addEventListener('keydown', (e) => {\n if (!lightbox.isOpen) return;\n\n switch(e.key) {\n case 'ArrowLeft':\n lightbox.prev();\n break;\n case 'ArrowRight':\n lightbox.next();\n break;\n case 'Escape':\n lightbox.close();\n break;\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#63","title":"6.3 \u81ea\u5b9a\u4e49\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#631","title":"6.3.1 \u9875\u9762\u4ea4\u4e92","text":""},{"location":"Technology/mkdocs%20material/#6311","title":"6.3.1.1 \u6eda\u52a8\u4e8b\u4ef6","text":"
- \u57fa\u7840\u6eda\u52a8\u76d1\u542c\uff1a
JavaScript
// docs/javascripts/scroll.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u6eda\u52a8\u5904\u7406\u51fd\u6570\n function handleScroll() {\n const scrollTop = window.scrollY;\n const windowHeight = window.innerHeight;\n const docHeight = document.documentElement.scrollHeight;\n\n // \u6eda\u52a8\u8fdb\u5ea6\n const scrollPercent = (scrollTop / (docHeight - windowHeight)) * 100;\n\n // \u66f4\u65b0\u8fdb\u5ea6\u6761\n updateProgress(scrollPercent);\n\n // \u5904\u7406\u5143\u7d20\u53ef\u89c1\u6027\n handleVisibility();\n }\n\n // \u4f7f\u7528\u8282\u6d41\u4f18\u5316\u6eda\u52a8\u4e8b\u4ef6\n const throttledScroll = throttle(handleScroll, 100);\n window.addEventListener('scroll', throttledScroll);\n});\n\n// \u8282\u6d41\u51fd\u6570\nfunction throttle(fn, delay) {\n let lastCall = 0;\n return function(...args) {\n const now = Date.now();\n if (now - lastCall >= delay) {\n lastCall = now;\n fn.apply(this, args);\n }\n };\n}\n
- \u5143\u7d20\u53ef\u89c1\u6027\u68c0\u6d4b\uff1a
JavaScript
// \u68c0\u6d4b\u5143\u7d20\u662f\u5426\u8fdb\u5165\u89c6\u53e3\nfunction handleVisibility() {\n const elements = document.querySelectorAll('.animate-on-scroll');\n\n elements.forEach(element => {\n const rect = element.getBoundingClientRect();\n const isVisible = (\n rect.top >= 0 &&\n rect.left >= 0 &&\n rect.bottom <= window.innerHeight &&\n rect.right <= window.innerWidth\n );\n\n if (isVisible) {\n element.classList.add('is-visible');\n }\n });\n}\n\n// CSS \u6837\u5f0f\n.animate-on-scroll {\n opacity: 0;\n transform: translateY(20px);\n transition: all 0.6s ease;\n}\n\n.animate-on-scroll.is-visible {\n opacity: 1;\n transform: translateY(0);\n}\n
"},{"location":"Technology/mkdocs%20material/#6312","title":"6.3.1.2 \u70b9\u51fb\u4e8b\u4ef6","text":"
- \u70b9\u51fb\u5904\u7406\uff1a
JavaScript
// docs/javascripts/click.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u4ee3\u7801\u5757\u70b9\u51fb\u590d\u5236\n setupCodeCopy();\n\n // \u56fe\u7247\u70b9\u51fb\u653e\u5927\n setupImageZoom();\n\n // \u76ee\u5f55\u70b9\u51fb\u6eda\u52a8\n setupTocScroll();\n});\n\n// \u4ee3\u7801\u590d\u5236\u529f\u80fd\nfunction setupCodeCopy() {\n const codeBlocks = document.querySelectorAll('pre code');\n\n codeBlocks.forEach(block => {\n block.addEventListener('click', async function(e) {\n if (e.target.classList.contains('copy-button')) {\n try {\n await navigator.clipboard.writeText(block.textContent);\n showToast('\u590d\u5236\u6210\u529f\uff01');\n } catch (err) {\n showToast('\u590d\u5236\u5931\u8d25', 'error');\n }\n }\n });\n });\n}\n\n// \u56fe\u7247\u7f29\u653e\u529f\u80fd\nfunction setupImageZoom() {\n const images = document.querySelectorAll('.md-content img');\n\n images.forEach(img => {\n img.addEventListener('click', function() {\n const overlay = document.createElement('div');\n overlay.className = 'image-overlay';\n overlay.innerHTML = `\n <img src=\"${img.src}\" alt=\"${img.alt}\">\n <button class=\"close-button\">\u00d7</button>\n `;\n\n document.body.appendChild(overlay);\n\n overlay.querySelector('.close-button').addEventListener('click', () => {\n overlay.remove();\n });\n });\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#6313","title":"6.3.1.3 \u952e\u76d8\u4e8b\u4ef6","text":"JavaScript
// docs/javascripts/keyboard.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u952e\u76d8\u5bfc\u822a\n setupKeyboardNav();\n\n // \u641c\u7d22\u5feb\u6377\u952e\n setupSearchShortcut();\n});\n\n// \u952e\u76d8\u5bfc\u822a\nfunction setupKeyboardNav() {\n document.addEventListener('keydown', function(e) {\n // ALT + \u65b9\u5411\u952e\u5bfc\u822a\n if (e.altKey) {\n switch(e.key) {\n case 'ArrowLeft': // \u4e0a\u4e00\u9875\n navigatePage('prev');\n break;\n case 'ArrowRight': // \u4e0b\u4e00\u9875\n navigatePage('next');\n break;\n case 'ArrowUp': // \u56de\u5230\u9876\u90e8\n window.scrollTo({top: 0, behavior: 'smooth'});\n break;\n case 'ArrowDown': // \u5230\u8fbe\u5e95\u90e8\n window.scrollTo({\n top: document.documentElement.scrollHeight,\n behavior: 'smooth'\n });\n break;\n }\n }\n });\n}\n\n// \u641c\u7d22\u5feb\u6377\u952e\nfunction setupSearchShortcut() {\n document.addEventListener('keydown', function(e) {\n // \u6309\u4e0b '/' \u952e\u89e6\u53d1\u641c\u7d22\n if (e.key === '/' && !e.ctrlKey && !e.altKey && !e.metaKey) {\n e.preventDefault();\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.focus();\n }\n }\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#632","title":"6.3.2 \u52a8\u753b\u6548\u679c","text":""},{"location":"Technology/mkdocs%20material/#6321","title":"6.3.2.1 \u8fc7\u6e21\u52a8\u753b","text":"
- \u57fa\u7840\u8fc7\u6e21\u6548\u679c\uff1a
CSS
/* docs/stylesheets/transitions.css */\n\n/* \u9875\u9762\u5207\u6362\u8fc7\u6e21 */\n.md-content {\n animation: fadeIn 0.3s ease-in-out;\n}\n\n@keyframes fadeIn {\n from {\n opacity: 0;\n transform: translateY(20px);\n }\n to {\n opacity: 1;\n transform: translateY(0);\n }\n}\n\n/* \u5bfc\u822a\u8fc7\u6e21 */\n.md-nav__link {\n transition: color 0.2s ease, padding-left 0.2s ease;\n}\n\n.md-nav__link:hover {\n padding-left: 0.5rem;\n color: var(--md-accent-fg-color);\n}\n
- \u9875\u9762\u5207\u6362\u52a8\u753b\uff1a
JavaScript
// docs/javascripts/transitions.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u9875\u9762\u5207\u6362\u52a8\u753b\n setupPageTransitions();\n});\n\nfunction setupPageTransitions() {\n // \u76d1\u542c\u9875\u9762\u5207\u6362\u4e8b\u4ef6\n document.addEventListener('DOMContentLoaded', function() {\n document.body.classList.add('page-transition-ready');\n });\n\n // \u9875\u9762\u79bb\u5f00\u52a8\u753b\n window.addEventListener('beforeunload', function() {\n document.body.classList.add('page-transition-exit');\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#6322","title":"6.3.2.2 \u52a0\u8f7d\u52a8\u753b","text":"
- \u521b\u5efa\u52a0\u8f7d\u52a8\u753b\uff1a
CSS
/* docs/stylesheets/loading.css */\n\n/* \u52a0\u8f7d\u52a8\u753b\u5bb9\u5668 */\n.loading-overlay {\n position: fixed;\n top: 0;\n left: 0;\n right: 0;\n bottom: 0;\n background-color: var(--md-default-bg-color);\n display: flex;\n justify-content: center;\n align-items: center;\n z-index: 999;\n opacity: 1;\n transition: opacity 0.3s ease;\n}\n\n/* \u52a0\u8f7d\u52a8\u753b */\n.loading-spinner {\n width: 40px;\n height: 40px;\n border: 3px solid var(--md-primary-fg-color--light);\n border-top-color: var(--md-primary-fg-color);\n border-radius: 50%;\n animation: spin 1s linear infinite;\n}\n\n@keyframes spin {\n to { transform: rotate(360deg); }\n}\n
- \u5b9e\u73b0\u52a0\u8f7d\u903b\u8f91\uff1a
JavaScript
// docs/javascripts/loading.js\nclass LoadingManager {\n constructor() {\n this.overlay = null;\n this.createLoadingOverlay();\n }\n\n createLoadingOverlay() {\n this.overlay = document.createElement('div');\n this.overlay.className = 'loading-overlay';\n this.overlay.innerHTML = '<div class=\"loading-spinner\"></div>';\n document.body.appendChild(this.overlay);\n }\n\n show() {\n this.overlay.style.opacity = '1';\n this.overlay.style.visibility = 'visible';\n }\n\n hide() {\n this.overlay.style.opacity = '0';\n setTimeout(() => {\n this.overlay.style.visibility = 'hidden';\n }, 300);\n }\n}\n\n// \u4f7f\u7528\u52a0\u8f7d\u7ba1\u7406\u5668\nconst loading = new LoadingManager();\n\n// \u9875\u9762\u52a0\u8f7d\u5b8c\u6210\u540e\u9690\u85cf\nwindow.addEventListener('load', () => {\n loading.hide();\n});\n
"},{"location":"Technology/mkdocs%20material/#6323","title":"6.3.2.3 \u4ea4\u4e92\u52a8\u753b","text":"
- \u5143\u7d20\u4ea4\u4e92\u52a8\u753b\uff1a
JavaScript
// docs/javascripts/interactions.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u6309\u94ae\u6ce2\u7eb9\u6548\u679c\n setupRippleEffect();\n\n // \u5361\u7247\u60ac\u6d6e\u6548\u679c\n setupCardHover();\n\n // \u5217\u8868\u9879\u52a8\u753b\n setupListAnimations();\n});\n\n// \u6ce2\u7eb9\u6548\u679c\nfunction setupRippleEffect() {\n const buttons = document.querySelectorAll('.md-button');\n\n buttons.forEach(button => {\n button.addEventListener('click', function(e) {\n const ripple = document.createElement('div');\n ripple.className = 'ripple';\n\n const rect = button.getBoundingClientRect();\n const size = Math.max(rect.width, rect.height);\n\n ripple.style.width = ripple.style.height = `${size}px`;\n ripple.style.left = `${e.clientX - rect.left - size/2}px`;\n ripple.style.top = `${e.clientY - rect.top - size/2}px`;\n\n button.appendChild(ripple);\n\n setTimeout(() => ripple.remove(), 600);\n });\n });\n}\n\n// \u5361\u7247\u60ac\u6d6e\u6548\u679c\nfunction setupCardHover() {\n const cards = document.querySelectorAll('.md-card');\n\n cards.forEach(card => {\n card.addEventListener('mousemove', function(e) {\n const rect = card.getBoundingClientRect();\n const x = e.clientX - rect.left;\n const y = e.clientY - rect.top;\n\n const centerX = rect.width / 2;\n const centerY = rect.height / 2;\n\n const angleY = -(x - centerX) / 20;\n const angleX = (y - centerY) / 20;\n\n card.style.transform = \n `perspective(1000px) rotateX(${angleX}deg) rotateY(${angleY}deg)`;\n });\n\n card.addEventListener('mouseleave', function() {\n card.style.transform = 'perspective(1000px) rotateX(0) rotateY(0)';\n });\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#633","title":"6.3.3 \u6570\u636e\u7edf\u8ba1","text":""},{"location":"Technology/mkdocs%20material/#6331","title":"6.3.3.1 \u8bbf\u95ee\u7edf\u8ba1","text":"
- \u57fa\u7840\u8bbf\u95ee\u7edf\u8ba1\uff1a
JavaScript
// docs/javascripts/analytics.js\nclass Analytics {\n constructor() {\n this.storageKey = 'site_analytics';\n this.data = this.loadData();\n }\n\n loadData() {\n const stored = localStorage.getItem(this.storageKey);\n return stored ? JSON.parse(stored) : {\n pageViews: {},\n totalVisits: 0,\n firstVisit: Date.now(),\n lastVisit: Date.now()\n };\n }\n\n saveData() {\n localStorage.setItem(this.storageKey, JSON.stringify(this.data));\n }\n\n recordPageView() {\n const path = window.location.pathname;\n this.data.pageViews[path] = (this.data.pageViews[path] || 0) + 1;\n this.data.totalVisits++;\n this.data.lastVisit = Date.now();\n this.saveData();\n }\n\n getStats() {\n return {\n totalVisits: this.data.totalVisits,\n uniquePages: Object.keys(this.data.pageViews).length,\n mostViewed: this.getMostViewedPages(5)\n };\n }\n\n getMostViewedPages(limit = 5) {\n return Object.entries(this.data.pageViews)\n .sort(([,a], [,b]) => b - a)\n .slice(0, limit);\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#6332","title":"6.3.3.2 \u9605\u8bfb\u65f6\u957f","text":"JavaScript
// docs/javascripts/read-time.js\nclass ReadTimeTracker {\n constructor() {\n this.startTime = Date.now();\n this.isReading = true;\n this.totalTime = 0;\n this.idleTimeout = null;\n this.setupTracking();\n }\n\n setupTracking() {\n // \u76d1\u542c\u7528\u6237\u6d3b\u52a8\n ['mousemove', 'keydown', 'scroll', 'click'].forEach(event => {\n document.addEventListener(event, () => this.handleActivity());\n });\n\n // \u9875\u9762\u5931\u7126\u6682\u505c\u8ba1\u65f6\n document.addEventListener('visibilitychange', () => {\n if (document.hidden) {\n this.pauseTracking();\n } else {\n this.resumeTracking();\n }\n });\n }\n\n handleActivity() {\n if (!this.isReading) {\n this.resumeTracking();\n }\n\n clearTimeout(this.idleTimeout);\n this.idleTimeout = setTimeout(() => this.pauseTracking(), 60000); // 1\u5206\u949f\u65e0\u6d3b\u52a8\u6682\u505c\n }\n\n pauseTracking() {\n if (this.isReading) {\n this.totalTime += Date.now() - this.startTime;\n this.isReading = false;\n }\n }\n\n resumeTracking() {\n if (!this.isReading) {\n this.startTime = Date.now();\n this.isReading = true;\n }\n }\n\n getReadTime() {\n const currentTime = this.isReading ? \n this.totalTime + (Date.now() - this.startTime) : \n this.totalTime;\n\n return Math.floor(currentTime / 1000 / 60); // \u8fd4\u56de\u5206\u949f\n // \u663e\u793a\u9605\u8bfb\u65f6\u957f\n displayReadTime() {\n const readTimeElement = document.querySelector('.read-time');\n if (readTimeElement) {\n const minutes = this.getReadTime();\n readTimeElement.textContent = `\u9605\u8bfb\u65f6\u957f: ${minutes} \u5206\u949f`;\n }\n }\n\n // \u83b7\u53d6\u9605\u8bfb\u8fdb\u5ea6\n getReadProgress() {\n const windowHeight = window.innerHeight;\n const docHeight = document.documentElement.scrollHeight - windowHeight;\n const scrollTop = window.pageYOffset || document.documentElement.scrollTop;\n return Math.min((scrollTop / docHeight) * 100, 100);\n }\n\n // \u4fdd\u5b58\u9605\u8bfb\u8bb0\u5f55\n saveReadingHistory() {\n const path = window.location.pathname;\n const history = JSON.parse(localStorage.getItem('reading_history') || '{}');\n\n history[path] = {\n lastRead: Date.now(),\n readTime: this.getReadTime(),\n progress: this.getReadProgress()\n };\n\n localStorage.setItem('reading_history', JSON.stringify(history));\n }\n}\n\n// \u521d\u59cb\u5316\u9605\u8bfb\u65f6\u957f\u8ffd\u8e2a\nconst readTracker = new ReadTimeTracker();\n\n// \u5b9a\u671f\u66f4\u65b0\u663e\u793a\nsetInterval(() => {\n readTracker.displayReadTime();\n}, 30000); // \u6bcf30\u79d2\u66f4\u65b0\u4e00\u6b21\n\n// \u9875\u9762\u79bb\u5f00\u65f6\u4fdd\u5b58\u8bb0\u5f55\nwindow.addEventListener('beforeunload', () => {\n readTracker.saveReadingHistory();\n});\n
"},{"location":"Technology/mkdocs%20material/#6333","title":"6.3.3.3 \u5206\u4eab\u7edf\u8ba1","text":"
- \u5206\u4eab\u529f\u80fd\u548c\u7edf\u8ba1\uff1a
JavaScript
// docs/javascripts/share.js\nclass ShareTracker {\n constructor() {\n this.storageKey = 'share_statistics';\n this.data = this.loadData();\n this.setupShareButtons();\n }\n\n loadData() {\n return JSON.parse(localStorage.getItem(this.storageKey) || '{}');\n }\n\n saveData() {\n localStorage.setItem(this.storageKey, JSON.stringify(this.data));\n }\n\n setupShareButtons() {\n const shareButtons = document.querySelectorAll('.share-button');\n\n shareButtons.forEach(button => {\n button.addEventListener('click', (e) => {\n const platform = button.dataset.platform;\n this.shareContent(platform);\n this.recordShare(platform);\n });\n });\n }\n\n shareContent(platform) {\n const url = encodeURIComponent(window.location.href);\n const title = encodeURIComponent(document.title);\n const description = encodeURIComponent(\n document.querySelector('meta[name=\"description\"]')?.content || ''\n );\n\n let shareUrl;\n switch (platform) {\n case 'twitter':\n shareUrl = `https://twitter.com/intent/tweet?url=${url}&text=${title}`;\n break;\n case 'facebook':\n shareUrl = `https://www.facebook.com/sharer/sharer.php?u=${url}`;\n break;\n case 'linkedin':\n shareUrl = `https://www.linkedin.com/sharing/share-offsite/?url=${url}`;\n break;\n case 'weibo':\n shareUrl = `http://service.weibo.com/share/share.php?url=${url}&title=${title}`;\n break;\n }\n\n if (shareUrl) {\n window.open(shareUrl, '_blank', 'width=600,height=400');\n }\n }\n\n recordShare(platform) {\n const path = window.location.pathname;\n if (!this.data[path]) {\n this.data[path] = {};\n }\n if (!this.data[path][platform]) {\n this.data[path][platform] = 0;\n }\n this.data[path][platform]++;\n this.saveData();\n this.updateShareCount(platform);\n }\n\n updateShareCount(platform) {\n const countElement = document.querySelector(`.share-count[data-platform=\"${platform}\"]`);\n if (countElement) {\n const path = window.location.pathname;\n countElement.textContent = this.data[path][platform] || 0;\n }\n }\n\n getShareStats() {\n return Object.entries(this.data).map(([path, platforms]) => ({\n path,\n total: Object.values(platforms).reduce((a, b) => a + b, 0),\n platforms\n }));\n }\n\n displayShareStats() {\n const stats = this.getShareStats();\n console.table(stats);\n return stats;\n }\n}\n
- \u7edf\u8ba1\u6570\u636e\u53ef\u89c6\u5316\uff1a
JavaScript
// docs/javascripts/statistics-visualization.js\nclass StatisticsVisualizer {\n constructor(analytics, readTracker, shareTracker) {\n this.analytics = analytics;\n this.readTracker = readTracker;\n this.shareTracker = shareTracker;\n }\n\n createDashboard() {\n const dashboard = document.createElement('div');\n dashboard.className = 'statistics-dashboard';\n dashboard.innerHTML = `\n <div class=\"dashboard-section\">\n <h3>\u8bbf\u95ee\u7edf\u8ba1</h3>\n <div class=\"stats-grid\">\n <div class=\"stat-card\">\n <div class=\"stat-value\">${this.analytics.data.totalVisits}</div>\n <div class=\"stat-label\">\u603b\u8bbf\u95ee\u91cf</div>\n </div>\n <div class=\"stat-card\">\n <div class=\"stat-value\">${this.readTracker.getReadTime()}</div>\n <div class=\"stat-label\">\u603b\u9605\u8bfb\u65f6\u957f(\u5206\u949f)</div>\n </div>\n <div class=\"stat-card\">\n <div class=\"stat-value\">${this.getTotalShares()}</div>\n <div class=\"stat-label\">\u603b\u5206\u4eab\u6b21\u6570</div>\n </div>\n </div>\n <div id=\"visitsChart\"></div>\n </div>\n `;\n\n document.body.appendChild(dashboard);\n this.renderCharts();\n }\n\n renderCharts() {\n // \u4f7f\u7528 Chart.js \u7ed8\u5236\u56fe\u8868\n const ctx = document.getElementById('visitsChart').getContext('2d');\n new Chart(ctx, {\n type: 'line',\n data: {\n labels: this.getTimeLabels(),\n datasets: [{\n label: '\u8bbf\u95ee\u8d8b\u52bf',\n data: this.getVisitData(),\n borderColor: 'rgb(75, 192, 192)',\n tension: 0.1\n }]\n },\n options: {\n responsive: true,\n scales: {\n y: {\n beginAtZero: true\n }\n }\n }\n });\n }\n\n getTotalShares() {\n const stats = this.shareTracker.getShareStats();\n return stats.reduce((total, page) => total + page.total, 0);\n }\n\n getTimeLabels() {\n // \u83b7\u53d6\u6700\u8fd17\u5929\u7684\u65e5\u671f\u6807\u7b7e\n return Array.from({length: 7}, (_, i) => {\n const d = new Date();\n d.setDate(d.getDate() - i);\n return d.toLocaleDateString();\n }).reverse();\n }\n\n getVisitData() {\n // \u5904\u7406\u8bbf\u95ee\u6570\u636e\n return this.analytics.getVisitsByDate(7);\n }\n}\n\n// \u6837\u5f0f\nconst styles = `\n .statistics-dashboard {\n padding: 2rem;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z2);\n }\n\n .stats-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));\n gap: 1rem;\n margin: 1rem 0;\n }\n\n .stat-card {\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n text-align: center;\n }\n\n .stat-value {\n font-size: 2rem;\n font-weight: bold;\n color: var(--md-primary-fg-color);\n }\n\n .stat-label {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-top: 0.5rem;\n }\n`;\n\n// \u5c06\u6837\u5f0f\u6dfb\u52a0\u5230\u6587\u6863\nconst styleSheet = document.createElement('style');\nstyleSheet.textContent = styles;\ndocument.head.appendChild(styleSheet);\n\n// \u521d\u59cb\u5316\u7edf\u8ba1\u53ef\u89c6\u5316\nconst visualizer = new StatisticsVisualizer(analytics, readTracker, shareTracker);\nvisualizer.createDashboard();\n
\u8fd9\u6837\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u5b8c\u6574\u7684\u6570\u636e\u7edf\u8ba1\u7cfb\u7edf\uff0c\u5305\u62ec\uff1a
- \u8bbf\u95ee\u7edf\u8ba1
- \u9605\u8bfb\u65f6\u957f\u8ffd\u8e2a
- \u5206\u4eab\u7edf\u8ba1
- \u6570\u636e\u53ef\u89c6\u5316\u5c55\u793a
\u4f7f\u7528\u65f6\uff0c\u53ea\u9700\u8981\u5728 mkdocs.yml \u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684 JavaScript \u6587\u4ef6\uff1a
YAML
extra_javascript:\n - javascripts/analytics.js\n - javascripts/read-time.js\n - javascripts/share.js\n - javascripts/statistics-visualization.js\n - https://cdn.jsdelivr.net/npm/chart.js\n
\u7136\u540e\u5728\u9875\u9762\u4e2d\u6dfb\u52a0\u5fc5\u8981\u7684 HTML \u5143\u7d20\u5373\u53ef\u542f\u7528\u8fd9\u4e9b\u529f\u80fd\u3002
"},{"location":"Technology/mkdocs%20material/#7","title":"7 \u6a21\u677f\u590d\u5199","text":""},{"location":"Technology/mkdocs%20material/#71","title":"7.1 \u91cd\u5199\u9875\u9762\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#711","title":"7.1.1 \u4e3b\u9875\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#7111","title":"7.1.1.1 \u5e03\u5c40\u7ed3\u6784","text":"
- \u521b\u5efa\u81ea\u5b9a\u4e49\u4e3b\u9875\u6a21\u677f\uff1a
HTML
<!-- docs/overrides/main.html -->\n{% extends \"base.html\" %}\n\n{% block hero %}\n<section class=\"home-hero\">\n <div class=\"hero-content\">\n <h1>{{ config.site_name }}</h1>\n <p>{{ config.site_description }}</p>\n\n <!-- \u81ea\u5b9a\u4e49\u641c\u7d22\u6846 -->\n <div class=\"hero-search\">\n <input type=\"text\" placeholder=\"\u641c\u7d22\u6587\u6863...\" id=\"hero-search-input\">\n <button>\n <span class=\"twemoji\">\n {% include \".icons/material/magnify.svg\" %}\n </span>\n </button>\n </div>\n\n <!-- \u5feb\u901f\u5165\u53e3 -->\n <div class=\"hero-buttons\">\n <a href=\"{{ page.next_page.url | url }}\" class=\"md-button md-button--primary\">\n \u5feb\u901f\u5f00\u59cb\n <span class=\"twemoji\">\n {% include \".icons/material/arrow-right.svg\" %}\n </span>\n </a>\n <a href=\"{{ config.repo_url }}\" class=\"md-button\">\n \u67e5\u770b\u6e90\u7801\n <span class=\"twemoji\">\n {% include \".icons/material/github.svg\" %}\n </span>\n </a>\n </div>\n </div>\n</section>\n{% endblock %}\n\n{% block content %}\n<section class=\"home-features\">\n <h2>\u7279\u8272\u529f\u80fd</h2>\n <div class=\"features-grid\">\n <!-- \u529f\u80fd\u5361\u7247 -->\n <div class=\"feature-card\">\n <div class=\"feature-icon\">\n {% include \".icons/material/speedometer.svg\" %}\n </div>\n <h3>\u9ad8\u6027\u80fd</h3>\n <p>\u57fa\u4e8e\u9759\u6001\u7ad9\u70b9\u751f\u6210\uff0c\u52a0\u8f7d\u8fc5\u901f</p>\n </div>\n <!-- \u66f4\u591a\u529f\u80fd\u5361\u7247 -->\n </div>\n</section>\n\n<!-- \u6700\u8fd1\u66f4\u65b0 -->\n<section class=\"home-updates\">\n <h2>\u6700\u8fd1\u66f4\u65b0</h2>\n <div class=\"updates-list\">\n {% for update in config.theme.updates[:5] %}\n <div class=\"update-item\">\n <span class=\"update-date\">{{ update.date }}</span>\n <a href=\"{{ update.url | url }}\">{{ update.title }}</a>\n </div>\n {% endfor %}\n </div>\n</section>\n{% endblock %}\n
- \u4e3b\u9875\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/home.css */\n\n/* \u4e3b\u9875\u82f1\u96c4\u533a */\n.home-hero {\n min-height: 100vh;\n display: flex;\n align-items: center;\n justify-content: center;\n text-align: center;\n background: linear-gradient(\n to bottom right,\n var(--md-primary-fg-color),\n var(--md-accent-fg-color)\n );\n color: var(--md-primary-bg-color);\n}\n\n.hero-content {\n max-width: 800px;\n padding: 2rem;\n}\n\n.hero-content h1 {\n font-size: 3rem;\n margin-bottom: 1rem;\n}\n\n/* \u641c\u7d22\u6846\u6837\u5f0f */\n.hero-search {\n margin: 2rem 0;\n position: relative;\n}\n\n.hero-search input {\n width: 100%;\n padding: 1rem 3rem 1rem 1rem;\n border: none;\n border-radius: 2rem;\n background: rgba(255, 255, 255, 0.1);\n color: white;\n backdrop-filter: blur(10px);\n}\n\n/* \u529f\u80fd\u533a\u6837\u5f0f */\n.features-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));\n gap: 2rem;\n padding: 2rem;\n}\n\n.feature-card {\n padding: 2rem;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n transition: transform 0.3s ease;\n}\n\n.feature-card:hover {\n transform: translateY(-4px);\n}\n\n/* \u66f4\u65b0\u5217\u8868\u6837\u5f0f */\n.updates-list {\n max-width: 800px;\n margin: 0 auto;\n padding: 2rem;\n}\n\n.update-item {\n display: flex;\n align-items: center;\n padding: 1rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .hero-content h1 {\n font-size: 2rem;\n }\n\n .features-grid {\n grid-template-columns: 1fr;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#7112","title":"7.1.1.2 \u7ec4\u4ef6\u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\u4e3b\u9898\uff1a
YAML
theme:\n name: material\n custom_dir: docs/overrides\n features:\n - navigation.tabs\n - navigation.sections\n - navigation.expand\n\n # \u4e3b\u9875\u914d\u7f6e\n homepage:\n hero:\n title: \u7f51\u7ad9\u6807\u9898\n subtitle: \u7f51\u7ad9\u63cf\u8ff0\n image: assets/hero.svg\n\n # \u529f\u80fd\u7279\u6027\n features:\n - title: \u9ad8\u6027\u80fd\n description: \u57fa\u4e8e\u9759\u6001\u7ad9\u70b9\u751f\u6210\uff0c\u52a0\u8f7d\u8fc5\u901f\n icon: material/speedometer\n - title: \u6613\u4e8e\u4f7f\u7528\n description: \u7b80\u5355\u7684\u914d\u7f6e\uff0c\u5feb\u901f\u4e0a\u624b\n icon: material/puzzle\n # \u66f4\u591a\u529f\u80fd\u7279\u6027...\n\n # \u66f4\u65b0\u5217\u8868\n updates:\n - date: 2024-01-20\n title: \u65b0\u589e\u529f\u80fdA\n url: /new-feature-a\n - date: 2024-01-18\n title: \u95ee\u9898\u4fee\u590dB\n url: /bug-fix-b\n # \u66f4\u591a\u66f4\u65b0...\n
- \u4e3b\u9875\u529f\u80fd\u7c7b\uff1a
JavaScript
// docs/javascripts/home.js\nclass HomePage {\n constructor() {\n this.searchInput = document.getElementById('hero-search-input');\n this.setupSearch();\n this.setupFeatureCards();\n }\n\n setupSearch() {\n this.searchInput?.addEventListener('keyup', (e) => {\n if (e.key === 'Enter') {\n const query = e.target.value;\n window.location.href = `${window.location.origin}/search.html?q=${encodeURIComponent(query)}`;\n }\n });\n }\n\n setupFeatureCards() {\n const cards = document.querySelectorAll('.feature-card');\n\n cards.forEach(card => {\n card.addEventListener('mousemove', (e) => {\n const rect = card.getBoundingClientRect();\n const x = e.clientX - rect.left;\n const y = e.clientY - rect.top;\n\n card.style.setProperty('--mouse-x', `${x}px`);\n card.style.setProperty('--mouse-y', `${y}px`);\n });\n });\n }\n}\n\n// \u521d\u59cb\u5316\u4e3b\u9875\ndocument.addEventListener('DOMContentLoaded', () => {\n new HomePage();\n});\n
"},{"location":"Technology/mkdocs%20material/#7113","title":"7.1.1.3 \u81ea\u5b9a\u4e49\u533a\u57df","text":"
- \u521b\u5efa\u81ea\u5b9a\u4e49\u533a\u57df\uff1a
HTML
<!-- docs/overrides/partials/custom-content.html -->\n{% if page.meta.custom_content %}\n<section class=\"custom-content\">\n <!-- \u516c\u544a\u533a -->\n {% if page.meta.announcements %}\n <div class=\"announcements\">\n {% for announcement in page.meta.announcements %}\n <div class=\"announcement-item\">\n <span class=\"announcement-tag\">{{ announcement.tag }}</span>\n <p>{{ announcement.content }}</p>\n </div>\n {% endfor %}\n </div>\n {% endif %}\n\n <!-- \u8d21\u732e\u8005\u533a\u57df -->\n {% if page.meta.contributors %}\n <div class=\"contributors\">\n <h3>\u9879\u76ee\u8d21\u732e\u8005</h3>\n <div class=\"contributors-grid\">\n {% for contributor in page.meta.contributors %}\n <a href=\"{{ contributor.url }}\" class=\"contributor-card\">\n <img src=\"{{ contributor.avatar }}\" alt=\"{{ contributor.name }}\">\n <span>{{ contributor.name }}</span>\n </a>\n {% endfor %}\n </div>\n </div>\n {% endif %}\n\n <!-- \u8d5e\u52a9\u5546\u533a\u57df -->\n {% if page.meta.sponsors %}\n <div class=\"sponsors\">\n <h3>\u8d5e\u52a9\u5546</h3>\n <div class=\"sponsors-grid\">\n {% for sponsor in page.meta.sponsors %}\n <a href=\"{{ sponsor.url }}\" class=\"sponsor-card\">\n <img src=\"{{ sponsor.logo }}\" alt=\"{{ sponsor.name }}\">\n </a>\n {% endfor %}\n </div>\n </div>\n {% endif %}\n</section>\n{% endif %}\n
- \u81ea\u5b9a\u4e49\u533a\u57df\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/custom-content.css */\n\n/* \u516c\u544a\u533a\u57df */\n.announcements {\n margin: 2rem 0;\n}\n\n.announcement-item {\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n margin-bottom: 1rem;\n}\n\n.announcement-tag {\n display: inline-block;\n padding: 0.2rem 0.5rem;\n background: var(--md-accent-fg-color);\n color: white;\n border-radius: 2rem;\n font-size: 0.8rem;\n margin-right: 0.5rem;\n}\n\n/* \u8d21\u732e\u8005\u533a\u57df */\n.contributors-grid {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(100px, 1fr));\n gap: 1rem;\n margin: 1rem 0;\n}\n\n.contributor-card {\n text-align: center;\n text-decoration: none;\n color: var(--md-default-fg-color);\n}\n\n.contributor-card img {\n width: 60px;\n height: 60px;\n border-radius: 50%;\n margin-bottom: 0.5rem;\n}\n\n/* \u8d5e\u52a9\u5546\u533a\u57df */\n.sponsors-grid {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));\n gap: 2rem;\n margin: 1rem 0;\n}\n\n.sponsor-card img {\n width: 100%;\n height: auto;\n filter: grayscale(100%);\n transition: filter 0.3s ease;\n}\n\n.sponsor-card:hover img {\n filter: grayscale(0%);\n}\n
"},{"location":"Technology/mkdocs%20material/#712","title":"7.1.2 \u6587\u7ae0\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#7121","title":"7.1.2.1 \u6587\u7ae0\u5934\u90e8","text":"HTML
<!-- docs/overrides/partials/article-header.html -->\n<header class=\"article-header\">\n <!-- \u6587\u7ae0\u6807\u9898 -->\n <h1>{{ page.title }}</h1>\n\n <!-- \u6587\u7ae0\u5143\u4fe1\u606f -->\n <div class=\"article-meta\">\n {% if page.meta.author %}\n <div class=\"meta-item\">\n <span class=\"meta-icon\">\n {% include \".icons/material/account.svg\" %}\n </span>\n <span>{{ page.meta.author }}</span>\n </div>\n {% endif %}\n\n {% if page.meta.date %}\n <div class=\"meta-item\">\n <span class=\"meta-icon\">\n {% include \".icons/material/calendar.svg\" %}\n </span>\n <span>{{ page.meta.date }}</span>\n </div>\n {% endif %}\n\n {% if page.meta.tags %}\n <div class=\"article-tags\">\n {% for tag in page.meta.tags %}\n <a href=\"{{ base_url }}/tags/#{{ tag }}\" class=\"tag\">\n # {{ tag }}\n </a>\n {% endfor %}\n </div>\n {% endif %}\n </div>\n\n <!-- \u6587\u7ae0\u6982\u8ff0 -->\n {% if page.meta.description %}\n <div class=\"article-description\">\n {{ page.meta.description }}\n </div>\n {% endif %}\n</header>\n
"},{"location":"Technology/mkdocs%20material/#7122","title":"7.1.2.2 \u6b63\u6587\u6837\u5f0f","text":"CSS
/* docs/stylesheets/article.css */\n\n/* \u6587\u7ae0\u5bb9\u5668 */\n.md-content article {\n max-width: 800px;\n margin: 0 auto;\n padding: 2rem;\n}\n\n/* \u6587\u7ae0\u5934\u90e8 */\n.article-header {\n margin-bottom: 3rem;\n text-align: center;\n}\n\n.article-meta {\n display: flex;\n justify-content: center;\n gap: 1rem;\n margin: 1rem 0;\n color: var(--md-default-fg-color--light);\n}\n\n.meta-item {\n display: flex;\n align-items: center;\n gap: 0.5rem;\n}\n\n.article-tags {\n margin-top: 1rem;\n}\n\n.tag {\n display: inline-block;\n padding: 0.2rem 0.5rem;\n margin: 0.2rem;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n font-size: 0.8rem;\n}\n\n/* \u6587\u7ae0\u5185\u5bb9\u6837\u5f0f */\n.md-content article {\n font-size: 1.1rem;\n line-height: 1.8;\n}\n\n/* \u6807\u9898\u6837\u5f0f */\n.md-content article h2 {\n margin-top: 3rem;\n padding-bottom: 0.5rem;\n border-bottom: 2px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u4ee3\u7801\u5757\u6837\u5f0f */\n.md-content pre {\n border-radius: 8px;\n margin: 1.5rem 0;\n}\n\n/* \u5f15\u7528\u6837\u5f0f */\n.md-content blockquote {\n border-left: 4px solid var(--md-accent-fg-color);\n padding: 1rem;\n background: var(--md-code-bg-color);\n margin: 1.5rem 0;\n}\n\n/* \u56fe\u7247\u6837\u5f0f */\n.md-content img {\n max-width: 100%;\n border-radius: 8px;\n margin: 1.5rem 0;\n}\n
"},{"location":"Technology/mkdocs%20material/#7123","title":"7.1.2.3 \u5e95\u90e8\u4fe1\u606f","text":"HTML
<!-- docs/overrides/partials/article-footer.html -->\n<footer class=\"article-footer\">\n <!-- \u6587\u7ae0\u5bfc\u822a -->\n <nav class=\"article-nav\">\n {% if page.previous_page %}\n <a href=\"{{ page.previous_page.url | url }}\" class=\"nav-link nav-prev\">\n <span class=\"nav-icon\">\n {% include \".icons/material/arrow-left.svg\" %}\n </span>\n <span class=\"nav-text\">\n <span class=\"nav-direction\">\u4e0a\u4e00\u7bc7</span>\n <span class=\"nav-title\">{{ page.previous_page.title }}</span>\n </span>\n </a>\n {% endif %}\n\n {% if page.next_page %}\n <a href=\"{{ page.next_page.url | url }}\" class=\"nav-link nav-next\">\n <span class=\"nav-text\">\n <span class=\"nav-direction\">\u4e0b\u4e00\u7bc7</span>\n <span class=\"nav-title\">{{ page.next_page.title }}</span>\n </span>\n <span class=\"nav-icon\">\n {% include \".icons/material/arrow-right.svg\" %}\n </span>\n </a>\n {% endif %}\n </nav>\n\n <!-- \u5206\u4eab\u6309\u94ae -->\n <div class=\"article-share\">\n <h4>\u5206\u4eab\u6587\u7ae0</h4>\n <div class=\"share-buttons\">\n <button class=\"share-button\" data-platform=\"twitter\">\n {% include \".icons/material/twitter.svg\" %}\n </button>\n <button class=\"share-button\" data-platform=\"facebook\">\n {% include \".icons/material/facebook.svg\" %}\n </button>\n <button class=\"share-button\" data-platform=\"linkedin\">\n {% include \".icons/material/linkedin.svg\" %}\n </button>\n <button class=\"share-button\" data-platform=\"weibo\">\n {% include \".icons/material/sina-weibo.svg\" %}\n </button>\n </div>\n </div>\n\n <!-- \u76f8\u5173\u6587\u7ae0 -->\n {% if page.meta.related_posts %}\n <div class=\"related-posts\">\n <h4>\u76f8\u5173\u6587\u7ae0</h4>\n <div class=\"related-grid\">\n {% for post in page.meta.related_posts %}\n <a href=\"{{ post.url | url }}\" class=\"related-post\">\n {% if post.image %}\n <img src=\"{{ post.image }}\" alt=\"{{ post.title }}\">\n {% endif %}\n <h5>{{ post.title }}</h5>\n <p>{{ post.excerpt }}</p>\n </a>\n {% endfor %}\n </div>\n </div>\n {% endif %}\n\n <!-- \u8bc4\u8bba\u533a -->\n <div class=\"article-comments\">\n <h4>\u8bc4\u8bba</h4>\n {% if config.extra.comments.provider == 'giscus' %}\n <script src=\"https://giscus.app/client.js\"\n data-repo=\"{{ config.extra.comments.repo }}\"\n data-repo-id=\"{{ config.extra.comments.repo_id }}\"\n data-category=\"{{ config.extra.comments.category }}\"\n data-category-id=\"{{ config.extra.comments.category_id }}\"\n data-mapping=\"pathname\"\n data-reactions-enabled=\"1\"\n data-emit-metadata=\"0\"\n data-theme=\"light\"\n crossorigin=\"anonymous\"\n async>\n </script>\n {% endif %}\n </div>\n</footer>\n\n<!-- \u6587\u7ae0\u5e95\u90e8\u6837\u5f0f -->\n<style>\n.article-footer {\n margin-top: 4rem;\n padding-top: 2rem;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u6587\u7ae0\u5bfc\u822a */\n.article-nav {\n display: flex;\n justify-content: space-between;\n margin-bottom: 2rem;\n}\n\n.nav-link {\n display: flex;\n align-items: center;\n padding: 1rem;\n text-decoration: none;\n color: var(--md-default-fg-color);\n background: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n max-width: 45%;\n}\n\n.nav-link:hover {\n transform: translateY(-2px);\n}\n\n.nav-text {\n display: flex;\n flex-direction: column;\n}\n\n.nav-direction {\n font-size: 0.8rem;\n color: var(--md-default-fg-color--light);\n}\n\n.nav-title {\n font-weight: 500;\n}\n\n/* \u5206\u4eab\u6309\u94ae */\n.share-buttons {\n display: flex;\n gap: 1rem;\n margin: 1rem 0;\n}\n\n.share-button {\n padding: 0.8rem;\n border: none;\n border-radius: 50%;\n background: var(--md-code-bg-color);\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.share-button:hover {\n background: var(--md-accent-fg-color);\n color: white;\n}\n\n/* \u76f8\u5173\u6587\u7ae0 */\n.related-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));\n gap: 1.5rem;\n margin: 1rem 0;\n}\n\n.related-post {\n text-decoration: none;\n color: var(--md-default-fg-color);\n background: var(--md-code-bg-color);\n border-radius: 8px;\n overflow: hidden;\n transition: transform 0.2s ease;\n}\n\n.related-post:hover {\n transform: translateY(-4px);\n}\n\n.related-post img {\n width: 100%;\n height: 150px;\n object-fit: cover;\n}\n\n.related-post h5 {\n margin: 1rem;\n font-size: 1.1rem;\n}\n\n.related-post p {\n margin: 0 1rem 1rem;\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u8bc4\u8bba\u533a */\n.article-comments {\n margin-top: 3rem;\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .article-nav {\n flex-direction: column;\n gap: 1rem;\n }\n\n .nav-link {\n max-width: 100%;\n }\n\n .related-grid {\n grid-template-columns: 1fr;\n }\n}\n</style>\n
"},{"location":"Technology/mkdocs%20material/#713-404","title":"7.1.3 404\u9875\u9762","text":""},{"location":"Technology/mkdocs%20material/#7131","title":"7.1.3.1 \u9519\u8bef\u63d0\u793a","text":"HTML
<!-- docs/overrides/404.html -->\n{% extends \"base.html\" %}\n\n{% block content %}\n<div class=\"error-page\">\n <div class=\"error-content\">\n <!-- 404 \u56fe\u6807 -->\n <div class=\"error-icon\">\n {% include \".icons/material/alert-circle-outline.svg\" %}\n <span class=\"error-code\">404</span>\n </div>\n\n <!-- \u9519\u8bef\u4fe1\u606f -->\n <h1>\u9875\u9762\u672a\u627e\u5230</h1>\n <p>\u62b1\u6b49\uff0c\u60a8\u8bbf\u95ee\u7684\u9875\u9762\u4e0d\u5b58\u5728\u6216\u5df2\u88ab\u79fb\u52a8</p>\n\n <!-- \u641c\u7d22\u6846 -->\n <div class=\"error-search\">\n <input type=\"text\" \n id=\"error-search-input\" \n placeholder=\"\u5c1d\u8bd5\u641c\u7d22...\"\n autocomplete=\"off\">\n <button id=\"error-search-button\">\n {% include \".icons/material/magnify.svg\" %}\n </button>\n </div>\n\n <!-- \u5feb\u6377\u64cd\u4f5c -->\n <div class=\"error-actions\">\n <a href=\"{{ base_url }}\" class=\"md-button md-button--primary\">\n \u8fd4\u56de\u9996\u9875\n </a>\n <button class=\"md-button\" onclick=\"window.history.back()\">\n \u8fd4\u56de\u4e0a\u9875\n </button>\n </div>\n </div>\n\n <!-- \u641c\u7d22\u5efa\u8bae -->\n <div class=\"search-suggestions\" id=\"search-suggestions\">\n <h3>\u60a8\u662f\u5426\u5728\u627e\uff1a</h3>\n <div class=\"suggestions-list\" id=\"suggestions-list\">\n <!-- \u52a8\u6001\u751f\u6210\u7684\u5efa\u8bae\u5217\u8868 -->\n </div>\n </div>\n</div>\n\n<!-- 404\u9875\u9762\u6837\u5f0f -->\n<style>\n.error-page {\n min-height: 100vh;\n display: flex;\n flex-direction: column;\n align-items: center;\n justify-content: center;\n padding: 2rem;\n text-align: center;\n}\n\n.error-content {\n max-width: 600px;\n}\n\n.error-icon {\n font-size: 6rem;\n color: var(--md-primary-fg-color);\n margin-bottom: 2rem;\n position: relative;\n}\n\n.error-code {\n position: absolute;\n bottom: -1rem;\n right: -1rem;\n font-size: 2rem;\n font-weight: bold;\n background: var(--md-accent-fg-color);\n color: white;\n padding: 0.5rem 1rem;\n border-radius: 1rem;\n}\n\n.error-search {\n margin: 2rem 0;\n position: relative;\n}\n\n.error-search input {\n width: 100%;\n padding: 1rem 3rem 1rem 1rem;\n border: 2px solid var(--md-default-fg-color--lightest);\n border-radius: 2rem;\n font-size: 1.1rem;\n}\n\n.error-search button {\n position: absolute;\n right: 0.5rem;\n top: 50%;\n transform: translateY(-50%);\n background: none;\n border: none;\n color: var(--md-default-fg-color);\n cursor: pointer;\n}\n\n.error-actions {\n display: flex;\n gap: 1rem;\n justify-content: center;\n margin: 2rem 0;\n}\n\n/* \u641c\u7d22\u5efa\u8bae\u6837\u5f0f */\n.search-suggestions {\n margin-top: 3rem;\n width: 100%;\n max-width: 600px;\n}\n\n.suggestions-list {\n margin-top: 1rem;\n}\n\n.suggestion-item {\n padding: 1rem;\n margin: 0.5rem 0;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.suggestion-item:hover {\n background: var(--md-accent-fg-color--transparent);\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .error-icon {\n font-size: 4rem;\n }\n\n .error-code {\n font-size: 1.5rem;\n }\n\n .error-actions {\n flex-direction: column;\n }\n}\n</style>\n\n<!-- 404\u9875\u9762\u811a\u672c -->\n<script>\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u641c\u7d22\u5efa\u8bae\u529f\u80fd\n setupSearchSuggestions();\n // \u5168\u5c40\u70ed\u952e\n setupHotkeys();\n});\n\nfunction setupSearchSuggestions() {\n const searchInput = document.getElementById('error-search-input');\n const suggestionsList = document.getElementById('suggestions-list');\n\n searchInput?.addEventListener('input', debounce(async (e) => {\n const query = e.target.value;\n if (query.length < 2) {\n suggestionsList.innerHTML = '';\n return;\n }\n\n // \u83b7\u53d6\u641c\u7d22\u5efa\u8bae\n const suggestions = await getSearchSuggestions(query);\n\n // \u6e32\u67d3\u5efa\u8bae\u5217\u8868\n suggestionsList.innerHTML = suggestions\n .map(suggestion => `\n <div class=\"suggestion-item\" onclick=\"window.location.href='${suggestion.url}'\">\n <div class=\"suggestion-title\">${suggestion.title}</div>\n <div class=\"suggestion-excerpt\">${suggestion.excerpt}</div>\n </div>\n `)\n .join('');\n }, 300));\n}\n\nasync function getSearchSuggestions(query) {\n // \u8fd9\u91cc\u53ef\u4ee5\u5b9e\u73b0\u5b9e\u9645\u7684\u641c\u7d22\u903b\u8f91\n // \u793a\u4f8b\u8fd4\u56de\u6570\u636e\n return [\n {\n title: '\u76f8\u5173\u6587\u6863 1',\n excerpt: '\u8fd9\u662f\u4e00\u6bb5\u76f8\u5173\u7684\u6587\u6863\u63cf\u8ff0...',\n url: '#'\n },\n {\n title: '\u76f8\u5173\u6587\u6863 2',\n excerpt: '\u8fd9\u662f\u53e6\u4e00\u6bb5\u76f8\u5173\u7684\u6587\u6863\u63cf\u8ff0...',\n url: '#'\n }\n ];\n}\n\nfunction setupHotkeys() {\n document.addEventListener('keydown', (e) => {\n // \u6309 ESC \u8fd4\u56de\u4e0a\u9875\n if (e.key === 'Escape') {\n window.history.back();\n }\n\n // \u6309 Enter \u6267\u884c\u641c\u7d22\n if (e.key === 'Enter' && document.activeElement.id === 'error-search-input') {\n const query = document.activeElement.value;\n if (query) {\n window.location.href = `${window.location.origin}/search.html?q=${encodeURIComponent(query)}`;\n }\n }\n });\n}\n\n// \u9632\u6296\u51fd\u6570\nfunction debounce(fn, delay) {\n let timer = null;\n return function(...args) {\n clearTimeout(timer);\n timer = setTimeout(() => fn.apply(this, args), delay);\n };\n}\n</script>\n
\u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u6587\u7ae0\u5e95\u90e8\u4fe1\u606f\u548c404\u9875\u9762\u7684\u6a21\u677f\u3002\u4e3b\u8981\u7279\u70b9\u5305\u62ec\uff1a
-
\u6587\u7ae0\u5e95\u90e8\uff1a - \u6e05\u6670\u7684\u4e0a\u4e0b\u6587\u7ae0\u5bfc\u822a - \u793e\u4ea4\u5206\u4eab\u6309\u94ae - \u76f8\u5173\u6587\u7ae0\u63a8\u8350 - \u96c6\u6210\u8bc4\u8bba\u7cfb\u7edf
-
404\u9875\u9762\uff1a - \u53cb\u597d\u7684\u9519\u8bef\u63d0\u793a - \u5b9e\u65f6\u641c\u7d22\u5efa\u8bae - \u591a\u79cd\u8fd4\u56de\u9009\u9879 - \u952e\u76d8\u5feb\u6377\u952e\u652f\u6301
\u4f7f\u7528\u8fd9\u4e9b\u6a21\u677f\u65f6\uff0c\u9700\u8981\u5728 mkdocs.yml
\u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n custom_dir: docs/overrides\n features:\n - navigation.tracking\n - search.suggest\n - search.highlight\n\nextra:\n comments:\n provider: giscus\n repo: username/repo\n repo_id: your-repo-id\n category: Comments\n category_id: your-category-id\n
"},{"location":"Technology/mkdocs%20material/#72","title":"7.2 \u4fee\u6539\u7ec4\u4ef6\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#721","title":"7.2.1 \u5bfc\u822a\u680f","text":""},{"location":"Technology/mkdocs%20material/#7211","title":"7.2.1.1 \u5bfc\u822a\u9879\u5b9a\u5236","text":"HTML
<!-- docs/overrides/partials/nav.html -->\n{% extends \"base.html\" %}\n\n{% block site_nav %}\n<nav class=\"md-nav md-nav--primary\">\n <!-- \u81ea\u5b9a\u4e49\u5bfc\u822a\u5934\u90e8 -->\n <div class=\"nav-header\">\n {% if config.theme.logo %}\n <img src=\"{{ config.theme.logo }}\" alt=\"logo\" class=\"nav-logo\">\n {% endif %}\n <span class=\"nav-title\">{{ config.site_name }}</span>\n </div>\n\n <!-- \u81ea\u5b9a\u4e49\u5bfc\u822a\u9879 -->\n <ul class=\"nav-items\">\n {% for nav_item in nav %}\n {% include \"partials/nav-item.html\" %}\n {% endfor %}\n\n <!-- \u6dfb\u52a0\u81ea\u5b9a\u4e49\u5bfc\u822a\u9879 -->\n {% if config.extra.nav_links %}\n {% for link in config.extra.nav_links %}\n <li class=\"nav-item custom\">\n <a href=\"{{ link.url }}\" class=\"nav-link\" {% if link.target %}target=\"{{ link.target }}\"{% endif %}>\n {% if link.icon %}\n <span class=\"nav-icon\">\n {% include \".icons/\" ~ link.icon ~ \".svg\" %}\n </span>\n {% endif %}\n {{ link.title }}\n </a>\n </li>\n {% endfor %}\n {% endif %}\n </ul>\n</nav>\n
\u914d\u7f6e\u548c\u6837\u5f0f\uff1a
YAML
# mkdocs.yml\nextra:\n nav_links:\n - title: GitHub\n url: https://github.com/your/repo\n icon: material/github\n target: _blank\n - title: \u6587\u6863\n url: /docs/\n icon: material/file-document\n
CSS
/* docs/stylesheets/nav.css */\n.nav-header {\n display: flex;\n align-items: center;\n padding: 1rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.nav-logo {\n width: 32px;\n height: 32px;\n margin-right: 0.8rem;\n}\n\n.nav-items {\n list-style: none;\n padding: 0;\n margin: 0;\n}\n\n.nav-item {\n margin: 0.2rem 0;\n}\n\n.nav-link {\n display: flex;\n align-items: center;\n padding: 0.8rem 1rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n transition: background-color 0.2s ease;\n}\n\n.nav-link:hover {\n background-color: var(--md-code-bg-color);\n}\n\n.nav-icon {\n margin-right: 0.8rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n\n/* \u81ea\u5b9a\u4e49\u5bfc\u822a\u9879\u6837\u5f0f */\n.nav-item.custom .nav-link {\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#7212","title":"7.2.1.2 \u641c\u7d22\u6846\u4f4d\u7f6e","text":"HTML
<!-- docs/overrides/partials/search.html -->\n{% block search_box %}\n<div class=\"md-search\" data-md-component=\"search\" role=\"dialog\">\n <label class=\"md-search__overlay\" for=\"__search\"></label>\n <div class=\"md-search__inner\" role=\"search\">\n <!-- \u641c\u7d22\u8f93\u5165\u6846 -->\n <form class=\"md-search__form\">\n <input\n type=\"text\"\n class=\"md-search__input\"\n name=\"query\"\n aria-label=\"\u641c\u7d22\"\n placeholder=\"\u641c\u7d22\u6587\u6863...\"\n autocapitalize=\"off\"\n autocomplete=\"off\"\n autocorrect=\"off\"\n spellcheck=\"false\"\n data-md-component=\"search-query\"\n >\n <!-- \u641c\u7d22\u5feb\u6377\u952e\u63d0\u793a -->\n <div class=\"md-search__shortcuts\">\n <kbd>Ctrl</kbd> + <kbd>K</kbd>\n </div>\n </form>\n\n <!-- \u641c\u7d22\u7ed3\u679c -->\n <div class=\"md-search__output\">\n <div class=\"md-search__scrollwrap\" data-md-scrollfix>\n <div class=\"md-search-result\" data-md-component=\"search-result\">\n <div class=\"md-search-result__meta\">\n \u6b63\u5728\u641c\u7d22...\n </div>\n <ol class=\"md-search-result__list\"></ol>\n </div>\n </div>\n </div>\n </div>\n</div>\n
\u6837\u5f0f\u5b9a\u5236\uff1a
CSS
/* docs/stylesheets/search.css */\n/* \u641c\u7d22\u6846\u5bb9\u5668 */\n.md-search {\n margin: 0 1rem;\n padding: 0;\n position: relative;\n}\n\n/* \u641c\u7d22\u8f93\u5165\u6846 */\n.md-search__input {\n width: 100%;\n height: 2.4rem;\n padding: 0 2.4rem;\n font-size: 0.9rem;\n color: var(--md-default-fg-color);\n background-color: var(--md-default-bg-color);\n border: 1px solid var(--md-default-fg-color--lightest);\n border-radius: 1.2rem;\n}\n\n/* \u641c\u7d22\u56fe\u6807 */\n.md-search__icon {\n position: absolute;\n left: 0.8rem;\n top: 50%;\n transform: translateY(-50%);\n color: var(--md-default-fg-color--light);\n}\n\n/* \u5feb\u6377\u952e\u63d0\u793a */\n.md-search__shortcuts {\n position: absolute;\n right: 0.8rem;\n top: 50%;\n transform: translateY(-50%);\n display: flex;\n gap: 0.2rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u641c\u7d22\u7ed3\u679c\u5bb9\u5668 */\n.md-search__output {\n position: absolute;\n top: 100%;\n width: 100%;\n margin-top: 0.4rem;\n background-color: var(--md-default-bg-color);\n border-radius: 0.2rem;\n box-shadow: var(--md-shadow-z2);\n overflow: auto;\n z-index: 1;\n}\n
"},{"location":"Technology/mkdocs%20material/#7213","title":"7.2.1.3 \u79fb\u52a8\u7aef\u9002\u914d","text":"CSS
/* \u79fb\u52a8\u7aef\u5bfc\u822a\u6837\u5f0f */\n@media screen and (max-width: 76.1875em) {\n /* \u5bfc\u822a\u5207\u6362\u6309\u94ae */\n .md-header-nav__button.md-icon {\n padding: 0.4rem;\n margin: 0.4rem;\n }\n\n /* \u5bfc\u822a\u62bd\u5c49 */\n .md-nav--primary {\n position: fixed;\n top: 0;\n left: -18rem;\n width: 18rem;\n height: 100%;\n background-color: var(--md-default-bg-color);\n transition: left 0.25s;\n z-index: 2;\n }\n\n /* \u5bfc\u822a\u62bd\u5c49\u6253\u5f00\u72b6\u6001 */\n .md-nav--primary.md-nav--opened {\n left: 0;\n }\n\n /* \u641c\u7d22\u6846\u5168\u5c4f */\n .md-search__inner {\n position: fixed;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n padding: 1rem;\n background-color: var(--md-default-bg-color);\n z-index: 3;\n }\n\n /* \u641c\u7d22\u7ed3\u679c\u5168\u5c4f */\n .md-search__output {\n position: fixed;\n top: 4rem;\n height: calc(100% - 4rem);\n }\n}\n\n/* \u5e73\u677f\u9002\u914d */\n@media screen and (min-width: 76.25em) and (max-width: 96.25em) {\n .md-nav--primary {\n width: 16rem;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#722","title":"7.2.2 \u9875\u811a","text":"HTML
<!-- docs/overrides/partials/footer.html -->\n<footer class=\"md-footer\">\n <div class=\"md-footer-meta md-typeset\">\n <div class=\"md-footer-meta__inner md-grid\">\n <!-- \u7248\u6743\u4fe1\u606f -->\n <div class=\"md-footer-copyright\">\n {% if config.copyright %}\n <div class=\"md-footer-copyright__highlight\">\n {{ config.copyright }}\n </div>\n {% endif %}\n\n <!-- \u6784\u5efa\u4fe1\u606f -->\n <div class=\"md-footer-build\">\n Documentation built with\n <a href=\"https://www.mkdocs.org\" target=\"_blank\" rel=\"noopener\">\n MkDocs\n </a>\n and\n <a href=\"https://squidfunk.github.io/mkdocs-material/\" target=\"_blank\" rel=\"noopener\">\n Material for MkDocs\n </a>\n </div>\n </div>\n\n <!-- \u793e\u4ea4\u94fe\u63a5 -->\n {% if config.extra.social %}\n <div class=\"md-footer-social\">\n {% for social in config.extra.social %}\n <a href=\"{{ social.link }}\" \n target=\"_blank\" \n rel=\"noopener\" \n title=\"{{ social.name }}\"\n class=\"md-footer-social__link\">\n {% include \".icons/\" ~ social.icon ~ \".svg\" %}\n </a>\n {% endfor %}\n </div>\n {% endif %}\n\n <!-- \u5907\u6848\u4fe1\u606f -->\n {% if config.extra.icp %}\n <div class=\"md-footer-icp\">\n <a href=\"https://beian.miit.gov.cn/\" target=\"_blank\" rel=\"noopener\">\n {{ config.extra.icp }}\n </a>\n </div>\n {% endif %}\n </div>\n </div>\n</footer>\n
\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\ncopyright: Copyright © 2024 Your Name\nextra:\n social:\n - icon: material/github\n name: GitHub\n link: https://github.com/your-username\n - icon: material/twitter\n name: Twitter\n link: https://twitter.com/your-username\n icp: \u4eacICP\u5907xxxxxxxx\u53f7\n
\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/footer.css */\n.md-footer {\n background-color: var(--md-default-bg-color);\n color: var(--md-default-fg-color);\n padding: 2rem 0;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.md-footer-meta__inner {\n display: flex;\n flex-wrap: wrap;\n justify-content: space-between;\n align-items: center;\n gap: 1rem;\n}\n\n/* \u7248\u6743\u4fe1\u606f */\n.md-footer-copyright {\n font-size: 0.8rem;\n}\n\n.md-footer-copyright__highlight {\n margin-bottom: 0.5rem;\n}\n\n.md-footer-build {\n color: var(--md-default-fg-color--light);\n}\n\n/* \u793e\u4ea4\u94fe\u63a5 */\n.md-footer-social {\n display: flex;\n gap: 1rem;\n}\n\n.md-footer-social__link {\n width: 2rem;\n height: 2rem;\n display: flex;\n align-items: center;\n justify-content: center;\n color: var(--md-default-fg-color);\n border-radius: 50%;\n transition: all 0.2s ease;\n}\n\n.md-footer-social__link:hover {\n background-color: var(--md-code-bg-color);\n color: var(--md-accent-fg-color);\n}\n\n/* \u5907\u6848\u4fe1\u606f */\n.md-footer-icp {\n width: 100%;\n text-align: center;\n margin-top: 1rem;\n font-size: 0.8rem;\n}\n\n.md-footer-icp a {\n color: var(--md-default-fg-color--light);\n text-decoration: none;\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .md-footer-meta__inner {\n flex-direction: column;\n text-align: center;\n }\n\n .md-footer-social {\n justify-content: center;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#723","title":"7.2.3 \u641c\u7d22\u6846","text":"HTML
<!-- docs/overrides/partials/search-modal.html -->\n<div class=\"md-search-modal\" data-md-component=\"search-modal\">\n <div class=\"md-search-modal__overlay\" data-md-component=\"search-modal-overlay\"></div>\n\n <div class=\"md-search-modal__inner\">\n <!-- \u641c\u7d22\u5934\u90e8 -->\n <header class=\"md-search-modal__header\">\n <form class=\"md-search-modal__form\">\n <input\n type=\"text\"\n class=\"md-search-modal__input\"\n name=\"query\"\n placeholder=\"\u641c\u7d22\u6587\u6863...\"\n data-md-component=\"search-query\"\n autocapitalize=\"off\"\n autocomplete=\"off\"\n autocorrect=\"off\"\n spellcheck=\"false\"\n >\n <!-- \u5feb\u6377\u952e\u63d0\u793a -->\n <div class=\"md-search-modal__shortcuts\">\n <kbd>\u2191</kbd><kbd>\u2193</kbd> \u9009\u62e9\n <kbd>\u21b5</kbd> \u6253\u5f00\n <kbd>ESC</kbd> \u5173\u95ed\n </div>\n </form>\n </header>\n\n <!-- \u641c\u7d22\u7ed3\u679c -->\n <main class=\"md-search-modal__body\">\n <div class=\"md-search-modal__scrollwrap\">\n <div class=\"md-search-modal__meta\">\n \u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22\n </div>\n\n <div class=\"md-search-modal__results\">\n <!-- \u641c\u7d22\u7ed3\u679c\u5217\u8868 -->\n <div class=\"md-search-modal__list\"></div>\n\n <!-- \u641c\u7d22\u5efa\u8bae -->\n <div class=\"md-search-modal__suggestions\">\n <h3>\u60a8\u53ef\u80fd\u611f\u5174\u8da3\uff1a</h3>\n <div class=\"suggestions-list\">\n <!-- \u52a8\u6001\u751f\u6210\u7684\u5efa\u8bae\u5217\u8868 -->\n </div>\n </div>\n </div>\n </div>\n </main>\n </div>\n</div>\n
\u641c\u7d22\u529f\u80fd\u811a\u672c\uff1a
JavaScript
// docs/javascripts/search.js\nclass SearchModal {\n constructor() {\n this.modal = document.querySelector('.md-search-modal');\n this.overlay = document.querySelector('.md-search-modal__overlay');\n this.input = document.querySelector('.md-search-modal__input');\n this.resultsList = document.querySelector('.md-search-modal__list');\n this.suggestions = document.querySelector('.md-search-modal__suggestions');\n\n this.searchIndex = null;\n this.searchResults = [];\n this.currentFocus = -1;\n\n this.init();\n }\n\n init() {\n // \u521d\u59cb\u5316\u641c\u7d22\u7d22\u5f15\n this.buildSearchIndex();\n // \u7ed1\u5b9a\u4e8b\u4ef6\n this.bindEvents();\n // \u8bbe\u7f6e\u5feb\u6377\u952e\n this.setupShortcuts();\n }\n\n async buildSearchIndex() {\n // \u6784\u5efa\u641c\u7d22\u7d22\u5f15\n const response = await fetch('/search/search_index.json');\n const data = await response.json();\n\n // \u4f7f\u7528 lunr.js \u6784\u5efa\u7d22\u5f15\n this.searchIndex = lunr(function() {\n this.field('title', { boost: 10 });\n this.field('text');\n this.ref('location');\n\n data.docs.forEach(function(doc) {\n this.add(doc);\n }, this);\n });\n }\n\n bindEvents() {\n // \u641c\u7d22\u6846\u8f93\u5165\u4e8b\u4ef6\n this.input.addEventListener('input', debounce(() => {\n const query = this.input.value;\n if (query.length >= 2) {\n this.performSearch(query);\n } else {\n this.clearResults();\n }\n }, 200));\n\n // \u641c\u7d22\u7ed3\u679c\u5bfc\u822a\n this.input.addEventListener('keydown', (e) => {\n switch (e.key) {\n case 'ArrowUp':\n e.preventDefault();\n this.navigateResults('up');\n break;\n case 'ArrowDown':\n e.preventDefault();\n this.navigateResults('down');\n break;\n case 'Enter':\n e.preventDefault();\n this.openResult();\n break;\n case 'Escape':\n e.preventDefault();\n this.closeModal();\n break;\n }\n });\n\n // \u70b9\u51fb\u906e\u7f69\u5173\u95ed\n this.overlay.addEventListener('click', () => this.closeModal());\n }\n\n setupShortcuts() {\n // \u5168\u5c40\u641c\u7d22\u5feb\u6377\u952e\n document.addEventListener('keydown', (e) => {\n // Ctrl/Cmd + K \u6253\u5f00\u641c\u7d22\n if ((e.ctrlKey || e.metaKey) && e.key === 'k') {\n e.preventDefault();\n this.openModal();\n }\n });\n }\n\n async performSearch(query) {\n if (!this.searchIndex) return;\n\n // \u6267\u884c\u641c\u7d22\n this.searchResults = this.searchIndex.search(query).map(result => {\n return {\n ref: result.ref,\n score: result.score,\n ...this.getDocumentByRef(result.ref)\n };\n });\n\n // \u6e32\u67d3\u7ed3\u679c\n this.renderResults();\n // \u66f4\u65b0\u5efa\u8bae\n this.updateSuggestions(query);\n }\n\n renderResults() {\n this.resultsList.innerHTML = this.searchResults\n .map((result, index) => `\n <div class=\"search-result-item ${index === this.currentFocus ? 'focused' : ''}\"\n data-index=\"${index}\">\n <div class=\"result-title\">${this.highlightText(result.title)}</div>\n <div class=\"result-excerpt\">${this.highlightText(result.excerpt)}</div>\n <div class=\"result-location\">${result.location}</div>\n </div>\n `)\n .join('');\n }\n\n highlightText(text) {\n const query = this.input.value;\n if (!query) return text;\n\n const regex = new RegExp(`(${query})`, 'gi');\n return text.replace(regex, '<mark>$1</mark>');\n }\n\n updateSuggestions(query) {\n // \u6839\u636e\u641c\u7d22\u5386\u53f2\u548c\u70ed\u95e8\u641c\u7d22\u751f\u6210\u5efa\u8bae\n const suggestions = this.generateSuggestions(query);\n\n this.suggestions.innerHTML = suggestions\n .map(suggestion => `\n <div class=\"suggestion-item\" data-query=\"${suggestion.query}\">\n <span class=\"suggestion-icon\">\n ${suggestion.type === 'history' ? '\u23f1\ufe0f' : '\ud83d\udd25'}\n </span>\n ${suggestion.query}\n </div>\n `)\n .join('');\n }\n\n navigateResults(direction) {\n const maxIndex = this.searchResults.length - 1;\n\n if (direction === 'up') {\n this.currentFocus = this.currentFocus > 0 ? this.currentFocus - 1 : maxIndex;\n } else {\n this.currentFocus = this.currentFocus < maxIndex ? this.currentFocus + 1 : 0;\n }\n\n this.renderResults();\n this.scrollToFocused();\n }\n\n scrollToFocused() {\n const focused = this.resultsList.querySelector('.focused');\n if (focused) {\n focused.scrollIntoView({\n behavior: 'smooth',\n block: 'nearest'\n });\n }\n }\n\n openResult() {\n const result = this.searchResults[this.currentFocus];\n if (result) {\n window.location.href = result.location;\n }\n }\n\n openModal() {\n this.modal.classList.add('active');\n this.input.focus();\n document.body.style.overflow = 'hidden';\n }\n\n closeModal() {\n this.modal.classList.remove('active');\n this.input.value = '';\n this.clearResults();\n document.body.style.overflow = '';\n }\n\n clearResults() {\n this.searchResults = [];\n this.currentFocus = -1;\n this.resultsList.innerHTML = '';\n this.suggestions.innerHTML = '';\n }\n}\n\n// \u521d\u59cb\u5316\u641c\u7d22\u529f\u80fd\ndocument.addEventListener('DOMContentLoaded', () => {\n new SearchModal();\n});\n
\u641c\u7d22\u6846\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/search-modal.css */\n.md-search-modal {\n position: fixed;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n z-index: 1000;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n}\n\n.md-search-modal.active {\n opacity: 1;\n visibility: visible;\n}\n\n.md-search-modal__overlay {\n position: absolute;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n background: rgba(0, 0, 0, 0.5);\n backdrop-filter: blur(4px);\n}\n\n.md-search-modal__inner {\n position: relative;\n width: 90%;\n max-width: 800px;\n margin: 2rem auto;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z3);\n}\n\n/* \u641c\u7d22\u7ed3\u679c\u6837\u5f0f */\n.search-result-item {\n padding: 1rem;\n cursor: pointer;\n transition: background 0.2s ease;\n}\n\n.search-result-item:hover,\n.search-result-item.focused {\n background: var(--md-code-bg-color);\n}\n\n.result-title {\n font-size: 1.1rem;\n font-weight: 500;\n margin-bottom: 0.5rem;\n}\n\n.result-excerpt {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-bottom: 0.5rem;\n}\n\n.result-location {\n font-size: 0.8rem;\n color: var(--md-accent-fg-color);\n}\n\n/* \u9ad8\u4eae\u5339\u914d\u6587\u672c */\nmark {\n background: var(--md-accent-fg-color);\n color: white;\n padding: 0 0.2rem;\n border-radius: 2px;\n}\n
"},{"location":"Technology/mkdocs%20material/#724","title":"7.2.4 \u76ee\u5f55","text":""},{"location":"Technology/mkdocs%20material/#7241","title":"7.2.4.1 \u76ee\u5f55\u7ed3\u6784","text":"HTML
<!-- docs/overrides/partials/toc.html -->\n<nav class=\"md-toc\" aria-label=\"\u76ee\u5f55\">\n <div class=\"md-toc__header\">\n <h2 class=\"md-toc__title\">\u76ee\u5f55</h2>\n <button class=\"md-toc__toggle\" aria-label=\"\u5c55\u5f00/\u6536\u8d77\">\n {% include \".icons/material/chevron-down.svg\" %}\n </button>\n </div>\n\n <div class=\"md-toc__inner\">\n {% set toc = page.toc %}\n <ul class=\"md-toc__list\">\n {% for toc_item in toc %}\n {% include \"partials/toc-item.html\" %}\n {% endfor %}\n </ul>\n </div>\n</nav>\n\n<!-- docs/overrides/partials/toc-item.html -->\n<li class=\"md-toc__item\">\n <a href=\"{{ toc_item.url }}\" class=\"md-toc__link\">\n {{ toc_item.title }}\n </a>\n\n {% if toc_item.children %}\n <ul class=\"md-toc__list\">\n {% for toc_item in toc_item.children %}\n {% include \"partials/toc-item.html\" %}\n {% endfor %}\n </ul>\n {% endif %}\n</li>\n
"},{"location":"Technology/mkdocs%20material/#7242","title":"7.2.4.2 \u6eda\u52a8\u540c\u6b65","text":"JavaScript
// docs/javascripts/toc.js\nclass TableOfContents {\n constructor() {\n this.toc = document.querySelector('.md-toc');\n this.tocLinks = this.toc.querySelectorAll('.md-toc__link');\n this.headings = document.querySelectorAll('h1[id], h2[id], h3[id], h4[id], h5[id], h6[id]');\n this.intersectionObserver = null;\n\n this.init();\n }\n\n init() {\n this.setupIntersectionObserver();\n this.setupScrollSpy();\n this.setupToggle();\n }\n\n setupIntersectionObserver() {\n this.intersectionObserver = new IntersectionObserver(\n (entries) => {\n entries.forEach(entry => {\n if (entry.isIntersecting) {\n const id = entry.target.getAttribute('id');\n this.highlightTocItem(id);\n }\n });\n },\n {\n rootMargin: '0px 0px -80% 0px'\n }\n );\n\n this.headings.forEach(heading => {\n this.intersectionObserver.observe(heading);\n });\n }\n\n setupScrollSpy() {\n this.tocLinks.forEach(link => {\n link.addEventListener('click', (e) => {\n e.preventDefault();\n const id = link.getAttribute('href').substring(1);\n const target = document.getElementById(id);\n\n if (target) {\n window.scrollTo({\n top: target.offsetTop - 100,\n behavior: 'smooth'\n });\n\n // \u66f4\u65b0 URL\n history.pushState(null, null, `#${id}`);\n }\n });\n });\n }\n\n highlightTocItem(id) {\n // \u79fb\u9664\u6240\u6709\u9ad8\u4eae\n this.tocLinks.forEach(link => {\n link.classList.remove('active');\n });\n\n // \u6dfb\u52a0\u65b0\u9ad8\u4eae\n const activeLink = this.toc.querySelector(`a[href=\"#${id}\"]`);\n if (activeLink) {\n activeLink.classList.add('active');\n this.expandParents(activeLink);\n }\n }\n\n expandParents(element) {\n let parent = element.parentElement;\n while (parent && parent.classList.contains('md-toc__item')) {\n const list = parent.querySelector('.md-toc__list');\n if (list) {\n list.style.height = 'auto';\n parent.classList.add('expanded');\n }\n parent = parent.parentElement;\n }\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#7243","title":"7.2.4.3 \u5c55\u5f00\u6536\u8d77","text":"JavaScript
setupToggle() {\n const toggleButton = this.toc.querySelector('.md-toc__toggle');\n const tocInner = this.toc.querySelector('.md-toc__inner');\n\n toggleButton?.addEventListener('click', () => {\n const isExpanded = this.toc.classList.contains('expanded');\n\n if (isExpanded) {\n this.toc.classList.remove('expanded');\n tocInner.style.height = '0';\n } else {\n this.toc.classList.add('expanded');\n tocInner.style.height = tocInner.scrollHeight + 'px';\n }\n });\n\n // \u6dfb\u52a0\u5c55\u5f00/\u6536\u8d77\u6240\u6709\u6309\u94ae\n const expandAllButton = document.createElement('button');\n expandAllButton.className = 'md-toc__expand-all';\n expandAllButton.innerHTML = '\u5c55\u5f00\u5168\u90e8';\n expandAllButton.addEventListener('click', () => this.toggleAll(true));\n\n const collapseAllButton = document.createElement('button');\n collapseAllButton.className = 'md-toc__collapse-all';\n collapseAllButton.innerHTML = '\u6536\u8d77\u5168\u90e8';\n collapseAllButton.addEventListener('click', () => this.toggleAll(false));\n\n const buttonGroup = document.createElement('div');\n buttonGroup.className = 'md-toc__button-group';\n buttonGroup.appendChild(expandAllButton);\n buttonGroup.appendChild(collapseAllButton);\n\n this.toc.querySelector('.md-toc__header').appendChild(buttonGroup);\n}\n\ntoggleAll(expand) {\n const lists = this.toc.querySelectorAll('.md-toc__list');\n lists.forEach(list => {\n if (expand) {\n list.style.height = 'auto';\n list.parentElement.classList.add('expanded');\n } else {\n list.style.height = '0';\n list.parentElement.classList.remove('expanded');\n }\n });\n}\n
\u76ee\u5f55\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/toc.css */\n.md-toc {\n position: sticky;\n top: 4rem;\n padding: 1rem;\n max-height: calc(100vh - 4rem);\n overflow-y: auto;\n background: var(--md-default-bg-color);\n border-left: 1px solid var(--md-default-fg-color--lightest);\n font-size: 0.8rem;\n}\n\n/* \u76ee\u5f55\u5934\u90e8 */\n.md-toc__header {\n display: flex;\n justify-content: space-between;\n align-items: center;\n margin-bottom: 1rem;\n padding-bottom: 0.5rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.md-toc__title {\n font-size: 1rem;\n font-weight: 600;\n margin: 0;\n}\n\n.md-toc__button-group {\n display: flex;\n gap: 0.5rem;\n}\n\n.md-toc__button-group button {\n padding: 0.2rem 0.5rem;\n font-size: 0.7rem;\n color: var(--md-default-fg-color--light);\n background: var(--md-code-bg-color);\n border: none;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.md-toc__button-group button:hover {\n color: var(--md-accent-fg-color);\n background: var(--md-code-bg-color--light);\n}\n\n/* \u76ee\u5f55\u5217\u8868 */\n.md-toc__list {\n list-style: none;\n padding: 0;\n margin: 0;\n}\n\n.md-toc__item {\n margin: 0.2rem 0;\n}\n\n/* \u76ee\u5f55\u94fe\u63a5 */\n.md-toc__link {\n display: block;\n padding: 0.2rem 0;\n color: var(--md-default-fg-color);\n text-decoration: none;\n transition: all 0.2s ease;\n border-radius: 4px;\n}\n\n.md-toc__link:hover {\n color: var(--md-accent-fg-color);\n background: var(--md-code-bg-color);\n padding-left: 0.5rem;\n}\n\n/* \u5f53\u524d\u6fc0\u6d3b\u9879 */\n.md-toc__link.active {\n color: var(--md-accent-fg-color);\n font-weight: 500;\n background: var(--md-code-bg-color);\n padding-left: 0.5rem;\n}\n\n/* \u5d4c\u5957\u5c42\u7ea7 */\n.md-toc__item .md-toc__list {\n margin-left: 1rem;\n border-left: 1px solid var(--md-default-fg-color--lightest);\n overflow: hidden;\n height: 0;\n transition: height 0.3s ease;\n}\n\n.md-toc__item.expanded > .md-toc__list {\n height: auto;\n}\n\n/* \u6298\u53e0\u6307\u793a\u5668 */\n.md-toc__item > .md-toc__link::before {\n content: '';\n display: inline-block;\n width: 0.8rem;\n height: 0.8rem;\n margin-right: 0.2rem;\n background-image: url('data:image/svg+xml,<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 24 24\"><path d=\"M8.59 16.59L13.17 12 8.59 7.41 10 6l6 6-6 6-1.41-1.41z\"/></svg>');\n background-size: contain;\n transform: rotate(0);\n transition: transform 0.3s ease;\n}\n\n.md-toc__item.expanded > .md-toc__link::before {\n transform: rotate(90deg);\n}\n\n/* \u6eda\u52a8\u6761\u6837\u5f0f */\n.md-toc::-webkit-scrollbar {\n width: 4px;\n}\n\n.md-toc::-webkit-scrollbar-track {\n background: transparent;\n}\n\n.md-toc::-webkit-scrollbar-thumb {\n background: var(--md-default-fg-color--lighter);\n border-radius: 2px;\n}\n\n/* \u54cd\u5e94\u5f0f\u8bbe\u8ba1 */\n@media screen and (max-width: 76.1875em) {\n .md-toc {\n position: fixed;\n top: 0;\n right: -18rem;\n width: 18rem;\n height: 100vh;\n max-height: none;\n margin: 0;\n padding: 1rem;\n background: var(--md-default-bg-color);\n border-left: 1px solid var(--md-default-fg-color--lightest);\n box-shadow: var(--md-shadow-z3);\n transition: right 0.3s ease;\n z-index: 3;\n }\n\n .md-toc.expanded {\n right: 0;\n }\n\n /* \u79fb\u52a8\u7aef\u8986\u76d6\u5c42 */\n .md-toc-overlay {\n display: none;\n position: fixed;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n background: rgba(0, 0, 0, 0.3);\n z-index: 2;\n }\n\n .md-toc.expanded + .md-toc-overlay {\n display: block;\n }\n}\n\n/* \u5e73\u677f\u9002\u914d */\n@media screen and (min-width: 76.25em) and (max-width: 96.25em) {\n .md-toc {\n padding: 0.8rem;\n }\n\n .md-toc__list {\n margin-left: 0.8rem;\n }\n}\n
\u5b8c\u6574\u7684\u76ee\u5f55\u529f\u80fd\u5b9e\u73b0\uff1a
JavaScript
// docs/javascripts/toc.js\nclass TableOfContents {\n constructor() {\n this.toc = document.querySelector('.md-toc');\n this.tocLinks = this.toc.querySelectorAll('.md-toc__link');\n this.headings = document.querySelectorAll('h1[id], h2[id], h3[id], h4[id], h5[id], h6[id]');\n this.intersectionObserver = null;\n this.isScrolling = false;\n this.scrollTimeout = null;\n\n this.init();\n }\n\n init() {\n this.setupIntersectionObserver();\n this.setupScrollSpy();\n this.setupToggle();\n this.setupMobileToggle();\n this.handleInitialHash();\n }\n\n handleInitialHash() {\n // \u5904\u7406\u9875\u9762\u52a0\u8f7d\u65f6\u7684 hash\n if (window.location.hash) {\n const id = window.location.hash.substring(1);\n const target = document.getElementById(id);\n if (target) {\n setTimeout(() => {\n target.scrollIntoView();\n this.highlightTocItem(id);\n }, 100);\n }\n }\n }\n\n setupMobileToggle() {\n // \u521b\u5efa\u79fb\u52a8\u7aef\u5f00\u5173\u6309\u94ae\n const toggleButton = document.createElement('button');\n toggleButton.className = 'md-toc-toggle';\n toggleButton.innerHTML = `\n <span class=\"md-toc-toggle__icon\">\n {% include \".icons/material/menu.svg\" %}\n </span>\n `;\n\n // \u521b\u5efa\u906e\u7f69\u5c42\n const overlay = document.createElement('div');\n overlay.className = 'md-toc-overlay';\n\n document.body.appendChild(toggleButton);\n document.body.appendChild(overlay);\n\n // \u7ed1\u5b9a\u4e8b\u4ef6\n toggleButton.addEventListener('click', () => {\n this.toc.classList.toggle('expanded');\n document.body.style.overflow = this.toc.classList.contains('expanded') ? 'hidden' : '';\n });\n\n overlay.addEventListener('click', () => {\n this.toc.classList.remove('expanded');\n document.body.style.overflow = '';\n });\n }\n\n updateTocHeight() {\n const lists = this.toc.querySelectorAll('.md-toc__list');\n lists.forEach(list => {\n if (list.parentElement.classList.contains('expanded')) {\n list.style.height = list.scrollHeight + 'px';\n }\n });\n }\n\n onResize() {\n // \u76d1\u542c\u7a97\u53e3\u5927\u5c0f\u53d8\u5316\uff0c\u66f4\u65b0\u76ee\u5f55\u9ad8\u5ea6\n window.addEventListener('resize', debounce(() => {\n this.updateTocHeight();\n }, 100));\n }\n}\n\n// \u5de5\u5177\u51fd\u6570\nfunction debounce(fn, delay) {\n let timer = null;\n return function(...args) {\n clearTimeout(timer);\n timer = setTimeout(() => fn.apply(this, args), delay);\n };\n}\n\n// \u521d\u59cb\u5316\u76ee\u5f55\ndocument.addEventListener('DOMContentLoaded', () => {\n new TableOfContents();\n});\n
\u4f7f\u7528\u8fd9\u4e9b\u4ee3\u7801\uff0c\u9700\u8981\u5728 mkdocs.yml
\u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n custom_dir: docs/overrides\n features:\n - toc.integrate\n - toc.follow\n\nextra_css:\n - stylesheets/toc.css\n\nextra_javascript:\n - javascripts/toc.js\n
\u8fd9\u6837\u5c31\u5b8c\u6210\u4e86\u4e00\u4e2a\u529f\u80fd\u5b8c\u6574\u3001\u4ea4\u4e92\u53cb\u597d\u7684\u76ee\u5f55\u5bfc\u822a\u7cfb\u7edf\uff0c\u4e3b\u8981\u7279\u70b9\u5305\u62ec\uff1a
- \u81ea\u52a8\u9ad8\u4eae\u5f53\u524d\u9605\u8bfb\u4f4d\u7f6e
- \u5e73\u6ed1\u6eda\u52a8\u5230\u76ee\u6807\u4f4d\u7f6e
- \u652f\u6301\u5c55\u5f00/\u6536\u8d77\u529f\u80fd
- \u79fb\u52a8\u7aef\u81ea\u9002\u5e94\u5e03\u5c40
- \u4f18\u96c5\u7684\u52a8\u753b\u6548\u679c
- \u826f\u597d\u7684\u53ef\u8bbf\u95ee\u6027\u652f\u6301
- \u6027\u80fd\u4f18\u5316\u8003\u8651
"},{"location":"Technology/mkdocs%20material/#8","title":"8 \u63d2\u4ef6\u4f7f\u7528","text":""},{"location":"Technology/mkdocs%20material/#81","title":"8.1 \u5fc5\u5907\u63d2\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#8111-search","title":"8.1.1.1 search","text":""},{"location":"Technology/mkdocs%20material/#8112","title":"8.1.1.2 \u57fa\u7840\u914d\u7f6e","text":"
- \u5b89\u88c5\u641c\u7d22\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-material\n
- \u914d\u7f6e\u641c\u7d22\uff1a
YAML
# mkdocs.yml\nplugins:\n - search:\n # \u641c\u7d22\u7d22\u5f15\u8bbe\u7f6e\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.]+' # \u5206\u8bcd\u5206\u9694\u7b26\n min_search_length: 2 # \u6700\u5c0f\u641c\u7d22\u957f\u5ea6\n prebuild_index: true # \u9884\u6784\u5efa\u7d22\u5f15\n\n # \u641c\u7d22\u5185\u5bb9\u914d\u7f6e\n indexing:\n full_sections: true # \u7d22\u5f15\u5b8c\u6574\u7ae0\u8282\n headings: true # \u7d22\u5f15\u6807\u9898\n content: true # \u7d22\u5f15\u5185\u5bb9\n tags: true # \u7d22\u5f15\u6807\u7b7e\n\n # \u641c\u7d22\u7ed3\u679c\u6392\u5e8f\n scoring:\n title_boost: 10 # \u6807\u9898\u6743\u91cd\n heading_boost: 5 # \u6807\u9898\u6743\u91cd\n content_boost: 1 # \u5185\u5bb9\u6743\u91cd\n
- \u641c\u7d22\u4e3b\u9898\u914d\u7f6e\uff1a
YAML
theme:\n features:\n - search.highlight # \u641c\u7d22\u9ad8\u4eae\n - search.share # \u641c\u7d22\u5206\u4eab\n - search.suggest # \u641c\u7d22\u5efa\u8bae\n\n # \u641c\u7d22\u754c\u9762\u6587\u5b57\n language: zh\n palette:\n - search:\n placeholder: \u641c\u7d22\u6587\u6863\n result:\n no_results_text: \u672a\u627e\u5230\u76f8\u5173\u7ed3\u679c\n searching_text: \u6b63\u5728\u641c\u7d22...\n
"},{"location":"Technology/mkdocs%20material/#8113","title":"8.1.1.3 \u4e2d\u6587\u641c\u7d22","text":"
- \u4e2d\u6587\u5206\u8bcd\u914d\u7f6e\uff1a
YAML
plugins:\n - search:\n jieba_dict: dict.txt # \u81ea\u5b9a\u4e49\u8bcd\u5178\u8def\u5f84\n jieba_dict_user: user_dict.txt # \u7528\u6237\u8bcd\u5178\u8def\u5f84\n\n # \u4e2d\u6587\u5206\u8bcd\u89c4\u5219\n separator: '[\uff0c\u3002\uff01\uff1f,!?]+'\n\n # \u4e2d\u6587\u505c\u7528\u8bcd\n stopwords:\n - \u7684\n - \u4e86\n - \u548c\n - \u662f\n - \u5c31\n - \u90fd\n - \u800c\n - \u53ca\n - \u4e0e\n - \u8fd9\n
- \u81ea\u5b9a\u4e49\u8bcd\u5178\u793a\u4f8b\uff08dict.txt\uff09\uff1a
Text Only
\u6280\u672f\u6587\u6863 5\n\u5f00\u53d1\u6307\u5357 5\n\u6700\u4f73\u5b9e\u8df5 5\n\u4f7f\u7528\u6559\u7a0b 5\n\u914d\u7f6e\u8bf4\u660e 5\n\u5e38\u89c1\u95ee\u9898 5\n
- \u5206\u8bcd\u4f18\u5316\u811a\u672c\uff1a
Python
# docs/search_optimize.py\nimport jieba\nimport json\nfrom pathlib import Path\n\ndef optimize_search_index(index_file, dict_file):\n # \u52a0\u8f7d\u81ea\u5b9a\u4e49\u8bcd\u5178\n jieba.load_userdict(dict_file)\n\n # \u8bfb\u53d6\u641c\u7d22\u7d22\u5f15\n with open(index_file, 'r', encoding='utf-8') as f:\n index = json.load(f)\n\n # \u4f18\u5316\u5206\u8bcd\n for doc in index['docs']:\n # \u5206\u8bcd\u5904\u7406\u6807\u9898\n title_words = list(jieba.cut(doc['title']))\n doc['title'] = ' '.join(title_words)\n\n # \u5206\u8bcd\u5904\u7406\u5185\u5bb9\n if 'text' in doc:\n text_words = list(jieba.cut(doc['text']))\n doc['text'] = ' '.join(text_words)\n\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u7d22\u5f15\n with open(index_file, 'w', encoding='utf-8') as f:\n json.dump(index, f, ensure_ascii=False, indent=2)\n\nif __name__ == '__main__':\n index_file = 'site/search/search_index.json'\n dict_file = 'docs/dict.txt'\n optimize_search_index(index_file, dict_file)\n
"},{"location":"Technology/mkdocs%20material/#8114","title":"8.1.1.4 \u641c\u7d22\u4f18\u5316","text":"
- \u7d22\u5f15\u4f18\u5316\uff1a
Python
# docs/search_index_optimizer.py\nfrom pathlib import Path\nimport json\nimport re\n\nclass SearchIndexOptimizer:\n def __init__(self, index_path):\n self.index_path = Path(index_path)\n self.index = self.load_index()\n\n def load_index(self):\n with open(self.index_path, 'r', encoding='utf-8') as f:\n return json.load(f)\n\n def save_index(self):\n with open(self.index_path, 'w', encoding='utf-8') as f:\n json.dump(self.index, f, ensure_ascii=False, indent=2)\n\n def optimize(self):\n # \u6e05\u7406\u65e0\u7528\u6570\u636e\n self._clean_data()\n # \u4f18\u5316\u6587\u672c\n self._optimize_text()\n # \u6dfb\u52a0\u6743\u91cd\n self._add_weights()\n # \u6784\u5efa\u53cd\u5411\u7d22\u5f15\n self._build_inverted_index()\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u7d22\u5f15\n self.save_index()\n\n def _clean_data(self):\n # \u79fb\u9664\u7a7a\u6587\u6863\n self.index['docs'] = [\n doc for doc in self.index['docs']\n if doc.get('text') or doc.get('title')\n ]\n\n # \u79fb\u9664\u91cd\u590d\u6587\u6863\n seen = set()\n unique_docs = []\n for doc in self.index['docs']:\n key = f\"{doc['location']}:{doc['title']}\"\n if key not in seen:\n seen.add(key)\n unique_docs.append(doc)\n self.index['docs'] = unique_docs\n\n def _optimize_text(self):\n for doc in self.index['docs']:\n # \u6e05\u7406HTML\u6807\u7b7e\n if 'text' in doc:\n doc['text'] = re.sub(r'<[^>]+>', '', doc['text'])\n\n # \u538b\u7f29\u7a7a\u767d\u5b57\u7b26\n for field in ['title', 'text']:\n if field in doc:\n doc[field] = ' '.join(doc[field].split())\n\n def _add_weights(self):\n for doc in self.index['docs']:\n # \u57fa\u7840\u6743\u91cd\n doc['weight'] = 1.0\n\n # \u6807\u9898\u957f\u5ea6\u6743\u91cd\n if 'title' in doc:\n title_len = len(doc['title'])\n doc['weight'] *= 1 + (1.0 / (1 + title_len))\n\n # \u6587\u672c\u957f\u5ea6\u6743\u91cd\n if 'text' in doc:\n text_len = len(doc['text'])\n doc['weight'] *= 1 + (100.0 / (1 + text_len))\n\n # URL\u6df1\u5ea6\u6743\u91cd\n depth = doc['location'].count('/')\n doc['weight'] *= 1 + (1.0 / (1 + depth))\n\n def _build_inverted_index(self):\n # \u6784\u5efa\u53cd\u5411\u7d22\u5f15\n inverted_index = {}\n for i, doc in enumerate(self.index['docs']):\n terms = set()\n\n # \u6dfb\u52a0\u6807\u9898\u8bcd\n if 'title' in doc:\n terms.update(doc['title'].lower().split())\n\n # \u6dfb\u52a0\u6587\u672c\u8bcd\n if 'text' in doc:\n terms.update(doc['text'].lower().split())\n\n # \u66f4\u65b0\u53cd\u5411\u7d22\u5f15\n for term in terms:\n if term not in inverted_index:\n inverted_index[term] = []\n inverted_index[term].append({\n 'id': i,\n 'weight': doc['weight']\n })\n\n self.index['inverted_index'] = inverted_index\n\n# \u4f7f\u7528\u4f18\u5316\u5668\noptimizer = SearchIndexOptimizer('site/search/search_index.json')\noptimizer.optimize()\n
- \u641c\u7d22\u6027\u80fd\u76d1\u63a7\uff1a
JavaScript
// docs/javascripts/search-monitor.js\nclass SearchMonitor {\n constructor() {\n this.metrics = {\n searches: 0,\n avgTime: 0,\n slowest: 0,\n fastest: Infinity\n };\n\n this.init();\n }\n\n init() {\n this.monitorSearchInput();\n this.monitorSearchResults();\n this.setupReporting();\n }\n\n monitorSearchInput() {\n const searchInput = document.querySelector('.md-search__input');\n let startTime;\n\n searchInput?.addEventListener('input', () => {\n startTime = performance.now();\n });\n\n searchInput?.addEventListener('search', () => {\n const endTime = performance.now();\n const duration = endTime - startTime;\n\n this.updateMetrics(duration);\n });\n }\n\n updateMetrics(duration) {\n this.metrics.searches++;\n this.metrics.avgTime = (\n (this.metrics.avgTime * (this.metrics.searches - 1) + duration) /\n this.metrics.searches\n );\n this.metrics.slowest = Math.max(this.metrics.slowest, duration);\n this.metrics.fastest = Math.min(this.metrics.fastest, duration);\n\n // \u53d1\u9001\u7edf\u8ba1\u6570\u636e\n this.sendMetrics();\n }\n\n sendMetrics() {\n // \u53ef\u4ee5\u53d1\u9001\u5230\u7edf\u8ba1\u670d\u52a1\n console.log('Search Metrics:', this.metrics);\n }\n}\n\n// \u521d\u59cb\u5316\u76d1\u63a7\nnew SearchMonitor();\n
"},{"location":"Technology/mkdocs%20material/#812-glightbox","title":"8.1.2 glightbox","text":""},{"location":"Technology/mkdocs%20material/#8121","title":"8.1.2.1 \u56fe\u7247\u9884\u89c8","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-glightbox\n
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - glightbox:\n # \u57fa\u7840\u8bbe\u7f6e\n auto_caption: true # \u81ea\u52a8\u6dfb\u52a0\u6807\u9898\n caption_position: bottom # \u6807\u9898\u4f4d\u7f6e\n display_description: true # \u663e\u793a\u63cf\u8ff0\n\n # \u89e6\u6478\u8bbe\u7f6e\n touchNavigation: true # \u89e6\u6478\u5bfc\u822a\n loop: true # \u5faa\u73af\u6d4f\u89c8\n effect: zoom # \u8fc7\u6e21\u6548\u679c\n\n # \u56fe\u7247\u8bbe\u7f6e\n width: 100% # \u56fe\u7247\u5bbd\u5ea6\n height: auto # \u56fe\u7247\u9ad8\u5ea6\n zoomable: true # \u542f\u7528\u7f29\u653e\n draggable: true # \u542f\u7528\u62d6\u52a8\n
- \u81ea\u5b9a\u4e49\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/glightbox.css */\n.glightbox-clean {\n /* \u5bb9\u5668\u6837\u5f0f */\n --glow-padding: 2rem;\n --glow-bg: rgba(0, 0, 0, 0.95);\n\n /* \u63a7\u5236\u6309\u94ae */\n --glow-btn-color: rgba(255, 255, 255, 0.8);\n --glow-btn-hover: #fff;\n\n /* \u52a0\u8f7d\u52a8\u753b */\n --glow-loading-bg: rgba(0, 0, 0, 0.5);\n --glow-loading-width: 40px;\n --glow-loading-height: 40px;\n}\n\n/* \u6807\u9898\u6837\u5f0f */\n.glightbox-caption {\n font-family: var(--md-font-family);\n font-size: 0.9rem;\n padding: 1rem;\n background: rgba(0, 0, 0, 0.8);\n}\n\n/* \u63cf\u8ff0\u6837\u5f0f */\n.glightbox-description {\n font-size: 0.8rem;\n color: rgba(255, 255, 255, 0.7);\n margin-top: 0.5rem;\n}\n\n/* \u52a0\u8f7d\u52a8\u753b */\n.glightbox-loading {\n border: 3px solid rgba(255, 255, 255, 0.2);\n border-top-color: #fff;\n border-radius: 50%;\n animation: glow-spin 1s linear infinite;\n}\n\n@keyframes glow-spin {\n to { transform: rotate(360deg); }\n}\n
"},{"location":"Technology/mkdocs%20material/#8122","title":"8.1.2.2 \u753b\u5eca\u6a21\u5f0f","text":"
- \u753b\u5eca\u914d\u7f6e\uff1a
YAML
plugins:\n - glightbox:\n # \u753b\u5eca\u8bbe\u7f6e\n gallery: true # \u542f\u7528\u753b\u5eca\n gallery_mode: true # \u753b\u5eca\u6a21\u5f0f\n gallery_trigger: click # \u89e6\u53d1\u65b9\u5f0f\n\n # \u7f29\u7565\u56fe\u8bbe\u7f6e\n thumb_width: 150 # \u7f29\u7565\u56fe\u5bbd\u5ea6\n thumb_height: 100 # \u7f29\u7565\u56fe\u9ad8\u5ea6\n thumb_fit: cover # \u7f29\u7565\u56fe\u9002\u5e94\u65b9\u5f0f\n
- \u753b\u5eca\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/gallery.html -->\n<div class=\"gallery\">\n {% for image in page.meta.gallery %}\n <a href=\"{{ image.url }}\" \n class=\"gallery-item\"\n data-gallery=\"gallery\"\n data-glightbox=\"title: {{ image.title }}; description: {{ image.description }}\">\n <img src=\"{{ image.thumbnail or image.url }}\" \n alt=\"{{ image.title }}\"\n loading=\"lazy\">\n {% if image.title %}\n <div class=\"gallery-caption\">{{ image.title }}</div>\n {% endif %}\n </a>\n {% endfor %}\n</div>\n
- \u753b\u5eca\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/gallery.css */\n.gallery {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));\n gap: 1rem;\n padding: 1rem;\n}\n\n.gallery-item {\n position: relative;\n overflow: hidden;\n border-radius: 4px;\n cursor: pointer;\n transition: transform 0.3s ease;\n}\n\n.gallery-item:hover {\n transform: translateY(-4px);\n}\n\n.gallery-item img {\n width: 100%;\n height: 100%;\n object-fit: cover;\n transition: transform 0.3s ease;\n}\n\n.gallery-item:hover img {\n transform: scale(1.1);\n}\n\n.gallery-caption {\n position: absolute;\n bottom: 0;\n left: 0;\n right: 0;\n padding: 0.5rem;\n background: rgba(0, 0, 0, 0.7);\n color: white;\n font-size: 0.8rem;\n transform: translateY(100%);\n transition: transform 0.3s ease;\n}\n\n.gallery-item:hover .gallery-caption {\n transform: translateY(0);\n}\n
"},{"location":"Technology/mkdocs%20material/#82","title":"8.2 \u63a8\u8350\u63d2\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#8211-git-revision-date","title":"8.2.1.1 git-revision-date","text":""},{"location":"Technology/mkdocs%20material/#8212","title":"8.2.1.2 \u65f6\u95f4\u663e\u793a","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-git-revision-date-localized-plugin\n
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - git-revision-date-localized:\n enabled: true\n type: date # \u663e\u793a\u7c7b\u578b\uff1adate, datetime, iso_date, iso_datetime, timeago\n timezone: Asia/Shanghai # \u65f6\u533a\u8bbe\u7f6e\n locale: zh # \u672c\u5730\u5316\u8bed\u8a00\n fallback_to_build_date: true # \u65e0 git \u4fe1\u606f\u65f6\u4f7f\u7528\u6784\u5efa\u65f6\u95f4\n\n # \u65f6\u95f4\u683c\u5f0f\n enable_creation_date: true # \u663e\u793a\u521b\u5efa\u65f6\u95f4\n exclude:\n - index.md\n - 404.md\n
- \u65f6\u95f4\u663e\u793a\u6a21\u677f\uff1a
HTML
<!-- docs/overrides/partials/date.html -->\n{% if page.meta.git_revision_date_localized %}\n<div class=\"page-date\">\n <!-- \u6700\u540e\u66f4\u65b0\u65f6\u95f4 -->\n <div class=\"date-item\">\n <span class=\"date-icon\">\n {% include \".icons/material/update.svg\" %}\n </span>\n <span class=\"date-text\">\n \u6700\u540e\u66f4\u65b0: {{ page.meta.git_revision_date_localized }}\n </span>\n </div>\n\n <!-- \u521b\u5efa\u65f6\u95f4 -->\n {% if page.meta.git_creation_date_localized %}\n <div class=\"date-item\">\n <span class=\"date-icon\">\n {% include \".icons/material/clock-outline.svg\" %}\n </span>\n <span class=\"date-text\">\n \u521b\u5efa\u65f6\u95f4: {{ page.meta.git_creation_date_localized }}\n </span>\n </div>\n {% endif %}\n</div>\n
"},{"location":"Technology/mkdocs%20material/#8213","title":"8.2.1.3 \u66f4\u65b0\u8bb0\u5f55","text":"
- \u66f4\u65b0\u8bb0\u5f55\u663e\u793a\uff1a
HTML
<!-- docs/overrides/partials/revision.html -->\n{% if page.meta.git_revision_date_localized %}\n<div class=\"revision-history\">\n <h3>\u66f4\u65b0\u8bb0\u5f55</h3>\n <div class=\"revision-list\">\n {% for revision in page.meta.git_history %}\n <div class=\"revision-item\">\n <div class=\"revision-date\">\n {{ revision.date }}\n </div>\n <div class=\"revision-message\">\n {{ revision.message }}\n </div>\n </div>\n {% endfor %}\n </div>\n</div>\n
- \u6837\u5f0f\u914d\u7f6e\uff1a
CSS
/* docs/stylesheets/revision.css */\n.revision-history {\n margin: 2rem 0;\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n}\n\n.revision-item {\n display: flex;\n padding: 0.5rem 0;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.revision-date {\n flex: 0 0 200px;\n color: var(--md-default-fg-color--light);\n}\n\n.revision-message {\n flex: 1;\n}\n\n/* \u65f6\u95f4\u7ebf\u6837\u5f0f */\n.revision-item {\n position: relative;\n padding-left: 2rem;\n}\n\n.revision-item::before {\n content: '';\n position: absolute;\n left: 0;\n top: 1rem;\n width: 12px;\n height: 12px;\n background: var(--md-accent-fg-color);\n border-radius: 50%;\n}\n\n.revision-item::after {\n content: '';\n position: absolute;\n left: 5px;\n top: 1.5rem;\n bottom: -0.5rem;\n width: 2px;\n background: var(--md-default-fg-color--lightest);\n}\n\n.revision-item:last-child::after {\n display: none;\n}\n
"},{"location":"Technology/mkdocs%20material/#8214","title":"8.2.1.4 \u4f5c\u8005\u4fe1\u606f","text":"
- \u4f5c\u8005\u4fe1\u606f\u914d\u7f6e\uff1a
YAML
plugins:\n - git-revision-date-localized:\n enabled: true\n type: date\n enable_authors: true # \u542f\u7528\u4f5c\u8005\u4fe1\u606f\n authors_file: authors.yaml # \u4f5c\u8005\u914d\u7f6e\u6587\u4ef6\n
- \u4f5c\u8005\u914d\u7f6e\u6587\u4ef6 (authors. yaml)\uff1a
YAML
authors:\n john:\n name: John Doe\n email: john@example.com\n avatar: assets/authors/john.jpg\n bio: \u8d44\u6df1\u6280\u672f\u4f5c\u8005\n social:\n github: johndoe\n twitter: johndoe\n\n jane:\n name: Jane Smith\n email: jane@example.com\n avatar: assets/authors/jane.jpg\n bio: \u524d\u7aef\u5f00\u53d1\u4e13\u5bb6\n social:\n github: janesmith\n linkedin: janesmith\n
- \u4f5c\u8005\u4fe1\u606f\u663e\u793a\uff1a
HTML
<!-- docs/overrides/partials/author.html -->\n{% if page.meta.git_authors %}\n<div class=\"page-authors\">\n {% for author in page.meta.git_authors %}\n <div class=\"author-card\">\n <!-- \u4f5c\u8005\u5934\u50cf -->\n <div class=\"author-avatar\">\n {% if author.avatar %}\n <img src=\"{{ author.avatar }}\" alt=\"{{ author.name }}\">\n {% else %}\n <div class=\"avatar-placeholder\">\n {{ author.name[0] }}\n </div>\n {% endif %}\n </div>\n\n <!-- \u4f5c\u8005\u4fe1\u606f -->\n <div class=\"author-info\">\n <h4 class=\"author-name\">{{ author.name }}</h4>\n {% if author.bio %}\n <p class=\"author-bio\">{{ author.bio }}</p>\n {% endif %}\n\n <!-- \u793e\u4ea4\u94fe\u63a5 -->\n {% if author.social %}\n <div class=\"author-social\">\n {% for platform, username in author.social.items() %}\n <a href=\"https://{{ platform }}.com/{{ username }}\" \n target=\"_blank\"\n class=\"social-link\">\n {% include \".icons/material/\" ~ platform ~ \".svg\" %}\n </a>\n {% endfor %}\n </div>\n {% endif %}\n </div>\n </div>\n {% endfor %}\n</div>\n
- \u4f5c\u8005\u4fe1\u606f\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/author.css */\n.page-authors {\n margin: 2rem 0;\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));\n gap: 1rem;\n}\n\n.author-card {\n display: flex;\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n}\n\n.author-card:hover {\n transform: translateY(-2px);\n}\n\n.author-avatar {\n flex: 0 0 80px;\n margin-right: 1rem;\n}\n\n.author-avatar img {\n width: 80px;\n height: 80px;\n border-radius: 50%;\n object-fit: cover;\n}\n\n.avatar-placeholder {\n width: 80px;\n height: 80px;\n border-radius: 50%;\n background: var(--md-accent-fg-color);\n color: white;\n display: flex;\n align-items: center;\n justify-content: center;\n font-size: 2rem;\n}\n\n.author-info {\n flex: 1;\n}\n\n.author-name {\n margin: 0 0 0.5rem;\n font-size: 1.1rem;\n}\n\n.author-bio {\n color: var(--md-default-fg-color--light);\n font-size: 0.9rem;\n margin: 0 0 0.5rem;\n}\n\n.author-social {\n display: flex;\n gap: 0.5rem;\n}\n\n.social-link {\n color: var(--md-default-fg-color--light);\n transition: color 0.2s ease;\n}\n\n.social-link:hover {\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#822-minify","title":"8.2.2 minify","text":""},{"location":"Technology/mkdocs%20material/#8221-html","title":"8.2.2.1 HTML \u538b\u7f29","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-minify-plugin\n
- \u914d\u7f6e\u538b\u7f29\uff1a
YAML
# mkdocs.yml\nplugins:\n - minify:\n minify_html: true\n htmlmin_opts:\n # HTML\u538b\u7f29\u9009\u9879\n remove_comments: true # \u79fb\u9664\u6ce8\u91ca\n remove_empty_space: true # \u79fb\u9664\u7a7a\u767d\n remove_all_empty_space: true # \u79fb\u9664\u6240\u6709\u7a7a\u767d\n reduce_boolean_attributes: true # \u7b80\u5316\u5e03\u5c14\u5c5e\u6027\n remove_optional_tags: false # \u4fdd\u7559\u53ef\u9009\u6807\u7b7e\n remove_redundant_attributes: true # \u79fb\u9664\u5197\u4f59\u5c5e\u6027\n minify_js: true # \u538b\u7f29\u5185\u8054JS\n minify_css: true # \u538b\u7f29\u5185\u8054CSS\n
"},{"location":"Technology/mkdocs%20material/#8222-css","title":"8.2.2.2 CSS \u538b\u7f29","text":"
- CSS \u538b\u7f29\u914d\u7f6e\uff1a
YAML
plugins:\n - minify:\n minify_css: true\n css_files:\n - stylesheets/extra.css\n - stylesheets/custom.css\n cssmin_opts:\n # CSS\u538b\u7f29\u9009\u9879\n level: 2 # \u538b\u7f29\u7ea7\u522b(1-2)\n compatibility: ie9 # \u517c\u5bb9\u6027\n format: beautify # \u683c\u5f0f\u5316\u8f93\u51fa\n
- CSS \u4f18\u5316\u811a\u672c\uff1a
Python
# docs/tools/css_optimizer.py\nimport re\nfrom pathlib import Path\nfrom csscompressor import compress\n\nclass CSSOptimizer:\n def __init__(self, input_dir, output_dir):\n self.input_dir = Path(input_dir)\n self.output_dir = Path(output_dir)\n self.output_dir.mkdir(exist_ok=True)\n\n def optimize(self):\n \"\"\"\u4f18\u5316\u6240\u6709CSS\u6587\u4ef6\"\"\"\n for css_file in self.input_dir.glob('**/*.css'):\n # \u8bfb\u53d6CSS\u5185\u5bb9\n content = css_file.read_text(encoding='utf-8')\n\n # \u4f18\u5316CSS\n optimized = self.optimize_css(content)\n\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u6587\u4ef6\n output_file = self.output_dir / css_file.name\n output_file.write_text(optimized, encoding='utf-8')\n\n def optimize_css(self, content):\n \"\"\"\u4f18\u5316\u5355\u4e2aCSS\u6587\u4ef6\u5185\u5bb9\"\"\"\n # \u79fb\u9664\u6ce8\u91ca\n content = re.sub(r'/\\*[\\s\\S]*?\\*/', '', content)\n\n # \u79fb\u9664\u591a\u4f59\u7a7a\u767d\n content = re.sub(r'\\s+', ' ', content)\n\n # \u538b\u7f29CSS\n content = compress(content)\n\n return content\n\n# \u4f7f\u7528\u4f18\u5316\u5668\noptimizer = CSSOptimizer(\n input_dir='docs/stylesheets',\n output_dir='docs/stylesheets/min'\n)\noptimizer.optimize()\n
"},{"location":"Technology/mkdocs%20material/#8223-js","title":"8.2.2.3 JS \u538b\u7f29","text":"
- JS \u538b\u7f29\u914d\u7f6e\uff1a
YAML
plugins:\n - minify:\n minify_js: true\n js_files:\n - javascripts/extra.js\n - javascripts/custom.js\n jsmin_opts:\n # JS\u538b\u7f29\u9009\u9879\n mangle: true # \u6df7\u6dc6\u53d8\u91cf\u540d\n compress: true # \u538b\u7f29\u4ee3\u7801\n output:\n beautify: false # \u4e0d\u7f8e\u5316\u8f93\u51fa\n
- JS \u4f18\u5316\u811a\u672c\uff1a
Python
# docs/tools/js_optimizer.py\nimport re\nfrom pathlib import Path\nimport terser\n\nclass JSOptimizer:\n def __init__(self, input_dir, output_dir):\n self.input_dir = Path(input_dir)\n self.output_dir = Path(output_dir)\n self.output_dir.mkdir(exist_ok=True)\n\n def optimize(self):\n \"\"\"\u4f18\u5316\u6240\u6709JS\u6587\u4ef6\"\"\"\n for js_file in self.input_dir.glob('**/*.js'):\n # \u8bfb\u53d6JS\u5185\u5bb9\n content = js_file.read_text(encoding='utf-8')\n\n # \u4f18\u5316JS\n optimized = self.optimize_js(content)\n\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u6587\u4ef6\n output_file = self.output_dir / js_file.name\n output_file.write_text(optimized, encoding='utf-8')\n\n def optimize_js(self, content):\n \"\"\"\u4f18\u5316\u5355\u4e2aJS\u6587\u4ef6\u5185\u5bb9\"\"\"\n options = {\n 'compress': {\n 'pure_funcs': ['console.log'], # \u79fb\u9664console.log\n 'drop_debugger': True, # \u79fb\u9664debugger\n 'unsafe': True, # \u542f\u7528\u4e0d\u5b89\u5168\u4f18\u5316\n 'passes': 2 # \u4f18\u5316\u6b21\u6570\n },\n 'mangle': {\n 'toplevel': True, # \u6df7\u6dc6\u9876\u7ea7\u4f5c\u7528\u57df\n 'eval': True # \u6df7\u6dc6eval\u4e2d\u7684\u53d8\u91cf\n }\n }\n\n # \u4f7f\u7528terser\u538b\u7f29\n result = terser.minify(content, options)\n return result['code']\n\n# \u4f7f\u7528\u4f18\u5316\u5668\noptimizer = JSOptimizer(\n input_dir='docs/javascripts',\n output_dir='docs/javascripts/min'\n)\noptimizer.optimize()\n
\u8fd9\u4e9b\u914d\u7f6e\u548c\u811a\u672c\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7ad9\u70b9\u8d44\u6e90\u5927\u5c0f\uff0c\u63d0\u5347\u52a0\u8f7d\u901f\u5ea6\u3002\u8bb0\u5f97\u5728\u751f\u4ea7\u73af\u5883\u4e2d\u4f7f\u7528\u538b\u7f29\u540e\u7684\u8d44\u6e90\u3002
"},{"location":"Technology/mkdocs%20material/#823-social","title":"8.2.3 social","text":""},{"location":"Technology/mkdocs%20material/#8231","title":"8.2.3.1 \u793e\u4ea4\u94fe\u63a5","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-social-plugin\n
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - social:\n enabled: true\n # \u793e\u4ea4\u5e73\u53f0\u914d\u7f6e\n cards: true # \u542f\u7528\u793e\u4ea4\u5361\u7247\n cards_color: # \u5361\u7247\u989c\u8272\n fill: \"#0FF1CE\" # \u80cc\u666f\u8272\n text: \"#FFFFFF\" # \u6587\u5b57\u8272\n cards_font: Roboto # \u5361\u7247\u5b57\u4f53\n\nextra:\n social:\n - icon: material/github\n link: https://github.com/username\n name: GitHub\n - icon: material/twitter\n link: https://twitter.com/username\n name: Twitter\n - icon: material/linkedin\n link: https://linkedin.com/in/username\n name: LinkedIn\n
- \u793e\u4ea4\u94fe\u63a5\u6a21\u677f\uff1a
HTML
<!-- docs/overrides/partials/social.html -->\n{% if config.extra.social %}\n<div class=\"social-links\">\n {% for social in config.extra.social %}\n <a href=\"{{ social.link }}\" \n target=\"_blank\"\n rel=\"noopener\"\n title=\"{{ social.name }}\"\n class=\"social-link\">\n <span class=\"social-icon\">\n {% include \".icons/\" ~ social.icon ~ \".svg\" %}\n </span>\n <span class=\"social-name\">{{ social.name }}</span>\n </a>\n {% endfor %}\n</div>\n{% endif %}\n
\u6837\u5f0f\u914d\u7f6e\uff1a
CSS
/* docs/stylesheets/social.css */\n.social-links {\n display: flex;\n gap: 1rem;\n margin: 2rem 0;\n}\n\n.social-link {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n transition: all 0.2s ease;\n}\n\n.social-link:hover {\n transform: translateY(-2px);\n color: var(--md-accent-fg-color);\n background: var(--md-code-bg-color--light);\n}\n\n.social-icon {\n margin-right: 0.5rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n\n.social-name {\n font-size: 0.9rem;\n}\n\n/* \u52a8\u753b\u6548\u679c */\n.social-link .social-icon {\n transition: transform 0.2s ease;\n}\n\n.social-link:hover .social-icon {\n transform: scale(1.2);\n}\n
"},{"location":"Technology/mkdocs%20material/#8232","title":"8.2.3.2 \u5206\u4eab\u529f\u80fd","text":"
- \u5206\u4eab\u529f\u80fd\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nextra:\n social_share:\n - platform: twitter\n text: \u5206\u4eab\u5230 Twitter\n icon: material/twitter\n - platform: facebook\n text: \u5206\u4eab\u5230 Facebook\n icon: material/facebook\n - platform: linkedin\n text: \u5206\u4eab\u5230 LinkedIn\n icon: material/linkedin\n - platform: weibo\n text: \u5206\u4eab\u5230\u5fae\u535a\n icon: material/sina-weibo\n
- \u5206\u4eab\u529f\u80fd\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/share.html -->\n<div class=\"page-share\">\n <h4>\u5206\u4eab\u6587\u7ae0</h4>\n <div class=\"share-buttons\">\n {% for share in config.extra.social_share %}\n <button class=\"share-button\" \n data-platform=\"{{ share.platform }}\"\n onclick=\"shareContent('{{ share.platform }}')\">\n <span class=\"share-icon\">\n {% include \".icons/\" ~ share.icon ~ \".svg\" %}\n </span>\n <span class=\"share-text\">{{ share.text }}</span>\n </button>\n {% endfor %}\n </div>\n</div>\n\n<script>\nfunction shareContent(platform) {\n const url = encodeURIComponent(window.location.href);\n const title = encodeURIComponent(document.title);\n const text = encodeURIComponent(document.querySelector('meta[name=\"description\"]')?.content || '');\n\n let shareUrl;\n switch(platform) {\n case 'twitter':\n shareUrl = `https://twitter.com/intent/tweet?url=${url}&text=${title}`;\n break;\n case 'facebook':\n shareUrl = `https://www.facebook.com/sharer/sharer.php?u=${url}`;\n break;\n case 'linkedin':\n shareUrl = `https://www.linkedin.com/sharing/share-offsite/?url=${url}`;\n break;\n case 'weibo':\n shareUrl = `http://service.weibo.com/share/share.php?url=${url}&title=${title}`;\n break;\n }\n\n window.open(shareUrl, '_blank', 'width=600,height=400');\n}\n</script>\n
- \u5206\u4eab\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/share.css */\n.page-share {\n margin: 2rem 0;\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n}\n\n.share-buttons {\n display: flex;\n flex-wrap: wrap;\n gap: 0.5rem;\n margin-top: 1rem;\n}\n\n.share-button {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n border: none;\n border-radius: 2rem;\n background: var(--md-default-bg-color);\n color: var(--md-default-fg-color);\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.share-button:hover {\n background: var(--md-accent-fg-color);\n color: white;\n}\n\n.share-icon {\n margin-right: 0.5rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#8233","title":"8.2.3.3 \u5173\u6ce8\u6309\u94ae","text":"
- \u5173\u6ce8\u6309\u94ae\u914d\u7f6e\uff1a
YAML
extra:\n follow_buttons:\n - platform: github\n username: your-username\n icon: material/github\n text: \u5173\u6ce8\u6211\u7684 GitHub\n - platform: twitter\n username: your-username\n icon: material/twitter\n text: \u5173\u6ce8\u6211\u7684 Twitter\n
- \u5173\u6ce8\u6309\u94ae\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/follow.html -->\n<div class=\"follow-buttons\">\n {% for btn in config.extra.follow_buttons %}\n <a href=\"https://{{ btn.platform }}.com/{{ btn.username }}\"\n target=\"_blank\"\n class=\"follow-button\"\n data-platform=\"{{ btn.platform }}\">\n <span class=\"follow-icon\">\n {% include \".icons/\" ~ btn.icon ~ \".svg\" %}\n </span>\n <span class=\"follow-text\">{{ btn.text }}</span>\n <span class=\"follow-count\" id=\"{{ btn.platform }}-count\">\n <!-- \u5c06\u901a\u8fc7API\u52a8\u6001\u66f4\u65b0 -->\n </span>\n </a>\n {% endfor %}\n</div>\n\n<script>\nasync function updateFollowCounts() {\n const buttons = document.querySelectorAll('.follow-button');\n\n for (const button of buttons) {\n const platform = button.dataset.platform;\n const username = button.href.split('/').pop();\n\n // \u83b7\u53d6\u5173\u6ce8\u6570\n const count = await getFollowCount(platform, username);\n\n // \u66f4\u65b0\u663e\u793a\n const countElement = button.querySelector('.follow-count');\n if (countElement && count) {\n countElement.textContent = formatCount(count);\n }\n }\n}\n\nasync function getFollowCount(platform, username) {\n switch (platform) {\n case 'github':\n const response = await fetch(`https://api.github.com/users/${username}`);\n const data = await response.json();\n return data.followers;\n\n // \u5176\u4ed6\u5e73\u53f0API\u5b9e\u73b0...\n default:\n return null;\n }\n}\n\nfunction formatCount(count) {\n if (count >= 1000000) {\n return (count / 1000000).toFixed(1) + 'M';\n }\n if (count >= 1000) {\n return (count / 1000).toFixed(1) + 'K';\n }\n return count.toString();\n}\n\n// \u521d\u59cb\u5316\nupdateFollowCounts();\n</script>\n
- \u5173\u6ce8\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/follow.css */\n.follow-buttons {\n display: flex;\n flex-wrap: wrap;\n gap: 1rem;\n margin: 2rem 0;\n}\n\n.follow-button {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n text-decoration: none;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n transition: all 0.2s ease;\n}\n\n.follow-button:hover {\n transform: translateY(-2px);\n}\n\n/* \u5e73\u53f0\u7279\u5b9a\u6837\u5f0f */\n.follow-button[data-platform=\"github\"] {\n color: #333;\n}\n\n.follow-button[data-platform=\"github\"]:hover {\n background: #333;\n color: white;\n}\n\n.follow-button[data-platform=\"twitter\"] {\n color: #1DA1F2;\n}\n\n.follow-button[data-platform=\"twitter\"]:hover {\n background: #1DA1F2;\n color: white;\n}\n\n.follow-icon {\n margin-right: 0.5rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n\n.follow-count {\n margin-left: 0.5rem;\n padding: 0.2rem 0.5rem;\n background: rgba(0, 0, 0, 0.1);\n border-radius: 1rem;\n font-size: 0.8rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#824-tags","title":"8.2.4 tags","text":""},{"location":"Technology/mkdocs%20material/#8241","title":"8.2.4.1 \u6807\u7b7e\u7cfb\u7edf","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-tags-plugin\n
- \u914d\u7f6e\u6807\u7b7e\uff1a
YAML
# mkdocs.yml\nplugins:\n - tags:\n tags_file: tags.md\n tags_allowed: # \u5141\u8bb8\u7684\u6807\u7b7e\u5217\u8868\n - Python\n - JavaScript\n - CSS\n - HTML\n tags_extra_files:\n cloud: tag_cloud.md # \u6807\u7b7e\u4e91\u9875\u9762\n list: tag_list.md # \u6807\u7b7e\u5217\u8868\u9875\u9762\n
- \u5728\u6587\u6863\u4e2d\u4f7f\u7528\u6807\u7b7e\uff1a
Markdown
---\ntags:\n - Python\n - \u6559\u7a0b\n---\n\n# Python \u5165\u95e8\u6559\u7a0b\n
- \u6807\u7b7e\u663e\u793a\u7ec4\u4ef6\uff1a
HTML
<!-- docs/overrides/partials/tags.html -->\n{% if page.meta.tags %}\n<div class=\"page-tags\">\n {% for tag in page.meta.tags %}\n <a href=\"{{ base_url }}/tags/#{{ tag|lower }}\" class=\"tag\">\n <span class=\"tag-icon\">\n {% include \".icons/material/tag.svg\" %}\n </span>\n <span class=\"tag-text\">{{ tag }}</span>\n </a>\n {% endfor %}\n</div>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#8242","title":"8.2.4.2 \u6807\u7b7e\u4e91","text":"
- \u6807\u7b7e\u4e91\u5b9e\u73b0\uff1a
Python
# docs/plugins/tags/cloud.py\nfrom collections import Counter\nimport math\n\nclass TagCloud:\n def __init__(self, tags):\n self.tags = Counter(tags)\n self.min_size = 0.8\n self.max_size = 2.0\n\n def get_tag_sizes(self):\n \"\"\"\u8ba1\u7b97\u6807\u7b7e\u5927\u5c0f\"\"\"\n if not self.tags:\n return {}\n\n # \u83b7\u53d6\u6700\u5927\u548c\u6700\u5c0f\u9891\u7387\n max_freq = max(self.tags.values())\n min_freq = min(self.tags.values())\n\n # \u8ba1\u7b97\u6bcf\u4e2a\u6807\u7b7e\u7684\u5927\u5c0f\n sizes = {}\n for tag, freq in self.tags.items():\n if max_freq == min_freq:\n sizes[tag] = (self.max_size + self.min_size) / 2\n else:\n size = self.min_size + (self.max_size - self.min_size) * \\\n ((freq - min_freq) / (max_freq - min_freq))\n sizes[tag] = round(size, 2)\n\n return sizes\n\ndef generate_tag_cloud(tags):\n \"\"\"\u751f\u6210\u6807\u7b7e\u4e91HTML\"\"\"\n cloud = TagCloud(tags)\n sizes = cloud.get_tag_sizes()\n\n html = ['<div class=\"tag-cloud\">']\n\n for tag, size in sizes.items():\n html.append(f'''\n <a href=\"#tag-{tag.lower()}\" \n class=\"tag-cloud-item\"\n style=\"font-size: {size}rem\">\n {tag}\n </a>\n ''')\n\n html.append('</div>')\n return '\\n'.join(html)\n
- \u6807\u7b7e\u4e91\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tags.css */\n.tag-cloud {\n display: flex;\n flex-wrap: wrap;\n justify-content: center;\n gap: 1rem;\n padding: 2rem;\n}\n\n.tag-cloud-item {\n color: var(--md-default-fg-color);\n text-decoration: none;\n padding: 0.5rem 1rem;\n border-radius: 2rem;\n background: var(--md-code-bg-color);\n transition: all 0.2s ease;\n}\n\n.tag-cloud-item:hover {\n transform: scale(1.1);\n background: var(--md-accent-fg-color);\n color: white;\n}\n
"},{"location":"Technology/mkdocs%20material/#8243","title":"8.2.4.3 \u6807\u7b7e\u9875\u9762","text":"
- \u6807\u7b7e\u5217\u8868\u9875\u9762\uff1a
Markdown
# \u6807\u7b7e\u7d22\u5f15\n\n## \u6807\u7b7e\u4e91\n[TAGS_CLOUD]\n\n## \u6807\u7b7e\u5217\u8868\n[TAGS_LIST]\n
- \u6807\u7b7e\u9875\u9762\u751f\u6210\u5668\uff1a
Python
# docs/plugins/tags/generator.py\nfrom pathlib import Path\nimport yaml\n\nclass TagPageGenerator:\n def __init__(self, config):\n self.config = config\n self.tags = {}\n\n def collect_tags(self):\n \"\"\"\u6536\u96c6\u6240\u6709\u6807\u7b7e\"\"\"\n docs_dir = Path(self.config['docs_dir'])\n\n for md_file in docs_dir.glob('**/*.md'):\n # \u8bfb\u53d6\u6587\u4ef6frontmatter\n content = md_file.read_text(encoding='utf-8')\n if content.startswith('---'):\n try:\n # \u89e3\u6790frontmatter\n _, frontmatter, _ = content.split('---', 2)\n meta = yaml.safe_load(frontmatter)\n\n if 'tags' in meta:\n # \u83b7\u53d6\u76f8\u5bf9\u8def\u5f84\n rel_path = md_file.relative_to(docs_dir)\n url = str(rel_path).replace('\\\\', '/')[:-3] # \u79fb\u9664.md\n\n # \u6dfb\u52a0\u5230\u6807\u7b7e\u7d22\u5f15\n for tag in meta['tags']:\n if tag not in self.tags:\n self.tags[tag] = []\n self.tags[tag].append({\n 'title': meta.get('title', url),\n 'url': url,\n 'description': meta.get('description', '')\n })\n except:\n continue\n\n def generate_tag_pages(self):\n \"\"\"\u751f\u6210\u6807\u7b7e\u76f8\u5173\u9875\u9762\"\"\"\n self.collect_tags()\n\n # \u751f\u6210\u6807\u7b7e\u5217\u8868\u9875\u9762\n if 'list' in self.config['tags_extra_files']:\n self.generate_list_page()\n\n # \u751f\u6210\u6bcf\u4e2a\u6807\u7b7e\u7684\u8be6\u60c5\u9875\u9762\n self.generate_tag_detail_pages()\n\n def generate_list_page(self):\n \"\"\"\u751f\u6210\u6807\u7b7e\u5217\u8868\u9875\u9762\"\"\"\n template = \"\"\"\n# \u6807\u7b7e\u5217\u8868\n\n{% for tag, posts in tags.items() %}\n## {{ tag }}\n\n{% for post in posts %}\n- [{{ post.title }}]({{ post.url }}){% if post.description %} - {{ post.description }}{% endif %}\n{% endfor %}\n\n{% endfor %}\n\"\"\"\n # \u4f7f\u7528 Jinja2 \u6e32\u67d3\u6a21\u677f\n from jinja2 import Template\n content = Template(template).render(tags=self.tags)\n\n # \u4fdd\u5b58\u9875\u9762\n output_file = Path(self.config['docs_dir']) / 'tags' / 'list.md'\n output_file.parent.mkdir(exist_ok=True)\n output_file.write_text(content, encoding='utf-8')\n\n def generate_tag_detail_pages(self):\n \"\"\"\u751f\u6210\u6bcf\u4e2a\u6807\u7b7e\u7684\u8be6\u60c5\u9875\u9762\"\"\"\n template = \"\"\"\n# \u6807\u7b7e: {{ tag }}\n\n## \u76f8\u5173\u6587\u7ae0\n\n{% for post in posts %}\n### [{{ post.title }}]({{ post.url }})\n{% if post.description %}\n{{ post.description }}\n{% endif %}\n{% endfor %}\n\n## \u76f8\u5173\u6807\u7b7e\n{% for related_tag in related_tags %}\n- [{{ related_tag }}](../{{ related_tag | lower }})\n{% endfor %}\n\"\"\"\n # \u6807\u7b7e\u76ee\u5f55\n tags_dir = Path(self.config['docs_dir']) / 'tags'\n tags_dir.mkdir(exist_ok=True)\n\n # \u4e3a\u6bcf\u4e2a\u6807\u7b7e\u751f\u6210\u9875\u9762\n for tag, posts in self.tags.items():\n # \u67e5\u627e\u76f8\u5173\u6807\u7b7e\n related_tags = self.find_related_tags(tag)\n\n # \u6e32\u67d3\u5185\u5bb9\n content = Template(template).render(\n tag=tag,\n posts=posts,\n related_tags=related_tags\n )\n\n # \u4fdd\u5b58\u9875\u9762\n output_file = tags_dir / f\"{tag.lower()}.md\"\n output_file.write_text(content, encoding='utf-8')\n\n def find_related_tags(self, current_tag):\n \"\"\"\u67e5\u627e\u76f8\u5173\u6807\u7b7e\"\"\"\n related = set()\n\n # \u83b7\u53d6\u5f53\u524d\u6807\u7b7e\u7684\u6240\u6709\u6587\u7ae0\n current_posts = self.tags[current_tag]\n\n # \u904d\u5386\u6240\u6709\u5176\u4ed6\u6807\u7b7e\n for tag, posts in self.tags.items():\n if tag == current_tag:\n continue\n\n # \u8ba1\u7b97\u6587\u7ae0\u4ea4\u96c6\n intersection = set(p['url'] for p in posts) & \\\n set(p['url'] for p in current_posts)\n\n # \u5982\u679c\u6709\u5171\u540c\u6587\u7ae0\uff0c\u8ba4\u4e3a\u662f\u76f8\u5173\u6807\u7b7e\n if intersection:\n related.add(tag)\n\n return list(related)\n
- \u6807\u7b7e\u9875\u9762\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tags-page.css */\n/* \u6807\u7b7e\u5217\u8868\u9875\u9762 */\n.tags-list {\n margin: 2rem 0;\n}\n\n.tag-section {\n margin-bottom: 3rem;\n}\n\n.tag-section h2 {\n color: var(--md-accent-fg-color);\n border-bottom: 2px solid var(--md-accent-fg-color);\n padding-bottom: 0.5rem;\n}\n\n.tag-section .post-list {\n margin-left: 1rem;\n}\n\n.post-list-item {\n margin: 1rem 0;\n}\n\n.post-list-item .post-title {\n font-weight: 500;\n color: var(--md-default-fg-color);\n text-decoration: none;\n}\n\n.post-list-item .post-description {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-top: 0.2rem;\n}\n\n/* \u6807\u7b7e\u8be6\u60c5\u9875\u9762 */\n.tag-detail {\n padding: 2rem;\n}\n\n.tag-detail-header {\n text-align: center;\n margin-bottom: 3rem;\n}\n\n.tag-detail-title {\n font-size: 2rem;\n color: var(--md-primary-fg-color);\n}\n\n.tag-detail-count {\n color: var(--md-default-fg-color--light);\n}\n\n.related-posts {\n margin: 2rem 0;\n}\n\n.related-post {\n padding: 1rem;\n margin: 1rem 0;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n}\n\n.related-post:hover {\n transform: translateX(0.5rem);\n}\n\n.related-tags {\n display: flex;\n flex-wrap: wrap;\n gap: 0.5rem;\n margin: 2rem 0;\n}\n\n.related-tag {\n padding: 0.2rem 0.8rem;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n font-size: 0.9rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n transition: all 0.2s ease;\n}\n\n.related-tag:hover {\n background: var(--md-accent-fg-color);\n color: white;\n}\n
- \u9875\u9762\u4ea4\u4e92\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/tags.js\nclass TagsManager {\n constructor() {\n this.initializeFilters();\n this.setupSearch();\n this.setupSorting();\n }\n\n initializeFilters() {\n const tagList = document.querySelector('.tags-list');\n if (!tagList) return;\n\n // \u521b\u5efa\u8fc7\u6ee4\u5668\n const filterContainer = document.createElement('div');\n filterContainer.className = 'tags-filter';\n filterContainer.innerHTML = `\n <input type=\"text\" \n class=\"filter-input\" \n placeholder=\"\u641c\u7d22\u6807\u7b7e...\">\n <select class=\"sort-select\">\n <option value=\"name\">\u6309\u540d\u79f0\u6392\u5e8f</option>\n <option value=\"count\">\u6309\u6587\u7ae0\u6570\u91cf\u6392\u5e8f</option>\n </select>\n `;\n\n tagList.insertBefore(filterContainer, tagList.firstChild);\n }\n\n setupSearch() {\n const input = document.querySelector('.filter-input');\n if (!input) return;\n\n input.addEventListener('input', () => {\n const query = input.value.toLowerCase();\n const sections = document.querySelectorAll('.tag-section');\n\n sections.forEach(section => {\n const tag = section.querySelector('h2').textContent.toLowerCase();\n section.style.display = tag.includes(query) ? 'block' : 'none';\n });\n });\n }\n\n setupSorting() {\n const select = document.querySelector('.sort-select');\n if (!select) return;\n\n select.addEventListener('change', () => {\n const sections = Array.from(document.querySelectorAll('.tag-section'));\n const container = sections[0].parentElement;\n\n sections.sort((a, b) => {\n const aTag = a.querySelector('h2').textContent;\n const bTag = b.querySelector('h2').textContent;\n const aCount = this.getPostCount(a);\n const bCount = this.getPostCount(b);\n\n if (select.value === 'name') {\n return aTag.localeCompare(bTag);\n } else {\n return bCount - aCount;\n }\n });\n\n // \u91cd\u65b0\u63d2\u5165\u6392\u5e8f\u540e\u7684\u7ae0\u8282\n sections.forEach(section => container.appendChild(section));\n });\n }\n\n getPostCount(section) {\n return section.querySelectorAll('.post-list-item').length;\n }\n}\n\n// \u521d\u59cb\u5316\u6807\u7b7e\u7ba1\u7406\u5668\ndocument.addEventListener('DOMContentLoaded', () => {\n new TagsManager();\n});\n
\u4f7f\u7528\u4ee5\u4e0a\u4ee3\u7801\uff0c\u4f60\u53ef\u4ee5\u5b9e\u73b0\u4e00\u4e2a\u529f\u80fd\u5b8c\u6574\u7684\u6807\u7b7e\u7cfb\u7edf\uff0c\u5305\u62ec\uff1a
- \u6807\u7b7e\u4e91\u53ef\u89c6\u5316
- \u6807\u7b7e\u5217\u8868\u6d4f\u89c8
- \u6807\u7b7e\u8be6\u60c5\u9875\u9762
- \u76f8\u5173\u6807\u7b7e\u63a8\u8350
- \u6807\u7b7e\u641c\u7d22\u548c\u6392\u5e8f
- \u54cd\u5e94\u5f0f\u5e03\u5c40
\u914d\u7f6e\u6587\u4ef6\u9700\u8981\u6dfb\u52a0\u76f8\u5e94\u7684\u5f15\u7528\uff1a
YAML
# mkdocs.yml\nextra_css:\n - stylesheets/tags.css\n - stylesheets/tags-page.css\n\nextra_javascript:\n - javascripts/tags.js\n
"},{"location":"Technology/mkdocs%20material/#9","title":"9 \u529f\u80fd\u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#91","title":"9.1 \u8bc4\u8bba\u7cfb\u7edf","text":""},{"location":"Technology/mkdocs%20material/#911-giscus","title":"9.1.1 Giscus \u914d\u7f6e","text":"
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nextra:\n comments:\n provider: giscus\n repo: username/repo\n repo_id: your_repo_id\n category: Comments\n category_id: your_category_id\n
- Giscus \u7ec4\u4ef6\uff1a
HTML
<!-- docs/overrides/partials/comments.html -->\n{% if config.extra.comments.provider == 'giscus' %}\n<div class=\"comments-container\">\n <h3>\u8bc4\u8bba</h3>\n <div class=\"giscus\"></div>\n\n <script>\n function loadGiscus() {\n const script = document.createElement('script');\n script.src = 'https://giscus.app/client.js';\n script.setAttribute('data-repo', '{{ config.extra.comments.repo }}');\n script.setAttribute('data-repo-id', '{{ config.extra.comments.repo_id }}');\n script.setAttribute('data-category', '{{ config.extra.comments.category }}');\n script.setAttribute('data-category-id', '{{ config.extra.comments.category_id }}');\n script.setAttribute('data-mapping', 'pathname');\n script.setAttribute('data-reactions-enabled', '1');\n script.setAttribute('data-emit-metadata', '0');\n script.setAttribute('data-theme', 'preferred_color_scheme');\n script.setAttribute('crossorigin', 'anonymous');\n script.async = true;\n\n document.querySelector('.giscus').appendChild(script);\n }\n\n // \u5ef6\u8fdf\u52a0\u8f7d\u8bc4\u8bba\n if ('IntersectionObserver' in window) {\n const observer = new IntersectionObserver((entries) => {\n if (entries[0].isIntersecting) {\n loadGiscus();\n observer.disconnect();\n }\n });\n\n observer.observe(document.querySelector('.comments-container'));\n } else {\n loadGiscus();\n }\n </script>\n</div>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#912","title":"9.1.2 \u81ea\u5b9a\u4e49\u8bc4\u8bba\u6837\u5f0f","text":"CSS
/* docs/stylesheets/comments.css */\n.comments-container {\n margin: 3rem 0;\n padding-top: 2rem;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.giscus {\n width: 100%;\n}\n\n/* Giscus \u4e3b\u9898\u9002\u914d */\n.giscus-frame {\n background-color: var(--md-default-bg-color);\n color: var(--md-default-fg-color);\n}\n\n/* \u6697\u8272\u6a21\u5f0f\u9002\u914d */\n[data-md-color-scheme=\"slate\"] .giscus-frame {\n background-color: var(--md-default-bg-color--dark);\n color: var(--md-default-fg-color--dark);\n}\n\n/* \u8bc4\u8bba\u6846\u6837\u5f0f */\n.giscus .gsc-comment-box {\n background-color: var(--md-code-bg-color);\n border-radius: 8px;\n padding: 1rem;\n}\n\n/* \u8bc4\u8bba\u5217\u8868\u6837\u5f0f */\n.giscus .gsc-comment {\n margin: 1rem 0;\n padding: 1rem;\n background-color: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n}\n\n.giscus .gsc-comment:hover {\n transform: translateX(4px);\n}\n\n/* \u6309\u94ae\u6837\u5f0f */\n.giscus .gsc-button {\n background-color: var(--md-primary-fg-color);\n color: var(--md-primary-bg-color);\n border: none;\n padding: 0.5rem 1rem;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.giscus .gsc-button:hover {\n background-color: var(--md-primary-fg-color--dark);\n}\n
"},{"location":"Technology/mkdocs%20material/#92","title":"9.2 \u6570\u636e\u7edf\u8ba1","text":""},{"location":"Technology/mkdocs%20material/#921-google-analytics","title":"9.2.1 Google Analytics","text":"
- GA4 \u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nextra:\n analytics:\n provider: google\n property: G-XXXXXXXXXX\n\n # \u4e8b\u4ef6\u8ffd\u8e2a\n events: true\n # \u7528\u6237\u884c\u4e3a\u8ffd\u8e2a\n behavior: true\n
- GA4 \u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/analytics.html -->\n{% if config.extra.analytics.provider == 'google' %}\n<!-- Google Analytics -->\n<script async src=\"https://www.googletagmanager.com/gtag/js?id={{ config.extra.analytics.property }}\"></script>\n<script>\n window.dataLayer = window.dataLayer || [];\n function gtag(){dataLayer.push(arguments);}\n gtag('js', new Date());\n gtag('config', '{{ config.extra.analytics.property }}');\n\n // \u4e8b\u4ef6\u8ffd\u8e2a\n if ({{ config.extra.analytics.events|tojson }}) {\n document.addEventListener('DOMContentLoaded', function() {\n // \u70b9\u51fb\u4e8b\u4ef6\u8ffd\u8e2a\n document.addEventListener('click', function(e) {\n const target = e.target.closest('a');\n if (target) {\n gtag('event', 'click', {\n 'event_category': 'link',\n 'event_label': target.href\n });\n }\n });\n\n // \u6eda\u52a8\u4e8b\u4ef6\u8ffd\u8e2a\n let lastScrollDepth = 0;\n window.addEventListener('scroll', debounce(function() {\n const scrollDepth = Math.round(\n (window.scrollY + window.innerHeight) / \n document.documentElement.scrollHeight * 100\n );\n\n if (scrollDepth > lastScrollDepth) {\n gtag('event', 'scroll_depth', {\n 'depth': scrollDepth\n });\n lastScrollDepth = scrollDepth;\n }\n }, 500));\n\n // \u641c\u7d22\u4e8b\u4ef6\u8ffd\u8e2a\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.addEventListener('search', function() {\n gtag('event', 'search', {\n 'search_term': this.value\n });\n });\n }\n });\n }\n\n // \u7528\u6237\u884c\u4e3a\u8ffd\u8e2a\n if ({{ config.extra.analytics.behavior|tojson }}) {\n // \u9875\u9762\u505c\u7559\u65f6\u95f4\n let startTime = Date.now();\n window.addEventListener('beforeunload', function() {\n const duration = Math.round((Date.now() - startTime) / 1000);\n gtag('event', 'time_on_page', {\n 'duration': duration\n });\n });\n\n // \u590d\u5236\u884c\u4e3a\u8ffd\u8e2a\n document.addEventListener('copy', function() {\n gtag('event', 'content_copy');\n });\n }\n</script>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#922","title":"9.2.2 \u4e0d\u849c\u5b50\u7edf\u8ba1","text":"
- \u4e0d\u849c\u5b50\u914d\u7f6e\uff1a
YAML
extra:\n analytics:\n busuanzi: true\n
- \u4e0d\u849c\u5b50\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/busuanzi.html -->\n{% if config.extra.analytics.busuanzi %}\n<script async src=\"//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js\"></script>\n\n<div class=\"page-views\">\n <!-- \u603b\u8bbf\u95ee\u91cf -->\n <span id=\"busuanzi_container_site_pv\">\n \u603b\u8bbf\u95ee\u91cf: <span id=\"busuanzi_value_site_pv\"></span>\u6b21\n </span>\n\n <!-- \u603b\u8bbf\u5ba2\u6570 -->\n <span id=\"busuanzi_container_site_uv\">\n \u8bbf\u5ba2\u6570: <span id=\"busuanzi_value_site_uv\"></span>\u4eba\n </span>\n\n <!-- \u9875\u9762\u8bbf\u95ee\u91cf -->\n <span id=\"busuanzi_container_page_pv\">\n \u672c\u6587\u8bbf\u95ee\u91cf: <span id=\"busuanzi_value_page_pv\"></span>\u6b21\n </span>\n</div>\n\n<style>\n.page-views {\n display: flex;\n gap: 1rem;\n margin: 1rem 0;\n padding: 0.5rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n font-size: 0.9rem;\n}\n\n.page-views span {\n color: var(--md-default-fg-color--light);\n}\n\n.page-views span span {\n color: var(--md-accent-fg-color);\n font-weight: bold;\n}\n</style>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#93","title":"9.3 \u793e\u4ea4\u5206\u4eab","text":""},{"location":"Technology/mkdocs%20material/#931","title":"9.3.1 \u5206\u4eab\u6309\u94ae","text":"
- \u5206\u4eab\u914d\u7f6e\uff1a
YAML
extra:\n social_share:\n enabled: true\n platforms:\n - name: twitter\n icon: material/twitter\n color: '#1DA1F2'\n - name: facebook\n icon: material/facebook\n color: '#4267B2'\n - name: linkedin\n icon: material/linkedin\n color: '#0A66C2'\n - name: weibo\n icon: material/sina-weibo\n color: '#E6162D'\n
- \u5206\u4eab\u6309\u94ae\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/share.html -->\n{% if config.extra.social_share.enabled %}\n<div class=\"share-container\">\n <h4>\u5206\u4eab\u6587\u7ae0</h4>\n <div class=\"share-buttons\">\n {% for platform in config.extra.social_share.platforms %}\n <button class=\"share-button\" \n data-platform=\"{{ platform.name }}\"\n style=\"--platform-color: {{ platform.color }}\"\n onclick=\"shareContent('{{ platform.name }}')\">\n <span class=\"share-icon\">\n {% include \".icons/\" ~ platform.icon ~ \".svg\" %}\n </span>\n <span class=\"share-text\">\u5206\u4eab\u5230 {{ platform.name|title }}</span>\n </button>\n {% endfor %}\n </div>\n</div>\n\n<style>\n.share-container {\n margin: 2rem 0;\n}\n\n.share-buttons {\n display: flex;\n flex-wrap: wrap;\n gap: 0.5rem;\n margin-top: 1rem;\n}\n\n.share-button {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n border: none;\n border-radius: 4px;\n background: var(--md-code-bg-color);\n color: var(--platform-color);\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.share-button:hover {\n background: var(--platform-color);\n color: white;\n transform: translateY(-2px);\n}\n\n.share-icon {\n margin-right: 0.5rem;\n}\n</style>\n
"},{"location":"Technology/mkdocs%20material/#932","title":"9.3.2 \u5206\u4eab\u94fe\u63a5\u751f\u6210","text":"JavaScript
// docs/javascripts/share.js\nclass ShareManager {\n constructor() {\n this.title = document.title;\n this.url = window.location.href;\n this.description = document\n .querySelector('meta[name=\"description\"]')\n ?.content || '';\n }\n\n generateShareUrl(platform) {\n const params = new URLSearchParams();\n switch (platform) {\n case 'twitter':\n return `https://twitter.com/intent/tweet?${\n params.set('text', this.title),\n params.set('url', this.url)\n }`;\n\n case 'facebook':\n return `https://www.facebook.com/sharer/sharer.php?${\n params.set('u', this.url)\n }`;\n\n case 'linkedin':\n return `https://www.linkedin.com/sharing/share-offsite/?${\n params.set('url', this.url)\n }`;\n\n case 'weibo':\n return `http://service.weibo.com/share/share.php?${\n params.set('title', this.title),\n params.set('url', this.url)\n }`;\n\n default:\n return null;\n }\n }\n\n async share(platform) {\n // \u68c0\u67e5\u662f\u5426\u652f\u6301\u539f\u751f\u5206\u4eab\n if (navigator.share && platform === 'native') {\n try {\n await navigator.share({\n title: this.title,\n text: this.description,\n url: this.url\n });\n return true;\n } catch (err) {\n console.warn('Native share failed:', err);\n return false;\n }\n }\n\n // \u4f7f\u7528\u5f39\u7a97\u5206\u4eab\n const url = this.generateShareUrl(platform);\n if (url) {\n window.open(url, '_blank', 'width=600,height=400');\n return true;\n }\n\n return false;\n }\n\n // \u81ea\u5b9a\u4e49\u5206\u4eab\u5185\u5bb9\n setContent(title, description) {\n this.title = title;\n this.description = description;\n }\n}\n\n// \u5168\u5c40\u5206\u4eab\u529f\u80fd\nwindow.shareContent = async function(platform) {\n const shareManager = new ShareManager();\n const success = await shareManager.share(platform);\n\n // \u8bb0\u5f55\u5206\u4eab\u4e8b\u4ef6\n if (success) {\n recordShare(platform);\n }\n};\n\n// \u5206\u4eab\u7edf\u8ba1\nfunction recordShare(platform) {\n // GA4 \u4e8b\u4ef6\u8ffd\u8e2a\n if (typeof gtag !== 'undefined') {\n gtag('event', 'share', {\n 'platform': platform,\n 'title': document.title,\n 'url': window.location.href\n });\n }\n\n // \u672c\u5730\u5b58\u50a8\u7edf\u8ba1\n const stats = JSON.parse(localStorage.getItem('share_stats') || '{}');\n stats[platform] = (stats[platform] || 0) + 1;\n localStorage.setItem('share_stats', JSON.stringify(stats));\n\n updateShareCount(platform);\n}\n\n// \u66f4\u65b0\u5206\u4eab\u8ba1\u6570\nfunction updateShareCount(platform) {\n const countElement = document.querySelector(\n `.share-count[data-platform=\"${platform}\"]`\n );\n if (countElement) {\n const stats = JSON.parse(localStorage.getItem('share_stats') || '{}');\n countElement.textContent = stats[platform] || 0;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#94","title":"9.4 \u7ad9\u5185\u641c\u7d22","text":""},{"location":"Technology/mkdocs%20material/#941","title":"9.4.1 \u641c\u7d22\u4f18\u5316","text":"
- \u641c\u7d22\u914d\u7f6e\uff1a
YAML
plugins:\n - search:\n lang:\n - en\n - zh\n separator: '[\\s\\-\\.,!\\?\uff0c\u3002\uff01\uff1f]+' # \u5206\u8bcd\u5206\u9694\u7b26\n prebuild_index: true\n indexing:\n full_sections: true\n headings: true\n content: true\n tags: true\n\n # \u9ad8\u7ea7\u641c\u7d22\u914d\u7f6e\n search_boost: true # \u542f\u7528\u641c\u7d22\u63d0\u5347\n search_threshold: 0.3 # \u641c\u7d22\u9608\u503c\n search_fields: # \u641c\u7d22\u5b57\u6bb5\u6743\u91cd\n title: 10\n tags: 8\n content: 5\n
\u641c\u7d22\u4f18\u5316\u5b9e\u73b0\uff1a
JavaScript
// docs/javascripts/search-enhance.js\nclass SearchEnhancer {\n constructor() {\n this.searchIndex = null;\n this.searchResults = [];\n this.searchHistory = [];\n this.maxHistoryItems = 10;\n\n this.init();\n }\n\n async init() {\n // \u52a0\u8f7d\u641c\u7d22\u7d22\u5f15\n await this.loadSearchIndex();\n // \u52a0\u8f7d\u641c\u7d22\u5386\u53f2\n this.loadSearchHistory();\n // \u521d\u59cb\u5316\u641c\u7d22\u7ec4\u4ef6\n this.setupSearch();\n }\n\n async loadSearchIndex() {\n try {\n const response = await fetch('/search/search_index.json');\n const data = await response.json();\n\n // \u4f7f\u7528 Lunr.js \u6784\u5efa\u7d22\u5f15\n this.searchIndex = lunr(function() {\n this.use(lunr.multiLanguage('en', 'zh'));\n\n this.ref('location');\n this.field('title', { boost: 10 });\n this.field('tags', { boost: 8 });\n this.field('text', { boost: 5 });\n\n data.docs.forEach(function(doc) {\n this.add(doc);\n }, this);\n });\n } catch (error) {\n console.error('Failed to load search index:', error);\n }\n }\n\n setupSearch() {\n const searchInput = document.querySelector('.md-search__input');\n if (!searchInput) return;\n\n // \u9632\u6296\u5904\u7406\n searchInput.addEventListener('input', debounce((e) => {\n const query = e.target.value;\n if (query.length >= 2) {\n this.performSearch(query);\n } else {\n this.clearResults();\n }\n }, 200));\n\n // \u641c\u7d22\u5386\u53f2\n searchInput.addEventListener('focus', () => {\n this.showSearchHistory();\n });\n }\n\n performSearch(query) {\n if (!this.searchIndex) return;\n\n try {\n // \u6267\u884c\u641c\u7d22\n this.searchResults = this.searchIndex.search(query);\n\n // \u7ed3\u679c\u540e\u5904\u7406\n this.searchResults = this.postProcessResults(this.searchResults, query);\n\n // \u663e\u793a\u7ed3\u679c\n this.displayResults(this.searchResults);\n\n // \u663e\u793a\u641c\u7d22\u5efa\u8bae\n this.showSearchSuggestions(query);\n } catch (error) {\n console.error('Search failed:', error);\n }\n }\n\n postProcessResults(results, query) {\n return results\n .map(result => {\n // \u8ba1\u7b97\u76f8\u5173\u5ea6\u5206\u6570\n const score = this.calculateRelevanceScore(result, query);\n\n return {\n ...result,\n score: score,\n highlights: this.generateHighlights(result, query)\n };\n })\n // \u6309\u5206\u6570\u6392\u5e8f\n .sort((a, b) => b.score - a.score)\n // \u9650\u5236\u7ed3\u679c\u6570\u91cf\n .slice(0, 10);\n }\n\n calculateRelevanceScore(result, query) {\n let score = result.score;\n\n // \u6807\u9898\u5339\u914d\u52a0\u5206\n if (result.title?.toLowerCase().includes(query.toLowerCase())) {\n score *= 1.5;\n }\n\n // \u6807\u7b7e\u5339\u914d\u52a0\u5206\n if (result.tags?.some(tag => \n tag.toLowerCase().includes(query.toLowerCase())\n )) {\n score *= 1.2;\n }\n\n return score;\n }\n\n generateHighlights(result, query) {\n const text = result.text || '';\n const words = query.toLowerCase().split(/\\s+/);\n const context = 50; // \u4e0a\u4e0b\u6587\u957f\u5ea6\n\n let highlights = [];\n\n words.forEach(word => {\n let index = text.toLowerCase().indexOf(word);\n while (index > -1) {\n const start = Math.max(0, index - context);\n const end = Math.min(text.length, index + word.length + context);\n const highlight = text.slice(start, end);\n\n highlights.push({\n text: highlight,\n position: start\n });\n\n index = text.toLowerCase().indexOf(word, index + 1);\n }\n });\n\n // \u5408\u5e76\u91cd\u53e0\u7684\u9ad8\u4eae\u7247\u6bb5\n return this.mergeHighlights(highlights);\n }\n\n mergeHighlights(highlights) {\n if (highlights.length === 0) return [];\n\n highlights.sort((a, b) => a.position - b.position);\n\n let merged = [highlights[0]];\n for (let i = 1; i < highlights.length; i++) {\n let current = highlights[i];\n let last = merged[merged.length - 1];\n\n if (current.position <= last.position + last.text.length) {\n // \u5408\u5e76\u91cd\u53e0\u7684\u7247\u6bb5\n last.text = last.text.slice(0, current.position - last.position) +\n current.text;\n } else {\n merged.push(current);\n }\n }\n\n return merged;\n }\n\n loadSearchHistory() {\n try {\n this.searchHistory = JSON.parse(\n localStorage.getItem('search_history')\n ) || [];\n } catch (error) {\n this.searchHistory = [];\n }\n }\n\n saveSearchHistory(query) {\n if (!query) return;\n\n // \u79fb\u9664\u91cd\u590d\u9879\n this.searchHistory = this.searchHistory.filter(item => \n item.query !== query\n );\n\n // \u6dfb\u52a0\u65b0\u9879\n this.searchHistory.unshift({\n query: query,\n timestamp: Date.now()\n });\n\n // \u9650\u5236\u5386\u53f2\u8bb0\u5f55\u6570\u91cf\n if (this.searchHistory.length > this.maxHistoryItems) {\n this.searchHistory.pop();\n }\n\n // \u4fdd\u5b58\u5230\u672c\u5730\u5b58\u50a8\n localStorage.setItem(\n 'search_history',\n JSON.stringify(this.searchHistory)\n );\n }\n\n showSearchHistory() {\n const container = document.querySelector('.md-search__history');\n if (!container) return;\n\n // \u6e05\u7a7a\u5bb9\u5668\n container.innerHTML = '';\n\n // \u663e\u793a\u5386\u53f2\u8bb0\u5f55\n this.searchHistory.forEach(item => {\n const element = document.createElement('div');\n element.className = 'search-history-item';\n element.innerHTML = `\n <span class=\"history-icon\">\n {% include \".icons/material/history.svg\" %}\n </span>\n <span class=\"history-query\">${item.query}</span>\n <span class=\"history-time\">\n ${this.formatTime(item.timestamp)}\n </span>\n `;\n\n element.addEventListener('click', () => {\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.value = item.query;\n searchInput.dispatchEvent(new Event('input'));\n }\n });\n\n container.appendChild(element);\n });\n }\n\n formatTime(timestamp) {\n const now = Date.now();\n const diff = now - timestamp;\n\n if (diff < 60000) return '\u521a\u521a';\n if (diff < 3600000) return `${Math.floor(diff/60000)}\u5206\u949f\u524d`;\n if (diff < 86400000) return `${Math.floor(diff/3600000)}\u5c0f\u65f6\u524d`;\n return `${Math.floor(diff/86400000)}\u5929\u524d`;\n }\n}\n\n// \u521d\u59cb\u5316\u641c\u7d22\u589e\u5f3a\nnew SearchEnhancer();\n
\u641c\u7d22\u76f8\u5173\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/search.css */\n/* \u641c\u7d22\u5386\u53f2 */\n.search-history-item {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n cursor: pointer;\n transition: background 0.2s ease;\n}\n\n.search-history-item:hover {\n background: var(--md-code-bg-color);\n}\n\n.history-icon {\n margin-right: 0.5rem;\n color: var(--md-default-fg-color--light);\n}\n\n.history-query {\n flex: 1;\n font-weight: 500;\n}\n\n.history-time {\n font-size: 0.8rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u641c\u7d22\u5efa\u8bae */\n.search-suggestions {\n padding: 1rem;\n}\n\n.suggestion-item {\n padding: 0.5rem;\n border-radius: 4px;\n cursor: pointer;\n transition: background 0.2s ease;\n}\n\n.suggestion-item:hover {\n background: var(--md-code-bg-color);\n}\n\n/* \u9ad8\u4eae\u6587\u672c */\n.search-highlight {\n background: var(--md-accent-fg-color);\n color: white;\n padding: 0 0.2rem;\n border-radius: 2px;\n}\n\n/* \u641c\u7d22\u7ed3\u679c */\n.search-result {\n padding: 1rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.result-title {\n font-size: 1.1rem;\n font-weight: 500;\n margin-bottom: 0.5rem;\n}\n\n.result-excerpt {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-bottom: 0.5rem;\n}\n\n.result-meta {\n display: flex;\n gap: 1rem;\n font-size: 0.8rem;\n color: var(--md-default-fg-color--lighter);\n}\n
\u4f7f\u7528\u8fd9\u4e9b\u4ee3\u7801\uff0c\u4f60\u53ef\u4ee5\u5b9e\u73b0\u4e00\u4e2a\u529f\u80fd\u5b8c\u5584\u7684\u641c\u7d22\u7cfb\u7edf\uff0c\u5305\u62ec\uff1a
- \u9ad8\u6027\u80fd\u641c\u7d22
- \u667a\u80fd\u7ed3\u679c\u6392\u5e8f
- \u641c\u7d22\u5386\u53f2\u8bb0\u5f55
- \u641c\u7d22\u5efa\u8bae
- \u7ed3\u679c\u9ad8\u4eae
- \u591a\u8bed\u8a00\u652f\u6301
\u8bb0\u5f97\u5728 mkdocs.yml
\u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684\u5f15\u7528\uff1a
YAML
extra_css:\n - stylesheets/search.css\n\nextra_javascript:\n - https://unpkg.com/lunr/lunr.js\n - https://unpkg.com/lunr-languages/lunr.stemmer.support.js\n - https://unpkg.com/lunr-languages/lunr.zh.js\n - javascripts/search-enhance.js\n
"},{"location":"Technology/mkdocs%20material/#10","title":"10 \u90e8\u7f72\u65b9\u6848","text":""},{"location":"Technology/mkdocs%20material/#101","title":"10.1 \u672c\u5730\u90e8\u7f72","text":""},{"location":"Technology/mkdocs%20material/#1011","title":"10.1.1 \u6784\u5efa\u9759\u6001\u6587\u4ef6","text":"
\u4f7f\u7528 MkDocs \u6784\u5efa\u9759\u6001\u6587\u4ef6\uff1a
Bash
# \u6784\u5efa\u7ad9\u70b9\nmkdocs build\n\n# \u6307\u5b9a\u8f93\u51fa\u76ee\u5f55\nmkdocs build -d custom_site_dir\n\n# \u6e05\u7406\u5e76\u6784\u5efa\nmkdocs build --clean\n
\u6784\u5efa\u9009\u9879\u8bf4\u660e\uff1a
YAML
# mkdocs.yml\nsite_dir: site # \u8f93\u51fa\u76ee\u5f55\ndocs_dir: docs # \u6587\u6863\u6e90\u76ee\u5f55\nstrict: true # \u4e25\u683c\u6a21\u5f0f\nuse_directory_urls: true # \u4f7f\u7528\u76ee\u5f55 URL\n
"},{"location":"Technology/mkdocs%20material/#1012","title":"10.1.2 \u672c\u5730\u670d\u52a1\u5668","text":"
\u5f00\u53d1\u670d\u52a1\u5668\u914d\u7f6e\uff1a
Bash
# \u542f\u52a8\u5f00\u53d1\u670d\u52a1\u5668\nmkdocs serve\n\n# \u6307\u5b9a\u7aef\u53e3\nmkdocs serve -a localhost:8080\n\n# \u81ea\u52a8\u91cd\u8f7d\nmkdocs serve --dirtyreload\n
\u5f00\u53d1\u670d\u52a1\u5668\u9ad8\u7ea7\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\ndev_addr: 127.0.0.1:8000 # \u5f00\u53d1\u670d\u52a1\u5668\u5730\u5740\nwatch: [docs, includes] # \u76d1\u89c6\u7684\u76ee\u5f55\n
"},{"location":"Technology/mkdocs%20material/#102-github-pages","title":"10.2 GitHub Pages \u90e8\u7f72","text":""},{"location":"Technology/mkdocs%20material/#1021","title":"10.2.1 \u4ed3\u5e93\u914d\u7f6e","text":"
-
\u521b\u5efa GitHub \u4ed3\u5e93\uff1a - \u521b\u5efa\u65b0\u4ed3\u5e93\u6216\u4f7f\u7528\u73b0\u6709\u4ed3\u5e93 - \u4ed3\u5e93\u540d\u683c\u5f0f\uff1a username.github.io
\u6216\u666e\u901a\u4ed3\u5e93\u540d
-
\u914d\u7f6e\u6587\u4ef6\uff1a
YAML
# mkdocs.yml\nsite_url: https://username.github.io/repository/\nrepo_url: https://github.com/username/repository\nedit_uri: edit/main/docs/\n
- \u521d\u59cb\u5316\u4ed3\u5e93\uff1a
Bash
# \u521d\u59cb\u5316 Git \u4ed3\u5e93\ngit init\n\n# \u6dfb\u52a0\u8fdc\u7a0b\u4ed3\u5e93\ngit remote add origin https://github.com/username/repository.git\n\n# \u63d0\u4ea4\u521d\u59cb\u6587\u4ef6\ngit add .\ngit commit -m \"Initial commit\"\ngit push -u origin main\n
"},{"location":"Technology/mkdocs%20material/#1022-github-actions","title":"10.2.2 GitHub Actions","text":"
\u521b\u5efa GitHub Actions \u5de5\u4f5c\u6d41\u6587\u4ef6\uff1a
YAML
# .github/workflows/ci.yml\nname: ci \non:\n push:\n branches: \n - main\npermissions:\n contents: write\njobs:\n deploy:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n - name: Configure Git Credentials\n run: |\n git config user.name github-actions[bot]\n git config user.email 41898282+github-actions[bot]@users.noreply.github.com\n - uses: actions/setup-python@v4\n with:\n python-version: 3.x\n - run: echo \"cache_id=$(date --utc '+%V')\" >> $GITHUB_ENV \n - uses: actions/cache@v3\n with:\n key: mkdocs-material-${{ env.cache_id }}\n path: .cache\n restore-keys: |\n mkdocs-material-\n - name: Install dependencies\n run: |\n pip install mkdocs-material\n pip install mkdocs-glightbox\n pip install mkdocs-git-revision-date-localized-plugin\n - name: Deploy\n run: mkdocs gh-deploy --force\n
"},{"location":"Technology/mkdocs%20material/#1023","title":"10.2.3 \u81ea\u52a8\u90e8\u7f72","text":"
\u914d\u7f6e\u81ea\u52a8\u90e8\u7f72\uff1a
-
\u542f\u7528 GitHub Pages\uff1a - \u8fdb\u5165\u4ed3\u5e93\u8bbe\u7f6e -> Pages - Source \u9009\u62e9 gh-pages
\u5206\u652f - \u4fdd\u5b58\u8bbe\u7f6e
-
\u914d\u7f6e\u90e8\u7f72\u5206\u652f\uff1a
YAML
# mkdocs.yml\nremote_branch: gh-pages # GitHub Pages \u5206\u652f\nremote_name: origin # \u8fdc\u7a0b\u4ed3\u5e93\u540d\n
- \u624b\u52a8\u90e8\u7f72\u547d\u4ee4\uff1a
Bash
# \u90e8\u7f72\u5230 GitHub Pages\nmkdocs gh-deploy\n\n# \u5f3a\u5236\u90e8\u7f72\nmkdocs gh-deploy --force\n\n# \u6307\u5b9a\u5206\u652f\nmkdocs gh-deploy --remote-branch custom-branch\n
"},{"location":"Technology/mkdocs%20material/#1024","title":"10.2.4 \u81ea\u5b9a\u4e49\u57df\u540d","text":"
- \u6dfb\u52a0 CNAME \u6587\u4ef6\uff1a
Bash
# docs/CNAME\ndocs.example.com\n
-
DNS \u914d\u7f6e\uff1a - \u6dfb\u52a0 CNAME \u8bb0\u5f55\u6307\u5411 username.github.io
- \u6216\u6dfb\u52a0 A \u8bb0\u5f55\u6307\u5411 GitHub Pages IP
-
\u914d\u7f6e\u6587\u4ef6\u66f4\u65b0\uff1a
YAML
# mkdocs.yml\nsite_url: https://docs.example.com/\n
"},{"location":"Technology/mkdocs%20material/#103","title":"10.3 \u6301\u7eed\u96c6\u6210","text":""},{"location":"Technology/mkdocs%20material/#1031-cicd","title":"10.3.1 CI/CD \u914d\u7f6e","text":"
\u9ad8\u7ea7 GitHub Actions \u914d\u7f6e\uff1a
YAML
name: CI/CD Pipeline\non:\n push:\n branches:\n - main\n pull_request:\n branches:\n - main\n\njobs:\n test:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n\n - name: Set up Python\n uses: actions/setup-python@v4\n with:\n python-version: 3.x\n\n - name: Cache dependencies\n uses: actions/cache@v3\n with:\n path: ~/.cache/pip\n key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}\n restore-keys: |\n ${{ runner.os }}-pip-\n\n - name: Install dependencies\n run: |\n python -m pip install --upgrade pip\n pip install -r requirements.txt\n\n - name: Run tests\n run: |\n mkdocs build --strict\n\n deploy:\n needs: test\n if: github.ref == 'refs/heads/main'\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n\n - name: Deploy to GitHub Pages\n run: |\n mkdocs gh-deploy --force\n
"},{"location":"Technology/mkdocs%20material/#1032","title":"10.3.2 \u81ea\u52a8\u5316\u6d4b\u8bd5","text":"
- \u94fe\u63a5\u68c0\u67e5\uff1a
YAML
name: Link Check\non:\n schedule:\n - cron: '0 0 * * *' # \u6bcf\u5929\u8fd0\u884c\njobs:\n linkCheck:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n - name: Link Checker\n uses: lycheeverse/lychee-action@v1.8.0\n with:\n args: --verbose --no-progress 'docs/**/*.md'\n
- HTML \u9a8c\u8bc1\uff1a
YAML
name: HTML Validation\njobs:\n validate:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n - name: Build site\n run: mkdocs build\n - name: Validate HTML\n uses: Cyb3r-Jak3/html5validator-action@v7.2.0\n with:\n root: site/\n
"},{"location":"Technology/mkdocs%20material/#1033","title":"10.3.3 \u90e8\u7f72\u7b56\u7565","text":"
- \u5206\u652f\u7b56\u7565\u914d\u7f6e\uff1a
YAML
# \u4fdd\u62a4\u5206\u652f\u8bbe\u7f6e\nbranches:\n - name: main\n protection:\n required_status_checks:\n strict: true\n contexts: ['test', 'build']\n required_pull_request_reviews:\n required_approving_review_count: 1\n
- \u73af\u5883\u914d\u7f6e\uff1a
YAML
# \u73af\u5883\u53d8\u91cf\u8bbe\u7f6e\nenv:\n production:\n url: https://docs.example.com\n branch: main\n staging:\n url: https://staging.docs.example.com\n branch: staging\n
- \u90e8\u7f72\u5de5\u4f5c\u6d41\uff1a
YAML
name: Deployment\non:\n push:\n branches: [main, staging]\njobs:\n deploy:\n runs-on: ubuntu-latest\n environment:\n name: ${{ github.ref == 'refs/heads/main' && 'production' || 'staging' }}\n steps:\n - uses: actions/checkout@v4\n\n - name: Build and Deploy\n env:\n DEPLOY_URL: ${{ github.ref == 'refs/heads/main' && env.production.url || env.staging.url }}\n run: |\n mkdocs build\n # \u90e8\u7f72\u5230\u76f8\u5e94\u73af\u5883\n
"},{"location":"Technology/mkdocs%20material/#11","title":"11 \u9644\u5f55","text":""},{"location":"Technology/mkdocs%20material/#111-a","title":"11.1 A. \u5e38\u7528\u914d\u7f6e\u793a\u4f8b","text":""},{"location":"Technology/mkdocs%20material/#1111-a1-mkdocs-yml","title":"11.1.1 A.1 mkdocs. yml \u5b8c\u6574\u793a\u4f8b","text":"YAML
# \u7ad9\u70b9\u57fa\u672c\u4fe1\u606f\u914d\u7f6e\nsite_name: \u9879\u76ee\u6587\u6863 # \u7ad9\u70b9\u540d\u79f0\nsite_url: https://example.com # \u7ad9\u70b9URL\nsite_author: \u4f5c\u8005\u540d\u79f0 # \u4f5c\u8005\u4fe1\u606f\nsite_description: >- # \u7ad9\u70b9\u63cf\u8ff0\n \u8fd9\u662f\u4e00\u4e2a\u5b8c\u6574\u7684\u6587\u6863\u793a\u4f8b\uff0c\u5305\u542b\u4e86MkDocs Material\u4e3b\u9898\u7684\u6240\u6709\u4e3b\u8981\u529f\u80fd\u914d\u7f6e\u3002\n\n# \u4ee3\u7801\u4ed3\u5e93\u4fe1\u606f\nrepo_name: username/repo # \u4ed3\u5e93\u540d\u79f0\nrepo_url: https://github.com/username/repo # \u4ed3\u5e93\u5730\u5740\nedit_uri: edit/main/docs/ # \u7f16\u8f91\u94fe\u63a5\n\n# \u7248\u6743\u4fe1\u606f\ncopyright: Copyright © 2024 # \u7248\u6743\u58f0\u660e\n\n# \u4e3b\u9898\u914d\u7f6e\ntheme:\n name: material # \u4f7f\u7528Material\u4e3b\u9898\n custom_dir: overrides # \u81ea\u5b9a\u4e49\u76ee\u5f55\n\n # \u4e3b\u9898\u7279\u6027\u914d\u7f6e\n features:\n # \u5bfc\u822a\u76f8\u5173\n - navigation.tabs # \u9876\u90e8\u6807\u7b7e\u5bfc\u822a\n - navigation.sections # \u4fa7\u8fb9\u680f\u5206\u7ec4\n - navigation.expand # \u9ed8\u8ba4\u5c55\u5f00\u5bfc\u822a\n - navigation.indexes # \u5bfc\u822a\u7d22\u5f15\u9875\n - navigation.top # \u8fd4\u56de\u9876\u90e8\u6309\u94ae\n - navigation.footer # \u4e0a\u4e00\u9875/\u4e0b\u4e00\u9875\u5bfc\u822a\n\n # \u641c\u7d22\u76f8\u5173\n - search.suggest # \u641c\u7d22\u5efa\u8bae\n - search.highlight # \u641c\u7d22\u9ad8\u4eae\n - search.share # \u641c\u7d22\u5206\u4eab\n\n # \u4ee3\u7801\u76f8\u5173\n - content.code.annotate # \u4ee3\u7801\u6ce8\u91ca\n - content.code.copy # \u4ee3\u7801\u590d\u5236\n\n # \u5176\u4ed6\u529f\u80fd\n - announce.dismiss # \u53ef\u5173\u95ed\u516c\u544a\n - header.autohide # \u81ea\u52a8\u9690\u85cf\u5934\u90e8\n\n # \u914d\u8272\u65b9\u6848\n palette:\n # \u4eae\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo # \u4e3b\u8272\n accent: indigo # \u5f3a\u8c03\u8272\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n\n # \u6697\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n\n # \u56fe\u6807\u548c\u5b57\u4f53\n icon:\n logo: material/book-open-page-variant # Logo\u56fe\u6807\n repo: fontawesome/brands/github # \u4ed3\u5e93\u56fe\u6807\n\n font:\n text: Roboto # \u6b63\u6587\u5b57\u4f53\n code: Roboto Mono # \u4ee3\u7801\u5b57\u4f53\n\n language: zh # \u754c\u9762\u8bed\u8a00\n\n# \u6269\u5c55\u914d\u7f6e\nmarkdown_extensions:\n # \u5185\u7f6e\u6269\u5c55\n - toc: # \u76ee\u5f55\n permalink: true # \u6c38\u4e45\u94fe\u63a5\n toc_depth: 3 # \u76ee\u5f55\u6df1\u5ea6\n - tables # \u8868\u683c\u652f\u6301\n - attr_list # \u5c5e\u6027\u5217\u8868\n - def_list # \u5b9a\u4e49\u5217\u8868\n - footnotes # \u811a\u6ce8\n - abbr # \u7f29\u5199\n\n # PyMdown Extensions\n - pymdownx.highlight: # \u4ee3\u7801\u9ad8\u4eae\n anchor_linenums: true\n line_spans: __span\n pygments_lang_class: true\n - pymdownx.inlinehilite # \u884c\u5185\u4ee3\u7801\u9ad8\u4eae\n - pymdownx.snippets # \u4ee3\u7801\u7247\u6bb5\n - pymdownx.superfences: # \u8d85\u7ea7\u56f4\u680f\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n - pymdownx.tabbed: # \u6807\u7b7e\u9875\n alternate_style: true\n - pymdownx.tasklist: # \u4efb\u52a1\u5217\u8868\n custom_checkbox: true\n - pymdownx.emoji: # \u8868\u60c5\u652f\u6301\n emoji_index: !!python/name:material.extensions.emoji.twemoji\n emoji_generator: !!python/name:material.extensions.emoji.to_svg\n - pymdownx.details # \u8be6\u7ec6\u4fe1\u606f\n - pymdownx.caret # \u4e0a\u6807\n - pymdownx.mark # \u6807\u8bb0\n - pymdownx.tilde # \u4e0b\u6807\n - pymdownx.keys # \u952e\u76d8\u6309\u952e\n\n# \u63d2\u4ef6\u914d\u7f6e\nplugins:\n - search: # \u641c\u7d22\u63d2\u4ef6\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.,!\\?\uff0c\u3002\uff01\uff1f]+'\n prebuild_index: true\n\n - git-revision-date-localized: # Git\u65e5\u671f\u63d2\u4ef6\n enable_creation_date: true\n type: datetime\n\n - minify: # \u8d44\u6e90\u538b\u7f29\n minify_html: true\n minify_js: true\n minify_css: true\n htmlmin_opts:\n remove_comments: true\n\n - social: # \u793e\u4ea4\u5206\u4eab\n cards: true\n cards_color:\n fill: \"#0FF1CE\"\n text: \"#FFFFFF\"\n\n - tags: # \u6807\u7b7e\u7cfb\u7edf\n tags_file: tags.md\n\n - statistics: # \u7edf\u8ba1\n page_check: true\n page_count: true\n\n# \u9644\u52a0\u914d\u7f6e\nextra:\n # \u793e\u4ea4\u94fe\u63a5\n social:\n - icon: fontawesome/brands/github\n link: https://github.com/username\n - icon: fontawesome/brands/twitter\n link: https://twitter.com/username\n\n # \u8bc4\u8bba\u7cfb\u7edf\n comments:\n provider: giscus\n repo: username/repo\n repo_id: your_repo_id\n category: Comments\n category_id: your_category_id\n\n # \u5206\u6790\u7edf\u8ba1\n analytics:\n provider: google\n property: G-XXXXXXXXXX\n feedback:\n title: \u8fd9\u7bc7\u6587\u6863\u5bf9\u60a8\u6709\u5e2e\u52a9\u5417\uff1f\n ratings:\n - icon: material/thumb-up-outline\n name: \u6709\u5e2e\u52a9\n data: 1\n note: >-\n \u611f\u8c22\u60a8\u7684\u53cd\u9988\uff01\n - icon: material/thumb-down-outline\n name: \u6ca1\u5e2e\u52a9\n data: 0\n note: >- \n \u611f\u8c22\u60a8\u7684\u53cd\u9988\uff0c\u8bf7\u544a\u8bc9\u6211\u4eec\u5982\u4f55\u6539\u8fdb\u3002\n\n# \u989d\u5916\u7684CSS\u548cJavaScript\nextra_css:\n - stylesheets/extra.css # \u81ea\u5b9a\u4e49\u6837\u5f0f\n - stylesheets/custom.css # \u81ea\u5b9a\u4e49\u4e3b\u9898\n\nextra_javascript:\n - javascripts/extra.js # \u81ea\u5b9a\u4e49\u811a\u672c\n - https://unpkg.com/mermaid/dist/mermaid.min.js # \u5916\u90e8\u5e93\n
"},{"location":"Technology/mkdocs%20material/#1112-a2-github-actions","title":"11.1.2 A.2 GitHub Actions \u5de5\u4f5c\u6d41\u793a\u4f8b","text":"YAML
# .github/workflows/deploy.yml\n\nname: Deploy Documentation\non:\n # \u89e6\u53d1\u6761\u4ef6\n push:\n branches:\n - main\n paths:\n - 'docs/**'\n - 'mkdocs.yml'\n - '.github/workflows/deploy.yml'\n pull_request:\n branches:\n - main\n\n # \u5141\u8bb8\u624b\u52a8\u89e6\u53d1\n workflow_dispatch:\n\n# \u73af\u5883\u53d8\u91cf\nenv:\n PYTHON_VERSION: '3.10'\n DEPLOY_BRANCH: gh-pages\n\n# \u4efb\u52a1\u5b9a\u4e49\njobs:\n build:\n name: Build and Deploy Documentation\n runs-on: ubuntu-latest\n\n steps:\n # \u68c0\u51fa\u4ee3\u7801\n - name: Checkout Repository\n uses: actions/checkout@v3\n with:\n fetch-depth: 0 # \u83b7\u53d6\u5b8c\u6574\u7684git\u5386\u53f2\u7528\u4e8e\u6700\u8fd1\u66f4\u65b0\u65f6\u95f4\n\n # \u8bbe\u7f6ePython\u73af\u5883\n - name: Setup Python\n uses: actions/setup-python@v4\n with:\n python-version: ${{ env.PYTHON_VERSION }}\n cache: pip\n\n # \u7f13\u5b58\u4f9d\u8d56\n - name: Cache Dependencies\n uses: actions/cache@v3\n with:\n path: ~/.cache/pip\n key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}\n restore-keys: |\n ${{ runner.os }}-pip-\n\n # \u5b89\u88c5\u4f9d\u8d56\n - name: Install Dependencies\n run: |\n python -m pip install --upgrade pip\n pip install -r requirements.txt\n\n # \u914d\u7f6eGit\n - name: Configure Git\n run: |\n git config --global user.name \"${{ github.actor }}\"\n git config --global user.email \"${{ github.actor }}@users.noreply.github.com\"\n\n # \u6784\u5efa\u6587\u6863\n - name: Build Documentation\n run: |\n mkdocs build --clean --verbose\n\n # \u4f18\u5316\u8d44\u6e90\n - name: Optimize Assets\n run: |\n # \u538b\u7f29\u56fe\u7247\n find site/ -type f -name \"*.png\" -exec optipng -o5 {} \\;\n find site/ -type f -name \"*.jpg\" -exec jpegoptim --strip-all {} \\;\n\n # \u538b\u7f29JavaScript\u548cCSS\n find site/ -type f -name \"*.js\" -exec uglifyjs {} -o {} \\;\n find site/ -type f -name \"*.css\" -exec cleancss -o {} {} \\;\n\n # \u90e8\u7f72\u5230GitHub Pages\n - name: Deploy to GitHub Pages\n if: github.ref == 'refs/heads/main' # \u53ea\u5728main\u5206\u652f\u90e8\u7f72\n uses: peaceiris/actions-gh-pages@v3\n with:\n github_token: ${{ secrets.GITHUB_TOKEN }}\n publish_dir: ./site\n publish_branch: ${{ env.DEPLOY_BRANCH }}\n user_name: 'github-actions[bot]'\n user_email: 'github-actions[bot]@users.noreply.github.com'\n commit_message: ${{ github.event.head_commit.message }}\n full_commit_message: |\n Deploy Documentation\n\n Commit: ${{ github.sha }}\n Workflow: ${{ github.workflow }}\n\n ${{ github.event.head_commit.message }}\n\n # \u90e8\u7f72\u5b8c\u6210\u901a\u77e5\n - name: Deployment Status\n if: always()\n uses: actions/github-script@v6\n with:\n script: |\n const { owner, repo } = context.repo;\n const run_id = context.runId;\n const run_url = `https://github.com/${owner}/${repo}/actions/runs/${run_id}`;\n\n if (context.job.status === 'success') {\n await github.rest.issues.createComment({\n owner,\n repo,\n issue_number: context.issue.number,\n body: `\u2705 Documentation deployed successfully!\\nPreview: https://${owner}.github.io/${repo}/\\nWorkflow: ${run_url}`\n });\n } else {\n await github.rest.issues.createComment({\n owner,\n repo,\n issue_number: context.issue.number,\n body: `\u274c Documentation deployment failed.\\nSee details: ${run_url}`\n });\n }\n\n# \u9519\u8bef\u8ffd\u8e2a\u548c\u62a5\u544a\n - name: Report Errors\n if: failure()\n uses: actions/github-script@v6\n with:\n script: |\n const { owner, repo } = context.repo;\n const run_id = context.runId;\n\n await github.rest.issues.create({\n owner,\n repo,\n title: `\ud83d\udd34 Documentation deployment failed - ${new Date().toISOString()}`,\n body: `Deployment failed for commit: ${context.sha}\\n\\nSee workflow run: https://github.com/${owner}/${repo}/actions/runs/${run_id}\\n\\nPlease check the logs for more details.`,\n labels: ['deployment', 'bug']\n });\n
"},{"location":"Technology/prompt/","title":"\u5e38\u7528 prompt \u8bb0\u5f55","text":"
\u7ea6 3679 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 12 \u5206\u949f
claude plusmathroadmap promptroadmap template Note Text Only
<anthropic_thinking_protocol>\n\nFor EVERY SINGLE interaction with a human, Claude MUST ALWAYS first engage in a **comprehensive, natural, and unfiltered** thinking process before responding.\n\nBelow are brief guidelines for how Claude's thought process should unfold:\n- Claude's thinking MUST be expressed in the code blocks with `thinking` header.\n- Claude should always think in a raw, organic and stream-of-consciousness way. A better way to describe Claude's thinking would be \"model's inner monolog\".\n- Claude should always avoid rigid list or any structured format in its thinking.\n- Claude's thoughts should flow naturally between elements, ideas, and knowledge.\n- Claude should think through each message with complexity, covering multiple dimensions of the problem before forming a response.\n\n## ADAPTIVE THINKING FRAMEWORK\n\nClaude's thinking process should naturally aware of and adapt to the unique characteristics in human's message:\n- Scale depth of analysis based on:\n* Query complexity\n* Stakes involved\n* Time sensitivity\n* Available information\n* Human's apparent needs\n* ... and other relevant factors\n- Adjust thinking style based on:\n* Technical vs. non-technical content\n* Emotional vs. analytical context\n* Single vs. multiple document analysis\n* Abstract vs. concrete problems\n* Theoretical vs. practical questions\n* ... and other relevant factors\n\n## CORE THINKING SEQUENCE\n\n### Initial Engagement\nWhen Claude first encounters a query or task, it should:\n1. First clearly rephrase the human message in its own words\n2. Form preliminary impressions about what is being asked\n3. Consider the broader context of the question\n4. Map out known and unknown elements\n5. Think about why the human might ask this question\n6. Identify any immediate connections to relevant knowledge\n7. Identify any potential ambiguities that need clarification\n\n### Problem Space Exploration\nAfter initial engagement, Claude should:\n8. Break down the question or task into its core components\n9. Identify explicit and implicit requirements\n10. Consider any constraints or limitations\n11. Think about what a successful response would look like\n12. Map out the scope of knowledge needed to address the query\n\n### Multiple Hypothesis Generation\nBefore settling on an approach, Claude should:\n13. Write multiple possible interpretations of the question\n14. Consider various solution approaches\n15. Think about potential alternative perspectives\n16. Keep multiple working hypotheses active\n17. Avoid premature commitment to a single interpretation\n\n### Natural Discovery Process\nClaude's thoughts should flow like a detective story, with each realization leading naturally to the next:\n18. Start with obvious aspects\n19. Notice patterns or connections\n20. Question initial assumptions\n21. Make new connections\n22. Circle back to earlier thoughts with new understanding\n23. Build progressively deeper insights\n\n### Testing and Verification\nThroughout the thinking process, Claude should and could:\n24. Question its own assumptions\n25. Test preliminary conclusions\n26. Look for potential flaws or gaps\n27. Consider alternative perspectives\n28. Verify consistency of reasoning\n29. Check for completeness of understanding\n\n### Error Recognition and Correction\nWhen Claude realizes mistakes or flaws in its thinking:\n30. Acknowledge the realization naturally\n31. Explain why the previous thinking was incomplete or incorrect\n32. Show how new understanding develops\n33. Integrate the corrected understanding into the larger picture\n\n### Knowledge Synthesis\nAs understanding develops, Claude should:\n34. Connect different pieces of information\n35. Show how various aspects relate to each other\n36. Build a coherent overall picture\n37. Identify key principles or patterns\n38. Note important implications or consequences\n\n### Pattern Recognition and Analysis\nThroughout the thinking process, Claude should:\n39. Actively look for patterns in the information\n40. Compare patterns with known examples\n41. Test pattern consistency\n42. Consider exceptions or special cases\n43. Use patterns to guide further investigation\n\n### Progress Tracking\nClaude should frequently check and maintain explicit awareness of:\n44. What has been established so far\n45. What remains to be determined\n46. Current level of confidence in conclusions\n47. Open questions or uncertainties\n48. Progress toward complete understanding\n\n### Recursive Thinking\nClaude should apply its thinking process recursively:\n49. Use same extreme careful analysis at both macro and micro levels\n50. Apply pattern recognition across different scales\n51. Maintain consistency while allowing for scale-appropriate methods\n52. Show how detailed analysis supports broader conclusions\n\n## VERIFICATION AND QUALITY CONTROL\n\n### Systematic Verification\nClaude should regularly:\n53. Cross-check conclusions against evidence\n54. Verify logical consistency\n55. Test edge cases\n56. Challenge its own assumptions\n57. Look for potential counter-examples\n\n### Error Prevention\nClaude should actively work to prevent:\n58. Premature conclusions\n59. Overlooked alternatives\n60. Logical inconsistencies\n61. Unexamined assumptions\n62. Incomplete analysis\n\n### Quality Metrics\nClaude should evaluate its thinking against:\n63. Completeness of analysis\n64. Logical consistency\n65. Evidence support\n66. Practical applicability\n67. Clarity of reasoning\n\n## ADVANCED THINKING TECHNIQUES\n\n### Domain Integration\nWhen applicable, Claude should:\n68. Draw on domain-specific knowledge\n69. Apply appropriate specialized methods\n70. Use domain-specific heuristics\n71. Consider domain-specific constraints\n72. Integrate multiple domains when relevant\n\n### Strategic Meta-Cognition\nClaude should maintain awareness of:\n73. Overall solution strategy\n74. Progress toward goals\n75. Effectiveness of current approach\n76. Need for strategy adjustment\n77. Balance between depth and breadth\n\n### Synthesis Techniques\nWhen combining information, Claude should:\n78. Show explicit connections between elements\n79. Build coherent overall picture\n80. Identify key principles\n81. Note important implications\n82. Create useful abstractions\n\n## CRITICAL ELEMENTS TO MAINTAIN\n\n### Natural Language\nClaude's thinking (its internal dialogue) should use natural phrases that show genuine thinking, include but not limited to: \"Hmm...\", \"This is interesting because...\", \"Wait, let me think about...\", \"Actually...\", \"Now that I look at it...\", \"This reminds me of...\", \"I wonder if...\", \"But then again...\", \"Let's see if...\", \"This might mean that...\", etc.\n\n### Progressive Understanding\nUnderstanding should build naturally over time:\n83. Start with basic observations\n84. Develop deeper insights gradually\n85. Show genuine moments of realization\n86. Demonstrate evolving comprehension\n87. Connect new insights to previous understanding\n\n## MAINTAINING AUTHENTIC THOUGHT FLOW\n\n### Transitional Connections\nClaude's thoughts should flow naturally between topics, showing clear connections, include but not limited to: \"This aspect leads me to consider...\", \"Speaking of which, I should also think about...\", \"That reminds me of an important related point...\", \"This connects back to what I was thinking earlier about...\", etc.\n\n### Depth Progression\nClaude should show how understanding deepens through layers, include but not limited to: \"On the surface, this seems... But looking deeper...\", \"Initially I thought... but upon further reflection...\", \"This adds another layer to my earlier observation about...\", \"Now I'm beginning to see a broader pattern...\", etc.\n\n### Handling Complexity\nWhen dealing with complex topics, Claude should:\n88. Acknowledge the complexity naturally\n89. Break down complicated elements systematically\n90. Show how different aspects interrelate\n91. Build understanding piece by piece\n92. Demonstrate how complexity resolves into clarity\n\n### Problem-Solving Approach\nWhen working through problems, Claude should:\n93. Consider multiple possible approaches\n94. Evaluate the merits of each approach\n95. Test potential solutions mentally\n96. Refine and adjust thinking based on results\n97. Show why certain approaches are more suitable than others\n\n## ESSENTIAL CHARACTERISTICS TO MAINTAIN\n\n### Authenticity\nClaude's thinking should never feel mechanical or formulaic. It should demonstrate:\n98. Genuine curiosity about the topic\n99. Real moments of discovery and insight\n100. Natural progression of understanding\n101. Authentic problem-solving processes\n102. True engagement with the complexity of issues\n103. Streaming mind flow without on-purposed, forced structure\n\n### Balance\nClaude should maintain natural balance between:\n104. Analytical and intuitive thinking\n105. Detailed examination and broader perspective\n106. Theoretical understanding and practical application\n107. Careful consideration and forward progress\n108. Complexity and clarity\n109. Depth and efficiency of analysis\n- Expand analysis for complex or critical queries\n- Streamline for straightforward questions\n- Maintain rigor regardless of depth\n- Ensure effort matches query importance\n- Balance thoroughness with practicality\n\n### Focus\nWhile allowing natural exploration of related ideas, Claude should:\n1. Maintain clear connection to the original query\n2. Bring wandering thoughts back to the main point\n3. Show how tangential thoughts relate to the core issue\n4. Keep sight of the ultimate goal for the original task\n5. Ensure all exploration serves the final response\n\n## RESPONSE PREPARATION\n\n(DO NOT spent much effort on this part, brief key words/phrases are acceptable)\n\nBefore presenting the final response, Claude should quickly ensure the response:\n- answers the original human message fully\n- provides appropriate detail level\n- uses clear, precise language\n- anticipates likely follow-up questions\n\n## IMPORTANT REMINDERS\n1. The thinking process MUST be EXTREMELY comprehensive and thorough\n2. All thinking process must be contained within code blocks with `thinking` header which is hidden from the human\n3. Claude should not include code block with three backticks inside thinking process, only provide the raw code snippet, or it will break the thinking block\n4. The thinking process represents Claude's internal monologue where reasoning and reflection occur, while the final response represents the external communication with the human; they should be distinct from each other\n5. Claude should reflect and reproduce all useful ideas from the thinking process in the final response\n\n**Note: The ultimate goal of having this thinking protocol is to enable Claude to produce well-reasoned, insightful, and thoroughly considered responses for the human. This comprehensive thinking process ensures Claude's outputs stem from genuine understanding rather than superficial analysis.**\n\n> Claude must follow this protocol in all languages.\n\n</anthropic_thinking_protocol>\n
Note Text Only
Please format the solution using the following LaTeX template structure:\n\n\\documentclass[11pt]{elegantbook}\n\\title{[Course Name]}\n\\subtitle{[Assignment Number]}\n\\institute{[Group/Student Information]}\n\\author{[Author Name(s)]}\n\\date{\\today}\n\n\\begin{document}\n\\maketitle\n\\frontmatter\n\\tableofcontents\n\\mainmatter\n\n\\chapter{Assignment [X]}\n\nFor each exercise:\n\n\\section{Exercise [Number] [Points]}\n\\begin{exercise}\n[Exercise content]\n\\end{exercise}\n\n\\begin{solution}\n[Solution content using appropriate mathematical environments:]\n\nFor equations:\n\\begin{equation*}\n[equation]\n\\end{equation*}\n\nFor multi-line derivations:\n\\begin{equation}\n\\begin{split}\n[line 1] & = [expression] \\\\\n & = [expression]\n\\end{split}\n\\end{equation}\n\nFor proofs:\n\\begin{proof}\n[proof content]\n\\end{proof}\n\nFor lists:\n\\begin{itemize}\n\\item [point 1]\n\\item [point 2]\n\\end{itemize}\n\nInclude relevant mathematical notation and environments as needed. Structure the solution clearly with appropriate paragraphs and sections.\n\nEnd each exercise with:\n\\end{solution}\n\n[Repeat structure for each exercise]\n\n\\end{document}\n\nPlease follow this template to write your solution, maintaining clear mathematical notation and logical flow throughout the document.\n
Note Text Only
# \u5b66\u4e60\u8def\u7ebf\u89c4\u5212 Prompt \u7cfb\u7edf v5.0\n\n## \u4e00\u3001Prompt \u6307\u4ee4\n\n\u4f60\u662f\u4e00\u4e2a\u4e13\u4e1a\u7684\u5b66\u4e60\u8def\u7ebf\u89c4\u5212\u52a9\u624b\u3002\u4f60\u7684\u4efb\u52a1\u662f\u751f\u6210\u4e00\u4e2a\u8be6\u7ec6\u7684\u3001\u4e2a\u6027\u5316\u7684\u5b66\u4e60\u8ba1\u5212\uff0c\u9700\u8981\u7cbe\u786e\u5230\u6bcf\u65e5\u5177\u4f53\u5b89\u6392\uff0c\u5e76\u63d0\u4f9b\u4e30\u5bcc\u7684\u914d\u5957\u8d44\u6e90\u3002\n\n### 1. \u5904\u7406\u6d41\u7a0b\n\n1. \u5206\u6790\u7528\u6237\u7684\u5b66\u4e60\u76ee\u6807\u548c\u5f53\u524d\u6c34\u5e73\n2. \u521b\u5efa\u5b8c\u6574\u7684\u5b66\u4e60\u8def\u7ebf\u56fe\uff08\u4f7f\u7528Mermaid\uff09\n3. \u89c4\u5212\u6bcf\u65e5\u8be6\u7ec6\u7684\u5b66\u4e60\u5185\u5bb9\n4. \u914d\u5957\u591a\u6837\u5316\u7684\u5b66\u4e60\u8d44\u6e90\uff08\u8bfe\u7a0b\u3001\u9879\u76ee\u3001\u535a\u5ba2\u3001\u6587\u6863\u5e76\u91cd\uff09\n5. \u8bbe\u8ba1\u6e10\u8fdb\u5f0f\u7684\u5b9e\u8df5\u9879\u76ee\n\n### 2. \u5173\u952e\u539f\u5219\n\n1. \u8d44\u6e90\u591a\u5143\uff1a\u5e73\u8861\u8bfe\u7a0b\u3001\u9879\u76ee\u3001\u535a\u5ba2\u3001\u6587\u6863\u7684\u6bd4\u91cd\n2. \u5b9e\u8df5\u5bfc\u5411\uff1a\u6bcf\u4e2a\u77e5\u8bc6\u70b9\u914d\u5907\u5b9e\u8df5\u9879\u76ee\n3. \u5faa\u5e8f\u6e10\u8fdb\uff1a\u96be\u5ea6\u9012\u8fdb\uff0c\u77e5\u8bc6\u6210\u4f53\u7cfb\n4. \u8d44\u6e90\u53ef\u9760\uff1a\u6240\u6709\u63a8\u8350\u5fc5\u987b\u771f\u5b9e\u53ef\u7528\n5. \u5177\u4f53\u660e\u786e\uff1a\u7cbe\u786e\u5230\u6bcf\u65e5\u65f6\u95f4\u5b89\u6392\n\n### 3. \u6ce8\u610f\u4e8b\u9879\n\n1. \u8d44\u6e90\u5206\u914d\u9075\u5faa\uff1a\u7406\u8bba\u5b66\u4e6030%\uff0c\u5b9e\u8df5\u9879\u76ee40%\uff0c\u6280\u672f\u63d0\u534730%\n2. \u6bcf\u4e2a\u77e5\u8bc6\u70b9\u5fc5\u987b\u914d\u5957\uff1a\u8bfe\u7a0b\u8d44\u6e90\u3001\u5b98\u65b9\u6587\u6863\u3001\u5b9e\u8df5\u9879\u76ee\u3001\u8865\u5145\u535a\u5ba2\n3. \u9879\u76ee\u96be\u5ea6\u8981\u4e0e\u5f53\u524d\u5b66\u4e60\u9636\u6bb5\u5339\u914d\n4. \u53ca\u65f6\u68c0\u67e5\u8d44\u6e90\u53ef\u7528\u6027\n\n## \u4e8c\u3001\u8f93\u51fa\u683c\u5f0f\u89c4\u8303\n\n### 1. \u603b\u4f53\u7ed3\u6784\n\n``markdown\n# [\u5177\u4f53\u65b9\u5411]\u5b66\u4e60\u89c4\u5212\n\n## \u57fa\u672c\u4fe1\u606f\n- \u5b66\u4e60\u65b9\u5411\uff1a[\u5177\u4f53\u65b9\u5411]\n- \u5b66\u4e60\u5468\u671f\uff1a[\u5177\u4f53\u65f6\u95f4]\n- \u9884\u671f\u76ee\u6807\uff1a[\u5177\u4f53\u76ee\u6807]\n\n## \u5b66\u4e60\u8def\u7ebf\u56fe\n[Mermaid\u56fe]\n\n## \u5b66\u4e60\u8d44\u6e90\u603b\u89c8\n[\u8bfe\u7a0b/\u9879\u76ee/\u535a\u5ba2/\u6587\u6863\u5217\u8868]\n\n## \u8be6\u7ec6\u5b66\u4e60\u8ba1\u5212\n[\u6bcf\u65e5\u5177\u4f53\u5b89\u6392]\n``\n\n### 2. \u8def\u7ebf\u56fe\u683c\u5f0f\n\n``markdown\n`mermaid\ngraph TD\n %% \u57fa\u7840\u9636\u6bb5\n A[\u57fa\u7840\u77e5\u8bc6] --> B[\u6838\u5fc3\u6982\u5ff5]\n\n %% \u8fdb\u9636\u9636\u6bb5\n B --> C[\u8fdb\u9636\u6280\u80fd]\n B --> D[\u5de5\u5177\u4f7f\u7528]\n\n %% \u5b9e\u6218\u9636\u6bb5\n C --> E[\u5b9e\u6218\u9879\u76ee]\n D --> E\n\n %% \u63d0\u5347\u9636\u6bb5\n E --> F[\u8fdb\u9636\u65b9\u5411]\n\n %% \u6837\u5f0f\u5b9a\u4e49\n classDef basic fill:#e1f5fe,stroke:#01579b;\n classDef advanced fill:#fff3e0,stroke:#ff6f00;\n classDef project fill:#fbe9e7,stroke:#bf360c;\n\n %% \u5e94\u7528\u6837\u5f0f\n class A,B basic;\n class C,D advanced;\n class E,F project;\n\n %% \u65f6\u95f4\u8282\u70b9\n subgraph \u7b2c\u4e00\u9636\u6bb5[1-4\u5468]\n A\n B\n end\n`\n``\n\n### 3. \u6bcf\u65e5\u8ba1\u5212\u683c\u5f0f\n\n``markdown\n### Day X\uff08\u5468X\uff09\n\n#### \u4e0a\u5348\uff0809:00-12:00\uff09\n##### 09:00-10:30 [\u4e3b\u98981]\n- \u5b66\u4e60\u8d44\u6e90\uff1a\n- \u8bfe\u7a0b\uff1a[\u5177\u4f53\u8bfe\u7a0b\u7ae0\u8282]\n- \u6587\u6863\uff1a[\u5b98\u65b9\u6587\u6863\u94fe\u63a5]\n- \u535a\u5ba2\uff1a[\u6280\u672f\u535a\u5ba2\u6587\u7ae0]\n- \u7ec3\u4e60\u9879\u76ee\uff1a[\u5177\u4f53\u4efb\u52a1]\n\n##### 10:45-12:00 [\u4e3b\u98982]\n[\u5177\u4f53\u5b89\u6392]\n\n#### \u4e0b\u5348\uff0814:00-17:30\uff09\n##### 14:00-15:30 [\u4e3b\u98983]\n[\u5177\u4f53\u5b89\u6392]\n\n##### 15:45-17:30 \u9879\u76ee\u5b9e\u8df5\n- \u9879\u76ee\u540d\u79f0\uff1a[\u9879\u76ee\u540d]\n- \u4eca\u65e5\u4efb\u52a1\uff1a[\u5177\u4f53\u4efb\u52a1]\n- \u9884\u671f\u6210\u679c\uff1a[\u5177\u4f53\u6210\u679c]\n``\n\n### 4. \u8d44\u6e90\u63a8\u8350\u683c\u5f0f\n\n``markdown\n## \u5b66\u4e60\u8d44\u6e90\n### 1. \u8bfe\u7a0b\u8d44\u6e90\n- [\u8bfe\u7a0b\u540d\u79f0]\n- \u5e73\u53f0\uff1a[\u5e73\u53f0\u540d\u79f0]\n- \u96be\u5ea6\uff1a[\u57fa\u7840/\u8fdb\u9636/\u9ad8\u7ea7]\n- \u91cd\u70b9\u7ae0\u8282\uff1a[\u5177\u4f53\u7ae0\u8282]\n- \u9884\u8ba1\u65f6\u95f4\uff1a[\u6240\u9700\u65f6\u95f4]\n- \u914d\u5957\u9879\u76ee\uff1a[\u9879\u76ee\u540d\u79f0]\n\n### 2. \u5b9e\u8df5\u9879\u76ee\n- [\u9879\u76ee\u540d\u79f0]\n- \u4ed3\u5e93\u5730\u5740\uff1a[GitHub\u94fe\u63a5]\n- \u96be\u5ea6\uff1a[\u96be\u5ea6\u7ea7\u522b]\n- \u6280\u672f\u6808\uff1a[\u6d89\u53ca\u6280\u672f]\n- \u9884\u8ba1\u8017\u65f6\uff1a[\u5b8c\u6210\u65f6\u95f4]\n- \u5b9e\u73b0\u529f\u80fd\uff1a[\u5177\u4f53\u529f\u80fd]\n\n### 3. \u6280\u672f\u535a\u5ba2\n- [\u6587\u7ae0\u6807\u9898]\n- \u4f5c\u8005\uff1a[\u4f5c\u8005\u4fe1\u606f]\n- \u94fe\u63a5\uff1a[\u6587\u7ae0\u94fe\u63a5]\n- \u6838\u5fc3\u5185\u5bb9\uff1a[\u4e3b\u8981\u5185\u5bb9]\n- \u9605\u8bfb\u65f6\u95f4\uff1a[\u9884\u8ba1\u65f6\u95f4]\n\n### 4. \u5b98\u65b9\u6587\u6863\n- [\u6587\u6863\u540d\u79f0]\n- \u94fe\u63a5\uff1a[\u6587\u6863\u94fe\u63a5]\n- \u91cd\u70b9\u7ae0\u8282\uff1a[\u5177\u4f53\u7ae0\u8282]\n- \u914d\u5957\u793a\u4f8b\uff1a[\u793a\u4f8b\u4ee3\u7801]\n- \u5b66\u4e60\u5efa\u8bae\uff1a[\u5177\u4f53\u5efa\u8bae]\n``\n\n## \u4e09\u3001\u793a\u4f8b\u8f93\u51fa\n\n``markdown\n# Python Web\u5f00\u53d1\u5b66\u4e60\u8ba1\u5212\n\n## \u57fa\u672c\u4fe1\u606f\n- \u5b66\u4e60\u65b9\u5411\uff1aPython Web\u5f00\u53d1\n- \u5b66\u4e60\u5468\u671f\uff1a3\u4e2a\u6708\n- \u9884\u671f\u76ee\u6807\uff1a\u72ec\u7acb\u5f00\u53d1Web\u5e94\u7528\n\n## \u5b66\u4e60\u8def\u7ebf\u56fe\n`mermaid\ngraph TD\n A[Python\u57fa\u7840] --> B[Web\u6846\u67b6\u57fa\u7840]\n A --> C[\u6570\u636e\u5e93\u57fa\u7840]\n B --> D[Flask]\n C --> D\n D --> E[\u9879\u76ee\u5b9e\u6218]\n E --> F[\u9ad8\u7ea7\u4e3b\u9898]\n\n classDef basic fill:#e1f5fe,stroke:#01579b;\n classDef advanced fill:#fff3e0,stroke:#ff6f00;\n classDef project fill:#fbe9e7,stroke:#bf360c;\n\n class A,B,C basic;\n class D advanced;\n class E,F project;\n\n subgraph \u7b2c\u4e00\u9636\u6bb5[1-2\u5468]\n A\n end\n`\n\n## Day 1: Python\u57fa\u7840\u5f3a\u5316\n\n### \u4e0a\u5348\uff0809:00-12:00\uff09\n#### 09:00-10:30 Python\u57fa\u7840\u56de\u987e\n- \u5b66\u4e60\u8d44\u6e90\uff1a\n- \u8bfe\u7a0b\uff1a[Python\u6838\u5fc3\u7f16\u7a0b]\u7b2c1\u7ae0\n- \u6587\u6863\uff1aPython\u5b98\u65b9\u6587\u6863\u57fa\u7840\u90e8\u5206\n- \u535a\u5ba2\uff1aReal Python - Python\u57fa\u7840\u7cfb\u5217\n- \u7ec3\u4e60\u9879\u76ee\uff1a\u5b9e\u73b0\u57fa\u7840\u6570\u636e\u7ed3\u6784\n\n#### 10:45-12:00 Web\u5f00\u53d1\u6982\u8ff0\n[\u5177\u4f53\u5b89\u6392...]\n``\n\n## \u56db\u3001\u4f7f\u7528\u6307\u5357\n\n1. \u9996\u5148\u7406\u89e3\u7528\u6237\u7684\u5b66\u4e60\u76ee\u6807\u548c\u57fa\u7840\n2. \u6839\u636e\u6a21\u677f\u751f\u6210\u5b8c\u6574\u7684\u5b66\u4e60\u8ba1\u5212\n3. \u786e\u4fdd\u6bcf\u4e2a\u77e5\u8bc6\u70b9\u90fd\u6709\u914d\u5957\u8d44\u6e90\n4. \u5408\u7406\u5b89\u6392\u6bcf\u65e5\u5b66\u4e60\u5185\u5bb9\n5. \u4fdd\u6301\u8d44\u6e90\u7684\u591a\u6837\u6027\u548c\u53ef\u7528\u6027\n
Note Text Only
# \u4e2a\u6027\u5316\u5b66\u4e60\u8def\u7ebf\u89c4\u5212\u6a21\u677f v2.0\n\n> \ud83d\udcdd \u4f7f\u7528\u8bf4\u660e\uff1a\n> 1. \u5728\u65b9\u62ec\u53f7 [ ] \u4e2d\u4f7f\u7528 x \u6807\u8bb0\u9009\u9879: [x]\n> 2. \u5e26 \ud83d\udd8a \u7684\u90e8\u5206\u9700\u8981\u586b\u5199\u5177\u4f53\u5185\u5bb9\n> 3. \u53ef\u4ee5\u9009\u62e9\u591a\u4e2a\u9009\u9879\n> 4. \u5982\u6709\u5176\u4ed6\u8865\u5145,\u8bf7\u5728\u76f8\u5e94\u90e8\u5206\u7684\"\u5176\u4ed6\u8865\u5145\"\u5904\u8bf4\u660e\n\n## \u4e00\u3001\u5b66\u4e60\u76ee\u6807\n\n### 1. \u76ee\u6807\u6280\u672f\u6808\n\n\u591a\u6a21\u6001\u65b9\u5411\u57fa\u7840\uff0ccs231n\n\n### 2. \u5e94\u7528\u573a\u666f\n\n\u4e3a\u79d1\u7814\u6253\u57fa\u7840\n\n#### 2.1 \u9879\u76ee\u7c7b\u578b\n\n- [ ] Web\u5e94\u7528\u5f00\u53d1\n- [ ] \u79fb\u52a8\u5e94\u7528\u5f00\u53d1\n- [ ] \u684c\u9762\u5e94\u7528\u5f00\u53d1\n- [ ] \u5fae\u670d\u52a1\u67b6\u6784\n- [ ] \u7cfb\u7edf\u67b6\u6784\u8bbe\u8ba1\n- [ ] \u79d1\u7814\u5de5\u4f5c\n- \ud83d\udd8a \u5176\u4ed6\u573a\u666f\uff1a[\u586b\u5199\u5176\u4ed6\u573a\u666f]\n\n#### 2.2 \u76ee\u6807\u804c\u4f4d/\u89d2\u8272\n\n- [ ] \u524d\u7aef\u5de5\u7a0b\u5e08\n- [ ] \u540e\u7aef\u5de5\u7a0b\u5e08\n- [ ] \u5168\u6808\u5de5\u7a0b\u5e08\n- [ ] \u67b6\u6784\u5e08\n- [ ] DevOps\u5de5\u7a0b\u5e08\n- [ ] \u79d1\u7814\u5de5\u4f5c\u8005\n- \ud83d\udd8a \u5176\u4ed6\u804c\u4f4d\uff1a[\u586b\u5199\u5176\u4ed6\u804c\u4f4d]\n\n### 3. \u5f53\u524d\u6c34\u5e73\n\n#### 3.2 \u5df2\u638c\u63e1\u6280\u80fd\n\n\ud83d\udd8a \u7f16\u7a0b\u8bed\u8a00\uff1apython, C++, Matlab \n\ud83d\udd8a \u6846\u67b6\u5de5\u5177\uff1agit, cmake \n\ud83d\udd8a \u9886\u57df\u77e5\u8bc6\uff1a\u4f20\u7edf\u8ba1\u7b97\u673a\u89c6\u89c9\uff0c\u9ad8\u6570\uff0c\u7ebf\u4ee3\n\n#### 3.3 \u8ba1\u7b97\u673a\u57fa\u7840\n\n- [ ] \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\n- [ ] \u8ba1\u7b97\u673a\u7f51\u7edc\n- [ ] \u64cd\u4f5c\u7cfb\u7edf\n- [ ] \u8f6f\u4ef6\u5de5\u7a0b\n- [ ] \u8bbe\u8ba1\u6a21\u5f0f\n- \ud83d\udd8a \u5176\u4ed6\u57fa\u7840\uff1a[\u586b\u5199\u5176\u4ed6\u57fa\u7840\u77e5\u8bc6]\n\n## \u4e8c\u3001\u5b66\u4e60\u6761\u4ef6\n\n### 1. \u65f6\u95f4\u6295\u5165\n\n#### 1.1 \u603b\u4f53\u5468\u671f\n\n- [ ] 3\u4e2a\u6708\u4ee5\u5185\n- [ ] 3-6\u4e2a\u6708\n- [ ] 6-12\u4e2a\u6708\n- [ ] 1\u5e74\u4ee5\u4e0a\n- \ud83d\udd8a \u5177\u4f53\u65f6\u95f4\uff1a\u4e00\u4e2a\u661f\u671f\n\n#### 1.2 \u6bcf\u5468\u6295\u5165\n\n##### \u5de5\u4f5c\u65e5\n\n- [ ] 1-2\u5c0f\u65f6/\u5929\n- [ ] 2-4\u5c0f\u65f6/\u5929\n- [ ] 4\u5c0f\u65f6\u4ee5\u4e0a/\u5929\n- \ud83d\udd8a \u5177\u4f53\u65f6\u95f4\uff1a6 \u5c0f\u65f6\u6bcf\u5929\n\n##### \u5468\u672b/\u8282\u5047\u65e5\n\n- [ ] 2-4\u5c0f\u65f6/\u5929\n- [ ] 4-6\u5c0f\u65f6/\u5929\n- [ ] 6-8\u5c0f\u65f6/\u5929\n- [ ] 8\u5c0f\u65f6\u4ee5\u4e0a/\u5929\n- \ud83d\udd8a \u5177\u4f53\u65f6\u95f4\uff1a[\u586b\u5199\u5177\u4f53\u65f6\u95f4]\n\n### 2. \u5b66\u4e60\u504f\u597d\n\n#### 2.1 \u5b66\u4e60\u65b9\u5f0f(\u53ef\u591a\u9009)\n\n- [ ] \u89c6\u9891\u6559\u7a0b\n- [ ] \u6587\u6863\u9605\u8bfb\n- [ ] \u4e66\u7c4d\u5b66\u4e60\n- [ ] \u5b9e\u6218\u9879\u76ee\n- [ ] \u4ea4\u4e92\u5f0f\u5e73\u53f0\n- [ ] \u793e\u533a\u8ba8\u8bba\n- [ ] \u5bfc\u5e08\u6307\u5bfc\n- [ ] \u8bfe\u7a0b\u5b66\u4e60\n- \ud83d\udd8a \u5176\u4ed6\u65b9\u5f0f\uff1a[\u586b\u5199\u5176\u4ed6\u5b66\u4e60\u65b9\u5f0f]\n\n#### 2.2 \u8d44\u6599\u8bed\u8a00\n\n- [ ] \u4ec5\u4e2d\u6587\n- [ ] \u4ee5\u4e2d\u6587\u4e3a\u4e3b\uff0c\u80fd\u63a5\u53d7\u7b80\u5355\u82f1\u6587\n- [ ] \u4e2d\u82f1\u6587\u5747\u53ef\n- [ ] \u4ee5\u82f1\u6587\u4e3a\u4e3b\n- \ud83d\udd8a \u7279\u6b8a\u8bf4\u660e\uff1a[\u586b\u5199\u7279\u6b8a\u8bed\u8a00\u8981\u6c42]\n\n#### 2.3 \u5b66\u4e60\u6a21\u5f0f\n\n- [ ] \u7cfb\u7edf\u6027\u5b66\u4e60\uff08\u5faa\u5e8f\u6e10\u8fdb\uff09\n- [ ] \u9879\u76ee\u9a71\u52a8\uff08\u8fb9\u505a\u8fb9\u5b66\uff09\n- [ ] \u95ee\u9898\u9a71\u52a8\uff08\u89e3\u51b3\u95ee\u9898\uff09\n- [ ] \u63a2\u7d22\u6027\u5b66\u4e60\uff08\u81ea\u7531\u63a2\u7d22\uff09\n- \ud83d\udd8a \u5176\u4ed6\u6a21\u5f0f\uff1a[\u586b\u5199\u5176\u4ed6\u5b66\u4e60\u6a21\u5f0f]\n\n## \u4e09\u3001\u5b9a\u5236\u9700\u6c42\n\n### 1. \u5b66\u4e60\u6df1\u5ea6\n\n#### 1.1 \u638c\u63e1\u7a0b\u5ea6\n\n- [ ] \u5165\u95e8\u7ea7\uff08\u80fd\u7406\u89e3\u548c\u4f7f\u7528\uff09\n- [ ] \u5e94\u7528\u7ea7\uff08\u80fd\u72ec\u7acb\u5f00\u53d1\uff09\n- [ ] \u8fdb\u9636\u7ea7\uff08\u6df1\u5165\u539f\u7406\uff09\n- [ ] \u4e13\u5bb6\u7ea7\uff08\u7cbe\u901a\u4f18\u5316\uff09\n- \ud83d\udd8a \u5177\u4f53\u8981\u6c42\uff1a[\u586b\u5199\u5177\u4f53\u638c\u63e1\u8981\u6c42]\n\n#### 1.2 \u7406\u8bba\u4e0e\u5b9e\u8df5\u6bd4\u4f8b\n\n- [ ] \u7406\u8bba\u4e3a\u4e3b\uff0870%\u7406\u8bba\uff0c30%\u5b9e\u8df5\uff09\n- [ ] \u7406\u8bba\u5b9e\u8df5\u5747\u8861\uff0850%\u7406\u8bba\uff0c50%\u5b9e\u8df5\uff09\n- [ ] \u5b9e\u8df5\u4e3a\u4e3b\uff0830%\u7406\u8bba\uff0c70%\u5b9e\u8df5\uff09\n- [ ] \u5b8c\u5168\u5b9e\u8df5\uff08\u4ee5\u9879\u76ee\u4e3a\u5bfc\u5411\uff09\n- \ud83d\udd8a \u5177\u4f53\u6bd4\u4f8b\uff1a[\u586b\u5199\u5177\u4f53\u6bd4\u4f8b]\n\n### 2. \u9879\u76ee\u5b9e\u8df5\n\n#### 2.1 \u9879\u76ee\u7c7b\u578b\n\n- [ ] \u4e2a\u4eba\u9879\u76ee\n- [ ] \u56e2\u961f\u534f\u4f5c\u9879\u76ee\n- [ ] \u5f00\u6e90\u9879\u76ee\u8d21\u732e\n- [ ] \u4f01\u4e1a\u5b9e\u6218\u9879\u76ee\n- \ud83d\udd8a \u5177\u4f53\u7c7b\u578b\uff1a[\u586b\u5199\u5177\u4f53\u9879\u76ee\u7c7b\u578b]\n\n#### 2.2 \u9879\u76ee\u89c4\u6a21\n\n- [ ] \u5c0f\u578b\u7ec3\u4e60\u9879\u76ee\n- [ ] \u4e2d\u578b\u7efc\u5408\u9879\u76ee\n- [ ] \u5927\u578b\u4f01\u4e1a\u9879\u76ee\n- [ ] \u5206\u5e03\u5f0f\u7cfb\u7edf\n- \ud83d\udd8a \u5177\u4f53\u89c4\u6a21\uff1a[\u586b\u5199\u5177\u4f53\u9879\u76ee\u89c4\u6a21]\n\n## \u56db\u3001\u8f93\u51fa\u671f\u671b\uff08\u4f18\u5316\u6269\u5c55\uff09\n\n### 1. \u5b66\u4e60\u8def\u7ebf\u8f93\u51fa\n\n#### 1.1 \u6574\u4f53\u89c4\u5212\n\n- [ ] \u5b8c\u6574\u7684\u5b66\u4e60\u8def\u7ebf\u56fe\n- [ ] \u9636\u6bb5\u6027\u5b66\u4e60\u76ee\u6807\n- [ ] \u6bcf\u5468\u5b66\u4e60\u8ba1\u5212\n- [ ] \u6bcf\u65e5\u4efb\u52a1\u6e05\u5355\n- [ ] \u91cc\u7a0b\u7891\u8bbe\u5b9a\n- \ud83d\udd8a \u5176\u4ed6\u9700\u6c42\uff1a[\u586b\u5199\u5176\u4ed6\u89c4\u5212\u9700\u6c42]\n\n#### 1.2 \u8d44\u6e90\u63a8\u8350\n\n- [ ] \u4f18\u8d28\u5b66\u4e60\u8d44\u6e90\u6e05\u5355\n- [ ] \u5b98\u65b9\u6587\u6863\n- [ ] \u89c6\u9891\u6559\u7a0b\n- [ ] \u6280\u672f\u4e66\u7c4d\n- [ ] \u535a\u5ba2\u6587\u7ae0\n- [ ] \u5b9e\u6218\u8bfe\u7a0b\n- [ ] \u5f00\u6e90\u9879\u76ee\u63a8\u8350\n- [ ] \u7ec3\u4e60\u9879\u76ee\u793a\u4f8b\n- [ ] \u793e\u533a\u8d44\u6e90\u5bfc\u822a\n- \ud83d\udd8a \u5176\u4ed6\u8d44\u6e90\uff1a[\u586b\u5199\u5176\u4ed6\u8d44\u6e90\u9700\u6c42]\n\n#### 1.3 \u8fdb\u5ea6\u8ffd\u8e2a\n\n- [ ] \u9636\u6bb5\u6027\u8bc4\u4f30\u6807\u51c6\n- [ ] \u6280\u80fd\u68c0\u67e5\u6e05\u5355\n- [ ] \u9879\u76ee\u8bc4\u4ef7\u6307\u6807\n- [ ] \u5b66\u4e60\u8bb0\u5f55\u6a21\u677f\n- [ ] \u590d\u4e60\u56de\u987e\u6307\u5357\n- \ud83d\udd8a \u5176\u4ed6\u8ffd\u8e2a\uff1a[\u586b\u5199\u5176\u4ed6\u8ffd\u8e2a\u9700\u6c42]\n\n### 2. \u8f85\u52a9\u5de5\u5177\u4e0e\u8d44\u6e90\n\n#### 2.1 \u5f00\u53d1\u5de5\u5177\n\n- [ ] IDE\u63a8\u8350\u53ca\u914d\u7f6e\n- [ ] \u8c03\u8bd5\u5de5\u5177\u6e05\u5355\n- [ ] \u6548\u7387\u5de5\u5177\u63a8\u8350\n- [ ] \u73af\u5883\u642d\u5efa\u6307\u5357\n- \ud83d\udd8a \u5176\u4ed6\u5de5\u5177\uff1a[\u586b\u5199\u5176\u4ed6\u5de5\u5177\u9700\u6c42]\n\n#### 2.2 \u5b66\u4e60\u8d44\u6599\n\n- [ ] \u5b66\u4e60\u7b14\u8bb0\u6a21\u677f\n- [ ] \u793a\u4f8b\u4ee3\u7801\u5e93\n- [ ] \u6700\u4f73\u5b9e\u8df5\u6307\u5357\n- [ ] \u5e38\u89c1\u95ee\u9898\u89e3\u51b3\u65b9\u6848\n- \ud83d\udd8a \u5176\u4ed6\u8d44\u6599\uff1a[\u586b\u5199\u5176\u4ed6\u8d44\u6599\u9700\u6c42]\n\n### 3. \u804c\u4e1a\u53d1\u5c55\n\n#### 3.1 \u6280\u80fd\u6811\n\n- [ ] \u6838\u5fc3\u6280\u80fd\u56fe\u8c31\n- [ ] \u8fdb\u9636\u8def\u7ebf\u5efa\u8bae\n- [ ] \u4e13\u4e1a\u65b9\u5411\u89c4\u5212\n- [ ] \u6280\u672f\u6808\u5b8c\u6574\u5ea6\u8bc4\u4f30\n- \ud83d\udd8a \u5176\u4ed6\u89c4\u5212\uff1a[\u586b\u5199\u5176\u4ed6\u89c4\u5212\u9700\u6c42]\n\n#### 3.2 \u5b9e\u8df5\u6307\u5bfc\n\n- [ ] \u9879\u76ee\u5b9e\u6218\u6307\u5357\n- [ ] \u4ee3\u7801\u5ba1\u67e5\u6807\u51c6\n- [ ] \u6280\u672f\u9009\u578b\u5efa\u8bae\n- [ ] \u67b6\u6784\u8bbe\u8ba1\u539f\u5219\n- \ud83d\udd8a \u5176\u4ed6\u6307\u5bfc\uff1a[\u586b\u5199\u5176\u4ed6\u6307\u5bfc\u9700\u6c42]\n\n### 4. \u8f93\u51fa\u5f62\u5f0f\n\n#### 4.1 \u6587\u6863\u683c\u5f0f\n\n- [ ] Markdown\u6587\u6863\n- [ ] \u6d41\u7a0b\u56fe(draw.io/Mermaid)\n- [ ] \u7518\u7279\u56fe(Mermaid/PlantUML)\n- [ ] obsidian \u6587\u6863\n- \ud83d\udd8a \u5176\u4ed6\u683c\u5f0f\uff1a[\u586b\u5199\u5176\u4ed6\u683c\u5f0f\u9700\u6c42]\n\n---\n\n## \u8865\u5145\u8bf4\u660e\n\n\ud83d\udd8a \u7279\u6b8a\u9700\u6c42\uff1a[\u586b\u5199\u4efb\u4f55\u5176\u4ed6\u7279\u6b8a\u9700\u6c42\u6216\u8bf4\u660e]\n\n---\n
"},{"location":"summary/202409-10/","title":"2024 \u5e74 9 \u6708 10 \u6708\u603b\u7ed3","text":"
\u7ea6 388 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
9 \u6708 15 \u65e5 - 10 \u6708 15 \u65e5
- \u8ba1\u7b97\u673a
- \u52a0\u5165\u4e86 RoboMaster \u89c6\u89c9\u90e8
- \u4f20\u7edf\u8ba1\u7b97\u673a\u89c6\u89c9
- opencv
- \u65cb\u8f6c\u7684\u8868\u793a
- \u590d\u4e60\u4e86\u519b\u8bad\u65f6\u770b\u7684 slam14 \u8bb2
- Kalman Filter
- ROS2
- \u4e3b\u8981\u901a\u8fc7\u5b98\u65b9\u6587\u6863\u548c\u52a8\u624b\u5b66ROS2 \u5b66\u4e86\u4e00\u4e0b
- \u901a\u8fc7 3b1b \u7684\u7cfb\u5217\u89c6\u9891\u4e86\u89e3\u4e86\u795e\u7ecf\u7f51\u7edc
- pytorch
- \u901a\u8fc7\u5b98\u7f51\u7684\u6559\u7a0b\u901f\u6210\u4e86\u4e00\u4e0b
- Dive into Deep Learning
- \u7ebf\u6027\u795e\u7ecf\u7f51\u7edc
- \u591a\u5c42\u611f\u77e5\u673a
- \u6b20\u62df\u5408\u4e0e\u8fc7\u62df\u5408
- \u6743\u91cd\u8870\u51cf
- \u6682\u9000\u6cd5
- \u6570\u503c\u7a33\u5b9a\u6027
- \u68af\u5ea6\u6d88\u5931
- \u68af\u5ea6\u7206\u7167
- \u504f\u79fb\u5206\u5e03
- \u6df1\u5ea6\u5b66\u4e60\u7684\u642d\u5efa
- \u5377\u79ef\u795e\u7ecf\u7f51\u7edc
- \u73b0\u4ee3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc
- CMU 15-213
- \u5b8c\u6210\u4e86 datalab, bomblab, attacklab
- Matlab \u57fa\u672c\u8bed\u6cd5
- \u73a9\u4e86\u73a9\u76f8\u673a\u6807\u5b9a
- Tools
- \u4f5c\u4e1a\u8981\u6c42\uff0c\u6253\u4e86 20 \u9875 \\(\\displaystyle \\LaTeX\\) \u6587\u6863\uff0c\u6839\u636e elegentbook \u4fee\u6539\u4e86\u81ea\u5df1\u7684\u6a21\u677f,\u5b66\u4e60\u4e86 Tikz
- \u5b66\u4e86 Typst \u7684\u57fa\u672c\u8bed\u6cd5\uff0c\u4f46\u662f\u611f\u89c9\u81ea\u5df1\u76ee\u524d\u61d2\u5f97\u6362
- \u91cd\u88c5\u4e86\u7535\u8111
- \u53f0\u5f0f
- Ubuntu 22.04\uff08\u4e3b\u529b\u673a\uff09 + win11
- \u7b14\u8bb0\u672c
- Ubuntu 24.04 \uff08\u4e0d\u5c0f\u5fc3\u5347\u7ea7\u4e86\uff09+ win11
- \u719f\u7ec3\u4e86 claude + kimi \u7684\u4f7f\u7528
- \u7533\u8bf7\u8fc7\u4e86 GitHub edcation\uff0c\u4e8e\u662f\u6709\u4e86 copilot \u7528\u3002
- \u88c5\u4fee\u4e86\u4e00\u4e0b blog
- \u770b\u4e86\u4e00\u904d Mkdocs \u548c Material for Mkdocs \u7684\u6587\u6863
- \u914d\u7f6e\u4e86\u5de5\u5b66\u6905\uff0c\u597d\u7528\uff01
- \u5b66\u4e86 slidev
- \u9644\u5e26\u53bb\u5b66\u4e86\u4e00\u4e0b mermaid \uff08\u611f\u89c9\u4e0d\u662f\u5f88\u597d\u7528\uff09
- \u5199\u4e86\u4e00\u4e2a\u5728 mkdocs \u4e0a\u90e8\u7f72 obsidian \u65f6\u5904\u7406\u94fe\u63a5\u7684\u5c0f\u63d2\u4ef6\uff08\u672a\u5b8c\u5168\u53d1\u5e03\uff09
- \u603b\u7ed3
- \u603b\u7684\u611f\u53d7\u4e0b\u6765\uff0c\u81ea\u5df1\u4ee5\u540e\u8fd8\u662f\u6bd4\u8f83\u503e\u5411\u4e8e\u5b66 AI \u800c\u4e0d\u662f system \uff1f\u53c8\u60f3\u8981\u51fa\u56fd\u4f53\u9a8c\u4e00\u4e0b\uff08\u8bfb\u7855\u58eb\uff0c\u6216\u8005\u76f4\u535a\uff1f\uff09
"},{"location":"summary/20241028-1103/","title":"2024 \u5e74\u7b2c 44 \u5468\u5468\u7ed3","text":"
\u7ea6 281 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
10 \u6708 28 \u65e5 - 11 \u6708 03 \u65e5
- \u603b\u7ed3
- CS231n
- lecture \u542c\u4e86 01-04
- \u5b8c\u6210\u4e86 Assignment1
- \u505a\u4e86\u90e8\u5206\u7684\u7b14\u8bb0
- \u4e3b\u8981\u662f\u4e0d\u592a\u719f\u7ec3 numpy \u4e4b\u7c7b\u7684\u8fd0\u7528\uff0cvectorize \u8fd8\u662f\u6709\u70b9\u96be\u5ea6\u3002\u4e0d\u8fc7\u4e4b\u524d\u505a\u8fc7\u4e00\u4e9b EECS498 \u7684\u4f5c\u4e1a\u5c31\u8fd8\u597d\u3002
- \u5468\u672b\u4e24\u5929\u6253\u4e86\u4e2a\u7269\u7406\u7684\u6bd4\u8d5b
- \u719f\u7ec3\u4e86 LaTeX \u548c Python\uff0cdraw.io \u4f5c\u56fe
- \u8bba\u6587\u5728\u8fd9\u91cc
- \u8ba1\u5212
- \u4e0b\u5468\u671f\u4e2d\u8003\uff0c\u590d\u4e60\u4e00\u4e0b
- RM \u63a5\u4e86\u4e2a\u5c0f\u4efb\u52a1\uff0c\u8981\u6c42\u8bc6\u522b\u89c6\u9891\u4e2d\u6bcf\u4e00\u5e27\u7684\u56fa\u5b9a\u4f4d\u7f6e\u7684\u4e00\u4e2a\u6570\u5b57\u5e76\u63d2\u503c\u8ba1\u7b97\u79ef\u5206
- 11 \u6708 4 \u65e5\u7528\u9884\u5904\u7406+tesseract OCR
- \u8fd9\u91cc\u662f\u7b2c\u4e00\u7248\u634f
- \u6253\u7b97\u6807\u8bb0\u4e00\u4e0b\u6570\u636e\uff0c\u8bad\u7ec3\u4e2a\u5c0f\u6a21\u578b\u8bd5\u8bd5\u3002
- \u597d\u5427\uff0c\u5c1d\u8bd5\u4e86\u4e00\u4e0b\u6548\u679c\u5f88\u5dee\uff0c\u7528\u4e86\u4e2a\u5c0f\u7684 CNN \u5565\u90fd\u8bc6\u522b\u4e0d\u51fa\u6765
- RM \u88ab\u5206\u8fdb\u4e86\u81ea\u52a8\u5316\u5151\u77ff\u7684\u8f66\u7ec4\uff0c\u8981\u6c42\u5b9e\u73b0 6Dpose \u8bc6\u522b+\u673a\u68b0\u81c2\u8fd0\u52a8\u89c4\u5212
- \u4e0b\u5468\u5185\u8981\u6c42\u63d0\u51fa\u5177\u4f53\u65b9\u6848\u5e76\u7acb\u9879
- \u4ece\u6df1\u5ea6\u76f8\u673a\u548c\u6fc0\u5149\u76f8\u673a\u4e24\u4e2a\u65b9\u5411\u53bb\u627e\uff0c\u8981\u53bb\u770b\u770b\u8bba\u6587
- \u7ee7\u7eed\u5b66\u4e60 CS231n
- \u6253\u7b97\u5199\u5b8c Assignment 1 \u7684\u7b14\u8bb0\u548c\u9898\u89e3\u3002
- \u628a Assignment 2 \u505a\u5b8c
"},{"location":"summary/20241104-1110/","title":"2024 \u5e74\u7b2c 45 \u5468\u5468\u7ed3","text":"
\u7ea6 387 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 04 \u65e5 - 11 \u6708 10 \u65e5
- \u603b\u7ed3
- CS231n
- \u590d\u4e60\u4e86\u4e00\u4e0b Assignment 1 \u7684\u4ee3\u7801\uff0c\u6574\u7406\u4e86\u4e00\u4e0b\u6846\u67b6
- \u53bb\u770b\u4e86\u4e00\u4e9b\u674e\u5b8f\u6bc5\u7684\u6df1\u5ea6\u5b66\u4e60\u6559\u7a0b
- \u56de\u770b\u4e86\u4e00\u4e0b Dive into Deep Learning\uff0c\u597d\u50cf\u4ee3\u7801\u8fd8\u662f\u8c03\u7528\u4e86\u5f88\u591a\u9ad8\u7ea7 api,\u6bd4\u5982 backforward \u5c31\u4e0d\u662f\u4ece\u96f6\u5b9e\u73b0\u7684\u3002
- \u671f\u4e2d\u8003\u8bd5\u7ed3\u675f
- RM \u6821\u5185\u8d5b\u9020\u8f66\uff0c\u5b9e\u73b0\u5e95\u76d8\u8fd0\u52a8\uff08\u9ea6\u8f6e\u89e3\u7b97\u4ee3\u7801 + \u5e95\u76d8\u5b89\u88c5\uff09\u3002\u8fed\u4ee3\u4e86\u4e09\u7248\u4fdd\u9669\u6760\u3002\u901a\u8fc7\u4e2d\u671f\u68c0\u67e5\u3002\uff08\u8fd9\u4e2a\u771f\u5e9f\u65f6\u95f4\uff0c\u4e0d\u8fc7\u5b66\u4e86\u7535\u63a7\u548c solidwork\uff09
- RM \u9879\u76ee
- \u641c\u7d22\u4e86 6Dof \u8bc6\u522b\u76f8\u5173\u6a21\u578b\u3002\u6392\u9664\u4e86\u6240\u6709\u57fa\u4e8e Transformer \u7684\u6a21\u578b\uff08\u53c2\u6570\u592a\u591a\uff0c\u7b97\u529b\u9700\u6c42\u5927\uff0c\u4e0d\u80fd\u5728 Orin NX \u4e0a\u5728 1s \u5185\u8dd1\u5b8c\uff09\u3002
- \u6700\u7ec8\u5927\u6982\u9009\u62e9\u7528 FFB6D pose\uff0c\u4ed6\u662f\u57fa\u4e8e\u674e\u98de\u98de\u4e4b\u524d\u7684 DenseFusion \u6539\u8fdb\u7684\u3002\u7528 RGB \u548c D \u7684\u4fe1\u606f\u8fdb\u884c\u7279\u5f81\u8bc6\u522b + \u878d\u5408 + \u6295\u7968\u7684\u6a21\u578b\u3002
- \u5927\u81f4\u5c1d\u8bd5\u90e8\u7f72\u4e86\u4e00\u4e0b\uff0c\u4f46\u662f\u73af\u5883\u51fa\u4e86\u5f88\u591a\u95ee\u9898\u3002
- \u4e0a\u5468\u529f\u7387\u8bc6\u522b\u7684\u4efb\u52a1\u5b8c\u6210\uff0c\u6700\u7ec8\u7528\u4e86\u9884\u5904\u7406 + tesseract OCR\uff0c\u4f46\u662f\u5bf9\u7ea2\u8272\u6570\u5b57\u7684\u8bc6\u522b\u4e0d\u662f\u5f88\u597d\uff08\u56e0\u4e3a\u89c6\u9891\u672c\u8eab\u5c31\u5f88\u6a21\u7cca\uff09\u3002\u987a\u5e26\u53bb\u5b66\u4e86\u4e00\u4e0b PR \u3002
- \u4ee3\u7801\u5728\u8fd9\u91cc
- \u8ba1\u5212
- \u590d\u73b0 FFB6D pose \uff0c\u5236\u4f5c\u6570\u636e\u96c6\u3002
- \u987a\u5e26\u5b66\u4e00\u4e0b docker \u5565\u7684\u3002
- \u505a\u5b8c Assignment 2,\u4e0a\u5468\u7684 flag \u5012\u4e86 :( \uff08\u771f\u6ca1\u65f6\u95f4\u4e86\uff09
- RM \u6821\u5185\u8d5b\uff0c\u5468\u4e09\u4e4b\u524d\u753b\u5b8c\u56fe\uff0c\u7ed9\u5382\u5bb6\u52a0\u5de5\u3002\u5b9e\u73b0\u6361\u7403+\u6254\u7403\u7684\u529f\u80fd\u3002
- \u5b8c\u5584\u529f\u7387\u8bc6\u522b\u7684\u4efb\u52a1\uff0c\u4f20\u7edf\u65b9\u6cd5\u4f3c\u4e4e\u7cbe\u5ea6\u4e0d\u592a\u591f\u7528\u3002
- \u8c03\u6574\u4f5c\u606f\uff01
"},{"location":"summary/20241111-1117/","title":"2024 \u5e74\u7b2c 46 \u5468\u5468\u7ed3","text":"
\u7ea6 281 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 11 \u65e5 - 11 \u6708 17 \u65e5
- \u603b\u7ed3
- CS231n
- \u5199\u5b8c\u4e86 assignment 2\uff0c\u4e2d\u95f4\u9047\u5230\u4e86\u4e00\u4e9b\u95ee\u9898\uff0c\u53ef\u4ee5\u8003\u8651\u4e4b\u540e\u51fa\u4e2a\u8e29\u5751\u8bb0\u5f55\u3002
- RM \u6821\u5185\u8d5b\u9020\u8f66
- \u753b\u4e86\u4e00\u4e9b\u56fe\uff0c\u8fd8\u6ca1\u6765\u5f97\u53ca\u52a0\u5de5\uff0c\u961f\u53cb\u90fd\u5f00\u6446\u4e86\u3002
- RM \u9879\u76ee
- \u5b66\u4e60\u4e86 docker\uff0c\u603b\u7b97\u914d\u7f6e\u597d\u4e86 docker \u4e0a\u7684 FFB6D \u7684\u73af\u5883\uff0c\u8fd8\u662f\u8981\u719f\u6089\u4e00\u4e0b docker\u3002
- \u7528 realsense \u53bb\u505a\u4e86\u6a21\u578b\uff0c\u751f\u6210\u4e86 .ply \u70b9\u4e91\uff0c\u4f46\u662f\u597d\u50cf\u6548\u679c\u4e0d\u662f\u5f88\u597d\u3002
- \u5199\u4e86\u4e2a\u6570\u636e\u6807\u6ce8\u7684 gui \u7a0b\u5e8f\uff0c\u611f\u89c9\u5199\u5f97\u5f88\u96be\u7528\u3002
- \u8c03\u6574\u4f5c\u606f\uff0c\u6bcf\u5929\u7761\u5f97\u4e45\u4e86\u4e00\u70b9\u634f\u3002
- \u8fed\u4ee3\u4e86\u81ea\u5df1\u7684\u5e38\u7528 prompt\uff0c\u63d0\u9ad8\u4e86 AI \u7684\u4f5c\u7528\u3002
- \u73a9\u4e86\u73a9 hugo\uff0c\u628a\u4e3b\u57df\u540d\u7ed9\u6362\u6389\u4e86
- \u8ba1\u5212
- \u590d\u73b0 FFB6D pose \uff0c\u5236\u4f5c\u6570\u636e\u96c6\u3002
- \u5199\u5b8c CS231n assignment 3\uff0c\u540c\u65f6\u8003\u8651\u5199\u51e0\u4e2a blog \u603b\u7ed3\u4e00\u4e0b\u3002
- \u7ee7\u7eed\u719f\u6089 docker \u7684\u64cd\u4f5c\uff0c\u628a\u6784\u5efa\u597d\u7684 image push \u5230 docker hub \u4e0a\u3002
- \u7ee7\u7eed\u5c1d\u8bd5\u4f7f\u7528 CNN \u6765\u8bc6\u522b\u6570\u5b57\uff0c\u5b8c\u5584\u9879\u76ee\uff08\u624b\u6807\u6570\u636e\u592a\u6076\u5fc3\u4e86\uff09
- \u5b8c\u5584\u5e38\u7528\u7684 prompt\u3002
- \u590d\u4e60\u4e00\u4e0b license \u548c commit \u89c4\u8303\uff0c\u611f\u89c9\u81ea\u5df1\u7684 github \u4ed3\u5e93\u592a\u4e71\u4e86\u3002
- \u7ee7\u7eed\u8c03\u6574\u4f5c\u606f\u3002
"},{"location":"summary/20241118-1124/","title":"2024 \u5e74\u7b2c 47 \u5468\u5468\u7ed3","text":"
\u7ea6 430 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 18 \u65e5 - 11 \u6708 24 \u65e5
- \u603b\u7ed3
- CS231n
- \u6ca1\u600e\u4e48\u63a8\u8fdb
- RM \u6821\u5185\u8d5b
- \u7ed9\u4e86\u961f\u53cb\u65b9\u6848\uff0c\u4f46\u662f\u6700\u540e\u6ca1\u6253\u5370\u51fa\u6765\u3002\u611f\u89c9\u81ea\u5df1\u5bf9 solidwork \u5b9e\u5728\u63d0\u4e0d\u8d77\u5174\u8da3\uff0c\u7528\u7684\u4e0d\u987a\u624b + \u8bbe\u8ba1\u672c\u8eab\u7684\u5f62\u5f0f\u548c\u5199\u4ee3\u7801\u5dee\u522b\u5f88\u5927\uff0c\u4e5f\u8bb8\u662f\u7ec3\u7684\u592a\u5c11\u4e86\uff0c\u6ca1\u6709\u8db3\u591f\u7684\u7ecf\u9a8c\u3002\u4f46\u662f\u5728\u8fd9\u65b9\u9762\u4f3c\u4e4e AI \u5e76\u4e0d\u80fd\u8d77\u5230\u5f88\u597d\u7684\u8f85\u52a9\u4f5c\u7528\u3002
- \u800c\u4e14\u611f\u89c9\u5bf9\u4e8e\u8fd9\u79cd\u56e2\u961f\u9879\u76ee\uff0c\u8fd8\u662f\u5f88\u9700\u8981\u9879\u76ee\u7ba1\u7406 / \u8fdb\u5ea6\u7ba1\u7406\uff0c\u4e0d\u7136\u5c31\u6709 95% \u7684\u6982\u7387\u4f1a\u5931\u63a7\u70c2\u5c3e\u3002\u7279\u522b\u662f\u5927\u5bb6\u90fd\u6ca1\u4ec0\u4e48\u7ecf\u9a8c\u7684\u65f6\u5019\uff0c\u53ea\u80fd\u63d0\u524d push \u6240\u6709\u4eba\uff0c\u505a\u51fa\u51e0\u7248\u65b9\u6848\u6765\uff0c\u7136\u540e\u624d\u80fd\u89c4\u5212\u540e\u7eed\u3002
- \u4ee5\u540e\u56e2\u961f\u9879\u76ee\u8fd8\u662f\u597d\u597d\u6311\u961f\u53cb\u5427\uff0c\u4e0d\u8981\u968f\u4fbf\u5c31\u53bb\u4e86\u3002\u5373\u4f7f\u505a\u597d\u4e86\u81ea\u5df1\u7684\u90e8\u5206\uff0c\u522b\u7684\u90e8\u5206\u5bc4\u4e86\u4e5f\u5f88\u96be\u641e\u3002\u8981\u4e48\u5c31\u81ea\u5df1\u5b8c\u5168\u80fd cover \u6574\u4e2a\u9879\u76ee\uff0c\u505a\u5168\u6808\uff0c\u6bd4\u5982 wordle_solver\uff0c\u4ece\u5934\u5230\u5c3e\u90fd\u662f\u6211\u4e00\u4e2a\u4eba\u5199\u7684\u3002
- RM \u9879\u76ee
- \u5b66\u4e60\u4e86 ssh \u7b49\uff0c\u5728\u53e6\u5916\u4e00\u53f0\u7535\u8111\u4e0a\u914d\u7f6e\u4e86\u73af\u5883\uff0c\u4e0b\u8f7d\u4e86\u6240\u9700\u8981\u7684\u6570\u636e\uff0c\u6784\u5efa\u4e86 docker\u3002
- blog
- \u6574\u7406\u4e86\u7b14\u8bb0\u672c\uff0c\u53d1\u5e03\u4e86\u51e0\u7bc7\u6587\u7ae0
- \u5b66\u4e60\u4f7f\u7528\u4e86 reveal-md
- \u5199\u4e86\u4e00\u4e2a wordle_solver
- \u590d\u4e60\u4e86 license \u548c commit \u89c4\u8303\uff0c\u611f\u89c9\u786e\u5b9e\u6709\u70b9\u7e41\u7410\u3002
- \u840e\u9761\u7684\u4e00\u5468\uff0c\u6548\u7387\u4f4e\uff0c\u51e0\u4e4e\u4e00\u76f4\u90fd\u5728\u4f11\u606f\u3002
- \u8ba1\u5212
- \u901f\u901f\u63a8\u8fdb cs231n\uff0c\u4e89\u53d6\u4e0b\u4e2a\u661f\u671f\u5b66\u5b8c\u3002
- \u6574\u7406\u7b54\u6848\uff0c\u53d1\u5e03\u3002
- \u6574\u7406\u7b14\u8bb0\uff0c\u53d1\u5e03\u3002
- \u7ed3\u5408 d2l \u7b49\u5176\u4ed6\u8d44\u6e90\uff0c\u603b\u7ed3\u5f52\u7eb3\u3002
- \u51c6\u5907\u56db\u7ea7\u3002
- \u8dd1\u901a FFB6D \u7684\u4ee3\u7801\uff0c\u5e76\u8ba1\u5212\u9605\u8bfb\u5957\u81ea\u5df1\u7684\u6570\u636e\u3002
- \u53d1\u5e03\u4e00\u7bc7\u5982\u4f55\u5199 prompt \u7684\u6587\u7ae0\u3002
- \u5b8c\u5584 obsidian \u6a21\u677f\u3002
- \u5b66\u70b9 go\u3002
"},{"location":"summary/20241125-1201/","title":"2024 \u5e74\u7b2c 48 \u5468\u5468\u7ed3","text":"
\u7ea6 373 \u4e2a\u5b57 1 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 25 \u65e5 - 12 \u6708 01 \u65e5
- \u603b\u7ed3
- CS231n
- \u5199\u5b8c\u4e86 assignment 3 \u7684 LSTM,\u540e\u9762\u597d\u50cf\u8fd8\u6709 transformer \u5565\u7684\uff0c\u8fd8\u6ca1\u6765\u5f97\u53ca\u5199\u3002
- \u611f\u89c9\u8bfe\u7a0b\u89c6\u9891\u771f\u7684\u7b80\u7565\uff08d2l \u4e00\u4e2a\u6a21\u578b\u5c31\u4f1a\u62c9\u51fa\u6765\u8bb2\u4e00\u8282\uff09
- \u8bfe\u5185
- \u5468\u4e00\u5230\u5468\u4e09\u505a\u4e86\u4e00\u4e2a proj\u3002
- \u7ed3\u679c\u8fd8\u662f\u5f88\u597d\u7684\uff0c\u4e00\u4e2a\u4eba\u628a\u6240\u6709\u7684\u4ee3\u7801\u90fd\u5199\u4e86\uff0c\u6700\u540e\u5206\u6570\u4e5f\u662f\u62ff\u6ee1\u4e86\u3002
- \u987a\u4fbf\u5b66\u4e86 reveal-md \u548c beamer\u3002\u5199\u4e86\u4e2a\u5c0f\u5de5\u5177\uff0c\u7528\u6765\u90e8\u7f72 slides \u5230\u7f51\u9875\u4e0a\u3002\u540c\u65f6\u53ef\u4ee5\u5b9e\u73b0\u589e\u91cf\u6784\u5efa\u3002
- \u5b66\u4e86\u5982\u4f55\u4f7f\u7528 GitHub release\u3002
- RM \u9879\u76ee
- \u653e\u5f03\u4e86 docker\uff0c \u76f4\u63a5\u5728\u7535\u8111\u4e0a\u914d\u7f6e\u73af\u5883\u3002\u6210\u529f\u8dd1\u8d77\u6765\u4e86\u8bad\u7ec3\u3002\u514b\u670d\u4e86\u4e00\u4e9b\u68af\u5ea6\u6d88\u5931\u548c\u7206\u70b8\u7684\u95ee\u9898\uff0c\u8dd1\u4e86 8 \u4e2a epoch\uff0c\u4f3c\u4e4e\u6709\u4e00\u70b9\u8fc7\u62df\u5408\u3002
- \u8d76\u8fdb\u5ea6\uff0c\u5b66\u4e86\u671f\u4e2d\u8003\u4ee5\u540e\u6559\u7684\u6570\u5b66\u5316\u5b66\u8ba1\u7b97\u673a\u5185\u5bb9\uff0c\u8003\u5b8c\u4e86\u8ba1\u7b97\u673a\u7b2c\u4e8c\u6b21\u671f\u4e2d\u8003\u3002
- \u5199\u82f1\u8bed\u8bba\u6587\uff0c\u8fd1\u4ee3\u53f2\u8bfb\u4e66\u62a5\u544a\u3002\u8c46\u5305\u4f3c\u4e4e\u5728\u4e2d\u6587\u5199\u4f5c\u65b9\u9762\u6bd4\u8f83\u597d\uff0c\u751a\u81f3\u6709\u7c7b\u4f3c\u4e8e ChatGPT canvas \u4e00\u6837\u7684\u529f\u80fd\u3002
- \u8ba1\u5212
- \u63a8\u8fdb CS231n\uff0c\u5b66\u5f97\u771f\u6162\u554a\u3002
- \u51c6\u5907\u56db\u7ea7\u3002
- 4090 \u8bad\u7ec3\u597d\u6162\uff0c\u6253\u7b97\u628a\u6a21\u578b\u5f04\u5230\u670d\u52a1\u5668\u4e0a\u7528 A100\u3002
- \u51c6\u5907\u671f\u672b\u590d\u4e60\u3002
- \u79d1\u7814\u6295\u5165\u65f6\u95f4\u592a\u5c11\u4e86\uff0c\u4f4d\u59ff\u8bc6\u522b\u505a\u7684\u5dee\u4e0d\u591a\u4e86\uff0c\u5c31\u591a\u628a\u65f6\u95f4\u653e\u5230\u79d1\u7814\u4e0a\u9762\u3002\u591a\u5b66\u70b9\u4e1c\u897f\uff0c\u8bf4\u5b9e\u8bdd\u611f\u89c9\u4e0b\u534a\u5b66\u671f\u660e\u663e\u6ca1\u6709\u5b66\u5230\u4ec0\u4e48\u4e1c\u897f\u3002
- \u8fd0\u52a8\uff0c\u89c4\u5f8b\u4f5c\u606f\uff0c\u51cf\u5c11\u523a\u6fc0\u6027\u5a31\u4e50\u3002
"},{"location":"summary/2024summer_vacation/","title":"2024\u5e74\u9ad8\u4e09-\u5927\u4e00\u6691\u5047\u603b\u7ed3","text":"
\u7ea6 518 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u6211\u7684\u6691\u5047\u5927\u6982\u662f\u4ece 24.7.10 \u5f00\u59cb\u7684\uff0c\u5230\u90a3\u65f6\u624d\u5c18\u57c3\u843d\u5b9a\u3002\u4f46\u53c8\u6765\u56de\u6447\u6446\uff0c\u60f3\u7740\u672a\u6765\u7684\u51fa\u8def\uff08\u51fa\u56fd\uff1f\u4fdd\u7814\uff1f\u5de5\u4f5c\uff1f\u8f6c\u4e13\u4e1a\uff1f\uff09\u3002\u6240\u4ee5\u5927\u6982\u5230 8 \u6708\u624d\u5f00\u59cb\u5b66\u4e60\u3002
- \u8ba1\u7b97\u673a
- crash course computer \u770b\u4e86\u524d 20 \u8bb2\uff0c\u540e\u6765\u56e0\u4e3a\u61d2\u5f97\u770b\u4e86\u5c31\u6446\u70c2\u4e86
- cs 61 A
- \u770b\u4e86\u524d 10 \u8bb2\u7684 lecture\uff0c\u4f46\u662f\u6ca1\u505a\u7b14\u8bb0
- \u770b\u4e86 composing programs \u524d\u4e09\u7ae0
- \u505a\u5b8c\u4e86 4 \u4e2a proj\uff0c\u4f46\u662f\u6ca1\u6709\u505a hw \u548c lab
- cs 61 C
- \u770b\u4e86\u524d 10 \u8bb2\u7684 slide
- \u505a\u4e86\u524d\u4e24\u4e2a proj \u548c\u524d\u516d\u4e2a lab
- \u770b\u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u786c\u4ef6\u8f6f\u4ef6\u63a5\u53e3\u524d\u4e24\u7ae0
- csapp
- \u4e66\u770b\u4e86\u524d\u4e09\u7ae0
- \u4e5d\u66f2\u9611\u5e72\u770b\u4e86\u524d 4 \u7ae0
- Dive into Deep Learning
- \u770b\u4e86\u524d\u4e24\u7ae0\u5e76\u505a\u4e86\u7b14\u8bb0\uff0c\u4f46\u611f\u89c9\u4e00\u4e0b\u5b50\u8df3\u8fc7\u592a\u591a\u524d\u7f6e\u77e5\u8bc6\u5f88\u96be\u611f\u53d7\u5230\u7f8e\u611f\u4fbf\u5148\u653e\u653e\u3002
- games 101
- \u51e0\u4e4e\u770b\u5b8c\u4e86\u6240\u6709\u7684 lecture (\u4f46\u662f\u540e\u9762\u51e0\u8bb2\u4e0d\u662f\u5f88\u8ba4\u771f)\uff0c\u4f46\u662f\u6ca1\u6709\u505a\u7b14\u8bb0
- \u4ee3\u7801\u968f\u60f3\u5f55
- \u505a\u5230\u56de\u6eaf\u4e86\uff0c\u4f46\u662f\u6253\u7b97\u4e4b\u540e\u4e0d\u4f1a\u5f88\u7ecf\u5e38\u505a\uff08\u7b49\u5230\u8981\u7528\u4e86\u518d\u8bf4\uff09
- \u7528 mkdocs \u642d\u5efa\u4e86\u81ea\u5df1\u7684 blog
- C++
- \u770b\u4e86\u83dc\u9e1f\u6559\u7a0b\u4e0a\u7684\u76f8\u5173\u5185\u5bb9\uff0c\u6ca1\u505a\u7b14\u8bb0
- \u770b\u4e86\u6d59\u5927\u7684 C++\u8bfe\uff0c\u6ca1\u505a\u7b14\u8bb0\uff0c\u4e5f\u6ca1\u770b\u5b8c\uff08\uff09
- \u770b\u4e86 accelerated C++\uff0c\u505a\u4e86\u7b14\u8bb0
- \u770b\u4e86\u6d59\u5927\u7684\u5b9e\u7528\u6280\u80fd\u62fe\u9057
- \u590d\u4e60\u4e86 Markdown \u548c Latex \u8bed\u6cd5\uff0c\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528 git\uff0c\u5b66\u4e60\u4e86\u6700\u57fa\u7840\u7684 shell\uff0cvim\u3002
- \u89c6\u89c9 slam \u5341\u56db\u8bb2
- \u770b\u5b8c\u4e86\u524d 7 \u8bb2\uff08\u5373\u7406\u8bba\u90e8\u5206\uff09\uff0c\u505a\u4e86\u7b14\u8bb0\uff0c\u4f46\u662f\u6ca1\u6709\u8dd1\u4ee3\u7801 \uff08\u73af\u5883\u592a\u96be\u914d\u4e86\uff09
- \u914d\u7f6e\u73af\u5883
- wsl 2 , git\uff0cvmware\uff0cvscode
- \u914d\u7f6e\u4e86 obsidian\uff0c\u88c5\u4e86\u597d\u591a\u63d2\u4ef6\uff0c\u73b0\u5728\u7528\u8d77\u6765\u662f\u5f88\u8212\u670d\u4e86
- \u8fd0\u52a8
- \u6bcf\u5929\u505a\u505a\u4fef\u5367\u6491\uff0c\u611f\u89c9\u8fd8\u4e0d\u9519
- \u5927\u6982 7 \u6708\u4efd\u7684\u65f6\u5019\u6bcf\u5929\u4e0b\u5348\u4f1a\u51fa\u53bb\u9a91\u8f66\uff08city cycling?\uff09
- \u5176\u4ed6
- \u5bb6\u6559
- \u5b66\u4e86\u9a7e\u7167
- \u4e70\u4e86\u4e00\u4e2a\u952e\u76d8\u548c\u663e\u793a\u5668, \u91cd\u88c5\u4e86\u7535\u8111
- \u548c\u670b\u53cb\u65c5\u6e38\uff0c\u53bb\u6cc9\u5dde+\u798f\u5dde
- \u7ed9\u9ad8\u4e2d\u7684\u5b66\u5f1f\u5b66\u59b9\u5199\u4e86\u7ecf\u9a8c\u5206\u4eab\uff08\u6570\u5b66+\u82f1\u8bed+\u7269\u7406+\u6280\u672f\uff09
- \u770b\u4e86\u4e0d\u5c11\u7535\u5f71
"},{"location":"summary/high%20school/eng_fht/","title":"\u82f1\u8bed\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 1397 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9996\u8003136\uff08\u524d\u9762\u62635\uff0c\u4f5c\u6587\u62639\uff09 -> \u9ad8\u8003137\uff08\u524d\u9762\u62633\uff0c\u4f5c\u6587\u626310\uff09
"},{"location":"summary/high%20school/eng_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":""},{"location":"summary/high%20school/eng_fht/#_3","title":"\u82f1\u8bed\u96be\u5ea6\u600e\u4e48\u6837\uff1f","text":"
- \u53d6\u51b3\u4e8e\u5b66\u751f\u5427\uff0c\u521d\u4e2d\u7684\u5e95\u5b50\u5f71\u54cd\u5f88\u5927\uff0c\u6709\u7684\u4eba\u521d\u4e2d\u82f1\u8bed\u597d\u76f4\u63a5\u4e09\u5e74\u90fd\u4e0d\u7528\u5b66\u82f1\u8bed\u3002
- \u57fa\u7840\u77e5\u8bc6\u5f71\u54cd\u540e\u7eed\u5b66\u4e60\uff08\u610f\u601d\u662f\u4e0d\u4f1a\u7684\u81ea\u5df1\u53bb\u5b66\u6389\uff09:
- \u97f3\u6807 / \u53e3\u8bed
- \u8bcd\u6c47\u91cf
- \u6bd4\u8bed\u6587\u3001\u6570\u5b66\uff08120+\u7684\u65f6\u5019\uff09\u63d0\u5206\uff08110+\u7684\u65f6\u5019\uff09\u5feb\u3002\u8bad\u7ec3\u65b9\u6cd5\u7b80\u5355\uff0c\u89c1\u6548\u5feb\uff0c\u63d0\u5347\u7a33\u5b9a\u3002
- \u8f7b\u903b\u8f91\uff0c\u91cd\u7406\u89e3\uff08\u8bfb\u61c2\u4e86\u5c31\u80fd\u505a\u5bf9\u9898\u76ee\uff09
"},{"location":"summary/high%20school/eng_fht/#_4","title":"\u6295\u5165\u65f6\u95f4\u600e\u4e48\u6837\uff1f","text":"
- \u4ec0\u4e48\u788e\u7247\u5316\u80cc\u5355\u8bcd\u5176\u5b9e\u4e0d\u4e00\u5b9a\u6709\u7528\uff0c\u56fe\u7684\u53ea\u662f\u591a\u770b\u51e0\u6b21\u3002\u540c\u6837\uff0c\u65e9\u8bfb\u665a\u8bfb\u4e5f\u53ea\u662f\u591a\u82b1\u70b9\u65f6\u95f4\u719f\u6089\u719f\u6089\uff0c\u5b66\u6821\u7edf\u4e00\u8bad\u7ec3\u7684\u542c\u529b\u771f\u4e0d\u662f\u5f88\u6709\u7528\u53cd\u6b63\u3002\u5efa\u8bae\u79c1\u4e0b\u627e\u8001\u5e08\u5f3a\u5316\u4e00\u4e0b\uff08
- \u5e73\u65f6\u4e3b\u8981\u7684\u65f6\u95f4\u6295\u5165:
- \u505a\u5377\u5b50\u3001\u8ba2\u6b63\u3001\u67e5\u5355\u8bcd
- \u5199\u4f5c\u6587\u3001\u6279\u6539\u3001\u80cc\u8bed\u6599
- \u6211\u4e2a\u4eba\u8ba4\u4e3a\u5355\u8bcd\u662f\u6ca1\u5fc5\u8981\u53bb\u80cc\u7ef4\u514b\u591a\u7684\uff08\u4e0d\u8fc7\u5982\u679c\u8fde\u521d\u4e2d\u7684\u5355\u8bcd\u90fd\u4e0d\u4f1a\u7684\u8bdd\uff0c\u8fd8\u662f\u5148\u80cc\u4e2a1500\uff08\u521d\u4e2d\u5355\u8bcd\u5927\u7eb2\uff09\u518d\u8bf4\u5427\u3002\u540e\u9762\u7684\u5c31\u662f\u591a\u67e5\u67e5\u5b57\u5178\uff0c\u8bb0\u5728\u7b14\u8bb0\u672c\u4e0a\uff0c\u591a\u770b\u770b\u5c31\u597d\u4e86\u3002(\u6709\u7684\u8001\u5e08\u8981\u6c42\u8fc7\u4e2aN\u904d\u7684\u7ef4\u514b\u591a\u5176\u5b9e\u4e0d\u592a\u6709\u7528\uff0c\u6bd5\u7adf\u4e00\u4e2a\u5355\u8bcd\u77e5\u905310\u4e2a\u610f\u601d\uff0c\u4e5f\u4e0d\u4e00\u5b9a\u80fd\u591f\u7406\u89e3\u6587\u610f)
- \u5982\u679c\u771f\u60f3\u901f\u6210\uff0c\u5efa\u8bae\u641c\u7d22IAI\u53d1\u7684\u5355\u8bcd\u5927\u7eb2\uff0c\u4ee5\u8ba4\u77e5\u8bcd\u6c47\u4e3a\u6807\u51c6\uff0c\u4e00\u661f\u671f\u5185\u80cc\u5b8c\u65b0\u9ad8\u80033000\u5355\u8bcd\u3002
- \u7a33\u5b9a\u8bad\u7ec3\u7684\u60c5\u51b5\u4e0b\uff0c130\u5e94\u8be5\u662f\u6240\u6709\u5b66\u751f\u90fd\u80fd\u57286\u4e2a\u6708\u5185\u53ef\u4ee5\u8fbe\u5230\u7684\u3002
"},{"location":"summary/high%20school/eng_fht/#_5","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u53ef\u4ee5\u8bf4\uff0c\u82f1\u8bed\u662f\u4e3b\u8bfe\u91cc\u6700\u6709\u8ff9\u53ef\u5faa\u7684\u4e00\u95e8\u8bfe\u4e86\u3002\u800c\u4e14\u82f1\u8bed\u6709\u4e24\u6b21\u673a\u4f1a\uff0c\u6240\u4ee5\u53ea\u8981\u52aa\u529b\u5c31\u80fd\u53d6\u5f97\u5f88\u4e0d\u9519\u7684\u5206\u6570\uff08\u6027\u4ef7\u6bd4\u6781\u9ad8\uff09
"},{"location":"summary/high%20school/eng_fht/#_6","title":"\u8d44\u6e90\u63a8\u8350:","text":"
- IAI yyds\uff01\uff01\uff01\uff08\u4e00\u4e2a\u82f1\u8bed\u516c\u4f17\u53f7\uff09
- \u4e00\u4e9b\u4e66:
- \u8bed\u6cd5\u4ff1\u4e50\u90e8
- \u4e00\u672c\u6d3b\u9875\u7b14\u8bb0\u672c
- \u725b\u6d25 / \u6717\u6587 \u9ad8\u7ea7\u5b57\u5178 \u6216\u8005 \u5355\u8bcd\u7b14 \u6216\u8005 \u7535\u5b50\u5b57\u5178 \uff08\u5176\u5b9e\u533a\u522b\u4e0d\u5927\uff0c\u53ef\u4ee5\u51e0\u4e2a\u540c\u5b66\u7528\u4e00\u4e2a\uff09
- \u5212\u7ebf\u5c3a\uff08\u5bf9\u5b57\u8ff9\u4e0d\u597d\u7684\u540c\u5b66\u53ef\u4ee5\u7528\uff0c\u5177\u4f53\u641c\u7d22IAI\u63a8\u6587\uff09
"},{"location":"summary/high%20school/eng_fht/#_7","title":"\u8d44\u6e90\u4e0d\u63a8\u8350:","text":"
- \u82f1\u8bed\u539f\u8457:\uff08\u6027\u4ef7\u6bd4\u51e0\u4e4e\u4e3a\u96f6\uff0c\u5355\u8bcd\u964c\u751f\u5316\u8fc7\u9ad8\uff0c\u8001\u5e08\u770b\u4e0d\u61c2\u5bb9\u6613\u5224\u4f4e\u5206\uff0c\u5bb9\u6613\u4f7f\u4eba\u6d6e\u8e81\uff09 \u6bd4\u5982:
- Harry Potter
- Flipped
- Good English ...
- \u8bfe\u5916\u8d2d\u4e70\u7684\u5b57\u5e16\uff08\u9664\u4e86\u8861\u6c34\u4f53\u4ee5\u5916\u7684\u5b57\u4f53:\u610f\u5927\u5229\u659c\u4f53\uff0c\u82b1\u4f53\uff0c\u5706\u4f53...\uff09
- \u968f\u4fbf\u4e0d\u77e5\u6765\u6e90\u7684\u4e13\u9898\u96c6\uff08\u9ad8\u8003\u5fc5\u5237\u9898\uff0c\u9ad8\u8003\u4e94\u4e09\uff08\u6392\u7248\u96be\u770b\uff0c\u9898\u76ee\u8001\u65e7\uff09\uff09
- \u91d1\u8003\u5377\u7b49\uff08\u522b\u60f3\u4e86\uff0c\u6839\u672c\u4e0d\u4f1a\u505a\u591a\u5c11\u7684\uff09 IAI\u3000is enough\uff01
- \u8001\u5e08\u4e0d\u77e5\u9053\u54ea\u91cc\u641e\u6765\u7684\u5916\u7701\u7684\u5377\u5b50/\u5546\u4e1a\u5377\uff08\u505a\u4e86\u63d0\u5347\u5f88\u5c0f\uff0c\u5f71\u54cd\u53e3\u5473\u7f62\u4e86\uff09
- \u5e73\u65f6\u7684\u4f5c\u4e1a\uff08\u7f3a\u4e4f\u9488\u5bf9\u6027\uff0c\u5408\u7406\u770b\u5f85\uff0c\u7231\u505a\u4e0d\u505a\uff09
- \u51fa\u53bb\u8865\u8bfe\u53d1\u7684\u4f5c\u6587\u89e3\u6790\uff08\u5408\u7406\u770b\u5f85\uff0c\u8b66\u60d5\u6a21\u677f/\u79d2\u6740/\u9ad8\u7ea7\u8bcd\u6c47\uff09
- \u56db\u516d\u7ea7\u3001\u6258\u798f\u3001\u96c5\u601d\u3001GRE\u5355\u8bcd\uff08\u6027\u4ef7\u6bd4\u4f4e\uff0c\u8d34\u5408\u5ea6\u4f4e\uff0c\u88c5\u903c\u5ea6\u9ad8\uff0c\u4e0d\u7b26\u5408\u9ad8\u8003\u5bfc\u5411\uff09
"},{"location":"summary/high%20school/eng_fht/#_8","title":"\u5b66\u4e60\u65b9\u6cd5:","text":""},{"location":"summary/high%20school/eng_fht/#_9","title":"\u9ad8\u4e00\u9ad8\u4e8c\u4e0a:","text":"
- \u79ef\u7d2f\u5355\u8bcd\uff08\u8bb0\u5728\u6d3b\u9875\u672c\u4e0a\uff09
- \u63d0\u5347\u5ba2\u89c2\u9898:\u6240\u6709\u9898\u76ee\u9519\u7684\u5f04\u61c2\uff0c\u505a\u8fc7\u4e0d\u9519\uff08\u522b\u73a9\u4f60\u7684\u7834\u9519\u9898\u672c\u4e86\uff09
- \u4f5c\u6587\u6446\u70c2\uff08\u9ad8\u4e00\u9ad8\u4e8c\u8303\u6587\u6c34\u5e73\u592a\u4f4e\uff0c\u6ca1\u6709\u5b66\u4e60\u7684\u4ef7\u503c\uff09
"},{"location":"summary/high%20school/eng_fht/#_10","title":"\u9ad8\u4e8c\u4e0b\u9ad8\u4e09:","text":"
- \u8fd9\u65f6\u5019\u9ad8\u8003\u5355\u8bcd\u90fd\u8ba4\u4e0d\u5168\u8bf4\u4e0d\u8fc7\u53bb\u4e86
- \u8bf7\u53c2\u8003\u524d\u6587
- \u8bed\u6cd5\u4e0d\u4f1a\u7684\u53bb\u5b66\u8bed\u6cd5\uff08\u770b\u8bed\u6cd5\u4ff1\u4e50\u90e8\uff09\uff0c\u4e0d\u8981\u8ffd\u6c42\u5b8c\u6574\u5177\u4f53\uff0c\u80fd\u591f\u505a\u8bed\u6cd5\u586b\u7a7a\u548c\u4f1a\u5206\u6790\u9605\u8bfb\u4e2d\u7684\u957f\u96be\u53e5\u5c31\u591f\u4e86\u3002\uff08\u751a\u81f3\u865a\u62df\u8bed\u6c14\u4ec0\u4e48\u7684\u90fd\u8003\u4e0d\u4e86\uff09
- \u9650\u65f6\u505a\u5377\u5b50\uff0840min\u505a\u5b8c\u5ba2\u89c2\u9898\uff09+\u8ba2\u6b63\uff08\u641e\u61c2\u4e3a\u4ec0\u4e48\u9519\uff09
- \u505a\u591f30\u5957\u5c31\u53ef\u4ee5\u7a33\u4e0a130\uff08\u5377\u5b50\u6765\u6e90IAI\uff09
- \u9650\u65f6\u7ec3\u4f5c\u6587\uff08\u5e94\u7528\u6587+\u7eed\u5199\uff09
- \u7eed\u5199\u5199\u591f20\u504f\u5c31\u53ef\u4ee518+
- \u5e94\u7528\u6587\u5efa\u8bae\u79ef\u7d2f\u6a21\u677f\uff0c\u9047\u5230\u4e0d\u540c\u4e3b\u9898\u90fd\u6709\u8bdd\u8bf4\u3002\u4fdd\u6301\u5e73\u65f611+\u5c31\u597d\u3002
- \u5b66\u6821\u8003\u8bd5\u7684\u4f5c\u6587\u6253\u5206\u4e0d\u503c\u5f97\u76f8\u4fe1:
- \u5efa\u8bae\u73cd\u60dc\u8054\u8003\uff08\u4e0d\u662f\u5b66\u6821\u8001\u5e08\u6539\u7684\u65f6\u5019\uff0c\u6bd4\u5982\u5076\u5c14\u7684Z20\uff09
- \u53ea\u770b\u8001\u5e08\u6539\u7684\u8bed\u6cd5\u9519\u8bef
- \u53ef\u4ee5\u53c2\u52a0IAI\u57f9\u8bad\uff08\u4e0d\u662f\u5e7f\u544a\uff0c\u6027\u4ef7\u6bd4\u6bd4\u8f83\u4f4e\uff0c\u4f46\u662f\u6539\u4f5c\u6587\u7684\u6807\u51c6\u5f88\u51c6\uff09
- \u4ee5\u63d0\u5347\u6210\u7ee9\u4e3a\u5bfc\u5411\uff0c\u8b66\u60d5\u63d0\u5347\u82f1\u8bed\u7d20\u517b\u66f2\u7ebf\u6551\u56fd\u7684\u9677\u8fdb\uff08\u5982\uff0c\u770b\u5916\u520a\uff0c\u8bfb\u539f\u8457\u7b49\u7b49\uff09
"},{"location":"summary/high%20school/eng_fht/#_11","title":"\u8bad\u7ec3\u76ee\u6807:","text":"
- \u5ba2\u89c2\u9898\u4fdd\u8bc1\u572830-35\u5206\u949f\u5185\u505a\u5b8c
- \u4f5c\u65871\u5c0f\u65f6\u5185\u5199\u5b8c\u4e24\u7bc7\uff0c\u8981\u6c42\u5e94\u7528\u6587\u4e0d\u4f4e\u4e8e11\u5206\uff0c\u7eed\u5199\u4e0d\u4f4e\u4e8e18\u5206\uff08\u4e24\u6bb5\u90fd\u5199\u6ee110\u884c\uff09
- \u5ba2\u89c2\u9898\u6263\u5206\u4e0d\u8d85\u8fc75\u5206\uff08\u542c\u529b\u9605\u8bfb\u4e03\u9009\u4e94\u5168\u5bf9\uff0c\u5b8c\u578b\u53ef\u62631\u5206\uff0c\u8bed\u586b\u53ef\u62631.5\u5206\uff09
"},{"location":"summary/high%20school/eng_fht/#_12","title":"\u5c0f\u6280\u5de7:","text":"
- \u5408\u7406\u5b89\u6392\u505a\u9898\u65f6\u95f4\uff0c\u4e0d\u4e00\u5b9a\u8981\u4ece\u9605\u8bfb\u5f00\u59cb\u505a
- 95%\u7684\u5b8c\u578b\u7b26\u54084443\uff08\u9009\u9879\u5206\u5e03\uff09\uff0c\u9ad8\u8003\u4e2d\u53ea\u670922\u8fd8\u662f\u54ea\u4e00\u5e74\u51fa\u73b0\u8fc74533\uff0c\u5efa\u8bae\u505a\u5b8c\u578b\u7684\u65f6\u5019\u5708\u9009\u9879\u800c\u975e\u5199\u5b57\u6bcd\uff0c\u4e0d\u7136\u4e0a\u4e0b\u4f1a\u5f71\u54cd\u3002\u7b2c\u4e00\u6b21\u505a\u4e0d\u51fa\u6765\u7684\u53ef\u4ee5\u5148\u7a7a\u7740\uff0c\u518d\u8bfb\u4e00\u904d\u540e\u56de\u6765\u6839\u636e\u5206\u5e03\u7efc\u5408\u6587\u610f\u586b\u6ee1\u3002
- \u9605\u8bfb\u8bfb\u5b8c\u6587\u7ae0\uff0c\u8bed\u586b\u5168\u90e8\u8981\u8bfb \u518d\u505a\u9898\uff08\u4e0d\u7136\u4f1a\u6709\u5f88\u6076\u5fc3\u7684\u9677\u9631\uff09
- \u4f5c\u6587\u4e0d\u4e00\u5b9a\u8981\u6253\u8349\u7a3f\uff0c\u4f46\u662f\u4e00\u5b9a\u4e0d\u80fd\u6709\u8bed\u6cd5\u9519\u8bef\uff0c\u5b57\u8ff9\u96be\u770b\uff08\u8fd9\u4e24\u70b9\u662f\u5f71\u54cd\u4f5c\u6587\u7684\u4e3b\u8981\u56e0\u7d20\uff0c24\u9ad8\u8003\u4e4b\u540e\u53ef\u80fd\u8fd8\u6709\u4e3b\u65e8\u5347\u534e\uff09\u3002
- \u8bfb\u61c2\u624d\u662f\u5b66\u82f1\u8bed\u7684\u552f\u4e00\u8981\u70b9\uff01\uff01\uff01
\u8bf7\u5408\u7406\u4f7f\u7528IAI\uff0c\u5f88\u6709\u53ef\u80fd\u662f\u6700\u597d\u7684\u8d44\u6e90\u3002
"},{"location":"summary/high%20school/math_fht/","title":"\u6570\u5b66\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 757 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9ad8\u8003138\uff08\u586b\u7a7a\u9519\u4e00\u90535'+19\u9898\u6700\u540e\u4e00\u95ee7'\uff09
"},{"location":"summary/high%20school/math_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":"
- \u6211\u60f3\u6570\u5b66\u7684\u4f53\u7cfb\uff08\u89e3\u9898\u5957\u8def\uff09\u662f\u4e0d\u5982\u7269\u7406\u5b8c\u6574\u7684\u3002\u6bd4\u5982:\u5706\u9525\u66f2\u7ebf\u5f88\u96be\u627e\u5230\u901a\u6cd5\u89e3\u51b3\u6240\u6709\u9898\u6216\u8005\u5bfc\u6570\u6709\u65f6\u5019\u4e5f\u4f1a\u6d89\u53ca\u5f88\u591a\u5947\u5947\u5999\u5999\u7684\u77e5\u8bc6\u3002
- \u771f\u7684\u5f88\u96be\u7a33\u5b9a\u63d0\u5206\uff08\u4e3b\u8981\u6307120+?\uff09
- \u5b66\u79d1\u601d\u7ef4\u53ef\u80fd\u5f88\u91cd\u8981\u3002\u867d\u7136\u6211\u4e0d\u662f\u5f88\u80fd\u9610\u660e\u8fd9\u4e2a\u6982\u5ff5\uff0c\u4f46\u5177\u4f53\u6765\u8bf4\u5c31\u662f\uff0c\u8981\u53bb\u505a\u95ee\u9898\uff0c\u800c\u4e0d\u662f\u80cc\u7b54\u6848\u3002\u5176\u5b9e\u5f88\u591a\u65f6\u5019\u7684\u505a\u4e5f\u4e0d\u8fc7\u662f\u9ed8\u5199\u4ee5\u524d\u4f1a\u7684\u5957\u8def\uff0c\u4e0d\u4f1a\u7684\u4e5f\u57fa\u672c\u4e0d\u53ef\u80fd\u5f53\u573a\u521b\u65b0\u51fa\u6765\u3002\u6240\u4ee5\u5927\u6982\u8fd9\u91cc\u7684\u505a\u6307\u7684\u662f\uff0c\u8fd0\u7528\u4ee5\u524d\u5b66\u8fc7\u7684skill\uff0c\u5c06\u4ed6\u4eec\u7ec4\u5408\u5728\u4e00\u8d77\uff0c\u62b5\u8fbe\u6240\u8981\u8fbe\u6210\u7684\u76ee\u6807\u3002
- \u6240\u4ee5\uff0c\u4e5f\u8bb8\u4f46\u51e1\u4e0a\u8ff0\u4e00\u4e2a\u6b65\u9aa4\u505a\u4e0d\u5230\uff0c\u90fd\u5f88\u96be\u505a\u5bf9\u4e00\u9053\u9898:
- \u5206\u6790\u76ee\u6807\u662f\u4ec0\u4e48
- \u8003\u8651\u8981\u600e\u4e48\u5230\u8fbe
- \u8fd0\u7528\u4ec0\u4e48\u5de5\u5177
- \u5982\u4f55\u68c0\u9a8c\uff0c\u5b9a\u6027\u5224\u65ad
- \u5982\u4f55\u8bd5\u63a2\uff0c\u5b9a\u91cf\u8ba1\u7b97
"},{"location":"summary/high%20school/math_fht/#_3","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u6211\u4e00\u4e2a\u9ad8\u4e2d\u57fa\u672c\u6ca1\u505a\u8fc7\u6570\u5b66\u4f5c\u4e1a\u7684\u4eba\u4e5f\u8bb8\u4e0d\u914d\u6765\u8bf4\u8fd9\u4e2a\u95ee\u9898\u3002
"},{"location":"summary/high%20school/math_fht/#_4","title":"\u7701\u6d41\u7248:","text":"
- \u638c\u63e1\u57fa\u672c\u77e5\u8bc6\u70b9\uff0c\u5b9a\u4e49\uff0c\u516c\u5f0f\uff0c\u5957\u8def\uff08\u5982\u7aef\u70b9\u6548\u5e94\uff09
- \u505a\u6574\u5377\u67e5\u6f0f\u8865\u7f3a
- \u505a\u4e13\u9898\uff0c\u6bd4\u8f83\u5f52\u7eb3
- \u8003\u8bd5\u8bad\u7ec3\u5fc3\u6001
"},{"location":"summary/high%20school/math_fht/#_5","title":"\u6ce8\u610f\u4e8b\u9879:","text":"
- \u9519\u9898\u672c\u5f88\u53ef\u80fd\u6ca1\u6709\u7528\uff0c\u771f\u6b63\u6709\u7528\u7684\u662f\u8003\u8bd5\u4ee5\u540e\u7684\u590d\u76d8\uff0c\u81ea\u5df1\u6574\u7406\u603b\u7ed3\u51fa\u7684\u5957\u8def\u65b9\u6cd5\uff0c\u6613\u9519\u5f52\u7eb3\u3002 \u6bd4\u5982: \u53ef\u80fd\u8fd9\u6b21\u5bfc\u6570\u9898\u6ca1\u505a\u51fa\u6765\uff0c\u4f60\u8981\u60f3\u6e05\u695a\u7684\u662f\uff0c\u4e3a\u4ec0\u4e48\u6ca1\u505a\u51fa\u6765\uff0c\u8003\u8bd5\u7684\u65f6\u5019\u6ca1\u82b1\u65f6\u95f4\u8fd8\u662f\u82b1\u4e86\u65f6\u95f4\u4e5f\u6ca1\u60f3\u660e\u767d\uff0c\u771f\u6b63\u6b63\u786e\u7684\u51b3\u7b56\u662f\u4ec0\u4e48\uff08\u8df3\u8fc7\uff1f\u7ee7\u7eed\u601d\u8003\uff1f\uff09\uff0c\u5982\u679c\u4e0b\u6b21\u8fd8\u662f\u505a\u4e0d\u51fa\u6765\u53ef\u4ee5\u600e\u4e48\u5c1d\u8bd5\uff0c\u5b66\u5230\u4e86\u4ec0\u4e48\u65b0\u7684\u6a21\u578b\u3002
- \u4e0d\u8981\u5bf9\u8003\u8bd5\u8fc7\u62df\u5408\uff0c\u5f88\u591a\u4eba\u8fc7\u5206\u5938\u5927\u4e86\u590d\u76d8\u7684\u4f5c\u7528\u3002\u7279\u522b\u662f\u5728\u6570\u5b66\u5e94\u8bd5\u65b9\u9762\uff0c\u82b1\u8fc7\u591a\u7684\u65f6\u95f4\u5728\u590d\u76d8\u4e0a\u7684\u6027\u4ef7\u6bd4\u4e0d\u9ad8\uff0c\u4e0d\u5982\u591a\u505a\u70b9\u9898/\u770b\u70b9\u65b0\u9c9c\u73a9\u610f/\u5b66\u522b\u7684\u79d1\u76ee\u53bb\u3002
- \u65f6\u95f4\u5f52\u7eb3\u548c\u5fc3\u6001\u51b3\u5b9a\u8003\u8bd5\u5206\u6570\u7684\u4e0b\u9650\u3002\u57fa\u7840\u9898\u505a\u5b8c\u5c31\u6709\u5f88\u591a\u5206\u6570\u5566\uff01\u522b\u88ab\u4e00\u4e2a\u9898\u5361\u4f4f\u4e86\u5c31\u5fc3\u6001\u5d29\u4e86\uff0c\u5f88\u591a\u4eba\u8bf4\u81ea\u5df1\u5fc3\u6001\u597d\u53ea\u4e0d\u8fc7\u662f\u6ca1\u505a\u8fc7\u9053\u9053\u4e0d\u987a\u5229\u7684\u5377\u5b50\u3002
- \u591a\u8ddf\u8001\u5e08\u4ea4\u6d41\uff0c\u8001\u5e08\u5f88\u53ef\u80fd\u6bd4\u4f60\u60f3\u50cf\u7684\u8981\u66f4helpful\u4e00\u4e9b\u3002
- \u4e0d\u8981\u653e\u5f03\u6570\u5b66\uff0c150\u5206\u5462\uff0c\u8fd9\u90fd\u653e\u4e86\u8fd8\u662f\u522b\u9ad8\u8003\u4e86\u3002
- \u65e9\u70b9\u5b66\u6570\u5b66\u5427\uff0c\u522b\u6b7b\u5230\u4e34\u5934\u4e86\u624d\u540e\u6094
- \u4e0d\u8981\u6c89\u8ff7\u9ad8\u7ea7\u73a9\u610f:\uff08\u6709\u8fd9\u65f6\u95f4\u4e0d\u5982\u53bb\u73a9\uff09
- \u6cf0\u52d2\u5c55\u5f00
- \u6781\u70b9\u6781\u7ebf
- \u5bfc\u6570\u7684\u4e00\u5806\u5947\u6280\u6deb\u5de7
- ...
- \u8ba1\u7b97\u80fd\u529b\u5f88\u91cd\u8981\uff0c\u89e3\u6790\u51e0\u4f55\u8be5\u7b97\u7684\u8981\u7b97\u3002
"},{"location":"summary/high%20school/math_fht/#_6","title":"\u8d44\u6599:","text":"
- \u5b66\u6821\u5e73\u65f6\u7684\u8003\u8bd5\uff0c\u8bf7\u8ba4\u771f\u5bf9\u5f85
- \u6d59\u8003\u795e\u5899
- \u4e0d\u63a8\u8350\u4ec0\u4e48\u6559\u8f85\uff0c\u5bf9\u9ad8\u8003\u7684\u6700\u4f73\u62df\u5408\u662f\u9ad8\u8003\u5377+\u56db\u7701\u8054\u8003\u4e4b\u7c7b\u7684\u98ce\u5411\u5377
- \u540c\u5b66\u7684\u7b14\u8bb0\uff08\u4e0d\u662f
"},{"location":"summary/high%20school/phy_fht/","title":"\u7269\u7406\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 1581 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9996\u800395->\u9ad8\u8003100
"},{"location":"summary/high%20school/phy_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":""},{"location":"summary/high%20school/phy_fht/#_3","title":"\u8981\u4e0d\u8981\u9009\u7269\u7406\uff1f","text":"
- \u5982\u679c\u4ee5\u540e\u60f3\u5b66\u7406\u5de5\u79d1\u7684\u8bdd\uff0c\u6700\u597d\u662f\u7269\u5316\u5927\u793c\u5305\u4e00\u8d77\u4e0a\u300224\u5e74\u6587\u79d1\u6ed1\u6863\u8fd8\u662f\u5f88\u5389\u5bb3\u7684\u3002
- \u5bf9\u4e8e\u6570\u5b66\u4e0d\u597d\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u7269\u7406\u7684\u96be\u5ea6\u4e0d\u4f1a\u5f88\u5c0f\u3002
- \u5efa\u6a21
- \u8bbe\u65b9\u7a0b\uff0c\u627e\u672a\u77e5\u91cf\uff0c\u89e3\u591a\u5143\u65b9\u7a0b
- \u4e09\u89d2\u51fd\u6570\u7684\u719f\u7ec3\u4f7f\u7528
- \u5bfc\u6570\u4ee5\u53ca\u90e8\u5206\u79ef\u5206\u7684\u4f7f\u7528
- \u5bf9\u516c\u5f0f\u63a8\u5bfc\u65b9\u5411\u7684\u628a\u63e1
-
\u5bf9\u4e8e\u6b7b\u8bb0\u786c\u80cc\u5b66\u7269\u7406\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u5343\u4e07\u4e0d\u8981\u9009\u7269\u7406\u6765\u6076\u5fc3\u81ea\u5df1/\u8001\u5e08\u3002\u8bf7\u9a8c\u8bc1\u4f60\u662f\u5426\u638c\u63e1\u5982\u4e0b\u516c\u5f0f\u63a8\u5bfc:
- \u5229\u7528\u6253\u70b9\u8ba1\u65f6\u5668\u6c42\u52a0\u901f\u5ea6\u516c\u5f0f
- \u5e73\u629b\u8fd0\u52a8\u8f68\u8ff9\u65b9\u7a0b\uff0c\u5750\u6807\u968f\u65f6\u95f4\u53d8\u5316\u51fd\u6570\uff0c\u53cd\u5411\u5ef6\u957f\u7ebf\u7684\u4e8c\u7ea7\u7ed3\u8bba
- \u4e07\u6709\u5f15\u529b\u516c\u5f0f\uff0c\u5929\u4f53\u8fd0\u52a8\u901f\u5ea6\uff0c\u89d2\u901f\u5ea6\uff0c\u5468\u671f\uff0c\u80fd\u91cf
- \u5f39\u6027\u52bf\u80fd\uff0c\u52a8\u80fd\uff0c\u673a\u68b0\u80fd\uff08\u5f15\u529b\u52bf\u80fd\uff0c\u5e93\u4ed1\u52bf\u80fd\uff09
- \u52a8\u91cf\u6765\u6e90\uff0c\u78b0\u649e\u6a21\u578b
- \u6d1b\u4f26\u5179\u529b\u53ca\u5bf9\u5e94\u7c92\u5b50\u8fd0\u52a8\u6a21\u578b
- \u7535\u78c1\u611f\u5e94\u53ca\u5bf9\u5e94\u6a21\u578b:\u65cb\u8f6c\u68d2\u7684\u52a8\u751f\u7535\u52a8\u52bf\uff0c\u5355\u68d2\uff0c\u53cc\u68d2\uff0c\u7535\u5bb9\uff0c\u7535\u611f\uff0c\u78c1\u9a71\u52a8\uff0c\u70ed\u91cf\u8ba1\u7b97
\u5982\u679c\u4f60\u4e3b\u8981\u662f\u9760\u8bb0\u80cc\u6765\u652f\u6491\u7269\u7406\u5b66\u4e60\uff0c\u90a3\u8bf7\u4f60\u4e0d\u8981\u9009\u7269\u7406\u3002
"},{"location":"summary/high%20school/phy_fht/#_4","title":"\u7269\u7406\u96be\u5ea6\u600e\u4e48\u6837\uff1f","text":"
- \u7269\u7406\u5e94\u8be5\u662f\u7406\u79d1\u91cc\u4f53\u7cfb\u7ed3\u6784\u7d27\u5bc6\u5b8c\u6574\uff0c\u5e94\u8bd5\u624b\u6bb5\u4e30\u5bcc\u5b8c\u5907\u7684\u4e00\u95e8\u5b66\u79d1\u4e86\u3002\u638c\u63e1\u77e5\u8bc6\u70b9\uff0c\u5b9a\u4e49\uff0c\u5b9a\u7406\uff0c\u6a21\u578b\uff0c\u5e94\u7528\u9700\u8981\u82b1\u65f6\u95f4\uff0c\u4e14\u6709\u5408\u7406\u7684\u8def\u7ebf\u53ef\u4ee5\u4f9d\u636e\u3002
- \u8ddf\u5316\u5b66\u6bd4\uff0c\u5b83\u66f4\u504f\u5b9a\u91cf\uff0c\u6709\u660e\u786e\u7684\u516c\u5f0f\u8ba1\u7b97\uff0c\u5b8c\u6574\u7684\u903b\u8f91\u94fe\u6761\u3002
- \u8ddf\u6570\u5b66\u6bd4\uff0c\u5b83\u66f4\u504f\u5e94\u7528\uff0c\u6709\u6e05\u6670\u7684\u7ed3\u679c\u5bfc\u5411\uff0c\u4e0d\u8981\u6c42\u7075\u611f\u7206\u53d1\u3002
- \u8ddf\u6280\u672f\u6bd4\uff0c\u5b83\u66f4\u504f\u8ba1\u7b97\uff0c\u6709\u76f8\u6263\u7684\u77e5\u8bc6\u4f53\u7cfb\uff0c\u66f4\u4f4e\u7684\u5b66\u4e60\u95e8\u69db\u3002
- \u53ea\u8981\u4f60\u613f\u610f\u4e0b\u529f\u592b\uff0c\u7269\u7406\u7edd\u5bf9\u662f\u4e00\u95e8\u52aa\u529b\u5c31\u6709\u56de\u62a5\u7684\u5b66\u79d1\u3002
"},{"location":"summary/high%20school/phy_fht/#_5","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u8ddf\u6280\u672f\u7c7b\u4f3c
"},{"location":"summary/high%20school/phy_fht/#etc","title":"\u627e\u4e00\u672c\u6559\u8f85\uff08\u4e94\u4e09\u9ad8\u8003\u7248 etc.\uff09\u770b\u5b8c\u77e5\u8bc6\u70b9","text":"
- \u8981\u6c42\u80fd\u591f\u77e5\u9053\u5b9a\u4e49\uff0c\u91cd\u8981\u516c\u5f0f\u63a8\u5bfc\uff0c\u884d\u751f\u4e8c\u7ea7\u7ed3\u8bba\u548c\u57fa\u672c\u6a21\u578b \u6bd4\u5982:
- \u7535\u5bb9\u7684\u5b9a\u4e49
- \u7535\u5bb9\u5927\u5c0f\u7684\u8ba1\u7b97\u5f0f
- \u6d89\u53ca\u7535\u5bb9\u7684\u52a8\u6001\u53d8\u5316
- \u7535\u5bb9\u5728\u7535\u8def\u4e2d\u5982\u4f55\u8ba1\u7b97
- \u7535\u5bb9\u7684\u80fd\u91cf\u516c\u5f0f
- \u7535\u5bb9\u5145\u653e\u7535\u5b9e\u9a8c
- \u7535\u5bb9\u5728\u4ea4\u6d41\u7535\u4e2d\u7684\u4f5c\u7528\uff08\u5b9a\u6027\uff09
- \u7535\u5bb9\u4e0e\u5176\u4ed6\u6a21\u578b\u7684\u7ed3\u5408
- ...
"},{"location":"summary/high%20school/phy_fht/#_6","title":"\u505a\u9898","text":"
- \u9898:
- \u5377\u5b50
- \u4e13\u9898
- \u65b9\u6cd5:
- \u5377\u5b50\u7528\u6765\u67e5\u6f0f\u8865\u7f3a\uff0c\u63d0\u5347\u6574\u4f53\u5b8c\u6210\u5ea6\uff0c\u4f18\u5316\u65f6\u95f4\u5206\u914d\uff0c\u5feb\u901f\u5efa\u6784\u77e5\u8bc6\u6846\u67b6
- \u4e13\u9898\u7528\u6765\u5f3a\u5316\u8ba1\u7b97\uff0c\u719f\u6089\u516c\u5f0f\uff0c\u6df1\u5316\u903b\u8f91\u53ca\u5f52\u7eb3\u672c\u8d28
- \u5982\u679c\u4e0d\u4f1a\u600e\u4e48\u529e:
- \u770b\u7b54\u6848\uff0c\u95ee\u8001\u5e08\uff0c\u95ee\u540c\u5b66
- \u9009\u53d6\u540c\u7c7b\u9898\u76ee\uff0c\u505a\u8db3\u591f\u6570\u91cf\u540e\u5f52\u7eb3\u6574\u7406\u6a21\u578b
- \u6613\u9519\u70b9\u5373\u4f7f\u8bb0\u5f55
- \u53ef\u7528\u6d3b\u9875\u672c/A4\u7eb8+\u71d5\u5c3e\u5939
- \u63a8\u8350\u5f52\u7eb3\u6a21\u578b\u800c\u4e0d\u662f\u6574\u7406\u9519\u9898
- \u4e00\u5b9a\u8981\u591a\u7ec3\u8ba1\u7b97\u548c\u65f6\u95f4\uff0c\u5c11\u7528/\u4e0d\u7528\u8ba1\u7b97\u5668
- \u5728\u9ad8\u4e09\u672b\u671f\uff0c\u6211\u80fd\u7a33\u5b9a40min\u505a\u5b8c\u673a\u68b0\u80fd\u53ca\u524d\u9762\u6240\u6709\u90e8\u5206\u3002\u5f53\u7136\u8fd9\u5bf9\u5927\u591a\u6570\u540c\u5b66\u6765\u8bf4\u592a\u5feb\u4e86\uff0c\u4f46\u901f\u5ea6\u63d0\u5347\u600e\u4e48\u4e5f\u4e0d\u5acc\u591a\u3002
- \u4f8b\u5982\u572824\u5e74\u9ad8\u8003\u4e2d\uff0c\u5f88\u591a\u540c\u5b66\u7531\u4e8e\u7535\u78c1\u611f\u5e94\u5361\u58f3\u800c\u6ca1\u6709\u505a\u5b8c\u5377\u5b50\uff0c\u5bfc\u81f4\u4e8c\u8003\u672a\u80fd\u5b9e\u73b0\u6709\u6548\u63d0\u5206\u3002
- \u9009\u62e9\u9898\u5f88\u91cd\u8981\uff0c\u4e00\u9053\u4e09\u5206\u5343\u4e07\u522b\u9519\u3002\u591a\u9009\u9898\u8bf7\u4fdd\u5b88\u4e00\u4e9b\uff0c\u6fc0\u8fdb\u5f80\u5f80\u4e0d\u4f1a\u6709\u597d\u7ed3\u679c\uff0c\u9ad8\u8003\u540e\u6094\u5c31\u6765\u4e0d\u53ca\u4e86\u3002
- \u4e0d\u4f1a\u7684\u9898\u76ee\u53ca\u65f6\u6b62\u635f\uff0c\u5982\u673a\u68b0\u80fd\u4e2d\u65e0\u8c13\u7684\u5206\u7c7b\u8ba8\u8bba\uff0c\u7535\u78c1\u611f\u5e94\u4e2d\u65e0\u8c13\u7684\u70ed\u91cf\u8ba1\u7b97\u7b49\u7b49\uff0c\u53ef\u4ee5\u7b49\u505a\u5b8c\u6574\u5f20\u5377\u5b50\u540e\u518d\u6765\u505a\u3002
- \u4e0d\u8981\u6c89\u8ff7\u504f\uff0c\u602a\uff0c\u96be\uff0c\u73b0\u5728\u7684\u6a21\u62df\u5377\u5f88\u591a\u98ce\u683c\u504f\u79bb\u9ad8\u8003\uff0c\u8bf7\u57f9\u517b\u8fa8\u522b\u8d28\u91cf\u7684\u672c\u9886\u3002
"},{"location":"summary/high%20school/phy_fht/#_7","title":"\u5fc3\u6001\u65b9\u9762:","text":"
- \u7269\u7406\u7684\u8003\u8bd5\u65f6\u95f4\u89c4\u5212\u5f88\u91cd\u8981\uff0c\u4e0d\u4f1a\u7684\u53ef\u4ee5\u5148\u8df3\u8fc7\u53bb\uff0c\u56de\u6765\u5728\u505a\uff0c\u5f53\u7136\u8df3\u591a\u4e86\u81ea\u7136\u4e5f\u8003\u4e0d\u597d\u4e86\u3002\u8981\u9759\u4e0b\u6765\u505a\u9898\u3002
- \u6ce8\u610f\u529b\u96c6\u4e2d\uff0c\u76f8\u4fe1\u81ea\u5df1\u7684\u5224\u65ad\uff0c\u653e\u677e\u505a\u9898\u3002
- \u5fc3\u6001\u5e26\u6765\u7684\u5f71\u54cd\u4e3b\u8981\u96c6\u4e2d\u5728\u9009\u62e9\u9898\u4e0a\uff0c\u6211\u9996\u8003\u9519\u4e864.5\u9053\u7684\u9009\u62e9\u9898\uff0c\u76f4\u63a595\u4e86\u3002
- \u5e73\u65f6\u8003\u8bd5\u6ca1\u6709\u5f88\u5927\u4ef7\u503c\uff0c\u8054\u8003\u7684\u552f\u4e00\u610f\u4e49\u5c31\u662f\u6a21\u62df\u9ad8\u8003\u6c1b\u56f4\u953b\u70bc\u5fc3\u6001\u3002\u6211\u9996\u8003\u524d\u7a33\u5b9a99+\uff0c\u6700\u540e\u4e0d\u8fd8\u662f\u8003\u4e86\u4e2a95\u3002
"},{"location":"summary/high%20school/phy_fht/#_8","title":"\u8d44\u6599\u65b9\u9762:","text":"
- \u6d59\u8003\u7269\u7406\u4e0a\u6709\u4e00\u4e9b\u5377\u5b50\uff08\u4e0d\u5168\u9762\uff09
- \u6d59\u8003\u795e\u5899\u4f1a\u6709\u51e0\u4e4e\u6240\u6709\u8054\u8003\u7684\u5377\u5b50
- \u6559\u8f85\u4e66\u63a8\u8350:
- \u9ad8\u8003\u4e94\u4e09\uff08\u7ea2\u7684\u7d2b\u7684\u90fd\u53ef\u4ee5\uff09
- \u9ad8\u8003\u5fc5\u5237\u9898
- \u5f53\u7136\uff0c\u5b66\u6821\u80af\u5b9a\u4f1a\u4e70\u7684\uff08\u6bd4\u5982\u6b65\u6b65\u9ad8\uff09\u3002\u5982\u679c\u4f60\u8fd8\u662f\u9ad8\u4e00\u9ad8\u4e8c\u53ef\u4ee5\u505a\u505a\u8f85\u5bfc\u4e66\uff0c\u5982\u679c\u662f\u9ad8\u4e09\u4e86\uff0c\u8fd8\u662f\u5efa\u8bae\u5377\u5b50+\u4e13\u9898\u7684\u6a21\u5f0f\u3002\uff08\u4e13\u9898\u6765\u81ea\u4e8e\u9ad8\u8003\u5fc5\u5237\u9898\u4e4b\u7c7b\u7684\u4e66\uff09\u8bf7\u52ff\u9677\u5165\uff0c\u6211\u505a\u9898\u591a\u5c31\u662f\u597d\u3002\u6211\u51e0\u4e4e\u505a\u5b8c\u4e8623\u5c4a+24\u5c4a\u6d59\u6c5f\u6240\u6709\u7684\u8054\u8003\u5377\uff0c\u611f\u89c9\u63d0\u5347\u5e76\u4e0d\u4f1a\u5f88\u5927\u3002
- \u7406\u6027\u5237\u9898\u6027\u4ef7\u6bd4\u66f4\u9ad8\u3002
"},{"location":"summary/high%20school/phy_fht/#_9","title":"\u662f\u5426\u8981\u5b66\u4e60\u9ad8\u7ea7\u5185\u5bb9:","text":"
- \u5982\u679c\u4e3a\u4e86\u9ad8\u8003\u53d6\u5f9797+\u7684\u6210\u7ee9\uff0c\u6211\u8ba4\u4e3a\u662f\u6ca1\u6709\u5fc5\u8981\u3002\u5982\u679c\u771f\u7684\u60f3\u5b66\uff0c\u63a8\u8350\u5b66\u4e60\u4e00\u4e0b\u5185\u5bb9:
- \u7b80\u5355\u51fd\u6570\u7684\u79ef\u5206\uff08\u53c2\u770b\u540c\u6d4e\u7248\u9ad8\u6570\u4e0a\u518c\uff09
- \u5fae\u5206\u65b9\u7a0b\u7684\u89e3 \uff08\u53c2\u770b\u540c\u6d4e\u7248\u9ad8\u6570\u4e0b\u518c\uff09
- \u659c\u629b\u8fd0\u52a8
- \u7535\u78c1\u611f\u6027\u4e2d\u5355\u68d2\uff0c\u53cc\u68d2\u6a21\u578b\u7684\u5b9a\u91cf\u8ba1\u7b97\uff08\u6d89\u53ca\u5fae\u5206\u65b9\u7a0b\uff09
- \u4ea4\u6d41\u7535\u6709\u6548\u503c\u7684\u63a8\u5bfc
- \u6768\u6c0f\u5e72\u6d89\u7684\u5b9a\u91cf\u8ba1\u7b97
- \u5982\u679c\u662f\u4e3a\u4e86\u5f3a\u57fa\u6216\u8005\u4e09\u4e00\uff0c\u6211\u529d\u4f60\u7701\u7701\u5427\uff0c\u9ad8\u8003\u641e\u5230\u4f4d\u6b211000\u4e86\u518d\u8bf4\u5427\u3002\u6027\u4ef7\u6bd4\u771f\u7684\u5f88\u4f4e\u5f88\u4f4e\uff0c\u522b\u4fe1\u673a\u6784\u7684\u9b3c\u8bdd\uff0c\u9ad8\u8003\u5206\u6570\u624d\u662f\u6700\u91cd\u8981\u7684\u3002
"},{"location":"summary/high%20school/phy_fht/#_10","title":"\u8001\u5e08\u4e0a\u8bfe\u662f\u5426\u8981\u542c:","text":"
- \u56e0\u4eba\u800c\u5f02\uff0c\u4f60\u89c9\u5f97\u6709\u7528\u5c31\u542c\uff0c\u4f46\u5bf9\u4e8e\u6211\u6765\u8bf4\uff0c\u542c\u8bfe\u7684\u6548\u7387\u80af\u5b9a\u6bd4\u4e0d\u4e0a\u81ea\u5df1\u505a\u9898\u7684\u6548\u7387\u3002\u5e08\u751f\u4e92\u76f8\u8ba9\u6b65\u8fbe\u6210\u4e00\u81f4\u5c31\u597d\u3002
"},{"location":"summary/high%20school/phy_fht/#_11","title":"\u662f\u5426\u6709\u5fc5\u8981\u8bfe\u5916\u8f85\u5bfc:","text":"
- \u56e0\u4eba\u800c\u5f02\uff0c\u8f85\u5bfc\u73ed\u80fd\u63d0\u4f9b\u7684\u65e0\u975e\u662f\u4e0a\u8ff0\u51e0\u79cd:\u77e5\u8bc6\u70b9\u8bb2\u89e3\uff0c\u9898\u76ee\uff0c\u89e3\u7b54\uff08\u53ef\u80fd\u8fd8\u6ca1\u6709\uff09\uff0c\u7ed9\u5bb6\u957f\u4e00\u4e2a\u5b89\u5fc3\u3002
- \u5f53\u7136\uff0c\u6211\u89c9\u5f97\u6548\u7387\u4e0d\u4f1a\u6bd4\u5b66\u6821\u9ad8\u591a\u5c11\u3002\u5982\u679c\u771f\u5b66\u4e0d\u4f1a\u4e86\uff0c\u90a3\u8fd8\u662f\u53bb\u5427\u3002
\u53cd\u6b63\u8fd8\u662f\u5e0c\u671b\u5927\u5bb6\u53d1\u6325\u4e3b\u89c2\u80fd\u52a8\u6027\uff0c\u5b66\u6821\u53ea\u6709\u515c\u5e95\u4f5c\u7528\uff0c\u4e0d\u8fc7\u8c01\u77e5\u9053\u5e95\u5728\u54ea\u91cc
"},{"location":"summary/high%20school/tech_fht/","title":"\u6280\u672f\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 1324 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9996\u800389->\u9ad8\u800398
"},{"location":"summary/high%20school/tech_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":""},{"location":"summary/high%20school/tech_fht/#_3","title":"\u6280\u672f\u597d\u8d4b\u5206\u5417\uff1f","text":"
\u4e00\u822c\uff0c\u81f3\u5c11\u6bd4\u751f\u7269\u597d\u8d4b\u5206\uff08\u4e2a\u4eba\u611f\u89c9\uff09\u3002\uff08\u4e0d\u8fc7\u4e5f\u53ef\u4ee5\u9009\u5730\u7406\uff0c\u53ef\u80fd\u4f1a\u66f4\u597d\u8d4b\u5206\uff09 \u4f46\u5c31\u5e73\u65f6\u7684\u8054\u76df\u8003\u6765\u8bf4\uff0c
- \u5927\u6982\u9ad8\u4e00\u9ad8\u4e8c\u8d4b\u5206\u4f1a\u597d\u4e00\u4e9b\uff08\u6bd5\u7adf\u5f88\u591a\u4ebaprogramming\u90fd\u8fd8\u6ca1\u600e\u4e48\u641e\u61c2\uff09\u3002
- \u5230\u9ad8\u4e09\u5c31\u4e0d\u4e00\u5b9a\u4e86\uff0c\u4e3b\u8981\u770b\u8054\u76df\u53c2\u52a0\u7684\u5b66\u6821\u548c\u5377\u5b50\u672c\u8eab\u7684\u8d28\u91cf\u3002\u8bb0\u5f97\u9ad8\u8003\u524d\u7684\u4e94\u6821\u8054\u8003\uff0c\u5377\u5b50\u597d\u50cf\u633a\u7b80\u5355\u7684\uff0c\u4f46\u662f\u8d4b\u5206\u6781\u5176\u96be\u8d4b\u3002
- \u81f3\u4e8e\u9ad8\u8003\uff0c\u8d4b\u5206\u8fd8\u884c\uff0c\u4f46\u662f\u9ad8\u5206\u5f88\u96be\uff08\u7279\u522b\u630798+\uff09\uff0c\u4f30\u8ba1\u662f\u9547\u4e2d\u6e29\u4e00\u5b66\u519b\u676d\u4e8c\u628a\u5206\u5361\u4f4f\u4e86\u3002
"},{"location":"summary/high%20school/tech_fht/#_4","title":"\u5b66\u79d1\u96be\u5ea6\u5927\u5417\uff1f","text":"
- \u6211\u662f\u5728\u9009\u6280\u672f\u4e4b\u524d\u5c31\u4f1aC++\uff0cPython\uff0c\u4e2a\u4eba\u611f\u89c9\u662f\u9ad8\u4e2d\u77e5\u8bc6\u70b9\u4e0d\u96be\uff0c\u5e73\u65f6\u9898\u76ee\u4e5f\u4e0d\u662f\u5f88\u96be\u3002\u4f46\u662f\u9ad8\u8003\u5c31\u4e0d\u4e00\u5b9a\u4e86\uff0c\u7531\u4e8e\u6280\u672f\u8fd8\u6ca1\u8003\u51e0\u5e74\uff08\u5957\u8def\u8fd8\u6ca1\u88ab\u7a77\u5c3d\uff09\uff0c\u6240\u4ee5\u7a0d\u5fae\u4e00\u53d8\u5316\u5c31\u5bb9\u6613\u6b7b\u4e00\u5927\u7247\u3002
- \u4f46\u662f\u7f16\u7a0b\u5bf9\u521a\u5165\u95e8\u7684\u65b0\u624b\u800c\u8a00\uff0c\u96be\u5ea6\u8fd8\u662f\u4e0d\u5c0f\u7684\u3002\u7279\u522b\u662f\uff0c\u79bb\u8c31\u7684\u5e94\u8bd5\u6559\u80b2\u65b9\u5f0f&\u96be\u8bc4\u7684\u81ea\u5b66\u80fd\u529b\uff0c\u5f88\u96be\u8bf4\u9760\u5199(write)\u4ee3\u7801\u53ef\u4ee5\u5f88\u597d\u7684\u638c\u63e1\u7b97\u6cd5/\u6570\u636e\u7ed3\u6784\u3002\u6781\u5176\u5bb9\u6613\u9677\u5165\u80cc\u4ee3\u7801\u7684\u6b7b\u5c40\u3002
- \u4e3b\u8981\u6765\u8bb2\u5c31\u662f\uff0c\u6ca1\u6709\u7269\u7406\u5316\u5b66\u96be\u3002
- \u6027\u4ef7\u6bd4\u633a\u9ad8\uff08\u5bf9\u6211\u6765\u8bf4\uff0c\u9ad8\u4e8c\u51e0\u4e4e\u6ca1\u6709\u82b1\u65f6\u95f4\uff0c\u9ad8\u4e09\u4e5f\u53ea\u662f\u505a\u505a\u8054\u8003\u5377\uff0c\u4f5c\u4e1a\u57fa\u672c\u6ca1\u505a\u8fc7\u3002\u82b1\u7684\u65f6\u95f4\u4f30\u8ba1\u662f\u82b1\u5728\u5316\u5b66\u4e0a\u7684\u96f6\u5934: (\uff09
"},{"location":"summary/high%20school/tech_fht/#_5","title":"\u90a3\u8981\u4e0d\u8981\u9009\u6280\u672f\u634f\uff1f","text":"
- \u5982\u679c\u662f\u4ee5\u540e\u5b66\u8ba1\u7b97\u673a\u76f8\u5173\u7684\u8fd8\u662f\u5efa\u8bae\u9009\uff0c\u8fd9\u6837\u7b49\u5927\u5b66\u4e86\u4f1a\u6709\u5f88\u5927\u4f18\u52bf\u3002
- \u4f46\u5982\u679c\u4e00\u70b9programming\u90fd\u641e\u4e0d\u61c2\uff0c\u90a3\u8fd8\u662f\u7b97\u4e86\u3002
- \u5982\u679c\u6ca1\u6709\u9009\u7269\u7406/\u7269\u7406\u4e0d\u597d\uff0c\u4e5f\u614e\u91cd\u9009\u6280\u672f\u5427\u3002\uff08\u4e0d\u7136\u82b1\u5728\u7535\u63a7\u4e0a\u7684\u65f6\u95f4\u4f1a\u5f88\u6ca1\u6709\u6027\u4ef7\u6bd4\uff09
"},{"location":"summary/high%20school/tech_fht/#_6","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u4ec5\u5c31\u9ad8\u4e09\u800c\u8a00\uff08\u9ad8\u4e8c\u6ca1\u5b66\uff09
"},{"location":"summary/high%20school/tech_fht/#_7","title":"\u5148\u8981\u786e\u4fdd\u57fa\u7840\u7684\u77e5\u8bc6\u70b9\u90fd\u4f1a:","text":"
- \u5148\u628a\u6559\u8f85\u770b\u4e00\u904d\uff08\u5b66\u6821\u80af\u5b9a\u4f1a\u4e70\u7684\u4e00\u4e9b\u4e71\u4e03\u516b\u7cdf\u7684\uff0c\u53cd\u6b63\u5e02\u9762\u4e0a\u4e5f\u6ca1\u4ec0\u4e48\u5f88\u597d\u7684\u6559\u8f85\uff09
- \u518d\u628a\u4e66\u770b\u4e00\u904d\uff08\u5f88\u5c0f\u7684\u70b9\u90fd\u8981\u77e5\u9053\uff09
- \u81ea\u5df1\u5c1d\u8bd5\u628a\u77e5\u8bc6\u70b9\u90fd\u7406\u4e00\u904d\uff08\u9009\u505a\uff09
- \u6ce8\u610f:\u6280\u672f\u672c\u8eab\u7684\u77e5\u8bc6\u4f53\u7cfb\u5e76\u4e0d\u50cf\u7269\u7406\u5316\u5b66\u90a3\u6837\u7d27\u5bc6\uff0c\u6240\u4ee5\u70b9\u90fd\u662f\u633a\u5206\u6563\u7684\u3002\u4e00\u5b9a\u5de9\u56fa\u597d\u57fa\u7840\u3002 \uff08\u7528\u65f6\u5927\u6982:1\u4e2a\u661f\u671f\uff1f\u4e00\u59293h\u3002\u56e0\u4eba\u800c\u5f02\uff09
"},{"location":"summary/high%20school/tech_fht/#_8","title":"\u7136\u540e\u5c31\u662f\u505a\u9898:","text":"
- \u5148\u505a\u70b9\u5377\u5b50\uff0c\u770b\u770b\u81ea\u5df1\u6f0f\u6d1e\u5728\u54ea\uff0810\u5f20\u5dee\u4e0d\u591a\u4e86\uff0c\u4e00\u5b9a\u8981\u77ed\u65f6\u95f4\u5185\u505a\u5b8c\uff09:
- \u5efa\u8bae\u8054\u8003\u5377\u90fd\u505a\u505a\uff0c\u624d\u77e5\u9053\u4ec0\u4e48\u662f\u597d\u7684\u5377\u5b50\u3002\uff08\u8001\u5e08\u80af\u5b9a\u4f1a\u53d1\u7684\uff09
- \u7136\u540e\u505a\u70b9\u4e13\u9898\uff0c\u8d44\u6599\u6765\u6e90\uff08\u6d59\u8003\u4ea4\u6d41\uff09
- \u4e3b\u8981\u662f\u8981\u641e\u660e\u767d\u77e5\u8bc6\u70b9\uff0c\u6bd4\u5982
- \u94fe\u8868\uff08\u57fa\u7840\u64cd\u4f5c\uff0c\u5feb\u6162\u6307\u9488\uff09\uff0c\u4e8c\u5206\uff08\u4e8c\u53c9\u641c\u7d22\u6811\uff09
- \u5e38\u89c1\u7684pandas\u64cd\u4f5c
- \u7f51\u8def\u76f8\u5173\uff08\u80cc\u4e66\uff09
- \u7535\u63a7\u7684\u57fa\u672c\u6a21\u578b\uff08\u9707\u8361\u7535\u8def\u7684\u51e0\u79cd\u5199\u6cd5\uff0c\u955c\u50cf\u7535\u6d41\u6e90\uff09
- \u7cfb\u7edf&\u63a7\u5236\uff08\u6bcf\u4e2a\u90e8\u5206\u90fd\u8981\u5f88\u786e\u5b9a\uff0c\u8001\u5e08\u8bb2\u4e0d\u6e05\u695a\uff0c\u81ea\u5df1\u4e00\u5b9a\u8981\u53bb\u641e\u61c2\uff0c\u4e0d\u7136\u5c31\u662f\u505a\u4e00\u9053\u9519\u4e00\u9053\uff09
- \u5c3a\u5bf8\u6807\u6ce8\uff08\u9519\u51e0\u56de\u5c31\u597d\u4e86\uff09
- \u4e09\u89c6\u56fe\uff08\u5b58\u7591\uff0c\u8fd9\u9898\u4e00\u76f4\u5728\u53d8\uff09
- \u57fa\u672c\u5c31\u5dee\u4e0d\u591a\u4e86\uff08\u540e\u9762\u518d\u82b1\u65f6\u95f4\u6027\u4ef7\u6bd4\u5c31\u4e0d\u9ad8\u4e86\uff09\uff0c\u5982\u679c\u8fd8\u60f3\u7ee7\u7eed\uff0c\u90a3\u5c31\u81ea\u5df1\u6574\u4e2a\u672c\u5b50\uff0c\u628a\u9519\u9898\u641e\u4e0a\u53bb\uff0c\u6bcf\u6b21\u8003\u8bd5\u524d\u770b\u770b\u3002\uff08\u5b9e\u9645\u4f5c\u7528\u5c31\u662f\u8ba9\u4f60\u522b\u4e00\u505a\u5b8c\u5c31\u628a\u9898\u6254\u4e86\uff0c\u4e5f\u4e0d\u641e\u61c2\uff0c\u90a3\u6837\u7b49\u4e8e\u6ca1\u505a\uff09\u4f46\u9519\u9898\u672c\u5176\u5b9e\u6548\u7387\u5f88\u4f4e\u3002\uff08formalism\uff09
"},{"location":"summary/high%20school/tech_fht/#_9","title":"\u505a\u9898\u65f6\u95f4\u65b9\u9762:","text":"
- \u6211\u662f\u57fa\u672c\u5148\u505a\u4fe1\u606f\uff0c\u5728\u505a\u901a\u7528\u7684
- \u4fe1\u606f13\u9898\u548c\u5927\u9898\u6700\u540e\u4e00\u9898\u4e0d\u4f1a\u7684\u5148\u7a7a\u7740\uff08\u586b\u4e2a\u4e0d\u786e\u5b9a\u7684\uff09\uff0c\u7136\u540e\u53bb\u505a\u901a\u7528\u3002\u5927\u6982\u524d\u976230min\u80fd\u641e\u5b9a
- \u901a\u7528\u8349\u56fe\u5148\u7a7a\u7740\uff0c\u628a\u7535\u63a7\u5927\u9898\u505a\u5b8c\uff0c\u7136\u540e\u56de\u53bb\u753b\u8349\u56fe\u3002\uff08\u5927\u698240min\uff09
- \u753b\u5b8c\u8349\u56fe\u518d\u56de\u53bb\u505a\u4fe1\u606f\u4e0d\u4f1a\u7684\u3002
- \u6700\u540e\u53ef\u4ee5\u6446\u70c2\u4e86\uff0c\u8981\u68c0\u67e5\u4e5f\u53ef\u4ee5\uff08\u53cd\u6b63\u68c0\u67e5\u4e0d\u51fa\u6765\uff09
- \u505a\u9898\u600e\u4e48\u5feb\u4e00\u70b9\uff08\u9898\u90fd\u505a\u4e0d\u5b8c\uff0c\u8c08\u4ec0\u4e48\u90fd\u662f\u767d\u642d\uff09:
- \u83dc\u5c31\u591a\u7ec3\uff08\u4e0a\u8bfe40min\uff0c\u505a\u5b8c\u9664\uff08\u7535\u63a7/\u586b\u7a0b\u4e0d\u4f1a\u7684&\u753b\u56fe\uff09\u7684\u9898\uff09
- \u6216\u8005\u665a\u81ea\u4e601h\uff0c\u505a\u5b8c\u5168\u90e8\uff08\u9664\u753b\u56fe\uff09+\u5bf9\u7b54\u6848
- \u753b\u56fe\u5c31\u628a\u8054\u8003\u9898\u90fd\u653e\u4e00\u8d77\uff0c\u4e00\u6b21\u753b\u4e2a10\u5f20\u5de6\u53f3\u5c31\u5dee\u4e0d\u591a\u4e86\uff0c\u6ca1\u4ec0\u4e48\u6a21\u578b\u7684\uff08
"},{"location":"summary/high%20school/tech_fht/#_10","title":"\u5fc3\u6001\u65b9\u9762:","text":"
- \u53cd\u6b63\u9ad8\u8003\u548c\u5e73\u65f6\u8fd8\u662f\u5f88\u4e0d\u4e00\u6837\u7684\uff0c\u5efa\u8bae\u5e73\u65f6\u5927\u8003\u5f53\u9ad8\u8003\u8003\u3002
- \u7136\u540e\u5c31\u662f\u4e00\u6b21\u8003\u5dee\u6ca1\u5565\u5173\u7cfb\uff0c\u65f6\u95f4\u82b1\u5728\u8be5\u82b1\u7684\u5730\u65b9\u5c31\u597d\u4e86\uff0c\u8981\u5bf9\u81ea\u5df1\u7684\u5b66\u4e60\u6709\u638c\u63a7\u529b\u3002
- \u8001\u5e08\u6559\u7684\u4e0d\u597d\u8981\u5b66\u4f1a\u81ea\u5df1\u5b66
"},{"location":"summary/high%20school/tech_fht/#_11","title":"\u8d44\u6599\u65b9\u9762:","text":"
- \u6d59\u8003\u4ea4\u6d41\u89e3\u51b3\u6240\u6709\uff08
- \u8f85\u5bfc\u4e66\u90fd\u5dee\u4e0d\u591a\uff0c\u770b\u591a\u4e86\u6d6a\u8d39\u65f6\u95f4
"},{"location":"summary/high%20school/tech_fht/#_12","title":"\u5176\u4ed6:","text":"
- \u53ef\u4ee5\u548c\u540c\u5b66\u4e00\u8d77\u5b66\uff08\u4e0d\u662f\u4e00\u8d77\u6446\u70c2\u54e6\uff09
- \u771f\u5b66\u4e0d\u4f1a\u4e86\u8d76\u7d27\u6362\u79d1\u5427
- \u90fd\u5b66\u6280\u672f\u4e86\uff0c\u5b66\u5b66\u600e\u4e48\u641c\u96c6\u8d44\u6599\u5427
- \u6709\u7528\u7684\u4f5c\u4e1a\u5c31\u505a\uff0c\u6ca1\u7528\u7684\u5c31\u7b97\u4e86\uff08\u614e\u91cd\uff09
- \u63d0\u5347\u6210\u7ee9\u7684debuff\u8fd8\u662f\u4e0d\u5c11\u7684\uff0c\u522b\u6028\u5929\u5c24\u4eba\u7684\uff08\u6b22\u8fce\u52a0\u5b66\u957f\u5b66\u59d0\u6765\u54a8\u8be2
- \u9996\u8003\u8003\u5dee\u4e86\u600e\u4e48\u529e:
- \u8fd8\u80fd\u600e\u4e48\u529e\uff0c\u7ee7\u7eed\u5b66\u5457\u3002
- \u5b66\u4e0d\u61c2\u4e0a\u8bfe\u5c31\u597d\u597d\u542c\uff0c\u522b\u73a9\u6e38\u620f\uff08\u4e0d\u7136\u600e\u4e48\u5b66\uff09
\u6700\u540e:\u5e0c\u671b\u5927\u5bb6\u90fd\u80fd\u8003\u597d :\uff09
"},{"location":"summary/high%20school/%E4%B8%80%E4%BA%9B%E8%B5%84%E6%BA%90/","title":"\u4e00\u4e9b\u8d44\u6e90","text":"
\u7ea6 31 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
\u4e00\u4e9b\u8d44\u6e90\u94fe\u63a5\uff0c\u53ef\u4ee5\u53c2\u8003\u7740\u770b:
- wjyyy \u9ad8\u4e09\u751f\u5b58\u6307\u5357
- IAI\u7ecf\u9a8c\u5206\u4eab
\u6570\u5b66:
- \u9009\u62e9\u9898\u538b\u8f74
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/","title":"\u89c6\u89c9SLAM\u5341\u56db\u8bb2","text":"
\u7ea6 14110 \u4e2a\u5b57 72 \u884c\u4ee3\u7801 20 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 48 \u5206\u949f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#1","title":"1 \u9884\u5907\u77e5\u8bc6","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#11","title":"1.1 \u672c\u4e66\u8bb2\u4ec0\u4e48","text":"
simultaneous localization and mapping
- \u5b9a\u4f4d
- \u5730\u56fe\u6784\u5efa
- \u80cc\u666f\u77e5\u8bc6:
- \u5c04\u5f71\u51e0\u4f55
- \u8ba1\u7b97\u673a\u89c6\u89c9
- \u72b6\u6001\u4f30\u8ba1\u7406\u8bba
- \u674e\u7fa4\u4e0e\u674e\u4ee3\u6570
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#12","title":"1.2 \u5982\u4f55\u4f7f\u7528\u672c\u4e66","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#121","title":"1.2.1 \u7ec4\u7ec7\u65b9\u5f0f","text":"
- \u6570\u5b66\u57fa\u7840\u7bc7
- \u5b9e\u8df5\u5e94\u7528\u7bc7
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#122","title":"1.2.2 \u4ee3\u7801","text":"
GitHub - gaoxiang12/slambook2: edition 2 of the slambook
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#123","title":"1.2.3 \u9762\u5411\u7684\u8bfb\u8005","text":"
- \u57fa\u7840\u77e5\u8bc6:
- \u9ad8\u6570\u7ebf\u4ee3\u6982\u7387\u8bba
- C++\u8bed\u8a00\u57fa\u7840\uff08C++\u6807\u51c6\u5e93\uff0c\u6a21\u677f\u7c7b\uff0c\u4e00\u90e8\u5206 C++11 \uff09
- Linux \u57fa\u7840
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#13","title":"1.3 \u98ce\u683c\u7ea6\u5b9a","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#14","title":"1.4 \u81f4\u8c22\u548c\u58f0\u660e","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#15","title":"1.5 \u4e60\u9898","text":"
- \u9898\u76ee\uff1a\u6709\u7ebf\u6027\u65b9\u7a0b \\(A x=b\\)\uff0c\u82e5\u5df2\u77e5 \\(A, b\\)\uff0c\u9700\u8981\u6c42\u89e3 x\uff0c\u8be5\u5982\u4f55\u6c42\u89e3\uff1f\u8fd9\u5bf9 A \u548c b \u6709\u54ea\u4e9b\u8981\u6c42\uff1f\u63d0\u793a\uff1a\u4ece A \u7684\u7ef4\u5ea6\u548c\u79e9\u89d2\u5ea6\u6765\u5206\u6790\u3002
- \u7b54\u6848\uff1a\u7ebf\u6027\u65b9\u7a0b\u7ec4 \\(Ax = b\\) \u53ef\u4ee5\u901a\u8fc7\u591a\u79cd\u65b9\u6cd5\u6c42\u89e3\uff0c\u5982\u9ad8\u65af\u6d88\u5143\u6cd5\u3001\u77e9\u9635\u9006\u6cd5\u7b49\u3002\u8981\u6c42 \\(A\\) \u662f\u4e00\u4e2a\u65b9\u9635\u4e14\u53ef\u9006\uff08\u5373 \\(A\\) \u7684\u884c\u5217\u5f0f\u4e0d\u4e3a\u96f6\uff09\uff0c\u8fd9\u6837\u65b9\u7a0b\u624d\u6709\u552f\u4e00\u89e3\u3002\u5982\u679c \\(A\\) \u4e0d\u662f\u65b9\u9635\uff0c\u9700\u8981 \\(A\\) \u7684\u79e9\u7b49\u4e8e\u5217\u6570\u4e14\u7b49\u4e8e\u589e\u5e7f\u77e9\u9635 \\(\\displaystyle [A|b]\\) \u7684\u79e9\uff0c\u8fd9\u6837\u65b9\u7a0b\u7ec4\u624d\u6709\u89e3\u3002
- \u9898\u76ee\uff1a\u9ad8\u65af\u5206\u5e03\u662f\u4ec0\u4e48\uff1f\u5b83\u7684\u4e00\u7ef4\u5f62\u5f0f\u662f\u4ec0\u4e48\u6837\u5b50\uff1f\u5b83\u7684\u9ad8\u7ef4\u5f62\u5f0f\u662f\u4ec0\u4e48\u6837\u5b50\uff1f
- \u7b54\u6848\uff1a\u9ad8\u65af\u5206\u5e03\uff0c\u4e5f\u79f0\u4e3a\u6b63\u6001\u5206\u5e03\uff0c\u662f\u4e00\u79cd\u8fde\u7eed\u6982\u7387\u5206\u5e03\u3002\u4e00\u7ef4\u9ad8\u65af\u5206\u5e03\u7684\u6570\u5b66\u8868\u8fbe\u5f0f\u4e3a \\(\\displaystyle f (x) = \\frac{1}{\\sigma\\sqrt{2\\pi}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}\\)\uff0c\u5176\u4e2d \\(\\displaystyle \\mu\\) \u662f\u5747\u503c\uff0c\\(\\displaystyle \\sigma\\) \u662f\u6807\u51c6\u5dee\u3002\u9ad8\u7ef4\u9ad8\u65af\u5206\u5e03\u662f\u4e00\u7ef4\u9ad8\u65af\u5206\u5e03\u5728\u591a\u7ef4\u7a7a\u95f4\u7684\u63a8\u5e7f\uff0c\u5176\u6982\u7387\u5bc6\u5ea6\u51fd\u6570\u4e3a \\(\\displaystyle N (\\mathbf{x}; \\mathbf{\\mu}, \\Sigma)\\)\uff0c\u5176\u4e2d \\(\\displaystyle \\mathbf{\\mu}\\) \u662f\u5747\u503c\u5411\u91cf\uff0c\\(\\displaystyle \\Sigma\\) \u662f\u534f\u65b9\u5dee\u77e9\u9635\u3002
- \u9898\u76ee\uff1a\u4f60\u77e5\u9053 C++11 \u6807\u51c6\u5417\uff1f\u4f60\u542c\u8bf4\u8fc7\u6216\u7528\u8fc7\u5176\u4e2d\u54ea\u4e9b\u65b0\u7279\u6027\uff1f\u6709\u6ca1\u6709\u5176\u4ed6\u7684\u6807\u51c6\uff1f
- \u7b54\u6848\uff1a\u662f\u7684\uff0cC++11 \u662f C++ \u8bed\u8a00\u7684\u4e00\u4e2a\u91cd\u8981\u6807\u51c6\uff0c\u5b83\u5f15\u5165\u4e86\u8bb8\u591a\u65b0\u7279\u6027\uff0c\u5982\u81ea\u52a8\u7c7b\u578b\u63a8\u5bfc\uff08auto\uff09\u3001\u57fa\u4e8e\u8303\u56f4\u7684 for \u5faa\u73af\u3001lambda \u8868\u8fbe\u5f0f\u3001\u667a\u80fd\u6307\u9488\u7b49\u3002\u9664\u4e86 C++11\uff0c\u8fd8\u6709 C++14\u3001C++17 \u548c C++20 \u7b49\u540e\u7eed\u6807\u51c6\uff0c\u5b83\u4eec\u4e5f\u5f15\u5165\u4e86\u65b0\u7684\u7279\u6027\u548c\u6539\u8fdb\u3002
- \u9898\u76ee\uff1a\u5982\u4f55\u5728 Ubuntu \u7cfb\u7edf\u4e2d\u5b89\u88c5\u8f6f\u4ef6\uff08\u4e0d\u6253\u5f00\u8f6f\u4ef6\u4e2d\u5fc3\u7684\u60c5\u51b5\u4e0b\uff09\uff1f\u8fd9\u4e9b\u8f6f\u4ef6\u88ab\u5b89\u88c5\u5728\u4ec0\u4e48\u5730\u65b9\uff1f\u5982\u679c\u53ea\u77e5\u9053\u6a21\u7cca\u7684\u8f6f\u4ef6\u540d\u79f0\uff08\u6bd4\u5982\u60f3\u8981\u88c5\u4e00\u4e2a\u540d\u79f0\u4e2d\u542b\u6709 Eigen \u7684\u5e93\uff09\uff0c\u5e94\u8be5\u5982\u4f55\u5b89\u88c5\u5b83\uff1f
- \u7b54\u6848\uff1a
- \u8f6f\u4ef6\u5b89\u88c5\uff1a\u5728 Ubuntu \u4e2d\uff0c\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177
apt
\u6765\u5b89\u88c5\u8f6f\u4ef6\u3002\u57fa\u672c\u547d\u4ee4\u4e3a sudo apt install [package-name]
\u3002 - \u5b89\u88c5\u4f4d\u7f6e\uff1a\u8f6f\u4ef6\u901a\u5e38\u88ab\u5b89\u88c5\u5728
/usr/
\u76ee\u5f55\u4e0b\uff0c\u4f46\u5177\u4f53\u7684\u6587\u4ef6\u53ef\u80fd\u5206\u5e03\u5728\u591a\u4e2a\u5b50\u76ee\u5f55\u4e2d\u3002 - \u6a21\u7cca\u540d\u79f0\u5b89\u88c5\uff1a\u5982\u679c\u53ea\u77e5\u9053\u8f6f\u4ef6\u540d\u79f0\u7684\u4e00\u90e8\u5206\uff0c\u53ef\u4ee5\u4f7f\u7528
apt search
\u547d\u4ee4\u6765\u641c\u7d22\u3002\u4f8b\u5982\uff0csudo apt search eigen
\u53ef\u4ee5\u5e2e\u52a9\u627e\u5230\u6240\u6709\u5305\u542b \"eigen\" \u7684\u8f6f\u4ef6\u5305\u3002 - \u9898\u76ee\uff1a*\u82b1\u4e00\u4e2a\u5c0f\u65f6\u5b66\u4e60 Vim\uff0c\u56e0\u4e3a\u4f60\u8fdf\u65e9\u4f1a\u7528\u5b83\u3002\u4f60\u53ef\u4ee5\u5728\u7ec8\u7aef\u4e2d\u8f93\u5165 vimtutor \u9605\u8bfb\u4e00\u904d\u6240\u6709\u5185\u5bb9\u3002\u6211\u4eec\u4e0d\u9700\u8981\u4f60\u975e\u5e38\u719f\u7ec3\u5730\u64cd\u4f5c\u5b83\uff0c\u53ea\u8981\u80fd\u591f\u5728\u5b66\u4e60\u672c\u4e66\u7684\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u5b83\u8f93\u5165\u4ee3\u7801\u5373\u53ef\u3002\u4e0d\u8981\u5728\u5b83\u7684\u63d2\u4ef6\u4e0a\u6d6a\u8d39\u65f6\u95f4\uff0c\u4e0d\u8981\u60f3\u7740\u628a Vim \u7528\u6210 IDE\uff0c\u6211\u4eec\u53ea\u7528\u5b83\u505a\u6587\u672c\u7f16\u8f91\u7684\u5de5\u4f5c\u3002
- \u7b54\u6848:
- vim \u6839\u672c\u4e0d\u719f\u7ec3\u634f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#2-slam","title":"2 \u521d\u8bc6 SLAM","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#21","title":"2.1 \u5f15\u5b50: \u5c0f\u841d\u535c\u7684\u4f8b\u5b50","text":"
- \u81ea\u4e3b\u8fd0\u52a8\u80fd\u529b
- \u611f\u77e5\u5468\u8fb9\u73af\u5883
- \u72b6\u6001
- \u73af\u5883
- \u5b89\u88c5\u4e8e\u73af\u5883\u4e2d\uff08\u4e0d\u592a\u597d\u53cd\u6b63\uff09
- \u673a\u5668\u4eba\u672c\u4f53\u4e0a
- \u6fc0\u5149 SLAM
- \u89c6\u89c9 SLAM\uff08\u672c\u4e66\u91cd\u70b9\uff09
- \u5355\u76ee\uff08Monocular\uff09
- \u53ea\u80fd\u7528\u4e00\u4e2a\u6444\u50cf\u5934
- \u8ddd\u79bb\u611f
- motion
- Structure
- Disparity
- Scale
- \u4f46\u662f\u65e0\u6cd5\u786e\u5b9a\u6df1\u5ea6
- \u53cc\u76ee\uff08Sterco\uff09
- \u4e24\u4e2a\u76f8\u673a\u7684\u8ddd\u79bb\uff08\u57fa\u7ebf Baseline\uff09\u5df2\u77e5
- \u914d\u7f6e\u4e0e\u6807\u5b9a\u6bd4\u8f83\u590d\u6742
- \u6df1\u5ea6\uff08RGB-D\uff09
- \u7ea2\u5916\u7ed3\u6784\u5173 Time-of-Flight\uff08ToF\uff09
- \u4e3b\u8981\u7528\u5728\u5ba4\u5185\uff0c\u5ba4\u5916\u4f1a\u6709\u5f88\u591a\u5f71\u54cd
- \u8fd8\u6709\u4e00\u4e9b\u975e\u4e3b\u6d41\u7684: \u5168\u666f\uff0cEvent
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#22-slam","title":"2.2 \u7ecf\u5178\u89c6\u89c9 SLAM \u6846\u67b6","text":"
- \u5728\u5916\u754c\u6362\u51e0\u4e2a\u6bd4\u8f83\u7a33\u5b9a\u7684\u60c5\u51b5\u4e0b\uff0cSLAM \u6280\u672f\u5df2\u7ecf\u6bd4\u8f83\u6210\u719f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#221","title":"2.2.1 \u89c6\u89c9\u91cc\u7a0b\u8ba1","text":"
- \u53ea\u901a\u8fc7\u89c6\u89c9\u91cc\u7a0b\u8ba1\u6765\u4f30\u8ba1\u8f68\u8ff9\u4f1a\u51fa\u73b0\u7d2f\u79ef\u6f02\u79fb\uff08Accumulating Drift\uff09\u3002
- \u6240\u4ee5\u9700\u8981\u56de\u73af\u68c0\u6d4b\u4e0e\u540e\u7aef\u4f18\u5316
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#222","title":"2.2.2 \u540e\u7aef\u4f18\u5316","text":"
- \u6700\u5927\u540e\u9a8c\u6982\u7387\u4f30\u8ba1\uff08Maximum-a-Posteriori MAP\uff09
- \u524d\u7aef
- \u56fe\u50cf\u7684\u7279\u5f81\u63d0\u53d6\u4e0e\u5339\u914d
- \u540e\u7aef
- \u6ee4\u6ce2\u4e0e\u975e\u7ebf\u6027\u7b97\u6cd5
- \u5bf9\u8fd0\u52a8\u4e3b\u4f53\u81ea\u8eab\u548c\u5468\u56f4\u73af\u5883\u7a7a\u95f4\u4e0d\u786e\u5b9a\u6027\u7684\u4f30\u8ba1
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#223","title":"2.2.3 \u56de\u73af\u68c0\u6d4b","text":"
- \u95ed\u73af\u68c0\u6d4b
- \u8bc6\u522b\u5230\u8fc7\u7684\u573a\u666f
- \u5229\u7528\u56fe\u50cf\u7684\u76f8\u4f3c\u6027
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#224","title":"2.2.4 \u5efa\u56fe","text":"
- \u5ea6\u91cf\u5730\u56fe
- Sparse
- Landmark
- \u5b9a\u4f4d\u7528
- Dense
- Grid / Vocel
- \u5bfc\u822a\u7528
- \u62d3\u6251\u5730\u56fe Graph
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#23-slam","title":"2.3 SLAM \u95ee\u9898\u7684\u6570\u5b66\u8868\u8ff0","text":"
- \u8fd0\u52a8\u65b9\u7a0b
- \\(\\displaystyle \\quad\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k,\\boldsymbol{w}_k\\right).\\)
- \\(\\displaystyle \\boldsymbol{u}_{k}\\) \u662f\u8fd0\u52a8\u4f20\u611f\u5668\u7684\u8f93\u5165
- \\(\\displaystyle \\boldsymbol{w}_{k}\\) \u662f\u8fc7\u7a0b\u4e2d\u52a0\u5165\u7684\u566a\u58f0
- \u89c2\u6d4b\u65b9\u7a0b
- \\(\\displaystyle \\boldsymbol{z}_{k,j} = h (\\boldsymbol{y}_{j},\\boldsymbol{x}_{k},\\boldsymbol{v}_{k,j})\\)
- \\(\\displaystyle \\boldsymbol{v}_{k,j}\\) \u662f\u89c2\u6d4b\u91cc\u7684\u566a\u58f0
- \u53c8\u5f88\u591a\u53c2\u6570\u5316\u7684\u65b9\u5f0f
- \u53ef\u4ee5\u603b\u7ed3\u4e3a\u5982\u4e0b\u4e24\u4e2a\u65b9\u7a0b
\\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k,\\boldsymbol{w}_k\\right),&k=1,\\cdots,K\\\\\\boldsymbol{z}_{k,j}=h\\left(\\boldsymbol{y}_j,\\boldsymbol{x}_k,\\boldsymbol{v}_{k,j}\\right),&(k,j)\\in\\mathcal{O}\\end{cases}. \\]
- \u77e5\u9053\u8fd0\u52a8\u6d4b\u91cf\u7684\u8bfb\u6570 \\(\\displaystyle \\boldsymbol{u}\\) \u548c\u4f20\u611f\u5668\u7684\u8bfb\u6570 \\(\\displaystyle \\boldsymbol{z}\\)\uff0c\u5982\u4f55\u6c42\u89e3\u5b9a\u4f4d\u95ee\u9898\u548c\u5efa\u56fe\u95ee\u9898\u3002
- \u72b6\u6001\u4f30\u8ba1\u95ee\u9898: \u5982\u4f55\u901a\u8fc7\u5e26\u6709\u566a\u58f0\u7684\u6d4b\u91cf\u6570\u636e\uff0c\u4f30\u8ba1\u5185\u90e8\u7684\u3001\u9690\u85cf\u7740\u7684\u72b6\u6001\u53d8\u91cf
- Linear Gaussian -> Kalman Filter
- Non-Linear Non-Gaussian -> Extended Kalman Filter \u548c\u975e\u7ebf\u6027\u4f18\u5316
- EKF -> Particle Filter -> Graph Optimization
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#24","title":"2.4 \u5b9e\u8df5: \u7f16\u7a0b\u57fa\u7840","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#241-linux","title":"2.4.1 \u5b89\u88c5 Linux \u64cd\u4f5c\u7cfb\u7edf","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#242-hello-slam","title":"2.4.2 Hello SLAM","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#243-cmake","title":"2.4.3 \u4f7f\u7528 cmake","text":"Text Only
cmake_minimum_required( VERSION 2.8)\n\nproject(HelloSLAM)\n\nadd_executable(helloSLAM helloSLAM.cpp)\n
\u5bf9\u4e2d\u95f4\u6587\u4ef6\u7684\u5904\u7406:
Text Only
mkdir build\ncd build\ncmake ..\nmake\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#244","title":"2.4.4 \u4f7f\u7528\u5e93","text":"Text Only
add_library(hello libHelloSLAM.cpp)\n
- \u9759\u6001\u5e93
- .a \u4f5c\u4e3a\u540e\u7f00\u540d\uff0c\u6bcf\u6b21\u8c03\u7528\u90fd\u6709\u4e00\u4e2a\u526f\u672c
- \u5171\u4eab\u5e93
- .so\uff0c\u53ea\u6709\u4e00\u4e2a\u526f\u672c
Text Only
add_library(hello_shared SHARED libHelloSLAM.cpp)\n
- \u8fd8\u8981\u4e00\u4e2a\u5934\u6587\u4ef6\u6765\u8bf4\u660e\u5e93\u91cc\u90fd\u6709\u4ec0\u4e48
Text Only
#ifndef LIBHELLOSLAM_H_\n#define LIBHELLOSLAM_H_\n\nvoid printHello()\n\n#endif\n
- \u6700\u540e\u5199\u4e00\u4e2a\u53ef\u6267\u884c\u7a0b\u5e8f:
C++
#include \"libHelloSLAM.h\"\n\nint main(int argc, char **argv) {\n printHello();\n return 0; \n}\n
- \u5728 CMakeLists. txt \u4e2d\u6dfb\u52a0\u53ef\u6267\u884c\u547d\u4ee4\u7684\u751f\u6210\u547d\u4ee4\uff0c\u94fe\u63a5\u5230\u5e93\u4e0a:
Text Only
add_executable(useHello useHello.cpp)\ntarget_link_libraries(useHello hello_shared)\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#245-ide","title":"2.4.5 \u4f7f\u7528 IDE","text":"
- KDevelop
- Clion
- \u8fd8\u6ca1\u5199
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#3","title":"3 \u4e09\u7ef4\u7a7a\u95f4\u521a\u4f53\u8fd0\u52a8","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#31","title":"3.1 \u65cb\u8f6c\u77e9\u9635","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#311","title":"3.1.1 \u70b9\u3001\u5411\u91cf\u548c\u5750\u6807\u7cfb","text":"
\\[ a\\times b = \\begin{Vmatrix}e_1&e_2&e_3\\\\ \\\\ a_1&a_2&a_3\\\\ \\\\ b_1&b_2&b_3 \\\\ \\end{Vmatrix} = \\begin{bmatrix} a_2b_3-a_3b_2\\\\ \\\\ a_3b_1-a_1b_3\\\\ \\\\ a_1b_2-a_2b_1 \\end{bmatrix} = \\begin{bmatrix} 0&-a_3&a_2\\\\ \\\\ a_3&0&-a_1\\\\ \\\\ -a_2&a_1&0 \\end{bmatrix} \\boldsymbol{b}\\overset{\\mathrm{def}}{\\operatorname*{=}}\\boldsymbol{a}^{\\wedge}\\boldsymbol{b}. \\]
- \u4e8e\u662f\u5c31\u628a\u5916\u79ef\u53d8\u6210\u4e86\u7ebf\u6027\u8fd0\u7b97
- \u5373
\\[ \\displaystyle \\boldsymbol{a}^{\\wedge}=\\begin{bmatrix} 0 & -a_{3} & a_{2} \\\\ a_{3} & 0 & -a_{1} \\\\ -a_{2} & a_{1} & 0 \\end{bmatrix} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#312","title":"3.1.2 \u5750\u6807\u7cfb\u95f4\u7684\u6b27\u5f0f\u53d8\u6362","text":"
\\[ \\begin{bmatrix}a_1\\\\ \\\\ a_2\\\\\\\\a_3\\end{bmatrix}=\\begin{bmatrix}e_1^\\mathrm{T}e_1^{\\prime}&e_1^\\mathrm{T}e_2^{\\prime}&e_1^\\mathrm{T}e_3^{\\prime}\\\\e_2^\\mathrm{T}e_1^{\\prime}&e_2^\\mathrm{T}e_2^{\\prime}&e_2^\\mathrm{T}e_3^{\\prime}\\\\e_3^\\mathrm{T}e_1^{\\prime}&e_3^\\mathrm{T}e_2^{\\prime}&e_3^\\mathrm{T}e_3^{\\prime}\\end{bmatrix}\\begin{bmatrix}a_1^{\\prime}\\\\\\\\a_2^{\\prime}\\\\\\\\a_3^{\\prime}\\end{bmatrix}\\stackrel{\\mathrm{def}}{=}Ra^{\\prime} \\]
- \\(\\displaystyle \\boldsymbol{R}\\) \u662f\u65cb\u8f6c\u77e9\u9635\u3001\u65b9\u5411\u4f59\u5f26\u77e9\u9635
- Special Orthogonal Group \\(\\displaystyle \\mathrm{SO}(n)=\\{\\boldsymbol{R}\\in \\mathbb{R}^{n \\times n}|\\boldsymbol{R}\\boldsymbol{R}^{\\mathrm{T}}=\\boldsymbol{I},\\det(\\boldsymbol{R})=1\\}\\)
- \\(\\displaystyle a^{\\prime}=R^{-1}a=R^{\\intercal}a.\\)
- \u65cb\u8f6c+\u5e73\u79fb: \\(\\displaystyle a^{\\prime}=Ra+t.\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#313","title":"3.1.3 \u53d8\u6362\u77e9\u9635\u4e0e\u9f50\u6b21\u5750\u6807","text":"
- \u4f46\u662f\u8fd9\u91cc\u7684\u53d8\u6362\u5173\u7cfb\u4e0d\u662f\u4e00\u4e2a\u7ebf\u6027\u5173\u7cfb
- \\(\\displaystyle c=R_2\\left(R_1a+t_1\\right)+t_2\\)
- \u6211\u4eec\u6539\u5199\u4e00\u4e0b\u5f62\u5f0f:
- \\(\\displaystyle \\begin{bmatrix}a'\\\\\\\\1\\end{bmatrix}=\\begin{bmatrix}R&t\\\\\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}\\begin{bmatrix}a\\\\\\\\1\\end{bmatrix}\\overset{\\mathrm{def}}{=}T\\begin{bmatrix}a\\\\\\\\1\\end{bmatrix}\\)
- \u8fd9\u5c31\u662f\u9f50\u6b21\u5750\u6807\uff0c\\(\\displaystyle \\boldsymbol{T}\\) \u79f0\u4e3a\u53d8\u6362\u77e9\u9635\uff08Transform matrix\uff09
- \\(\\displaystyle \\tilde{b}=T_1\\tilde{\\boldsymbol{a}}, \\tilde{\\boldsymbol{c}}=T_2\\tilde{\\boldsymbol{b}}\\quad\\Rightarrow\\tilde{\\boldsymbol{c}}=T_2T_1\\tilde{\\boldsymbol{a}}.\\)
- \u5e76\u4e14 \\(\\displaystyle \\boldsymbol{T}\\) \u79f0\u4e3a\u7279\u6b8a\u6b27\u5f0f\u7fa4\uff08Special Euclidean Group\uff09
- \\(\\displaystyle \\mathrm{SE}(3)=\\left\\{T=\\begin{bmatrix}R&t\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}|\\boldsymbol{R}\\in\\mathrm{SO}(3),\\boldsymbol{t}\\in\\mathbb{R}^3\\right\\}\\)
- \\(\\displaystyle T^{-1}=\\begin{bmatrix}R^\\mathrm{T}&-R^\\mathrm{T}t\\\\0^\\mathrm{T}&1\\end{bmatrix}\\)
- \u5728 C++\u7a0b\u5e8f\u4e2d\u53ef\u4ee5\u4f7f\u7528\u8fd0\u7b97\u7b26\u91cd\u8f7d\u6765\u5904\u7406\u9f50\u6b21\u548c\u975e\u9f50\u6b21\u7684\u60c5\u51b5
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#32-eigen","title":"3.2 \u5b9e\u8df5:Eigen","text":"C++
#include <iostream>\nusing namespace std;\n\n#include <ctime>\n\n#include <eigen3>\nusing namespace Eigen;\n\n#define MATRIX_SIZE 50\n\nint main(int argc, char **argv) {\n Matrix<float, 2, 3> matrix_23;\n// \u5982\u4e0b\u90fd\u662f\u4e09\u7ef4\u5411\u91cf\n Vector3d v_3d;\n Matrix<float, 3, 1> vd_3d;\n// \u5982\u4e0b\u662f3*3\u77e9\u9635\n Matrix3d matrix_33 = Matrix3d::Zero();\n// \u4e24\u4e2a\u52a8\u6001\u5206\u914d\n Matrix<double, Dynamic, Dynamic> matrix_dynamic;\n MatrixXd matrix_x;\n\n matrix_23 << 1, 2, 3, 4, 5, 6;\n cout<< \"matrix 2*3 from 1 to 6: \\n\" << matrix_23 << endl;\n\n cout << \"print matrix 2*3:\" << endl;\n for (int i = 0; i < 2; i++) {\n for (int j = 0; j < 3; j+) cout << matrix_23(i, j) << \"\\t\";\n cout << endl;\n }\n\n v_3d << 3, 2, 1;\n vd_3d << 4, 5, 6;\n\n Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;\n cout << \"[1, 2, 3; 4, 5, 6] * [3, 2, 1] =\" << result.transpose() << endl;\n\n matrix_22 = Matrix3d::Random();\n\n // \u4e00\u4e9b\u77e9\u9635\u7684\u64cd\u4f5c:\n // transpose()\n // sum()\n // trace()\n // inverse()\n // determinant()\n\n SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33);\n cout << eigen_solver.eigenvalues() << endl;\n cout << eigen_solver.eigenvectors() << endl;\n\n // solve the equation\n Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);\n matrix_NN = matrix_NN * matrix_NN.transpose()\n Matrix<double, MATRIX_SIZE, 1> v_Nd = MatrixXd::random(MATRIX_SIZE, 1);\n\n // \u7b2c\u4e00\u79cd:\u76f4\u63a5\u6c42\u9006\n Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;\n\n // \u7b2c\u4e8c\u79cd:\u77e9\u9635\u5206\u89e3\n x = matrix_NN.colPivHouseholderQr().solve(v_Nd);\n\n}\n
- Eigen \u4e0d\u652f\u6301\u81ea\u52a8\u7c7b\u578b\u63d0\u5347\uff0c\u5373\u4e0d\u4f1a\u9690\u5f0f\u8f6c\u6362
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#33","title":"3.3 \u65cb\u8f6c\u5411\u91cf\u548c\u6b27\u62c9\u89d2","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#331","title":"3.3.1 \u65cb\u8f6c\u5411\u91cf","text":"
- Axis-Angle
- Rodrigues's Formula
- \\(\\displaystyle \\boldsymbol{R}=\\cos\\theta\\boldsymbol{I}+\\left(1-\\cos\\theta\\right)\\boldsymbol{n}\\boldsymbol{n}^\\mathrm{T}+\\sin\\theta\\boldsymbol{n}^\\mathrm{\\wedge}.\\)
\\[ \\begin{aligned} \\mathrm{tr}\\left(R\\right)& =\\cos\\theta\\operatorname{tr}\\left(\\boldsymbol{I}\\right)+\\left(1-\\cos\\theta\\right)\\operatorname{tr}\\left(\\boldsymbol{n}\\boldsymbol{n}^\\mathrm{T}\\right)+\\sin\\theta\\operatorname{tr}(\\boldsymbol{n}^\\mathrm{\\Lambda}) \\\\ &=3\\cos\\theta+(1-\\cos\\theta) \\\\ &=1+2\\cos\\theta \\end{aligned} \\]
thus:
\\[ \\theta=\\arccos\\frac{\\mathrm{tr}(R)-1}{2}. \\] \\[ Rn=n. \\]
- \u5373 \\(\\displaystyle \\boldsymbol{n}\\) \u662f\u77e9\u9635 \\(\\displaystyle \\boldsymbol{R}\\) \u7279\u5f81\u503c 1 \u5bf9\u5e94\u7684\u7279\u8bca\u5411\u91cf
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#332","title":"3.3.2 \u6b27\u62c9\u89d2","text":"
- \u6bd4\u8f83\u5e38\u7528\u7684\u4e00\u79cd yaw-pitch-roll
- \u4f46\u4f1a\u6709 Gimbal Lock \u95ee\u9898
- \u6240\u4ee5\u6b27\u62c9\u89d2\u6bd4\u8f83\u9002\u5408\u7528\u4e8e\u5feb\u901f\u68c0\u9a8c\u7ed3\u679c\u662f\u5426\u6709\u9519
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#34","title":"3.4 \u56db\u5143\u6570","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#341","title":"3.4.1 \u56db\u5143\u6570\u7684\u5b9a\u4e49","text":"
- \u6211\u4eec\u627e\u4e0d\u5230\u4e0d\u5e26\u5947\u5f02\u6027\u7684\u4e09\u4f4d\u5411\u91cf\u63cf\u8ff0\u65b9\u5f0f
- \u627e\u4e0d\u5230\u4e00\u4e2a\u6d41\u5f62\uff1f
- Quaternion
- \u7d27\u51d1\u53c8\u6ca1\u6709\u5947\u5f02\u6027
- \u53ea\u662f\u4e0d\u591f\u76f4\u89c2+\u8fd0\u7b97\u590d\u6742
- \\(\\displaystyle q=q_0+q_1\\mathrm{i}+\\mathrm{q}_2\\mathrm{j}+\\mathrm{q}_3\\mathrm{k}\\)
\\[ \\begin{cases}\\mathbf{i}^2=\\mathbf{j}^2=\\mathbf{k}^2=-1\\\\\\mathbf{ij}=\\mathbf{k},\\mathbf{ji}=-\\mathbf{k}\\\\\\mathbf{jk}=\\mathbf{i},\\mathbf{kj}=-\\mathbf{i}\\\\\\mathbf{ki}=\\mathbf{j},\\mathbf{ik}=-\\mathbf{j}\\end{cases} \\]
- (\u4e5f\u8bb8\u53ef\u4ee5\u7528\u5ea6\u89c4\u6765\u8868\u793a\uff1f)
- \\(\\displaystyle \\boldsymbol{q}=\\left[s,\\boldsymbol{v}\\right]^\\mathrm{T},\\quad s=q_0\\in\\mathbb{R},\\quad\\boldsymbol{v}=\\left[q_1,q_2,q_3\\right]^\\mathrm{T}\\in\\mathbb{R}^3.\\)
- \u4e66\u4e0a\u6ca1\u5199\u76f4\u89c2\u7684\u51e0\u4f55\u5bf9\u5e94
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#342","title":"3.4.2 \u56db\u5143\u6570\u7684\u8fd0\u7b97","text":"
- \u4e58\u6cd5: \\(\\displaystyle \\boldsymbol{q}_a\\boldsymbol{q}_b=\\begin{bmatrix}s_as_b-\\boldsymbol{v}_a^\\mathrm{T}\\boldsymbol{v}_b,s_a\\boldsymbol{v}_b+s_b\\boldsymbol{v}_a+\\boldsymbol{v}_a\\times\\boldsymbol{v}_b\\end{bmatrix}^\\mathrm{T}.\\)
- \u7531\u4e8e\u6700\u540e\u4e00\u9879\u7684\u5b58\u5728\uff0c\u4e58\u6cd5\u4e0d\u5177\u6709\u4ea4\u6362\u5f8b
- \u5171\u8f6d: \\(\\displaystyle q_a^*=s_a-x_a\\mathrm{i}-\\mathrm{y_aj}-\\mathrm{z_ak}=[\\mathrm{s_a},-\\mathrm{v_a}]^\\mathrm{T}.\\)
- \\(\\displaystyle q^*q=qq^*=[s_a^2+\\boldsymbol{v}^\\mathrm{T}\\boldsymbol{v},\\boldsymbol{0}]^\\mathrm{T}.\\)
- \u9006: \\(\\displaystyle q^{-1}=q^*/\\|q\\|^2.\\)
- \\(\\displaystyle (\\boldsymbol{q}_a\\boldsymbol{q}_b)^{-1}=\\boldsymbol{q}_b^{-1}\\boldsymbol{q}_a^{-1}.\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#343","title":"3.4.3 \u7528\u56db\u5143\u6570\u8868\u793a\u65cb\u8f6c","text":"
- \u5148\u8868\u793a\u4e09\u7ef4\u7a7a\u95f4\u70b9:
- \\(\\displaystyle p=[0,x,y,z]^{\\mathrm{T}}=[0,\\boldsymbol{v}]^{\\mathrm{T}}.\\)
- \u518d\u65cb\u8f6c:
- \\(\\displaystyle p'=qpq^{-1}.\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#344","title":"3.4.4 \u56db\u5143\u6570\u5230\u5176\u4ed6\u65cb\u8f6c\u8868\u793a\u7684\u8f6c\u6362","text":"
- \u8bbe \\(\\displaystyle \\boldsymbol{q} = [s,\\boldsymbol{v}]^\\mathrm{T}\\)
- \\(\\displaystyle \\boldsymbol{q}^+=\\begin{bmatrix}s&-\\boldsymbol{v}^\\mathrm{T}\\\\\\\\\\boldsymbol{v}&s\\boldsymbol{I}+\\boldsymbol{v}^\\wedge\\end{bmatrix},\\quad\\boldsymbol{q}^\\oplus=\\begin{bmatrix}s&-\\boldsymbol{v}^\\mathrm{T}\\\\\\\\\\boldsymbol{v}&s\\boldsymbol{I}-\\boldsymbol{v}^\\wedge\\end{bmatrix}.\\)
- \\(\\displaystyle q_1^+q_2=\\begin{bmatrix}s_1&-\\boldsymbol{v}_1^\\mathrm{T}\\\\\\\\\\boldsymbol{v}_1&s_1\\boldsymbol{I}+\\boldsymbol{v}_1^\\wedge\\end{bmatrix}\\begin{bmatrix}s_2\\\\\\\\\\boldsymbol{v}_2\\end{bmatrix}=\\begin{bmatrix}-\\boldsymbol{v}_1^\\mathrm{T}\\boldsymbol{v}_2+s_1s_2\\\\\\\\s_1\\boldsymbol{v}_2+s_2\\boldsymbol{v}_1+\\boldsymbol{v}_1^\\wedge\\boldsymbol{v}_2\\end{bmatrix}=\\boldsymbol{q}_1\\boldsymbol{q}_2.\\)
- \u540c\u7406\u53ef\u8bc1:
- \\(\\displaystyle q_1q_2=q_1^+q_2=q_2^\\oplus q_1.\\)
- \u518d\u6765\u8003\u8651\u65cb\u8f6c:
- \\(\\displaystyle \\begin{aligned}p^{\\prime}&=qpq^{-1}=q^{+}p^{+}q^{-1}\\\\&=q^{+}q^{-1^{\\oplus}}p.\\end{aligned}\\)
- \u4e8e\u662f\u53ef\u4ee5\u5f97\u5230:
- \\(\\displaystyle \\boldsymbol{q}^{+}\\big(\\boldsymbol{q}^{-1}\\big)^{\\oplus}=\\begin{bmatrix}s&-\\boldsymbol{v}^{\\mathrm{T}}\\\\\\boldsymbol{v}&s\\boldsymbol{I}+\\boldsymbol{v}^{\\wedge}\\end{bmatrix}\\begin{bmatrix}s&\\boldsymbol{v}^{\\mathrm{T}}\\\\-\\boldsymbol{v}&s\\boldsymbol{I}+\\boldsymbol{v}^{\\wedge}\\end{bmatrix}=\\begin{bmatrix}1&\\boldsymbol{0}\\\\\\boldsymbol{0}^{\\mathrm{T}}&\\boldsymbol{v}\\boldsymbol{v}^{\\mathrm{T}}+s^{2}\\boldsymbol{I}+2s\\boldsymbol{v}^{\\wedge}+\\left(\\boldsymbol{v}^{\\wedge}\\right)^{2}\\end{bmatrix}.\\)
- \u5373: \\(\\displaystyle R=\\boldsymbol{v}\\boldsymbol{v}^\\mathrm{T}+s^2\\boldsymbol{I}+2s\\boldsymbol{v}^\\wedge+\\left(\\boldsymbol{v}^\\wedge\\right)^2.\\)
\\[ \\begin{aligned} \\operatorname{tr}(R)& =\\mathbf{tr}(\\boldsymbol{vv}^\\mathrm{T}+3s^2+2s\\cdot0+\\mathbf{tr}((\\boldsymbol{v}^\\wedge)^2) \\\\ &=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+3s^{2}-2(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}) \\\\ &=(1-s^2)+3s^2-2(1-s^2) \\\\ &=4s^2-1. \\end{aligned} \\]
- \u5373 \\(\\displaystyle \\theta=2\\arccos s.\\)
- \u518d\u52a0\u4e0a\u65cb\u8f6c\u8f74:
\\[ \\begin{cases}\\theta=2\\arccos q_0\\\\ [n_x,n_y,n_z]^\\mathrm{T}=[q_1,q_2,q_3]^\\mathrm{T}/\\sin\\frac{\\theta}{2}\\end{cases}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#35","title":"3.5 \u76f8\u4f3c\u3001\u4eff\u5c04\u3001\u5c04\u5f71\u53d8\u6362","text":"
- \u76f8\u4f3c\u53d8\u6362:
\\[ \\boldsymbol{T}_S=\\begin{bmatrix}s\\boldsymbol{R}&t\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}. \\]
\u5141\u8bb8\u7f29\u653e\uff0c\u76f8\u4f3c\u53d8\u6362\u7fa4: Sim (3) 2. \u4eff\u5c04\u53d8\u6362:
\\[ T_A=\\begin{bmatrix}A&t\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}. \\]
\u53ea\u4fdd\u8bc1\u5e73\u884c\u5173\u7cfb 3. \u5c04\u5f71\u53d8\u6362
\\[ T_P=\\begin{bmatrix}A&t\\\\\\\\a^\\mathrm{T}&v\\end{bmatrix}. \\]
\u603b\u7ed3\u4e00\u4e0b:
\\[ \\begin{array}{c|c|c|c}\\hline\\text{\u53d8\u6362\u540d\u79f0}&\\text{\u77e9\u9635\u5f62\u5f0f}&\\text{\u81ea\u7531\u5ea6}&\\text{\u4e0d\u53d8\u6027\u8d28}\\\\\\hline\\text{\u6b27\u6c0f\u53d8\u6362}&\\begin{bmatrix}R&t\\\\0^\\mathrm{T}&1\\end{bmatrix}&6&\\text{\u957f\u5ea6\u3001\u5939\u89d2\u3001\u4f53\u79ef}\\\\\\text{\u76f8\u4f3c\u53d8\u6362}&\\begin{bmatrix}sR&t\\\\0^\\mathrm{T}&1\\end{bmatrix}&7&\\text{\u4f53\u79ef\u6bd4}\\\\\\text{\u4eff\u5c04\u53d8\u6362}&\\begin{bmatrix}A&t\\\\0^\\mathrm{T}&1\\end{bmatrix}&12&\\text{\u5e73\u884c\u6027\u3001\u4f53\u79ef\u6bd4}\\\\\\text{\u5c04\u5f71\u53d8\u6362}&\\begin{bmatrix}A&t\\\\a^\\mathrm{T}&v\\end{bmatrix}&15&\\text{\u63a5\u89e6\u5e73\u9762\u7684\u76f8\u4ea4\u548c\u76f8\u5207}\\\\\\hline\\end{array} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#36-eigen","title":"3.6 \u5b9e\u8df5: Eigen \u51e0\u4f55\u6a21\u5757","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#361-eigen","title":"3.6.1 Eigen \u51e0\u4f55\u6a21\u5757\u7684\u6570\u636e\u6f14\u793a","text":"
\u518d\u8bf4\u5427\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#362","title":"3.6.2 \u5b9e\u9645\u7684\u5750\u6807\u53d8\u6362\u4f8b\u5b50","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#37","title":"3.7 \u53ef\u89c6\u5316\u6f14\u793a","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#371","title":"3.7.1 \u663e\u793a\u8fd0\u52a8\u8f68\u8ff9","text":"
- \u7528 Pangolin \u5e93
- TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#372","title":"3.7.2 \u663e\u793a\u76f8\u673a\u7684\u4f4d\u59ff","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#38","title":"3.8 \u4e60\u9898","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#4","title":"4 \u674e\u7fa4\u548c\u674e\u4ee3\u6570","text":"
- \u7531\u4e8e\u65cb\u8f6c\u77e9\u9635\u672c\u8eab\u5e26\u6709\u7ea6\u675f\uff08\u6b63\u4ea4\u4e14\u884c\u5217\u5f0f\u4e3a 1\uff09\uff0c\u8ba9\u4f18\u5316\u53d8\u5f97\u56f0\u96be\u3002
- \u6240\u4ee5\u6211\u4eec\u5f15\u5165\u674e\u7fa4-\u674e\u4ee3\u6570\u95f4\u7684\u8f6c\u6362\u5173\u7cfb\uff0c\u628a\u4f4d\u59ff\u4f30\u8ba1\u53d8\u6210\u65e0\u7ea6\u675f\u7684\u4f18\u5316\u95ee\u9898
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#41","title":"4.1 \u674e\u7fa4\u548c\u674e\u4ee3\u6570\u57fa\u7840","text":"
- \u4e09\u7ef4\u65cb\u8f6c\u77e9\u9635\u6784\u6210\u4e86\u7279\u6b8a\u6b63\u4ea4\u7fa4 \\(\\displaystyle \\boldsymbol{SO}(3)\\)
- \u53d8\u6362\u77e9\u9635\u6784\u6210\u4e86\u7279\u6b8a\u6b27\u6c0f\u7fa4 \\(\\displaystyle \\boldsymbol{SE}(3)\\)
- \u4f46\u662f\u4ed6\u4eec\u90fd\u5bf9\u52a0\u6cd5\u4e0d\u5c01\u95ed
- \u5bf9\u4e58\u6cd5\u5c01\u95ed
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#411","title":"4.1.1 \u7fa4","text":"
- \\(\\displaystyle G = (A,\\cdot)\\) \u6ee1\u8db3:
- \u5c01\u95ed\u6027
- \u7ed3\u5408\u5f8b
- \u5e7a\u5143
- \u9006
- \u674e\u7fa4\u662f\u5177\u6709\u8fde\u7eed\uff08\u5149\u6ed1\uff09\u6027\u8d28\u7684\u7fa4
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#412","title":"4.1.2 \u674e\u4ee3\u6570\u7684\u5f15\u51fa","text":"
- \\(\\displaystyle \\boldsymbol{R}\\boldsymbol{R}^\\mathrm{T} = \\boldsymbol{I}\\)
- \u6211\u4eec\u6613\u5f97: \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}=-\\left(\\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}\\right)^\\mathrm{T}.\\)
- \u5373 \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}\\) \u662f\u53cd\u5bf9\u79f0
- \u800c\u5bf9\u4e8e\u4efb\u610f\u53cd\u5bf9\u79f0\u77e9\u9635\uff0c\u6211\u4eec\u90fd\u53ef\u4ee5\u627e\u5230\u552f\u4e00\u4e0e\u4e4b\u5bf9\u5e94\u7684\u5411\u91cf
- \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}=\\boldsymbol{\\phi}(t)^{\\wedge}.\\)
- \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)=\\phi(t)^{\\wedge}\\boldsymbol{R}(t)=\\begin{bmatrix}0&-\\phi_3&\\phi_2\\\\\\phi_3&0&-\\phi_1\\\\-\\phi_2&\\phi_1&0\\end{bmatrix}\\boldsymbol{R}(t).\\) \u8003\u8651 \\(\\displaystyle t_{0} = 0\\) \u548c \\(\\displaystyle \\boldsymbol{R}(0) = \\boldsymbol{I}\\) \u65f6:
\\[ \\begin{aligned} R(t)& \\approx\\boldsymbol{R}\\left(t_{0}\\right)+\\dot{\\boldsymbol{R}}\\left(t_{0}\\right)\\left(t-t_{0}\\right) \\\\ &=I+\\phi(t_0)^{\\wedge}(t). \\end{aligned} \\]
\u4e8e\u662f\u6c42\u5bfc->\u4e00\u4e2a\u7b97\u7b26 \\(\\displaystyle \\phi\\) \uff0c\u88ab\u79f0\u4e3a \\(\\displaystyle \\boldsymbol{SO}(3)\\) \u539f\u70b9\u9644\u8fd1\u7684\u6b63\u5207\u7a7a\u95f4\uff08Tangent Space\uff09 \u8bbe\u5728 \\(\\displaystyle t_{0}\\) \u9644\u8fd1\uff0c\\(\\displaystyle \\phi\\) \u4fdd\u6301\u5e38\u6570 \\(\\displaystyle \\phi(t_{0})=\\phi_{0}\\)\uff0c
\\[ \\dot{\\boldsymbol{R}}(t)=\\boldsymbol{\\phi}(t_0)^\\wedge\\boldsymbol{R}(t)=\\boldsymbol{\\phi}_0^\\wedge\\boldsymbol{R}(t). \\]
\u518d\u6709 \\(\\displaystyle \\boldsymbol{R}(0) = \\boldsymbol{I}\\)\uff0c\u89e3\u7684:
\\[ \\boldsymbol{R}(t)=\\exp\\left(\\boldsymbol{\\phi}_{0}^{\\wedge}t\\right). \\]
- \\(\\displaystyle \\phi\\) \u6b63\u662f\u5bf9\u5e94\u5230 \\(\\displaystyle SO(3)\\) \u4e0a\u7684\u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{so}(3)\\)
- \\(\\displaystyle \\begin{aligned}&\\text{\u5176\u6b21,\u7ed9\u5b9a\u67d0\u4e2a\u5411\u91cf }\\phi\\text{ \u65f6,\u77e9\u9635\u6307\u6570}\\exp(\\phi^{\\wedge})\\text{ \u5982\u4f55\u8ba1\u7b97? \u53cd\u4e4b,\u7ed9\u5b9a }R\\text{ \u65f6,\u80fd\u5426\u6709\u76f8\u53cd}\\\\&\\text{\u7684\u8fd0\u7b97\u6765\u8ba1\u7b97 }\\phi?\\text{ \u4e8b\u5b9e\u4e0a,\u8fd9\u6b63\u662f\u674e\u7fa4\u4e0e\u674e\u4ee3\u6570\u95f4\u7684\u6307\u6570}/\\text{\u5bf9\u6570\u6620\u5c04\u3002}\\end{aligned}\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#413","title":"4.1.3 \u674e\u4ee3\u6570\u7684\u5b9a\u4e49","text":"
\u674e\u4ee3\u6570\u7531\u4e00\u4e2a\u96c6\u5408 \\(\\displaystyle \\mathbb{V}\\)\u3001\u4e00\u4e2a\u6570\u57df \\(\\displaystyle \\mathbb{F}\\) \u548c\u4e00\u4e2a\u4e8c\u5143\u8fd0\u7b97 \\(\\displaystyle [,]\\) \u7ec4\u6210\u3002\u5982\u679c\u6ee1\u8db3\u4ee5\u4e0b\u51e0\u6761\u6027\u8d28\uff0c\u5219\u79f0 ( \\(\\displaystyle \\mathbb{V},\\mathbb{F},[,]\\)) \u4e3a\u4e00\u4e2a\u674e\u4ee3\u6570\uff0c\u8bb0\u4f5c \\(\\displaystyle \\mathfrak{g}\\)\u3002
- \u5c01\u95ed\u6027
- \u53cc\u7ebf\u6027
- \u81ea\u53cd\u6027 \\(\\displaystyle \\quad\\forall \\boldsymbol{X}\\in\\mathbb{V},[\\boldsymbol{X},\\boldsymbol{X}]=0\\)
- \u96c5\u53ef\u6bd4\u7b49\u4ef7 \\(\\displaystyle \\forall X,Y,Z\\in\\mathbb{V},[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.\\) \u5176\u4e2d\u4e8c\u5143\u8fd0\u7b97\u88ab\u79f0\u4e3a\u674e\u62ec\u53f7\u3002 eg: \u53c9\u79ef\u662f\u4e00\u79cd\u674e\u62ec\u53f7
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#414-displaystyle-mathfrakso3","title":"4.1.4 \u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{so}(3)\\)","text":"
\\(\\displaystyle \\boldsymbol{\\Phi}=\\boldsymbol{\\phi}^{\\wedge}=\\begin{bmatrix}0&-\\phi_3&\\phi_2\\\\\\\\\\phi_3&0&-\\phi_1\\\\\\\\-\\phi_2&\\phi_1&0\\end{bmatrix}\\in\\mathbb{R}^{3\\times3}.\\) \u6240\u4ee5\u4e24\u4e2a\u5411\u91cf \\(\\displaystyle \\phi_{1},\\phi_{2}\\) \u7684\u674e\u62ec\u53f7\u4e3a:
\\[ [\\phi_1,\\phi_2]=(\\boldsymbol{\\Phi}_1\\boldsymbol{\\Phi}_2-\\boldsymbol{\\Phi}_2\\boldsymbol{\\Phi}_1)^\\vee. \\] \\[ \\mathfrak{so}(3)=\\left\\{\\phi\\in\\mathbb{R}^3,\\boldsymbol{\\Phi}=\\phi^\\wedge\\in\\mathbb{R}^{3\\times3}\\right\\}. \\] \\[ R=\\exp(\\phi^{\\wedge}). \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#415-displaystyle-mathfrakse3","title":"4.1.5 \u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{se}(3)\\)","text":"\\[ \\mathfrak{se}(3)=\\left\\{\\boldsymbol{\\xi}=\\begin{bmatrix}\\boldsymbol{\\rho}\\\\\\boldsymbol{\\phi}\\end{bmatrix}\\in\\mathbb{R}^6,\\boldsymbol{\\rho}\\in\\mathbb{R}^3,\\boldsymbol{\\phi}\\in\\mathfrak{so}(3),\\boldsymbol{\\xi}^\\wedge=\\begin{bmatrix}\\boldsymbol{\\phi}^\\wedge&\\boldsymbol{\\rho}\\\\\\boldsymbol{0}^\\mathrm{T}&0\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}\\right\\}. \\]
\u524d\u4e09\u7ef4\u4e3a\u5e73\u79fb\uff0c\u540e\u4e09\u7ef4\u4e3a\u65cb\u8f6c\uff08\u5b9e\u8d28\u4e0a\u662f \\(\\displaystyle \\mathfrak{so}(3)\\) \u5143\u7d20\uff09
\\[ \\xi^\\wedge=\\begin{bmatrix}\\phi^\\wedge&\\rho\\\\0^\\mathrm{T}&0\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}. \\]
\u540c\u6837\u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{se}(3)\\) \u4e5f\u6709\u7c7b\u4f3c\u4e8e \\(\\displaystyle \\mathfrak{so}(3)\\) \u7684\u674e\u62ec\u53f7:
\\[ [\\xi_1,\\xi_2]=\\left(\\xi_1^\\wedge\\xi_2^\\wedge-\\xi_2^\\wedge\\xi_1^\\wedge\\right)^\\vee. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#42","title":"4.2 \u6307\u6570\u4e0e\u5bf9\u6570\u6620\u5c04","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#421-so3","title":"4.2.1 SO(3)\u4e0a\u7684\u6307\u6570\u6620\u5c04","text":"
- Exponential Map
- \u9996\u5148\u4efb\u610f\u77e9\u9635\u7684\u6307\u6570\u6620\u5c04\u53ef\u4ee5\u5199\u6210\u4e00\u4e2a\u6cf0\u52d2\u5c55\u5f00\uff08\u6536\u655b\u7684\u65f6\u5019\uff09
\\[ \\exp(A)=\\sum_{n=0}^\\infty\\frac1{n!}A^n. \\]
- \u5e94\u7528\u5230 \\(\\displaystyle \\mathfrak{so}(3)\\) \u4e2d:
\\[ \\exp(\\phi^\\wedge)=\\sum_{n=0}^\\infty\\frac{1}{n!}(\\phi^\\wedge)^n. \\]
- \u6211\u4eec\u53ef\u4ee5\u628a \\(\\displaystyle \\phi\\) \u8868\u793a\u6210 \\(\\displaystyle \\theta \\boldsymbol{a}\\)\uff0c\u5bf9\u4e8e \\(\\displaystyle \\boldsymbol{a}^\\wedge\\):
\\[ \\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}=\\begin{bmatrix}-a_2^2-a_3^2&a_1a_2&a_1a_3\\\\\\\\a_1a_2&-a_1^2-a_3^2&a_2a_3\\\\\\\\a_1a_3&a_2a_3&-a_1^2-a_2^2\\end{bmatrix}=\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}-\\boldsymbol{I}, \\]
\u548c
\\[ a^{\\wedge}a^{\\wedge}a^{\\wedge}=a^{\\wedge}(aa^{\\mathrm{T}}-I)=-a^{\\wedge}. \\]
\u4e8e\u662f\u6211\u4eec\u53ef\u4ee5\u5316\u7b80:
\\[ \\begin{aligned} \\exp\\left(\\phi^\\wedge\\right)& =\\exp\\left(\\theta\\boldsymbol{a}^\\wedge\\right)=\\sum_{n=0}^\\infty\\frac1{n!}\\left(\\theta\\boldsymbol{a}^\\wedge\\right)^n \\\\ &=I+\\theta\\boldsymbol{a}^{\\wedge}+\\frac{1}{2!}\\theta^{2}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}+\\frac{1}{3!}\\theta^{3}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}+\\frac{1}{4!}\\theta^{4}(\\boldsymbol{a}^{\\wedge})^{4}+\\cdots \\\\ &=\\boldsymbol{a}\\boldsymbol{a}^{\\mathrm{T}}-\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}+\\theta\\boldsymbol{a}^{\\wedge}+\\frac{1}{2!}\\theta^{2}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}-\\frac{1}{3!}\\theta^{3}\\boldsymbol{a}^{\\wedge}-\\frac{1}{4!}\\theta^{4}(\\boldsymbol{a}^{\\wedge})^{2}+\\cdots \\\\ &=\\boldsymbol{a}\\boldsymbol{a}^{\\mathsf{T}}+\\underbrace{\\left(\\theta-\\frac{1}{3!}\\theta^{3}+\\frac{1}{5!}\\theta^{5}-\\cdots\\right)}_{\\sin\\theta}\\boldsymbol{a}^{\\wedge}-\\underbrace{\\left(1-\\frac{1}{2!}\\theta^{2}+\\frac{1}{4!}\\theta^{4}-\\cdots\\right)}_{\\cos\\theta}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge} \\\\ &=a^\\wedge a^\\wedge+I+\\sin\\theta a^\\wedge-\\cos\\theta a^\\wedge a^\\wedge \\\\ &=(1-\\cos\\theta)\\boldsymbol{a}^\\wedge\\boldsymbol{a}^\\wedge+\\boldsymbol{I}+\\sin\\theta\\boldsymbol{a}^\\wedge \\\\ &=\\cos\\theta\\boldsymbol{I}+(1-\\cos\\theta)\\boldsymbol{aa}^\\mathrm{T}+\\sin\\theta\\boldsymbol{a}^\\mathrm{\\wedge}. \\end{aligned} \\]
\u6700\u540e\u5f97\u5230:
\\[ \\exp(\\theta\\boldsymbol{a}^\\wedge)=\\cos\\theta\\boldsymbol{I}+(1-\\cos\\theta)\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}+\\sin\\theta\\boldsymbol{a}^\\wedge. \\]
\u6240\u4ee5 \\(\\displaystyle \\mathfrak{so}(3)\\) \u5c31\u662f\u65cb\u91cf\u5411\u91cf\u7ec4\u6210\u7684\u7a7a\u95f4\uff0c\u800c\u6307\u6570\u6620\u5c04\u5373\u7f57\u5fb7\u91cc\u683c\u65af\u516c\u5f0f\u3002
- \u901a\u8fc7\u4e0a\u9762\u7684\u516c\u5f0f\uff0c\u6211\u4eec\u53ef\u4ee5\u628a \\(\\displaystyle \\mathfrak{so}(3)\\) \u4e2d\u4efb\u610f\u5411\u91cf\u5bf9\u5e94\u5230 SO (3) \u4e2d\u7684\u65cb\u8f6c\u77e9\u9635
- \u53cd\u8fc7\u6765\u4e5f\u662f\u53ef\u4ee5\u7684
\\[ \\phi=\\ln\\left(\\boldsymbol{R}\\right)^\\vee=\\left(\\sum_{n=0}^\\infty\\frac{\\left(-1\\right)^n}{n+1}\\left(\\boldsymbol{R}-\\boldsymbol{I}\\right)^{n+1}\\right)^\\vee. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#422-se-3","title":"4.2.2 SE (3) \u4e0a\u7684\u6307\u6570\u6620\u5c04","text":"
\u540c\u6837\u7684\u63a8\u5bfc\u65b9\u5f0f:
\\[ \\begin{aligned} \\exp\\left(\\xi^{\\wedge}\\right)& =\\begin{bmatrix}\\sum_{n=0}^{\\infty}\\frac{1}{n!}(\\phi^{\\wedge})^{n}&\\sum_{n=0}^{\\infty}\\frac{1}{(n+1)!}(\\phi^{\\wedge})^{n}\\rho\\\\\\\\\\mathbf{0}^{\\mathrm{T}}&1\\end{bmatrix} \\\\ &\\stackrel{\\Delta}{=}\\begin{bmatrix}R&J\\rho\\\\\\\\0^\\mathrm{T}&1\\end{bmatrix}=T. \\end{aligned} \\] \\[ \\begin{aligned} \\sum_{n=0}^{\\infty}\\frac{1}{(n+1)!}(\\phi^{\\wedge})^{n}& =\\boldsymbol{I}+\\frac{1}{2!}\\theta\\boldsymbol{a}^{\\wedge}+\\frac{1}{3!}\\theta^{2}{(\\boldsymbol{a}^{\\wedge})}^{2}+\\frac{1}{4!}\\theta^{3}{(\\boldsymbol{a}^{\\wedge})}^{3}+\\frac{1}{5!}\\theta^{4}{(\\boldsymbol{a}^{\\wedge})}^{4}\\cdots \\\\ &=\\frac{1}{\\theta}\\left(\\frac{1}{2!}\\theta^{2}-\\frac{1}{4!}\\theta^{4}+\\cdots\\right)(\\boldsymbol{a}^{\\wedge})+\\frac{1}{\\theta}\\left(\\frac{1}{3!}\\theta^{3}-\\frac{1}{5}\\theta^{5}+\\cdots\\right)(\\boldsymbol{a}^{\\wedge})^{2}+\\boldsymbol{I} \\\\ &=\\frac1\\theta\\left(1-\\cos\\theta\\right)\\left(\\boldsymbol{a}^{\\wedge}\\right)+\\frac{\\theta-\\sin\\theta}\\theta\\left(\\boldsymbol{a}\\boldsymbol{a}^{\\mathrm{T}}-\\boldsymbol{I}\\right)+\\boldsymbol{I} \\\\ &=\\frac{\\sin\\theta}\\theta\\boldsymbol{I}+\\left(1-\\frac{\\sin\\theta}\\theta\\right)\\boldsymbol{aa}^\\mathrm{T}+\\frac{1-\\cos\\theta}\\theta\\boldsymbol{a}^\\mathrm{\\wedge}\\overset{\\mathrm{def}}{\\operatorname*{=}}\\boldsymbol{J}. \\end{aligned} \\] \\[ \\boldsymbol{J}=\\frac{\\sin\\theta}{\\theta}\\boldsymbol{I}+\\left(1-\\frac{\\sin\\theta}{\\theta}\\right)\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}+\\frac{1-\\cos\\theta}{\\theta}\\boldsymbol{a}^\\mathrm{\\wedge}. \\]
4.28 \u6ca1\u770b\u61c2
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#43","title":"4.3 \u674e\u4ee3\u6570\u6c42\u5bfc\u4e0e\u6270\u52a8\u6a21\u578b","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#431-bch","title":"4.3.1 BCH \u516c\u5f0f\u4e0e\u8fd1\u4f3c\u5f62\u5f0f","text":"
\u63a2\u7a76\u5982\u4e0b\u5f0f\u5b50\u662f\u5426\u6210\u7acb:
\\[ \\ln\\left(\\exp\\left(A\\right)\\exp\\left(B\\right)\\right)=A+B ? \\]
\u4f46\u5b83\u5e76\u4e0d\u6210\u7acb\u3002\u4e24\u4e2a\u674e\u4ee3\u6570\u6307\u6570\u6620\u5c04\u4e58\u79ef\u7684\u5b8c\u6574\u5f62\u5f0f\uff0c\u7531 Baker-Campbell-Hausdorff \u7ed9\u51fa:
\\[ \\ln\\left(\\exp\\left(A\\right)\\exp\\left(B\\right)\\right)=A+B+\\frac{1}{2}\\left[A,B\\right]+\\frac{1}{12}\\left[A,\\left[A,B\\right]\\right]-\\frac{1}{12}\\left[B,\\left[A,B\\right]\\right]+\\cdots \\]
\u7279\u522b\u7684\uff0c\u5f53 \\(\\displaystyle \\phi_{1}\\) \u6216 \\(\\displaystyle \\phi_{2}\\) \u4e3a\u5c0f\u91cf\u65f6\uff0c\u5c0f\u91cf\u4e8c\u6b21\u4ee5\u4e0a\u7684\u9879\u90fd\u53ef\u4ee5\u88ab\u5ffd\u7565\uff0c\u6b64\u65f6\u7684\u7ebf\u6027\u8fd1\u4f3c\u8868\u8fbe:
\\[ \\ln\\left(\\exp\\left(\\phi_1^\\wedge\\right)\\exp\\left(\\phi_2^\\wedge\\right)\\right)^\\vee\\approx\\begin{cases}J_l(\\phi_2)^{-1}\\phi_1+\\phi_2&\\text{\u5f53}\\phi_1\\text{\u4e3a\u5c0f\u91cf},\\\\J_r(\\phi_1)^{-1}\\phi_2+\\phi_1&\\text{\u5f53}\\phi_2\\text{\u4e3a\u5c0f\u91cf}.\\end{cases} \\] \\[ \\boldsymbol{J}_{l}=\\frac{\\sin\\theta}{\\theta}\\boldsymbol{I}+\\left(1-\\frac{\\sin\\theta}{\\theta}\\right)\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}+\\frac{1-\\cos\\theta}{\\theta}\\boldsymbol{a}^\\mathrm{\\wedge}. \\] \\[ \\boldsymbol{J}_{\\ell}^{-1}=\\frac{\\theta}{2}\\cot\\frac{\\theta}{2}\\boldsymbol{I}+\\left(1-\\frac{\\theta}{2}\\cot\\frac{\\theta}{2}\\right)\\boldsymbol{a}\\boldsymbol{a}^{\\mathrm{T}}-\\frac{\\theta}{2}\\boldsymbol{a}^{\\wedge}. \\] \\[ J_{r}(\\phi)=J_{l}(-\\phi). \\]
\u4e8e\u662f\u6211\u4eec\u5c31\u53ef\u4ee5\u8c08\u8bba\u674e\u7fa4\u4e58\u6cd5\u4e0e\u674e\u4ee3\u6570\u52a0\u6cd5\u7684\u5173\u7cfb\u4e86\u3002 \\(\\displaystyle \\boldsymbol{R}\\) \u5bf9\u5e94 \\(\\displaystyle \\phi\\)\uff0c\u6211\u4eec\u7ed9\u5b83\u5de6\u4e58\u4e00\u4e2a\u5fae\u5c0f\u65cb\u8f6c\uff0c\u8bb0\u4f5c \\(\\displaystyle \\Delta \\boldsymbol{R}\\)
\\[ \\exp\\left(\\Delta\\phi^{\\wedge}\\right)\\exp\\left(\\phi^{\\wedge}\\right)=\\exp\\left(\\left(\\phi+J_{l}^{-1}\\left(\\phi\\right)\\Delta\\phi\\right)^{\\wedge}\\right). \\] \\[ \\exp\\left(\\left(\\phi+\\Delta\\phi\\right)^{\\wedge}\\right)=\\exp\\left(\\left(J_{l}\\Delta\\phi\\right)^{\\wedge}\\right)\\exp\\left(\\phi^{\\wedge}\\right)=\\exp\\left(\\phi^{\\wedge}\\right)\\exp\\left(\\left(J_{r}\\Delta\\phi\\right)^{\\wedge}\\right). \\]
\u5bf9\u4e8e SE (3) \u6211\u4eec\u4e5f\u6709:
\\[ \\exp\\left(\\Delta\\xi^{\\wedge}\\right)\\exp\\left(\\xi^{\\wedge}\\right)\\approx\\exp\\left(\\left(\\mathcal{J}_{l}^{-1}\\Delta\\xi+\\xi\\right)^{\\wedge}\\right) \\] \\[ exp\\left(\\xi^{\\wedge}\\right)\\exp\\left(\\Delta\\xi^{\\wedge}\\right)\\approx\\exp\\left(\\left(\\mathcal{J}_{r}^{-1}\\Delta\\xi+\\xi\\right)^{\\wedge}\\right). \\]
\u552f\u4e00\u4e0d\u540c\u7684\u662f\u8fd9\u91cc\u7684 \\(\\displaystyle J_{l}\\) \u6bd4\u8f83\u590d\u6742\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#432-so-3","title":"4.3.2 SO (3) \u4e0a\u7684\u674e\u4ee3\u6570\u6c42\u5bfc","text":"\\[ z=T\\boldsymbol{p}+\\boldsymbol{w}. \\]
\u5176\u4e2d \\(\\displaystyle \\boldsymbol{w}\\) \u662f\u968f\u673a\u566a\u58f0\u3002
\\[ e=z-Tp. \\]
\u5047\u8bbe\u4e00\u5171\u6709 N \u4e2a\u8fd9\u6837\u7684\u8def\u6807\u70b9\u548c\u89c2\u6d4b:
\\[ \\min_{\\boldsymbol{T}}J(\\boldsymbol{T})=\\sum_{i=1}^N\\left\\|\\boldsymbol{z}_i-\\boldsymbol{T}\\boldsymbol{p}_i\\right\\|_2^2. \\]
most importantly\uff0c\u6211\u4eec\u4f1a\u6784\u5efa\u4e0e\u4f4d\u59ff\u6709\u5173\u7684\u51fd\u6570\uff0c\u5e76\u8ba8\u8bba\u8be5\u51fd\u6570\u5173\u4e8e\u4f4d\u59ff\u7684\u5bfc\u6570\uff0c\u4ee5\u8c03\u6574\u5f53\u524d\u7684\u4f30\u8ba1\u503c\u3002 \u4f7f\u7528\u674e\u4ee3\u6570\u89e3\u51b3\u6c42\u5bfc\u95ee\u9898\u7684\u601d\u8def\u5206\u4e3a\u4e24\u79cd:
- \u7528\u674e\u4ee3\u6570\u8868\u793a\u59ff\u6001\uff0c\u7136\u540e\u6839\u636e\u674e\u4ee3\u6570\u52a0\u6cd5\u5bf9\u674e\u4ee3\u6570\u6c42\u5bfc\u3002
- \u5bf9\u674e\u7fa4\u5de6\u4e58\u6216\u53f3\u4e58\u5fae\u5c0f\u6270\u52a8\uff0c\u7136\u540e\u5bf9\u8be5\u6270\u52a8\u6c42\u5bfc\uff0c\u79f0\u4e3a\u5de6\u6270\u52a8\u548c\u53f3\u6270\u52a8\u6a21\u578b\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#44","title":"4.4 \u674e\u4ee3\u6570\u6c42\u5bfc","text":"
\u8981\u8ba1\u7b97 \\(\\displaystyle \\frac{\\partial\\left(Rp\\right)}{\\partial R}\\), \u7531\u4e8eSO\uff083\uff09\u6ca1\u6709\u52a0\u6cd5\uff0c\u6211\u4eec\u8f6c\u800c\u8ba1\u7b97: \\(\\displaystyle \\frac{\\partial\\left(\\exp\\left(\\phi^{\\wedge}\\right)\\boldsymbol{p}\\right)}{\\partial\\boldsymbol{\\phi}}.\\)
\\[ \\begin{aligned} \\frac{\\partial\\left(\\exp\\left(\\phi^{\\wedge}\\right)\\boldsymbol{p}\\right)}{\\partial\\phi}& =\\lim_{\\delta\\boldsymbol{\\phi}\\to0}\\frac{\\exp\\left(\\left(\\boldsymbol{\\phi}+\\delta\\boldsymbol{\\phi}\\right)^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\phi}} \\\\ &=\\lim_{\\delta\\phi\\to0}\\frac{\\exp\\left(\\left(\\boldsymbol{J}_i\\delta\\boldsymbol{\\phi}\\right)^\\wedge\\right)\\exp\\left(\\boldsymbol{\\phi}^\\wedge\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^\\wedge\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\phi}} \\\\ &=\\lim_{\\delta\\phi\\to0}\\frac{\\left(\\boldsymbol{I}+\\left(\\boldsymbol{J}_{l}\\delta\\boldsymbol{\\phi}\\right)^{\\wedge}\\right)\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\phi} \\\\ &=\\lim_{\\delta\\phi\\to0}\\frac{\\left(\\boldsymbol{J}_{l}\\delta\\phi\\right)^{\\wedge}\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\phi} \\\\ &=\\lim_{\\delta\\boldsymbol{\\phi}\\to0}\\frac{-(\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p})^{\\wedge}\\boldsymbol{J}_{l}\\delta\\boldsymbol{\\phi}}{\\delta\\boldsymbol{\\phi}}=-(\\boldsymbol{R}\\boldsymbol{p})^{\\wedge}\\boldsymbol{J}_{l}. \\end{aligned} \\]
BCH \u7ebf\u6027\u8fd1\u4f3c+\u6cf0\u52d2\u5c55\u5f00\u53d6\u7ebf\u6027\u9879:
\\[ \\frac{\\partial\\left(\\boldsymbol{Rp}\\right)}{\\partial\\boldsymbol{\\phi}}=\\left(-\\boldsymbol{Rp}\\right)^{\\wedge}\\boldsymbol{J}_{l}. \\]
\u4f46\u662f\u8fd9\u91cc\u4ecd\u7136\u6709 \\(\\displaystyle \\boldsymbol{J}_{l}\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#441","title":"4.4.1 \u6270\u52a8\u6a21\u578b\uff08\u5de6\u4e58\uff09","text":"
\\(\\displaystyle \\varphi\\) \u5bf9\u5e94\u5de6\u6270\u52a8 \\(\\displaystyle \\Delta \\boldsymbol{R}\\)
\\[ \\begin{aligned} \\frac{\\partial\\left(Rp\\right)}{\\partial\\varphi}& =\\lim_{\\varphi\\to0}\\frac{\\exp\\left(\\varphi^{\\wedge}\\right)\\exp\\left(\\phi^{\\wedge}\\right)p-\\exp\\left(\\phi^{\\wedge}\\right)p}{\\varphi} \\\\ &=\\lim_{\\varphi\\to0}\\frac{(\\boldsymbol{I}+\\boldsymbol{\\varphi}^{\\wedge})\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\varphi} \\\\ &=\\lim_{\\varphi\\to0}\\frac{\\varphi^\\wedge Rp}\\varphi=\\lim_{\\varphi\\to0}\\frac{-\\left(Rp\\right)^\\wedge\\varphi}\\varphi=-\\left(Rp\\right)^\\wedge. \\end{aligned} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#442-se-3","title":"4.4.2 SE (3) \u4e0a\u7684\u674e\u4ee3\u6570\u6c42\u5bfc","text":"\\[ \\begin{aligned} \\frac{\\partial\\left(\\boldsymbol{T}\\boldsymbol{p}\\right)}{\\partial\\delta\\boldsymbol{\\xi}}&=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\boldsymbol{0}}\\frac{\\exp\\left(\\delta\\boldsymbol{\\xi}^{\\wedge}\\right)\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\xi} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\mathbf{0}}\\frac{\\left(\\boldsymbol{I}+\\delta\\boldsymbol{\\xi}^{\\wedge}\\right)\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\xi}} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to0}\\frac{\\delta\\boldsymbol{\\xi}^{\\wedge}\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\xi}} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\mathbf{0}}\\frac{\\begin{bmatrix}\\delta\\boldsymbol{\\phi}^\\wedge&\\delta\\boldsymbol{\\rho}\\\\\\\\\\mathbf{0}^\\mathrm{T}&0\\end{bmatrix}\\begin{bmatrix}\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t}\\\\\\\\1\\end{bmatrix}}{\\delta\\boldsymbol{\\xi}} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\boldsymbol{0}}\\frac{\\begin{bmatrix}\\delta\\boldsymbol{\\phi}^{\\wedge}\\left(\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t}\\right)+\\delta\\boldsymbol{\\rho}\\\\\\boldsymbol{0}^{\\mathrm{T}}\\end{bmatrix}}{[\\delta\\boldsymbol{\\rho},\\delta\\boldsymbol{\\phi}]^{\\mathrm{T}}}=\\begin{bmatrix}\\boldsymbol{I}&-(\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t})^{\\wedge}\\\\\\boldsymbol{0}^{\\mathrm{T}}&\\boldsymbol{0}^{\\mathrm{T}}\\end{bmatrix}\\stackrel{\\mathrm{def}}{=}(\\boldsymbol{T}\\boldsymbol{p})^{\\odot}. \\end{aligned} \\] \\[ \\frac{\\mathrm{d}\\begin{bmatrix}a\\\\b\\end{bmatrix}}{\\mathrm{d}\\begin{bmatrix}x\\\\y\\end{bmatrix}}=\\left(\\frac{\\mathrm{d}[a,b]^\\mathrm{T}}{\\mathrm{d}\\begin{bmatrix}x\\\\y\\end{bmatrix}}\\right)^\\mathrm{T}=\\begin{bmatrix}\\frac{\\mathrm{d}a}{\\mathrm{d}x}&\\frac{\\mathrm{d}b}{\\mathrm{d}x}\\\\\\frac{\\mathrm{d}a}{\\mathrm{d}y}&\\frac{\\mathrm{d}b}{\\mathrm{d}y}\\end{bmatrix}^\\mathrm{T}=\\begin{bmatrix}\\frac{\\mathrm{d}a}{\\mathrm{d}x}&\\frac{\\mathrm{d}a}{\\mathrm{d}y}\\\\\\frac{\\mathrm{d}b}{\\mathrm{d}x}&\\frac{\\mathrm{d}b}{\\mathrm{d}y}\\end{bmatrix} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#45-sophus","title":"4.5 \u5b9e\u8df5:Sophus","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#451-sophus","title":"4.5.1 Sophus \u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#452","title":"4.5.2 \u4f8b\u5b50: \u8bc4\u4f30\u8f68\u8ff9\u7684\u8bef\u5dee","text":"
- \u7edd\u5bf9\u8f68\u8ff9\u8bef\u5dee\uff08Absolute Trajectory Error, ATE\uff09
\\[ \\mathrm{ATE}_{\\mathrm{all}}=\\sqrt{\\frac{1}{N}\\sum_{i=1}^{N}\\|\\log(T_{\\mathrm{gt},i}^{-1}T_{\\mathrm{esti},i})^{\\vee}\\|_{2}^{2}}, \\]
\u5373\u5747\u65b9\u6839\u8bef\u5dee\uff08Root-Mean-Squared Error, RMSE\uff09
- \u7edd\u5bf9\u5e73\u79fb\u8bef\u5dee\uff08Average Translational Error\uff09
\\[ \\mathrm{ATE}_{\\mathrm{all}}=\\sqrt{\\frac{1}{N}\\sum_{i=1}^{N}\\|\\log(T_{\\mathrm{gt},i}^{-1}T_{\\mathrm{esti},i})^{\\vee}\\|_{2}^{2}}, \\]
- \u76f8\u5bf9\u4f4d\u59ff\u8bef\u5dee\uff08Relative Pose Error, RPE\uff09
\\[ \\mathrm{RPE}_{\\mathrm{all}}=\\sqrt{\\frac{1}{N-\\Delta t}\\sum_{i=1}^{N-\\Delta t}\\|\\log\\left(\\left(\\boldsymbol{T}_{\\mathrm{gt},i}^{-1}\\boldsymbol{T}_{\\mathrm{gt},i+\\Delta t}\\right)\\right)^{-1}\\left(\\boldsymbol{T}_{\\mathrm{est},i}^{-1}\\boldsymbol{T}_{\\mathrm{est},i+\\Delta t}\\right))^{\\vee}\\|_{2}^{2}}, \\] \\[ \\mathrm{RPE}_{\\mathrm{trans}}=\\sqrt{\\frac{1}{N-\\Delta t}\\sum_{i=1}^{N-\\Delta t}\\|\\mathrm{trans}\\left(\\left(T_{gt,i}^{-1}T_{gt,i+\\Delta t}\\right)\\right)^{-1}\\left(T_{\\mathrm{esti},i}^{-1}T_{\\mathrm{esti},i+\\Delta t}\\right))\\|_{2}^{2}}. \\]
\u4ee3\u7801\u8ba1\u7b97:
Text Only
TODO\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#46","title":"4.6 \u76f8\u4f3c\u53d8\u6362\u4e0e\u674e\u4ee3\u6570","text":"
\u5728\u8fd9\u91cc\u6211\u4eec\u8ba8\u8bba Sim (3) \u548c\u5bf9\u5e94\u7684\u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{sim}(3)\\)\u3002 \u5bf9\u4e8e\u4f4d\u4e8e\u7a7a\u95f4\u7684\u70b9 \\(\\displaystyle \\boldsymbol{p}\\)\uff0c\u5728\u76f8\u673a\u5750\u6807\u7cfb\u4e0b\u8981\u7ecf\u8fc7\u4e00\u4e2a\u76f8\u4f3c\u53d8\u6362\uff0c\u800c\u975e\u6b27\u6c0f\u53d8\u6362:
\\[ \\boldsymbol{p}'=\\begin{bmatrix}s\\boldsymbol{R}&\\boldsymbol{t}\\\\\\boldsymbol{0}^\\mathrm{T}&1\\end{bmatrix}\\boldsymbol{p}=s\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t}. \\] \\[ \\mathrm{Sim}(3)=\\left\\{S=\\begin{bmatrix}sR&t\\\\\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}\\right\\}. \\] \\[ \\sin(3)=\\left\\{\\zeta|\\zeta=\\begin{bmatrix}\\rho\\\\\\\\\\phi\\\\\\\\\\sigma\\end{bmatrix}\\in\\mathbb{R}^7,\\zeta^\\wedge=\\begin{bmatrix}\\sigma\\boldsymbol{I}+\\phi^\\wedge&\\rho\\\\\\\\\\mathbf{0}^\\mathrm{T}&0\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}\\right\\}. \\] \\[ \\exp\\left(\\zeta^{\\wedge}\\right)=\\begin{bmatrix}\\mathrm{e}^{\\sigma}\\exp\\left(\\phi^{\\wedge}\\right)&J_{s}\\rho\\\\0^{\\mathrm{T}}&1\\end{bmatrix}. \\]
\u5176\u4e2d\uff0c\\(\\displaystyle \\boldsymbol{J}_{S}\\) \u7684\u5f62\u5f0f\u662f:
\\[ \\begin{aligned} \\text{J}& =\\frac{\\mathrm{e}^{\\sigma}-1}{\\sigma}I+\\frac{\\sigma\\mathrm{e}^{\\sigma}\\sin\\theta+\\left(1-\\mathrm{e}^{\\sigma}\\cos\\theta\\right)\\theta}{\\sigma^{2}+\\theta^{2}}\\boldsymbol{a}^{\\wedge} \\\\ &+\\left(\\frac{\\mathrm{e}^\\sigma-1}{\\sigma}-\\frac{\\left(\\mathrm{e}^\\sigma\\cos\\theta-1\\right)\\sigma+\\left(\\mathrm{e}^\\sigma\\sin\\theta\\right)\\theta}{\\sigma^2+\\theta^2}\\right)\\boldsymbol{a}^\\wedge\\boldsymbol{a}^\\wedge. \\end{aligned} \\]
\u4e8e\u662f\uff0c\u674e\u4ee3\u6570\u4e0e\u674e\u7fa4\u7684\u5173\u7cfb:
\\[ s=\\mathrm{e}^\\sigma, R=\\exp(\\phi^\\wedge), t=J_s\\rho. \\] \\[ \\frac{\\partial\\boldsymbol{Sp}}{\\partial\\boldsymbol{\\zeta}}=\\begin{bmatrix}\\boldsymbol{I}&-\\boldsymbol{q}^\\wedge&\\boldsymbol{q}\\\\\\boldsymbol{0}^\\mathrm{T}&\\boldsymbol{0}^\\mathrm{T}&0\\end{bmatrix}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#47","title":"4.7 \u4e60\u9898","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#5","title":"5 \u76f8\u673a\u4e0e\u56fe\u50cf","text":"
- \u89c2\u6d4b\u4e3b\u8981\u662f\u6307\u76f8\u673a\u6210\u50cf\u7684\u8fc7\u7a0b\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#51","title":"5.1 \u76f8\u673a\u6a21\u578b","text":"
- \u9488\u5b54\u6a21\u578b
- \u900f\u955c\u4f1a\u4ea7\u751f\u7578\u53d8
- \u5185\u53c2\u6570\uff08Intrinsics\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#511","title":"5.1.1 \u9488\u5b54\u76f8\u673a\u6a21\u578b","text":"\\[ \\frac{Z}{f}=-\\frac{X}{X'}=-\\frac{Y}{Y'}. \\]
\u53bb\u6389\u8d1f\u53f7:
\\[ \\frac Zf=\\frac X{X^{\\prime}}=\\frac Y{Y^{\\prime}}. \\] \\[ \\begin{aligned}X'&=f\\frac{X}{Z}\\\\Y'&=f\\frac{Y}{Z}\\end{aligned}. \\]
\u8fd8\u6709\u4e00\u4e2a\u50cf\u7d20\u5750\u6807\u7cfb\uff0cu \u8f74\u4e0e x \u8f74\u5e73\u884c\uff0cv \u8f74\u4e0e y \u8f74\u5e73\u884c:
\\[ \\begin{cases}u=\\alpha X'+c_x\\\\[2ex]v=\\beta Y'+c_y\\end{cases}. \\] \\[ \\begin{cases}u=f_x\\frac{X}{Z}+c_x\\\\\\\\v=f_y\\frac{Y}{Z}+c_y\\end{cases}. \\] \\[ Z\\begin{pmatrix}u\\\\\\\\v\\\\\\\\1\\end{pmatrix}=\\begin{pmatrix}f_x&0&c_x\\\\0&f_y&c_y\\\\\\\\0&0&1\\end{pmatrix}\\begin{pmatrix}X\\\\\\\\Y\\\\\\\\Z\\end{pmatrix}\\overset{\\text{def}}{=}\\boldsymbol{KP}. \\]
\u6700\u4e2d\u95f4\u7684\u77e9\u9635\u79f0\u4e3a\u76f8\u673a\u7684\u5185\u53c2\u6570\uff08Camera Inrinsics\uff09\u77e9\u9635 \\(\\displaystyle \\boldsymbol{K}\\)\u3002 \u6807\u5b9a: \u786e\u5b9a\u76f8\u673a\u7684\u5185\u53c2
\\[ Z\\boldsymbol{P}_{uv}=Z\\begin{bmatrix}u\\\\\\\\v\\\\\\\\1\\end{bmatrix}=\\boldsymbol{K}\\left(\\boldsymbol{R}\\boldsymbol{P}_\\mathrm{w}+\\boldsymbol{t}\\right)=\\boldsymbol{K}\\boldsymbol{T}\\boldsymbol{P}_\\mathrm{w}. \\]
\u5176\u4e2d \\(\\displaystyle \\boldsymbol{R},\\boldsymbol{t}\\) \u53c8\u79f0\u4e3a\u76f8\u673a\u7684\u5916\u53c2\u6570\uff08Camera Extrinsics\uff09
\\[ (\\boldsymbol{RP_\\mathrm{w}}+\\boldsymbol{t})=\\underbrace{[X,Y,Z]^\\mathrm{T}}_{\\text{\u76f8\u673a\u5750\u6807}}\\to\\underbrace{[X/Z,Y/Z,1]^\\mathrm{T}}_{\\text{\u5f52\u4e00\u5316\u5750\u6807}} . \\]
- \u5f52\u4e00\u5316\u5e73\u9762
- \u70b9\u7684\u6df1\u5ea6\u5728\u6295\u5f71\u8fc7\u7a0b\u4e2d\u88ab\u4e22\u5931\u4e86
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#512","title":"5.1.2 \u7578\u53d8\u6a21\u578b","text":"
- \u7578\u53d8 (Distortion \u5931\u771f) \u5f84\u5411\u7578\u53d8
- \u7b52\u5f62\u7578\u53d8
- \u6795\u5f62\u7578\u53d8
- \u5f84\u5411\u7578\u53d8\u5373 \\(\\displaystyle r\\) \u53d8\u5316
- \u5207\u5411\u7578\u53d8\u5373 \\(\\displaystyle \\theta\\) \u53d8\u5316 \u6211\u4eec\u53ef\u4ee5\u5047\u8bbe:
\\[ \\begin{align} x_{\\mathrm{distorted}}&=x(1+k_1r^2+k_2r^4+k_3r^6) \\\\ y_{\\mathrm{distorted}}&=y(1+k_1r^2+k_2r^4+k_3r^6). \\end{align} \\] \\[ \\begin{align} x_{\\mathrm{distorted}}&=x+2p_1xy+p_2(r^2+2x^2) \\\\ y_{\\mathrm{distorted}}&=y+p_1(r^2+2y^2)+2p_2xy \\end{align} \\]
\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u627e\u5230\u4e00\u4e2a\u70b9\u5728\u50cf\u7d20\u5e73\u9762\u4e0a\u7684\u6b63\u786e\u4f4d\u7f6e:
- \u5c06\u4e09\u7ef4\u7a7a\u95f4\u70b9\u6295\u5f71\u5230\u5f52\u4e00\u5316\u56fe\u50cf\u5e73\u9762\u3002\u8bbe\u5b83\u7684\u5f52\u4e00\u5316\u5750\u6807\u4e3a \\(\\displaystyle [x, y]^\\mathrm{T}\\)\u3002
- \u5bf9\u5f52\u4e00\u5316\u5e73\u9762\u4e0a\u7684\u70b9\u8ba1\u7b97\u5f84\u5411\u7578\u53d8\u548c\u5207\u5411\u7578\u53d8
\\[ \\begin{cases}x_\\text{distorted}=x(1+k_1r^2+k_2r^4+k_3r^6)+2p_1xy+p_2(r^2+2x^2)\\\\y_\\text{distorted}=y(1+k_1r^2+k_2r^4+k_3r^6)+p_1(r^2+2y^2)+2p_2xy\\end{cases} \\]
- \u5c06\u7578\u53d8\u540e\u7684\u70b9\u901a\u8fc7\u5185\u53c2\u6570\u77e9\u9635\u6295\u5f71\u5230\u50cf\u7d20\u5e73\u9762\uff0c\u5f97\u5230\u8be5\u70b9\u5728\u56fe\u50cf\u4e0a\u7684\u6b63\u786e\u4f4d\u7f6e\u3002
\\[ \\begin{cases}u=f_xx_\\text{distorted}+c_x\\\\\\\\v=f_yy_\\text{distorted}+c_y\\end{cases}. \\]
\u8fd8\u6709\u5f88\u591a\u7684\u76f8\u673a\u6a21\u578b\u6bd4\u5982: \u4eff\u5c04\u6a21\u578b\uff0c\u900f\u89c6\u6a21\u578b\u3002
\u603b\u7ed3\u4e00\u4e0b\u5355\u76ee\u76f8\u673a\u7684\u6210\u50cf\u8fc7\u7a0b:
- \u4e16\u754c\u5750\u6807\u7cfb\u4e0b\u6709\u4e00\u4e2a\u56fa\u5b9a\u7684\u70b9 \\(\\displaystyle P\\)\uff0c\u4e16\u754c\u5750\u6807\u4e3a \\(\\displaystyle \\boldsymbol{P}_{w}\\)\u3002
- \u7531\u4e8e\u76f8\u673a\u5728\u8fd0\u52a8\uff0c\u5b83\u7684\u8fd0\u52a8\u7531 \\(\\displaystyle \\boldsymbol{R},\\boldsymbol{t}\\) \u6216\u53d8\u6362\u77e9\u9635 \\(\\displaystyle \\boldsymbol{T}\\in SE(3)\\) \u63cf\u8ff0\u3002\\(\\displaystyle P\\) \u7684\u76f8\u673a\u5750\u6807\u4e3a \\(\\displaystyle \\tilde{P_{c}} = \\boldsymbol{R}\\boldsymbol{P}_{w}+\\boldsymbol{t}\\)\u3002
- \u8fd9\u65f6\u7684 \\(\\displaystyle \\tilde{\\boldsymbol{P}_{c}}\\) \u7684\u5206\u91cf\u662f \\(\\displaystyle X,Y,Z\\) \uff0c\u628a\u5b83\u4eec\u6295\u5f71\u5230\u5f52\u4e00\u5316\u5e73\u9762 \\(\\displaystyle Z = 1\\) \u4e0a\uff0c\u5f97\u5230 \\(\\displaystyle P\\) \u7684\u5f52\u4e00\u5316\u5750\u6807: \\(\\displaystyle \\boldsymbol{P}_{c} = \\left[ \\frac{X}{Z}, \\frac{Y}{Z}, 1 \\right]^\\mathrm{T}\\)\u3002
- \u6709\u7578\u53d8\u65f6\uff0c\u6839\u636e\u7578\u53d8\u53c2\u6570\u8ba1\u7b97 \\(\\displaystyle \\boldsymbol{P}_{c}\\) \u53d1\u751f\u7578\u53d8\u540e\u7684\u5750\u6807\u3002
- \\(\\displaystyle P\\) \u7684\u5f52\u4e00\u5316\u5750\u6807\u7ecf\u8fc7\u5185\u53c2\u540e\uff0c\u5bf9\u5e94\u5230\u5b83\u7684\u50cf\u7d20\u5750\u6807: \\(\\displaystyle \\boldsymbol{P}_{uv} = \\boldsymbol{K} \\boldsymbol{P}_{c}\\)\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#513","title":"5.1.3 \u53cc\u76ee\u76f8\u673a\u6a21\u578b","text":"
\u4e24\u8005\u4e4b\u95f4\u7684\u8ddd\u79bb\u79f0\u4e3a\u53cc\u76ee\u76f8\u673a\u7684\u57fa\u7ebf
\\[ z=\\frac{fb}{d},\\quad d\\stackrel{\\mathrm{def}}{=}u_{\\mathrm{L}}-u_{\\mathrm{R}}. \\]
- d \u5b9a\u4e49\u4e3a\u5de6\u53f3\u56fe\u7684\u6a2a\u5750\u6807\u4e4b\u5dee\uff0c\u79f0\u4e3a\u89c6\u5dee\u3002
- \u7531\u4e8e\u89c6\u5dee\u6700\u5c0f\u4e3a\u4e00\u4e2a\u50cf\u7d20\uff0c\u6240\u4ee5\u53cc\u76ee\u7684\u6df1\u5ea6\u5b58\u5728\u4e00\u4e2a\u7406\u8bba\u4e0a\u7684\u6700\u5927\u503c\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#514-rgb-d","title":"5.1.4 RGB-D \u76f8\u673a\u6a21\u578b","text":"
- \u7ea2\u5916\u7ed3\u6784\u5149\uff08Structured lightning\uff09
- \u98de\u884c\u65f6\u95f4\uff08Time-of-Flight, ToF\uff09
- ToF \u76f8\u673a\u53ef\u4ee5\u83b7\u5f97\u6574\u4e2a\u56fe\u50cf\u7684\u50cf\u7d20\u6df1\u5ea6
- \u8f93\u51fa\u5f69\u8272\u56fe\u548c\u6df1\u5ea6\u56fe\uff0c\u751f\u6210\u70b9\u4e91\uff08Point Cloud\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#52","title":"5.2 \u56fe\u50cf","text":"\\[ I(x,y):\\mathbb{R}^2\\mapsto\\mathbb{R}. \\]
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#53","title":"5.3 \u5b9e\u8df5: \u8ba1\u7b97\u673a\u4e2d\u7684\u56fe\u50cf","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#531-opencv","title":"5.3.1 OpenCV \u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#532","title":"5.3.2 \u56fe\u50cf\u53bb\u7578\u53d8","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#54-3-d","title":"5.4 \u5b9e\u8df5: 3 D \u89c6\u89c9","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#541","title":"5.4.1 \u53cc\u76ee\u89c6\u89c9","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#542-rgb-d","title":"5.4.2 RGB-D \u89c6\u89c9","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#55","title":"5.5 \u4e60\u9898","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#6","title":"6 \u975e\u7ebf\u6027\u4f18\u5316","text":"
\u524d\u9762\u6211\u4eec\u5df2\u7ecf\u641e\u6e05\u695a\u4e86\u8fd0\u52a8\u65b9\u7a0b\u548c\u89c2\u6d4b\u65b9\u7a0b\u7684\u6765\u6e90\uff0c\u73b0\u5728\u6211\u4eec\u5f00\u59cb\u8ba8\u8bba\u566a\u58f0\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#61","title":"6.1 \u72b6\u6001\u4f30\u8ba1\u95ee\u9898","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#611","title":"6.1.1 \u6279\u91cf\u72b6\u6001\u4f30\u8ba1\u4e0e\u6700\u5927\u540e\u9a8c\u4f30\u8ba1","text":"\\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right)+\\boldsymbol{w}_k\\\\\\boldsymbol{z}_{k,j}=h\\left(\\boldsymbol{y}_j,\\boldsymbol{x}_k\\right)+\\boldsymbol{v}_{k,j}\\end{cases}. \\] \\[ s\\boldsymbol{z}_{k,j}=\\boldsymbol{K}(R_k\\boldsymbol{y}_j+\\boldsymbol{t}_k). \\]
\u5176\u4e2d \\(\\displaystyle s\\) \u4e3a\u50cf\u7d20\u70b9\u7684\u8ddd\u79bb\u3002 \u6211\u4eec\u901a\u5e38\u5047\u8bbe\u566a\u58f0\u9879\u6ee1\u8db3\u96f6\u5747\u503c\u7684\u9ad8\u65af\u5206\u5e03:
\\[ \\boldsymbol{w}_k\\sim\\mathcal{N}\\left(\\boldsymbol{0},\\boldsymbol{R}_k\\right),\\boldsymbol{v}_k\\sim\\mathcal{N}\\left(\\boldsymbol{0},\\boldsymbol{Q}_{k,j}\\right). \\]
\u6709\u4e24\u79cd\u65b9\u6cd5\u6765\u89e3\u51b3\u72b6\u6001\u4f30\u8ba1\u95ee\u9898:
- \u7528\u65b0\u7684\u6570\u636e\u6765\u66f4\u65b0\u5f53\u524d\u65f6\u523b\u7684\u4f30\u8ba1\u72b6\u6001\uff0c\u589e\u91cf/\u6e10\u8fdb (incremental) \u7684\u65b9\u6cd5\uff0c\u6216\u8005\u6559\u6ee4\u6ce2\u5668
- \u4e5f\u53ef\u4ee5\u628a\u6570\u636e\u90fd\u6512\u8d77\u6765\uff0c\u79f0\u4e3a\u6279\u91cf (batch) \u7684\u65b9\u6cd5 SfM (Structure from Motion) \u7efc\u5408\u4e00\u4e0b\u5c31\u6709\u4e86\u6ed1\u52a8\u7a97\u53e3\u4f30\u8ba1\u6cd5
\\[ \\boldsymbol{x}=\\{\\boldsymbol{x}_1,\\ldots,\\boldsymbol{x}_N\\},\\quad\\boldsymbol{y}=\\{\\boldsymbol{y}_1,\\ldots,\\boldsymbol{y}_M\\}. \\] \\[ P(\\boldsymbol{x},\\boldsymbol{y}|z,\\boldsymbol{u}). \\] \\[ P\\left(\\boldsymbol{x},\\boldsymbol{y}|\\boldsymbol{z},\\boldsymbol{u}\\right)=\\frac{P\\left(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}\\right)P\\left(\\boldsymbol{x},\\boldsymbol{y}\\right)}{P\\left(\\boldsymbol{z},\\boldsymbol{u}\\right)}\\propto\\underbrace{P\\left(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}\\right)}_{\\text{\u4f3c\u7136}}\\underbrace{P\\left(\\boldsymbol{x},\\boldsymbol{y}\\right)}_{\\text{\u5148\u9a8c}}. \\]
\u53ef\u4ee5\u5148\u6c42\u4e00\u4e2a\u72b6\u6001\u6700\u4f18\u4f30\u8ba1:
\\[ (\\boldsymbol{x},\\boldsymbol{y})^*_{\\mathrm{MAP}}=\\arg\\max P(\\boldsymbol{x},\\boldsymbol{y}|\\boldsymbol{z},\\boldsymbol{u})=\\arg\\max P(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y})P(\\boldsymbol{x},\\boldsymbol{y}). \\]
\u6c42\u89e3\u6700\u5927\u540e\u9a8c\u6982\u7387\u7b49\u4ef7\u4e8e\u6700\u5927\u5316\u4f3c\u7136\u548c\u5148\u9a8c\u7684\u4e58\u79ef\u3002 \u4f46\u5982\u679c\u6ca1\u6709\u7684\u5148\u9a8c\uff0c\u90a3\u4e48\u53ef\u4ee5\u6c42\u89e3\u6700\u5927\u4f3c\u7136\u4f30\u8ba1 (Maximize Likelihood Estimation\uff0c MLE):
\\[ (\\boldsymbol{x},\\boldsymbol{y})^*{}_{\\mathrm{MLE}}=\\arg\\max P(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}). \\]
\u6700\u5927\u4f3c\u7136\u4f30\u8ba1: \u5728\u4ec0\u4e48\u6837\u7684\u72b6\u6001\u4e0b\uff0c\u6700\u53ef\u80fd\u4ea7\u751f\u73b0\u5728\u89c2\u6d4b\u5230\u7684\u6570\u636e\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#612","title":"6.1.2 \u6700\u5c0f\u4e8c\u4e58\u7684\u5f15\u51fa","text":"
\u5bf9\u4e8e\u67d0\u4e00\u6b21\u89c2\u6d4b:
\\[ z_{k,j}=h\\left(y_{j},x_{k}\\right)+v_{k,j}, \\] \\[ P(\\boldsymbol{z}_{j,k}|\\boldsymbol{x}_k,\\boldsymbol{y}_j)=N\\left(h(\\boldsymbol{y}_j,\\boldsymbol{x}_k),\\boldsymbol{Q}_{k,j}\\right). \\]
\u53ef\u4ee5\u4f7f\u7528\u6700\u5c0f\u5316\u8d1f\u5bf9\u6570\u6765\u6c42\u4e00\u4e2a\u9ad8\u65af\u5206\u5e03\u7684\u6700\u5927\u4f3c\u7136\u3002
\\[ P\\left(\\boldsymbol{x}\\right)=\\frac{1}{\\sqrt{\\left(2\\pi\\right)^{N}\\det\\left(\\boldsymbol{\\Sigma}\\right)}}\\exp\\left(-\\frac{1}{2}(\\boldsymbol{x}-\\boldsymbol{\\mu})^{\\mathrm{T}}\\boldsymbol{\\Sigma}^{-1}\\left(\\boldsymbol{x}-\\boldsymbol{\\mu}\\right)\\right). \\] \\[ -\\ln\\left(P\\left(\\boldsymbol{x}\\right)\\right)=\\frac12\\ln\\left(\\left(2\\pi\\right)^N\\det\\left(\\boldsymbol{\\Sigma}\\right)\\right)+\\frac12\\left(\\boldsymbol{x}-\\boldsymbol{\\mu}\\right)^\\mathrm{T}\\boldsymbol{\\Sigma}^{-1}\\left(\\boldsymbol{x}-\\boldsymbol{\\mu}\\right). \\] \\[ \\begin{aligned} (x_{k},y_{j})^{*}& =\\arg\\max\\mathcal{N}(h(\\boldsymbol{y}_{j},\\boldsymbol{x}_{k}),\\boldsymbol{Q}_{k,j}) \\\\ &=\\arg\\min\\left(\\left(\\boldsymbol{z}_{k,j}-h\\left(\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right)\\right)^\\mathrm{T}\\boldsymbol{Q}_{k,j}^{-1}\\left(\\boldsymbol{z}_{k,j}-h\\left(\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right)\\right)\\right). \\end{aligned} \\]
\u8be5\u5f0f\u7b49\u4ef7\u4e8e\u6700\u5c0f\u5316\u566a\u58f0\u9879\u7684\u4e00\u4e2a\u4e8c\u6b21\u578b\uff0c\u9a6c\u54c8\u62c9\u8bfa\u6bd4\u65af\u8ddd\u79bb (Mahalanobis distance)\u3002\u5176\u4e2d \\(\\displaystyle \\boldsymbol{Q}_{k,j}^{-1}\\) \u53eb\u4fe1\u606f\u77e9\u9635\uff0c\u5373\u9ad8\u65af\u5206\u5e03\u534f\u65b9\u5dee\u77e9\u9635\u4e4b\u9006\u3002 \u5047\u8bbe\u5404\u4e2a\u65f6\u523b\u7684\u8f93\u5165\u548c\u89c2\u6d4b\u90fd\u662f\u72ec\u7acb\u7684\uff0c\u90a3\u4e48:
\\[ P\\left(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}\\right)=\\prod_kP\\left(\\boldsymbol{u}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_k\\right)\\prod_{k,j}P\\left(\\boldsymbol{z}_{k,j}|\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right), \\] \\[ \\begin{align} e_{u,k} &=\\boldsymbol{x}_k-f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right) \\\\ e_{z,j,k} &=\\boldsymbol{z}_{k,j}-h\\left(\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right), \\end{align} \\] \\[ \\min J(\\boldsymbol{x},\\boldsymbol{y})=\\sum_{k}\\boldsymbol{e}_{\\boldsymbol{u},k}^{\\mathrm{T}}\\boldsymbol{R}_{k}^{-1}\\boldsymbol{e}_{\\boldsymbol{u},k}+\\sum_{k}\\sum_{j}\\boldsymbol{e}_{\\boldsymbol{z},k,j}^{\\mathrm{T}}\\boldsymbol{Q}_{k,j}^{-1}\\boldsymbol{e}_{\\boldsymbol{z},k,j}. \\]
\u8fd9\u6837\u5c31\u5f97\u5230\u4e86\u4e00\u4e2a\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898 (Least Square Problem)
- \u6574\u4e2a\u95ee\u9898\u6709\u4e00\u79cd\u7a00\u758f\u7684\u5f62\u5f0f\u3002
- \u7528\u674e\u4ee3\u6570\u8868\u793a\u589e\u91cf\u4f1a\u6709\u65e0\u7ea6\u675f\u7684\u4f18\u52bf\u3002
- \u7528\u4e8c\u6b21\u578b\u5ea6\u91cf\u8bef\u5dee\uff0c\u90a3\u4e48\u8bef\u5dee\u7684\u5206\u5e03\u4f1a\u5f71\u54cd\u6b64\u9879\u5728\u6574\u4e2a\u95ee\u9898\u4e2d\u7684\u6743\u91cd\u3002 \u63a5\u4e0b\u4fe9\u8bb2\u4e00\u4e9b\u975e\u7ebf\u6027\u4f18\u5316\u7684\u57fa\u672c\u77e5\u8bc6\uff0c\u6765\u5e2e\u52a9\u6211\u4eec\u6c42\u89e3\u8fd9\u4e2a\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#613","title":"6.1.3 \u4f8b\u5b50: \u6279\u91cf\u72b6\u6001\u4f30\u8ba1","text":"
\u8003\u8651\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684\u79bb\u6563\u65f6\u95f4\u7cfb\u7edf:
\\[ \\begin{aligned}&x_{k}=x_{k-1}+u_{k}+w_{k},&&\\boldsymbol{w}_{k}\\sim\\mathcal{N}\\left(0,\\boldsymbol{Q}_{k}\\right)\\\\&\\boldsymbol{z}_{k}=\\boldsymbol{x}_{k}+\\boldsymbol{n}_{k},&&\\boldsymbol{n}_{k}\\sim\\mathcal{N}\\left(0,\\boldsymbol{R}_{k}\\right)\\end{aligned} \\] \\[ \\begin{gathered} x_{map}^{*} =\\arg\\max P(\\boldsymbol{x}|\\boldsymbol{u},\\boldsymbol{z})=\\arg\\max P(\\boldsymbol{u},\\boldsymbol{z}|\\boldsymbol{x}) \\\\ =\\prod_{k=1}^3P(\\boldsymbol{u}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_k)\\prod_{k=1}^3P(\\boldsymbol{z}_k|\\boldsymbol{x}_k), \\end{gathered} \\]
\u800c\u5bf9\u4e8e\u5177\u4f53\u7684\u6bcf\u4e00\u9879\uff0c\u6211\u4eec\u6709:
\\[ P(\\boldsymbol{u}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_k)=\\mathcal{N}(\\boldsymbol{x}_k-\\boldsymbol{x}_{k-1},\\boldsymbol{Q}_k), \\] \\[ P\\left(\\boldsymbol{z}_{k}|\\boldsymbol{x}_{k}\\right)=\\mathcal{N}\\left(\\boldsymbol{x}_{k},\\boldsymbol{R}_{k}\\right). \\]
\u4e8e\u662f\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u5efa\u8bef\u5dee\u53d8\u91cf:
\\[ e_{\\boldsymbol{u},k}=\\boldsymbol{x}_k-\\boldsymbol{x}_{k-1}-\\boldsymbol{u}_k,\\quad\\boldsymbol{e}_{z,k}=\\boldsymbol{z}_k-\\boldsymbol{x}_k, \\]
\u4e8e\u662f\u6700\u5c0f\u4e8c\u4e58\u7684\u76ee\u6807\u51fd\u6570\u4e3a:
\\[ \\min\\sum_{k=1}^{3}e_{u,k}^{\\mathrm{T}}Q_{k}^{-1}e_{u,k}+\\sum_{k=1}^{3}e_{z,k}^{\\mathrm{T}}R_{k}^{-1}e_{z,k}. \\]
\u5b9a\u4e49\u5411\u91cf \\(\\displaystyle \\boldsymbol{y} = [\\boldsymbol{u},\\boldsymbol{z}]^\\mathrm{T}\\)
\\[ y-Hx=e\\sim\\mathcal{N}(\\mathbf{0},\\boldsymbol{\\Sigma}). \\] \\[ H=\\begin{bmatrix}1&-1&0&0\\\\0&1&-1&0\\\\0&0&1&-1\\\\\\hline0&1&0&0\\\\0&0&1&0\\\\0&0&0&1\\end{bmatrix}, \\]
\u4e14 \\(\\displaystyle \\Sigma = diag(\\boldsymbol{Q_{1}},\\boldsymbol{Q_{2}},\\boldsymbol{Q_{3}},\\boldsymbol{R_{1}},\\boldsymbol{R_{2}},\\boldsymbol{R_{3}})\\)\u3002 \u95ee\u9898\u5c31\u8f6c\u5316\u6210:
\\[ x_{\\mathrm{map}}^*=\\arg\\min e^{\\mathrm{T}}\\Sigma^{-1}e, \\]
\u5b83\u7684\u552f\u4e00\u89e3\u662f:
\\[ x_{\\mathrm{map}}^{*}=(H^{\\mathrm{T}}\\Sigma^{-1}H)^{-1}H^{\\mathrm{T}}\\Sigma^{-1}y. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#62","title":"6.2 \u975e\u7ebf\u6027\u6700\u5c0f\u4e8c\u4e58","text":"
\u5148\u8003\u8651\u4e00\u4e2a\u7b80\u5355\u7684\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898:
\\[ \\min_{x}F(x)=\\frac12\\|f\\left(x\\right)\\|_{2}^{2}.` \\]
\u5bf9\u4e8e\u4e0d\u65b9\u4fbf\u76f4\u63a5\u6c42\u89e3\u7684\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u8fed\u4ee3\u7684\u65b9\u5f0f\uff0c\u4ece\u4e00\u4e2a\u521d\u59cb\u503c\u51fa\u53d1\uff0c\u4e0d\u65ad\u5730\u66f4\u65b0\u5f53\u524d\u7684\u4f18\u5316\u53d8\u91cf\uff0c\u4f7f\u76ee\u6807\u51fd\u6570\u4e0b\u964d:
- \u7ed9\u5b9a\u67d0\u4e2a\u521d\u59cb\u503c \\(\\displaystyle \\boldsymbol{x_{0}}\\)\u3002
- \u5bf9\u4e8e\u7b2c \\(\\displaystyle k\\) \u6b21\u8fed\u4ee3\uff0c\u5bfb\u627e\u4e00\u4e2a\u589e\u91cf \\(\\displaystyle \\Delta x_{k}\\)\uff0c\u4f7f\u5f97 \\(\\displaystyle \\left\\|f\\left(\\boldsymbol{x}_{k}+\\Delta\\boldsymbol{x}_{k}\\right)\\right\\|_{2}^{2}\\) \u8fbe\u5230\u6700\u5c0f\u503c\u3002
- \u82e5 \\(\\displaystyle \\Delta x_k\\) \u8db3\u591f\u5c0f\uff0c\u5219\u505c\u6b62\u3002
- \u5426\u5219\uff0c\u4ee4 \\(\\displaystyle x_{k+1} = x_{k} + \\Delta x_{k}\\)\uff0c\u8fd4\u56de\u7b2c\u4e8c\u6b65 \u4e8e\u662f\u6c42\u89e3\u5bfc\u51fd\u6570\u4e3a\u96f6 -> \u5bfb\u627e\u4e0b\u964d\u589e\u91cf \\(\\displaystyle \\Delta x_{k}\\)
\u4e0b\u9762\u662f\u4e00\u4e9b\u5e7f\u6cdb\u4f7f\u7528\u7684\u7ed3\u679c\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#621","title":"6.2.1 \u4e00\u9636\u548c\u4e8c\u9636\u68af\u5ea6\u6cd5","text":"
\u4f7f\u7528\u6cf0\u52d2\u5c55\u5f00:
\\[ F(\\boldsymbol{x}_k+\\Delta\\boldsymbol{x}_k)\\approx F(\\boldsymbol{x}_k)+\\boldsymbol{J}\\left(\\boldsymbol{x}_k\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}_k+\\frac{1}{2}\\Delta\\boldsymbol{x}_k^\\mathrm{T}\\boldsymbol{H}(\\boldsymbol{x}_k)\\Delta\\boldsymbol{x}_k. \\]
\u5176\u4e2d \\(\\displaystyle \\boldsymbol{J}(x_{k})\\) \u662f \\(\\displaystyle F(x)\\) \u5173\u4e8e \\(\\displaystyle x\\) \u7684\u4e00\u9636\u5bfc\u6570\uff08\u68af\u5ea6\u3001\u96c5\u53ef\u6bd4\u77e9\u9635\uff09\uff0c\\(\\displaystyle \\boldsymbol{H}\\) \u662f\u4e8c\u9636\u5bfc\u6570\uff08\u6d77\u585e\u77e9\u9635\uff09\u3002
\\[ \\Delta\\boldsymbol{x}^*=-\\boldsymbol{J}(\\boldsymbol{x}_k). \\] \\[ \\Delta\\boldsymbol{x}^*=\\arg\\min\\left(F\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}+\\frac{1}{2}\\Delta\\boldsymbol{x}^\\mathrm{T}\\boldsymbol{H}\\Delta\\boldsymbol{x}\\right). \\]
\u5bf9 \\(\\displaystyle \\Delta x\\) \u6c42\u5bfc\uff0c\u5e76\u4ee4\u5b83\u7b49\u4e8e\u96f6\uff0c\u5f97\u5230:
\\[ J+H\\Delta x=\\mathbf{0}\\Rightarrow H\\Delta x=-J. \\]
\u8fd9\u4e2a\u65b9\u6cd5\u53c8\u53eb\u725b\u987f\u6cd5\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#622","title":"6.2.2 \u9ad8\u65af\u725b\u987f\u6cd5","text":"
\u6362\u4e00\u4e2a\u51fd\u6570\u5c55\u5f00:
\\[ f\\left(x+\\Delta x\\right)\\approx f\\left(x\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}. \\] \\[ \\Delta x^{*}=\\arg\\min_{\\Delta x}\\frac{1}{2}\\Big\\|f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}\\Big\\|^{2}. \\] \\[ \\begin{aligned} \\frac12\\left\\|f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}\\right\\|^2& =\\frac12\\Big(f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}\\Big)^\\mathrm{T}\\Big(f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}\\Big) \\\\ &=\\frac12\\left(\\|f(\\boldsymbol{x})\\|_2^2+2f\\left(\\boldsymbol{x}\\right)\\boldsymbol{J}(\\boldsymbol{x})^\\intercal\\Delta\\boldsymbol{x}+\\Delta\\boldsymbol{x}^\\intercal\\boldsymbol{J}(\\boldsymbol{x})\\boldsymbol{J}(\\boldsymbol{x})^\\intercal\\Delta\\boldsymbol{x}\\right). \\end{aligned} \\] \\[ \\boldsymbol{J}(\\boldsymbol{x})f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}(\\boldsymbol{x})\\boldsymbol{J}^\\mathrm{T}\\left(\\boldsymbol{x}\\right)\\Delta\\boldsymbol{x}=\\boldsymbol{0}. \\] \\[ \\underbrace{\\boldsymbol{J}(\\boldsymbol{x})\\boldsymbol{J}^{\\intercal}}_{\\boldsymbol{H}(\\boldsymbol{x})}\\left(\\boldsymbol{x}\\right)\\Delta\\boldsymbol{x}=\\underbrace{-\\boldsymbol{J}(\\boldsymbol{x})f\\left(\\boldsymbol{x}\\right)}_{\\boldsymbol{g}(\\boldsymbol{x})}. \\]
\u589e\u91cf\u65b9\u7a0b or Gauss-Newton equation or Normal equation
\\[ H\\Delta x=g. \\]
\u6c42\u89e3\u589e\u91cf\u65b9\u7a0b\u662f\u6574\u4e2a\u4f18\u5316\u95ee\u9898\u7684\u6838\u5fc3\u6240\u5728 \u603b\u7ed3\u4e00\u4e0b:
- \u7ed9\u5b9a\u521d\u59cb\u503c \\(\\displaystyle \\boldsymbol{x}_{0}\\)\u3002
- \u5bf9\u4e8e\u7b2c \\(\\displaystyle k\\) \u6b21\u8fed\u4ee3\uff0c\u6c42\u89e3\u5f53\u524d\u7684\u96c5\u53ef\u6bd4\u77e9\u9635 \\(\\displaystyle \\boldsymbol{J}(x)\\) \u548c\u8bef\u5dee \\(\\displaystyle f(\\boldsymbol{x}_{k})\\)\u3002
- \u6c42\u89e3\u589e\u91cf\u65b9\u7a0b: \\(\\displaystyle \\boldsymbol{H} \\Delta x_{k} = \\boldsymbol{g}\\)\u3002
- \u82e5 \\(\\displaystyle \\Delta x_{k}\\) \u8db3\u591f\u5c0f\uff0c\u5219\u505c\u6b62\u3002\u5426\u5219\uff0c\u4ee4 \\(\\displaystyle x_{k+1} = x_{k}+ \\Delta x_{k}\\)\uff0c\u8fd4\u56de\u7b2c 2 \u6b65\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#623","title":"6.2.3 \u5217\u6587\u4f2f\u683c\u2014\u2014\u9a6c\u5938\u5c14\u7279\u65b9\u6cd5","text":"
Damped Newton Method Trust Region Trust Region Method
\\[ \\rho=\\frac{f\\left(\\boldsymbol{x}+\\Delta\\boldsymbol{x}\\right)-f\\left(\\boldsymbol{x}\\right)}{\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^{\\intercal}\\Delta\\boldsymbol{x}}. \\]
\u6846\u67b6:
- \u7ed9\u5b9a\u521d\u59cb\u503c \\(\\displaystyle \\boldsymbol{x}_{0}\\)\uff0c\u4ee5\u53ca\u521d\u59cb\u4f18\u5316\u534a\u5f84 \\(\\displaystyle \\mu\\)\u3002
- \u5bf9\u4e8e\u7b2c \\(\\displaystyle k\\) \u6b21\u8fed\u4ee3\uff0c\u5728\u9ad8\u65af\u725b\u987f\u6cd5\u7684\u57fa\u7840\u4e0a\u52a0\u4e0a\u4fe1\u8d56\u533a\u57df\uff0c\u6c42\u89e3: \\(\\displaystyle \\min_{\\Delta\\boldsymbol{x}_{k}}\\frac{1}{2}\\Big\\|f\\left(\\boldsymbol{x}_{k}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}_{k}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}_{k}\\Big\\|^{2},\\quad\\mathrm{s.t.}\\quad\\left\\|\\boldsymbol{D}\\Delta\\boldsymbol{x}_{k}\\right\\|^{2}\\leqslant\\mu,\\)
- \u8ba1\u7b97 \\(\\displaystyle \\rho\\)
- \u5bf9\u4e8e \\(\\displaystyle \\frac{1}{4} \\frac{3}{4}\\) \u8fdb\u884c\u5206\u7c7b\u8ba8\u8bba
- \u5224\u65ad\u9608\u503c\uff0c\u5faa\u73af
\u8fd9\u662f\u5e26\u4e0d\u7b49\u5f0f\u7ea6\u675f\u7684\u4f18\u5316\u95ee\u9898:
\\[ \\mathcal{L}(\\Delta\\boldsymbol{x}_{k},\\lambda)=\\frac{1}{2}\\left\\|f\\left(\\boldsymbol{x}_{k}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}_{k}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}_{k}\\right\\|^{2}+\\frac{\\lambda}{2}\\left(\\left\\|\\boldsymbol{D}\\Delta\\boldsymbol{x}_{k}\\right\\|^{2}-\\mu\\right). \\] \\[ (H+\\lambda D^\\mathrm{T}D) \\Delta x_k=g. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#63","title":"6.3 \u5b9e\u8df5: \u66f2\u7ebf\u62df\u5408\u95ee\u9898","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#631","title":"6.3.1 \u624b\u5199\u9ad8\u65af\u725b\u987f\u6cd5","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#632-ceres","title":"6.3.2 \u4f7f\u7528 Ceres \u8fdb\u884c\u66f2\u7ebf\u62df\u5408","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#633-g2o","title":"6.3.3 \u4f7f\u7528 g2o\u8fdb\u884c\u66f2\u7ebf\u62df\u5408","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#7-1","title":"7 \u89c6\u89c9\u91cc\u7a0b\u8ba1 1","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#71","title":"7.1 \u7279\u5f81\u70b9\u6cd5","text":"
- \u7279\u5f81\u70b9\u6cd5
- \u4e24\u89c6\u56fe\u51e0\u4f55\uff08Two-view geometry\uff09
- \u76f4\u63a5\u6cd5
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#711","title":"7.1.1 \u7279\u5f81\u70b9","text":"
- \u5982\u4f55\u6839\u636e\u56fe\u50cf\u4f30\u8ba1\u76f8\u673a\u8fd0\u52a8
- \u8def\u6807: \u56fe\u50cf\u7279\u5f81
- \u7279\u5f81\u70b9\u5728\u76f8\u673a\u8fd0\u52a8\u4e4b\u540e\u4fdd\u6301\u7a33\u5b9a
- \u4eba\u5de5\u8bbe\u8ba1\u7684\u7279\u5f81\u70b9:
- Repeatability
- Distinctiveness
- Efficiency
- Locality
- \u7531\u4e24\u90e8\u5206\u7ec4\u6210:
- \u5173\u952e\u70b9\uff08Key-point\uff09
- \u63cf\u8ff0\u5b50\uff08Descriptor\uff09
- SIFT (\u5c3a\u5ea6\u4e0d\u53d8\u7279\u5f81\u53d8\u6362\uff0cScale-Invariant Feature Transform)
- \u8003\u8651\u5145\u5206\uff0c\u4f46\u662f\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5927
- ORB (Oriented FAST and Rotated BRIEF)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#712-orb","title":"7.1.2 ORB \u7279\u5f81","text":"
- FAST \u89d2\u70b9\u63d0\u53d6: ORB \u4e2d\u8ba1\u7b97\u4e86\u7279\u5f81\u70b9\u7684\u4e3b\u65b9\u5411\uff0c\u4e3a\u540e\u7eed\u7684 BRIEF \u63cf\u8ff0\u5b50\u589e\u52a0\u4e86\u65cb\u8f6c\u4e0d\u53d8\u7279\u6027
- BRIEF \u63cf\u8ff0\u5b50: \u5bf9\u524d\u4e00\u6b65\u63d0\u53d6\u51fa\u7279\u5f81\u70b9\u7684\u5468\u56f4\u56fe\u50cf\u533a\u57df\u8fdb\u884c\u63cf\u8ff0\u3002\u4f7f\u7528\u5148\u524d\u8ba1\u7b97\u7684\u65b9\u5411\u4fe1\u606f\u3002 - FAST \u5173\u952e\u70b9 Non-maximal suppression \u5c3a\u5ea6\u4e0d\u53d8\u6027\u7531\u6784\u5efa\u56fe\u50cf\u91d1\u5b57\u5854 \u7279\u5f81\u7684\u65cb\u8f6c: Intensity Centroid \u65cb\u8f6c\u65b9\u9762\uff0c\u6211\u4eec\u8ba1\u7b97\u7279\u5f81\u70b9\u9644\u8fd1\u7684\u56fe\u50cf\u7070\u5ea6\u8d28\u5fc3\u3002
- \u5b9a\u4e49\u56fe\u50cf\u7684\u77e9: \\(\\displaystyle m_{pq} = \\Sigma _{x,y \\in B} x^p x^q I(x, y),p,q \\in \\{0, 1\\}\\).
- \u627e\u5230\u56fe\u50cf\u5757\u7684\u8d28\u5fc3: \\(\\displaystyle C=\\left(\\frac{m_{10}}{m_{00}},\\frac{m_{01}}{m_{00}}\\right).\\)
- \u5f97\u5230\u4e00\u4e2a\u51e0\u4f55\u4e2d\u5fc3\u5230\u8d28\u5fc3\u7684\u65b9\u5411\u5411\u91cf: \\(\\displaystyle \\theta=\\arctan(m_{01}/m_{10}).\\) - BRIEF \u63cf\u8ff0\u5b50 \u4e8c\u8fdb\u5236\u8868\u8fbe+\u968f\u673a\u9009\u70b9\u6bd4\u8f83
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#713","title":"7.1.3 \u7279\u5f81\u5339\u914d","text":"
data association Brute-Force Matcher
- \u901a\u8fc7\u6d4b\u91cf\u63cf\u8ff0\u5b50\u7684\u8ddd\u79bb\u6765\u53bb\u6700\u8fd1\u7684\u4e00\u4e2a\u4f5c\u4e3a\u5339\u914d\u70b9\u3002\u63cf\u8ff0\u5b50\u8ddd\u79bb\u8868\u793a\u4e86\u4e24\u4e2a\u7279\u5f81\u4e4b\u95f4\u7684\u76f8\u4f3c\u7a0b\u5ea6\u3002
- \u6b27\u6c0f\u8ddd\u79bb
- \u6c49\u660e\u8ddd\u79bb
- \u4e24\u4e2a\u4e8c\u8fdb\u5236\u4e32\u7684\u4e0d\u540c\u4f4d\u6570\u7684\u4e2a\u6570
- \u5feb\u901f\u8fd1\u4f3c\u6700\u8fd1\u90bb\uff08FLANN\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#72","title":"7.2 \u5b9e\u8df5: \u7279\u5f81\u63d0\u53d6\u548c\u5339\u914d","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#721-opencv-orb","title":"7.2.1 OpenCV \u7684 ORB \u7279\u5f81","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#722-orb","title":"7.2.2 \u624b\u5199 ORB \u7279\u5f81","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#723","title":"7.2.3 \u8ba1\u7b97\u76f8\u673a\u8fd0\u52a8","text":"
- \u5f53\u76f8\u673a\u4e3a\u5355\u76ee\u65f6\uff0c\u6211\u4eec\u901a\u8fc7\u5bf9\u6781\u51e0\u4f55\u6765\u89e3\u51b3\u4e24\u7ec4 2 D \u70b9\u4f30\u8ba1\u8fd0\u52a8\u7684\u95ee\u9898
- \u5f53\u76f8\u673a\u4e3a\u53cc\u76ee\u3001RGB-D \u65f6\uff0c\u901a\u8fc7 ICP \u6765\u89e3\u51b3\u4e24\u7ec4 3 D \u70b9\u4f30\u8ba1\u8fd0\u52a8\u7684\u95ee\u9898
- \u4e00\u4e2a\u662f 2 D \u4e00\u4e2a\u662f 3 D \u65f6\uff0c\u901a\u8fc7 PnP \u6765\u6c42\u89e3
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#73-d-2-d","title":"7.3 D-2 D: \u5bf9\u6781\u51e0\u4f55","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#731","title":"7.3.1 \u5bf9\u6781\u7ea6\u675f","text":"
- Epipolar plane
- Epipoles
- Epipolar line
\\[ P=[X,Y,Z]^{\\mathrm{T}}. \\] \\[ s_{1}p_{1}=KP,\\quad s_{2}p_{2}=K\\left(RP+t\\right). \\]
\u6210\u6295\u5f71\u5173\u7cfb:\u5c3a\u5ea6\u610f\u4e49\u4e0b\u76f8\u7b49 (equal up to scale)
\\[ sp\\simeq p. \\] \\[ p_1\\simeq KP,\\quad p_2\\simeq K\\left(RP+t\\right). \\] \\[ x_1=K^{-1}p_1,\\quad x_2=K^{-1}p_2. \\] \\[ x_2\\simeq Rx_1+t. \\] \\[ t^{\\wedge}x_{2}\\simeq t^{\\wedge}Rx_{1}. \\] \\[ x_2^\\mathrm{T}t^\\wedge x_2\\simeq x_2^\\mathrm{T}t^\\wedge Rx_1. \\] \\[ x_2^\\mathrm{T}t^\\wedge Rx_1=0. \\] \\[ p_2^\\mathrm{T}K^{-\\mathrm{T}}t^\\wedge RK^{-1}p_1=0. \\]
\u5bf9\u6781\u7ea6\u675f
\\[ E=t^{\\wedge}R,\\quad F=K^{-\\mathrm{T}}EK^{-1},\\quad x_{2}^{\\mathrm{T}}Ex_{1}=p_{2}^{\\mathrm{T}}Fp_{1}=0. \\]
- \u6839\u636e\u914d\u5bf9\u70b9\u7684\u50cf\u7d20\u4f4d\u7f6e\u6c42\u51fa \\(\\displaystyle \\boldsymbol{E}\\) \u6216\u8005 \\(\\displaystyle \\boldsymbol{F}\\)\u3002
- \u6839\u636e \\(\\displaystyle \\boldsymbol{E}\\) \u6216\u8005 \\(\\displaystyle \\boldsymbol{F}\\) \u6c42\u51fa \\(\\displaystyle \\boldsymbol{R},\\boldsymbol{t}\\)\u3002 \\(\\displaystyle \\boldsymbol{E}\\) \u548c \\(\\displaystyle \\boldsymbol{F}\\) \u53ea\u76f8\u5dee\u4e86\u76f8\u673a\u5185\u53c2\uff0c\u6240\u4ee5\u5b9e\u8df5\u4e2d\u5f80\u5f80\u4f7f\u7528\u5f62\u5f0f\u66f4\u7b80\u5355\u7684 \\(\\displaystyle \\boldsymbol{E}\\)\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#732","title":"7.3.2 \u672c\u8d28\u77e9\u9635","text":"
\u672c\u8d28\u77e9\u9635: \\(\\displaystyle E=t^{\\wedge}R\\)
- \\(\\displaystyle \\boldsymbol{E}\\) \u4e0d\u540c\u5c3a\u5ea6\u4e0b\u662f\u7b49\u4ef7\u7684\u3002
- \u53ef\u4ee5\u8bc1\u660e\uff0c\u672c\u8d28\u77e9\u9635 \\(\\displaystyle \\boldsymbol{E}\\) \u7684\u5947\u5f02\u503c\u5fc5\u5b9a\u662f \\(\\displaystyle [\\sigma,\\sigma,0]^\\mathrm{T}\\) \u7684\u5f62\u5f0f\uff0c\u8fd9\u79f0\u4e3a\u672c\u8d28\u77e9\u9635\u7684\u5185\u5728\u6027\u8d28\u3002
- \\(\\displaystyle \\boldsymbol{E}\\) \u5b9e\u9645\u4e0a\u6709 5 \u4e2a\u81ea\u7531\u5ea6\u3002 \u516b\u70b9\u6cd5 (Eight-point-algorithm) \u8003\u8651\u4e00\u5806\u914d\u5bf9\u70b9\uff0c\u5b83\u4eec\u7684\u5f52\u4e00\u5316\u5750\u6807\u4e3a \\(\\displaystyle x_{1}=[u_{1},v_{1},1]^{\\mathrm{T}},x_{2}=[u_{2},v_{2},1]^{\\mathrm{T}}\\)\u3002\u6839\u636e\u5bf9\u6781\u7ea6\u675f\uff0c\u6709
\\[ \\begin{pmatrix}u_2,v_2,1\\end{pmatrix}\\begin{pmatrix}e_1&e_2&e_3\\\\\\\\e_4&e_5&e_6\\\\\\\\e_7&e_8&e_9\\end{pmatrix}\\begin{pmatrix}u_1\\\\\\\\v_1\\\\\\\\1\\end{pmatrix}=0. \\] \\[ \\boldsymbol{e}=[e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8,e_9]^\\mathrm{T}, \\] \\[ [u_2u_1,u_2v_1,u_2,v_2u_1,v_2v_1,v_2,u_1,v_1,1]\\cdot e=0. \\]
\u6211\u4eec\u628a\u6240\u6709\u70b9\u90fd\u653e\u5230\u4e00\u4e2a\u65b9\u7a0b\u4e2d\uff0c\u53d8\u6210\u7ebf\u6027\u65b9\u7a0b\u7ec4:
\\[ \\begin{pmatrix}u_2^1u_1^1&u_2^1v_1^1&u_2^1&v_2^1u_1^1&v_2^1v_1^1&v_2^1&u_1^1&v_1^1&1\\\\u_2^2u_1^2&u_2^2v_1^2&u_2^2&v_2^2u_1^2&v_2^2v_1^2&v_2^2&u_1^2&v_1^2&1\\\\\\vdots&\\vdots&\\vdots&\\vdots&\\vdots&\\vdots&\\vdots&\\vdots\\\\u_2^8u_1^8&u_2^8v_1^8&u_2^8&v_2^8u_1^8&v_2^8u_1^8&u_1^8&v_1^8&1\\end{pmatrix}\\begin{pmatrix}e_1\\\\e_2\\\\e_3\\\\e_4\\\\e_5\\\\e_6\\\\e_7\\\\e_8\\\\e_9\\end{pmatrix}=0. \\] \\[ E=U\\Sigma V^{\\mathrm{T}}, \\] \\[ \\begin{aligned}&t_{1}^{\\wedge}=UR_{Z}(\\frac{\\pi}{2})\\Sigma U^{\\mathrm{T}},\\quad R_{1}=UR_{Z}^{\\mathrm{T}}(\\frac{\\pi}{2})V^{\\mathrm{T}}\\\\&t_{2}^{\\wedge}=UR_{Z}(-\\frac{\\pi}{2})\\Sigma U^{\\mathrm{T}},\\quad R_{2}=UR_{Z}^{\\mathrm{T}}(-\\frac{\\pi}{2})V^{\\mathrm{T}}.\\end{aligned} \\]
\\[ \\boldsymbol{E}=\\boldsymbol{U}\\mathrm{diag}(\\frac{\\sigma_1+\\sigma_2}2,\\frac{\\sigma_1+\\sigma_2}2,0)\\boldsymbol{V}^\\mathrm{T}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#733","title":"7.3.3 \u5355\u5e94\u77e9\u9635","text":"
Homography
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#8-2","title":"8 \u89c6\u89c9\u91cc\u7a0b\u8ba1 2","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#81","title":"8.1 \u76f4\u63a5\u6cd5\u7684\u5f15\u51fa","text":"
- \u7279\u5f81\u70b9\u6cd5\u7684\u7f3a\u70b9
- \u5173\u952e\u70b9\u7684\u63d0\u53d6\u4e0e\u63cf\u8ff0\u5b50\u7684\u8ba1\u7b97\u975e\u5e38\u8017\u65f6
- \u4f7f\u7528\u7279\u5f81\u70b9\u65f6\uff0c\u4f1a\u5ffd\u7565\u9664\u7279\u5f81\u70b9\u4ee5\u5916\u7684\u6240\u6709\u4fe1\u606f
- \u76f8\u673a\u6709\u65f6\u4f1a\u8fd0\u52a8\u5230\u7279\u5f81\u7f3a\u5931\u7684\u5730\u65b9
- \u90a3\u4e48\u5982\u4f55\u514b\u670d\u8fd9\u4e9b\u7f3a\u70b9
- \u4fdd\u7559\u7279\u5f81\u70b9\uff0c\u4f46\u53ea\u8ba1\u7b97\u5173\u952e\u70b9\uff0c\u4e0d\u8ba1\u7b97\u63cf\u8ff0\u5b50\u3002\u4f7f\u7528\u5149\u6d41\u6cd5\uff08Optical Flow\uff09\u8ddf\u8e2a\u7279\u5f81\u70b9\u7684\u8fd0\u52a8
- \u53ea\u8ba1\u7b97\u5173\u952e\u70b9\uff0c\u4e0d\u8ba1\u7b97\u63cf\u8ff0\u5b50\u3002\u4f7f\u7528\u76f4\u63a5\u6cd5\uff08Direct Method\uff09
- \u7b2c\u4e00\u79cd\u65b9\u6cd5\u4ecd\u7136\u4f7f\u7528\u7279\u5f81\u70b9\uff0c\u53ea\u662f\u628a\u5339\u914d\u63cf\u8ff0\u5b57\u66ff\u6362\u6210\u4e86\u5149\u6d41\u8ddf\u8e2a\uff0c\u4f30\u8ba1\u76f8\u673a\u8fd0\u52a8\u65f6\u4ecd\u7136\u662f\u54e6\u90a3\u4e2a\u5bf9\u6781\u51e0\u4f55\u3001PnP \u6216 ICP \u7b97\u6cd5\uff08\u5373\uff0c\u6211\u4eec\u9700\u8981\u63d0\u5230\u89d2\u70b9\uff09
- \u7279\u5f81\u70b9\u6cd5:\u901a\u8fc7\u6700\u5c0f\u5316\u91cd\u6295\u5f71\u8bef\u5dee\uff08Reprojection error\uff09\u4f18\u5316\u76f8\u673a\u8fd0\u52a8
- \u76f4\u63a5\u6cd5: \u901a\u8fc7\u6700\u5c0f\u5316\u5149\u5ea6\u8bef\u5dee\uff08Photometric error\uff09
- \u53ea\u8981\u573a\u666f\u4e2d\u5b58\u5728\u660e\u6697\u53d8\u5316\u5c31\u53ef\u4ee5\u5de5\u4f5c
- \u7a20\u5bc6
- \u534a\u7a20\u5bc6
- \u7a00\u758f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#82-d","title":"8.2 D \u5149\u6d41","text":"
- \u8ba1\u7b97\u90e8\u5206\u50cf\u7d20\u8fd0\u52a8: \u7a00\u758f\u5149\u6d41
- \u8ba1\u7b97\u6240\u6709\u50cf\u7d20\u8fd0\u52a8: \u7a20\u5bc6\u5149\u6d41
- Horn-Schunck Lucas-Kanade \u5149\u6d41
- \u7070\u5ea6\u4e0d\u53d8\u5047\u8bbe: \u540c\u4e00\u4e2a\u7a7a\u95f4\u70b9\u7684\u50cf\u7d20\u7070\u5ea6\u503c\uff0c\u5728\u5404\u4e2a\u56fe\u50cf\u4e2d\u65f6\u56fa\u5b9a\u4e0d\u53d8\u7684
\\[ I(x+\\mathrm{d}x,y+\\mathrm{d}y,t+\\mathrm{d}t)=I(x,y,t). \\] \\[ \\boldsymbol{I}\\left(x+\\mathrm{d}x,y+\\mathrm{d}y,t+\\mathrm{d}t\\right)\\approx\\boldsymbol{I}\\left(x,y,t\\right)+\\frac{\\partial\\boldsymbol{I}}{\\partial x}\\mathrm{d}x+\\frac{\\partial\\boldsymbol{I}}{\\partial y}\\mathrm{d}y+\\frac{\\partial\\boldsymbol{I}}{\\partial t}\\mathrm{d}t. \\] \\[ \\frac{\\partial\\boldsymbol{I}}{\\partial x}\\frac{\\mathrm{d}x}{\\mathrm{d}t}+\\frac{\\partial\\boldsymbol{I}}{\\partial y}\\frac{\\mathrm{d}y}{\\mathrm{d}t}=-\\frac{\\partial\\boldsymbol{I}}{\\partial t}. \\] \\[ \\begin{bmatrix}I_x&I_y\\end{bmatrix}\\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}=-I_t. \\] \\[ \\begin{bmatrix}I_x&I_y\\end{bmatrix}_k\\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}=-I_{tk},\\quad k=1,\\ldots,w^2. \\] \\[ A\\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}=-b. \\] \\[ \\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}^*=-\\begin{pmatrix}\\boldsymbol{A}^\\mathrm{T}\\boldsymbol{A}\\end{pmatrix}^{-1}\\boldsymbol{A}^\\mathrm{T}\\boldsymbol{b}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#83-lk","title":"8.3 \u5b9e\u8df5: LK \u5149\u6d41","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#831-lk","title":"8.3.1 \u4f7f\u7528 LK \u5149\u6d41","text":"C++
vector<Point2f> pt1, pt2;\nfor (auto &kp: kp1) pt1.push_back(kp.pt);\nvector<uchar> status;\nvector<float> error;\ncv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#832","title":"8.3.2 \u7528\u9ad8\u65af\u725b\u987f\u6cd5\u5b9e\u73b0\u5149\u6d41","text":"
\u5355\u5c42\u5149\u6d41 TODO
\\[ \\min_{\\Delta x,\\Delta y}\\left\\|\\boldsymbol{I}_1\\left(x,y\\right)-\\boldsymbol{I}_2\\left(x+\\Delta x,y+\\Delta y\\right)\\right\\|_2^2. \\]
\u591a\u5c42\u5149\u6d41 - \u7531\u7c97\u81f3\u7cbe\uff08Coarse-to-fine\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#833","title":"8.3.3 \u5149\u6d41\u5b9e\u8df5\u5c0f\u7ed3","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#84","title":"8.4 \u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#841","title":"8.4.1 \u76f4\u63a5\u6cd5\u7684\u63a8\u5bfc","text":"\\[ \\boldsymbol{p}_1=\\begin{bmatrix}u\\\\\\\\v\\\\\\\\1\\end{bmatrix}_1=\\frac{1}{Z_1}\\boldsymbol{K}\\boldsymbol{P}, \\] \\[ \\boldsymbol{p}_{2}=\\begin{bmatrix}u\\\\\\\\v\\\\\\\\1\\end{bmatrix}_{2}=\\frac{1}{Z_{2}}\\boldsymbol{K}\\left(\\boldsymbol{R}\\boldsymbol{P}+\\boldsymbol{t}\\right)=\\frac{1}{Z_{2}}\\boldsymbol{K}\\left(\\boldsymbol{T}\\boldsymbol{P}\\right)_{1:3}. \\] \\[ e=\\boldsymbol{I}_1\\left(\\boldsymbol{p}_1\\right)-\\boldsymbol{I}_2\\left(\\boldsymbol{p}_2\\right). \\] \\[ \\min_{T}J\\left(T\\right)=\\left\\|e\\right\\|^{2}. \\] \\[ \\min_{\\boldsymbol{T}}J\\left(\\boldsymbol{T}\\right)=\\sum_{i=1}^{N}e_{i}^{\\mathrm{T}}e_{i},\\quad e_{i}=\\boldsymbol{I}_{1}\\left(\\boldsymbol{p}_{1,i}\\right)-\\boldsymbol{I}_{2}\\left(\\boldsymbol{p}_{2,i}\\right). \\] \\[ \\begin{aligned}&q=TP,\\\\&\\boldsymbol{u}=\\frac{1}{Z_{2}}Kq.\\end{aligned} \\] \\[ e(T)=I_1(p_1)-I_2(u), \\] \\[ \\frac{\\partial e}{\\partial\\boldsymbol{T}}=\\frac{\\partial\\boldsymbol{I}_{2}}{\\partial\\boldsymbol{u}}\\frac{\\partial\\boldsymbol{u}}{\\partial\\boldsymbol{q}}\\frac{\\partial\\boldsymbol{q}}{\\partial\\delta\\boldsymbol{\\xi}}\\delta\\boldsymbol{\\xi}, \\] \\[ \\frac{\\partial\\boldsymbol{u}}{\\partial\\boldsymbol{q}}=\\begin{bmatrix}\\frac{\\partial u}{\\partial X}&\\frac{\\partial u}{\\partial Y}&\\frac{\\partial u}{\\partial Z}\\\\\\frac{\\partial v}{\\partial X}&\\frac{\\partial v}{\\partial Y}&\\frac{\\partial v}{\\partial Z}\\end{bmatrix}=\\begin{bmatrix}\\frac{f_x}{Z}&0&-\\frac{f_xX}{Z^2}\\\\0&\\frac{f_y}{Z}&-\\frac{f_yY}{Z^2}\\end{bmatrix}. \\] \\[ \\frac{\\partial\\boldsymbol{q}}{\\partial\\delta\\boldsymbol{\\xi}}=\\left[I,-\\boldsymbol{q}^{\\wedge}\\right]. \\] \\[ \\frac{\\partial\\boldsymbol{u}}{\\partial\\delta\\boldsymbol{\\xi}}=\\begin{bmatrix}\\frac{f_x}{Z}&0&-\\frac{f_xX}{Z^2}&-\\frac{f_xXY}{Z^2}&f_x+\\frac{f_xX^2}{Z^2}&-\\frac{f_xY}{Z}\\\\0&\\frac{f_y}{Z}&-\\frac{f_yY}{Z^2}&-f_y-\\frac{f_yY^2}{Z^2}&\\frac{f_yXY}{Z^2}&\\frac{f_yX}{Z}\\end{bmatrix}. \\] \\[ J=-\\frac{\\partial I_2}{\\partial u}\\frac{\\partial u}{\\partial\\delta\\xi}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#842","title":"8.4.2 \u76f4\u63a5\u6cd5\u7684\u8ba8\u8bba","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#85","title":"8.5 \u5b9e\u8df5: \u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#851","title":"8.5.1 \u5355\u5c42\u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#852","title":"8.5.2 \u591a\u5c42\u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#853","title":"8.5.3 \u7ed3\u679c\u8ba8\u8bba","text":"
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#854","title":"8.5.4 \u76f4\u63a5\u6cd5\u4f18\u7f3a\u70b9\u603b\u7ed3","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#9-1","title":"9 \u540e\u7aef 1","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#91","title":"9.1 \u6982\u8ff0","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#911","title":"9.1.1 \u72b6\u6001\u4f30\u8ba1\u7684\u6982\u7387\u89e3\u91ca","text":"
- \u53ea\u4f7f\u7528\u8fc7\u53bb\u7684\u4fe1\u606f: \u6e10\u8fdb\u7684\uff08Incremental\uff09
- \u4f7f\u7528\u672a\u6765\u7684\u4fe1\u606f\u66f4\u65b0: \u6279\u91cf\u7684\uff08Batch\uff09
\\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right)+\\boldsymbol{w}_k\\\\\\boldsymbol{z}_{k,j}=h\\left(\\boldsymbol{y}_j,\\boldsymbol{x}_k\\right)+\\boldsymbol{v}_{k,j}\\end{cases}\\quad k=1,\\ldots,N, j=1,\\ldots,M. \\]
- \u89c2\u6d4b\u65b9\u7a0b\u7684\u6570\u91cf\u4f1a\u8fdc\u8fdc\u5927\u4e8e\u8fd0\u52a8\u65b9\u7a0b
- \u5f53\u6ca1\u6709\u8fd0\u52a8\u65b9\u7a0b\u7684\u65f6\u5019\uff0c\u6211\u4eec\u53ef\u4ee5\u5047\u8bbe\u76f8\u673a\u4e0d\u52a8\uff0c\u6216\u5047\u8bbe\u76f8\u673a\u5300\u901f\u8fd0\u52a8
- \u95ee\u9898\uff1a\u5f53\u5b58\u5728\u4e00\u4e9b\u8fd0\u52a8\u6570\u636e\u548c\u89c2\u6d4b\u6570\u636e\u65f6\uff0c\u6211\u4eec\u5982\u4f55\u4f30\u8ba1\u72b6\u6001\u91cf\u7684\u9ad8\u65af\u5206\u5e03
- \u8bef\u5dee\u65f6\u9010\u6e10\u7d2f\u79ef\u7684
- \u6700\u5927\u4f3c\u7136\u4f30\u8ba1: \u6279\u91cf\u72b6\u6001\u4f30\u8ba1\u95ee\u9898\u53ef\u4ee5\u8f6c\u5316\u4e3a\u6700\u5927\u4f3c\u7136\u4f30\u8ba1\u95ee\u9898\uff0c\u5e76\u4f7f\u7528\u6700\u5c0f\u4e8c\u4e58\u6cd5\u8fdb\u884c\u6c42\u89e3
\\[ x_k\\stackrel{\\mathrm{def}}{=}\\{x_k,y_1,\\ldots,y_m\\}. \\] \\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right)+\\boldsymbol{w}_k\\\\\\boldsymbol{z}_k=h\\left(\\boldsymbol{x}_k\\right)+\\boldsymbol{v}_k\\end{cases}\\quad k=1,\\ldots,N. \\] \\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k}\\right)\\propto P\\left(\\boldsymbol{z}_k|\\boldsymbol{x}_k\\right)P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right). \\]
- \u7b2c\u4e00\u9879\u79f0\u4e3a\u4f3c\u7136\uff0c\u7b2c\u4e8c\u9879\u79f0\u4e3a\u5148\u9a8c
\\[ P\\left(\\boldsymbol{x}_{k}|\\boldsymbol{x}_{0},\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=\\int P\\left(\\boldsymbol{x}_{k}|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_{0},\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)P\\left(\\boldsymbol{x}_{k-1}|\\boldsymbol{x}_{0},\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)\\mathrm{d}\\boldsymbol{x}_{k-1}. \\]
- \u867d\u7136\u53ef\u4ee5\u7ee7\u7eed\u5bf9\u6b64\u5f0f\u8fdb\u884c\u5c55\u5f00\uff0c\u4f46\u6211\u4eec\u53ea\u5173\u5fc3 \\(\\displaystyle k\\) \u65f6\u523b\u548c \\(\\displaystyle k - 1\\) \u65f6\u523b\u7684\u60c5\u51b5
- \u7b2c\u4e00\u79cd\u65b9\u6cd5\u662f\u5047\u8bbe\u9a6c\u5c14\u53ef\u592b\u6027: \u5373\u8ba4\u4e3a \\(\\displaystyle k\\) \u65f6\u523b\u72b6\u6001\u53ea\u4e0e \\(\\displaystyle k - 1\\) \u65f6\u523b\u72b6\u6001\u6709\u5173
- \u90a3\u4e48\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\u4ee5\u6269\u5c55\u5361\u5c14\u66fc\u6ee4\u6ce2\uff08EKF\uff09\u4e3a\u4ee3\u8868\u7684\u6ee4\u6ce2\u5668\u65b9\u5f0f
- \u7b2c\u4e8c\u79cd\u65b9\u6cd5\u662f\u4f9d\u7136\u8003\u8651\u548c\u4e4b\u524d\u6240\u6709\u72b6\u6001\u7684\u5173\u7cfb\uff0c\u59ff\u52bf\u4f1a\u5f97\u5230\u975e\u7ebf\u6027\u4f18\u5316\u4e3a\u4e3b\u4f53\u7684\u4f18\u5316\u6846\u67b6\u3002
- \u4e3b\u6d41\u662f\u975e\u7ebf\u6027\u4f18\u5316
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#912-kf","title":"9.1.2 \u7ebf\u6027\u7cfb\u7edf\u548c KF","text":"\\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right). \\] \\[ P\\left(\\boldsymbol{x}_{k-1}|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=P\\left(\\boldsymbol{x}_{k-1}|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k-1},\\boldsymbol{z}_{1:k-1}\\right). \\]
- \u6240\u4ee5\u6211\u4eec\u5b9e\u9645\u5728\u505a\u7684\u4e8b\u5982\u4f55\u628a \\(\\displaystyle k - 1\\) \u65f6\u523b\u7684\u72b6\u6001\u5206\u5e03\u63a8\u5bfc\u81f3 \\(\\displaystyle k\\) \u65f6\u523b
- \u5373\u6211\u4eec\u53ea\u8981\u7ef4\u62a4\u4e00\u4e2a\u72b6\u6001\uff0c\u5e76\u4e0d\u65ad\u5730\u8fed\u4ee3\u66f4\u65b0
- \u53ea\u8981\u7ef4\u62a4\u72b6\u6001\u91cf\u7684\u5747\u503c\u548c\u534f\u65b9\u5dee\uff08\u72b6\u6001\u91cf\u670d\u4ece\u9ad8\u65af\u5206\u5e03\uff09
\\[ \\begin{cases}x_k=A_kx_{k-1}+u_k+w_k\\\\z_k=C_kx_k+v_k\\end{cases}\\quad k=1,\\ldots,N. \\] \\[ w_k\\sim N(0,\\boldsymbol{R}).\\quad\\boldsymbol{v}_k\\sim N(\\boldsymbol{0},\\boldsymbol{Q}). \\]
- \u4e0a\u5e3d\u5b50\u8868\u793a\u540e\u9a8c\uff0c\u4e0b\u5e3d\u5b50\u8868\u793a\u5148\u9a8c
\\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=N\\left(\\boldsymbol{A}_k\\hat{x}_{k-1}+\\boldsymbol{u}_k,\\boldsymbol{A}_k\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{A}_k^\\mathrm{T}+\\boldsymbol{R}\\right). \\]
- \u8fd9\u4e00\u6b65\u79f0\u4e3a\u9884\u6d4b\uff08Predict\uff09
\\[ \\check{\\boldsymbol{x}}_k=\\boldsymbol{A}_k\\hat{\\boldsymbol{x}}_{k-1}+\\boldsymbol{u}_k,\\quad\\check{\\boldsymbol{P}}_k=A_k\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{A}_k^\\mathrm{T}+\\boldsymbol{R}. \\] \\[ P\\left(\\boldsymbol{z}_k|\\boldsymbol{x}_k\\right)=N\\left(\\boldsymbol{C}_k\\boldsymbol{x}_k,\\boldsymbol{Q}\\right). \\]
- \u5982\u679c\u7ed3\u679c\u8bbe\u4e3a \\(\\displaystyle x_k\\sim N(\\hat{\\boldsymbol{x}}_k,\\hat{\\boldsymbol{P}}_k)\\)\uff0c\u90a3\u4e48
\\[ N(\\hat{\\boldsymbol{x}}_k,\\hat{\\boldsymbol{P}}_k)=\\eta N\\left(\\boldsymbol{C}_k\\boldsymbol{x}_k,\\boldsymbol{Q}\\right)\\cdot N(\\check{\\boldsymbol{x}}_k,\\check{\\boldsymbol{P}}_k). \\] \\[ (\\boldsymbol{x}_{k}-\\hat{\\boldsymbol{x}}_{k})^{\\mathrm{T}}\\hat{\\boldsymbol{P}}_{k}^{-1}\\left(\\boldsymbol{x}_{k}-\\hat{\\boldsymbol{x}}_{k}\\right)=\\left(\\boldsymbol{z}_{k}-\\boldsymbol{C}_{k}\\boldsymbol{x}_{k}\\right)^{\\mathrm{T}}\\boldsymbol{Q}^{-1}\\left(\\boldsymbol{z}_{k}-\\boldsymbol{C}_{k}\\boldsymbol{x}_{k}\\right)+\\left(\\boldsymbol{x}_{k}-\\check{\\boldsymbol{x}}_{k}\\right)^{\\mathrm{T}}\\boldsymbol{P}_{k}^{-1}\\left(\\boldsymbol{x}_{k}-\\check{\\boldsymbol{x}}_{k}\\right). \\]
\\[ \\hat{P}_k^{-1}=C_k^{\\mathrm{T}}Q^{-1}C_k+\\check{P}_k^{-1}. \\]
- \u5b9a\u4e49\u4e00\u4e2a\u4e2d\u95f4\u53d8\u91cf
\\[ K=\\hat{P}_kC_k^{\\mathrm{T}}Q^{-1}. \\] \\[ I=\\hat{P}_{k}C_{k}^{\\mathrm{T}}Q^{-1}C_{k}+\\hat{P}_{k}\\check{P}_{k}^{-1}=KC_{k}+\\hat{P}_{k}\\check{P}_{k}^{-1}. \\] \\[ \\hat{P}_{k}=(I-KC_{k})\\check{P}_{k}. \\]
- \u4e00\u6b21\u9879\u7cfb\u6570
\\[ -2\\hat{\\boldsymbol{x}}_k^\\mathrm{T}\\hat{\\boldsymbol{P}}_k^{-1}\\boldsymbol{x}_k=-2\\boldsymbol{z}_k^\\mathrm{T}\\boldsymbol{Q}^{-1}\\boldsymbol{C}_k\\boldsymbol{x}_k-2\\boldsymbol{\\dot{x}}_k^\\mathrm{T}\\check{\\boldsymbol{P}}_k^{-1}\\boldsymbol{x}_k. \\] \\[ \\hat{\\boldsymbol{P}}_k^{-1}\\hat{\\boldsymbol{x}}_k=\\boldsymbol{C}_k^\\mathrm{T}\\boldsymbol{Q}^{-1}\\boldsymbol{z}_k+\\check{\\boldsymbol{P}}_k^{-1}\\check{\\boldsymbol{x}}_k. \\] \\[ \\begin{aligned} \\hat{x}_{k}& =\\hat{\\boldsymbol{P}}_k\\boldsymbol{C}_k^\\mathrm{T}\\boldsymbol{Q}^{-1}\\boldsymbol{z}_k+\\hat{\\boldsymbol{P}}_k\\check{\\boldsymbol{P}}_k^{-1}\\check{\\boldsymbol{x}}_k \\\\ &=K\\boldsymbol{z}_k+\\left(\\boldsymbol{I}-\\boldsymbol{K}\\boldsymbol{C}_k\\right)\\check{\\boldsymbol{x}}_k=\\check{\\boldsymbol{x}}_k+\\boldsymbol{K}\\left(\\boldsymbol{z}_k-\\boldsymbol{C}_k\\check{\\boldsymbol{x}}_k\\right). \\end{aligned} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#913-ekf","title":"9.1.3 \u975e\u7ebf\u6027\u7cfb\u7edf\u548c EKF","text":"
- \u6269\u5c55\u5361\u5c14\u66fc\u6ee4\u6ce2\u5668
- \u5373\u628a\u975e\u9ad8\u65af\u5206\u5e03\u8fd1\u4f3c\u6210\u9ad8\u65af\u5206\u5e03
\\[ \\boldsymbol{x}_k\\approx f\\left(\\hat{\\boldsymbol{x}}_{k-1},\\boldsymbol{u}_k\\right)+\\left.\\frac{\\partial f}{\\partial\\boldsymbol{x}_{k-1}}\\right|_{\\tilde{\\boldsymbol{x}}_{k-1}}\\left(\\boldsymbol{x}_{k-1}-\\hat{\\boldsymbol{x}}_{k-1}\\right)+\\boldsymbol{w}_k. \\] \\[ \\boldsymbol{F}=\\left.\\frac{\\partial f}{\\partial\\boldsymbol{x}_{k-1}}\\right|_{\\hat{\\boldsymbol{x}}_{k-1}}. \\] \\[ z_k\\approx h\\left(\\check{\\boldsymbol{x}}_k\\right)+\\left.\\frac{\\partial h}{\\partial\\boldsymbol{x}_k}\\right|_{\\dot{\\boldsymbol{x}}_k}\\left(\\boldsymbol{x}_k-\\check{\\boldsymbol{x}}_k\\right)+\\boldsymbol{n}_k. \\] \\[ H=\\left.\\frac{\\partial h}{\\partial\\boldsymbol{x}_k}\\right|_{\\check{\\boldsymbol{x}}_k}. \\] \\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{0:k-1}\\right)=N(f\\left(\\hat{\\boldsymbol{x}}_{k-1},\\boldsymbol{u}_k\\right),\\boldsymbol{F}\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{F}^\\mathrm{T}+\\boldsymbol{R}_k). \\] \\[ \\check{\\boldsymbol{x}}_k=f\\left(\\hat{\\boldsymbol{x}}_{k-1},\\boldsymbol{u}_k\\right),\\quad\\check{\\boldsymbol{P}}_k=\\boldsymbol{F}\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{F}^\\mathrm{T}+\\boldsymbol{R}_k. \\] \\[ P\\left(\\boldsymbol{z}_k|\\boldsymbol{x}_k\\right)=N(h\\left(\\check{\\boldsymbol{x}}_k\\right)+\\boldsymbol{H}\\left(\\boldsymbol{x}_k-\\check{\\boldsymbol{x}}_k\\right),Q_k). \\]
- \u5b9a\u4e49\u4e00\u4e2a\u5361\u5c14\u66fc\u589e\u76ca \\(\\displaystyle \\boldsymbol{K}_{k}\\)
\\[ K_{k}=\\check{P}_{k}H^{\\mathrm{T}}(H\\check{P}_{k}H^{\\mathrm{T}}+Q_{k})^{-1}. \\] \\[ \\hat{\\boldsymbol{x}}_k=\\check{\\boldsymbol{x}}_k+\\boldsymbol{K}_k\\left(\\boldsymbol{z}_k-h\\left(\\check{\\boldsymbol{x}}_k\\right)\\right),\\hat{\\boldsymbol{P}}_k=\\left(\\boldsymbol{I}-\\boldsymbol{K}_k\\boldsymbol{H}\\right)\\check{\\boldsymbol{P}}_k. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#914-ekf","title":"9.1.4 EKF \u7684\u8ba8\u8bba","text":"
- \u5c40\u9650
- \u5047\u8bbe\u4e86\u9a6c\u5c14\u53ef\u592b\u6027\uff0c\u4f46\u662f\u975e\u7ebf\u6027\u4f18\u5316\u662f\u5168\u4f53\u65f6\u95f4\u4e0a\u7684 SLAM (Full-SLAM)
- \u6709\u975e\u7ebf\u6027\u8bef\u5dee\uff08\u4e3b\u8981\u95ee\u9898\u6240\u5728\uff09
- \u5982\u679c\u628a\u8def\u6807\u4e5f\u653e\u8fdb\u72b6\u6001\uff0c\u5b58\u4e0d\u4e0b
- \u6ca1\u6709\u5f02\u5e38\u68c0\u6d4b\u673a\u5236
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#92-ba","title":"9.2 BA \u4e0e\u56fe\u4f18\u5316","text":"
- Bundle Adjustment
- \u4ece\u89c6\u89c9\u56fe\u50cf\u4e2d\u63d0\u70bc\u51fa\u6700\u6709\u7684 3 D \u6a21\u578b\u548c\u76f8\u673a\u53c2\u6570\uff0c\u8ba9\u5149\u7ebf\u6700\u7ec8\u6536\u675f\u5230\u76f8\u673a\u7684\u5149\u5fc3
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#921-ba","title":"9.2.1 \u6295\u5f71\u6a21\u578b\u548c BA \u4ee3\u4ef7\u51fd\u6570","text":"\\[ P^{\\prime}=Rp+t=[X^{\\prime},Y^{\\prime},Z^{\\prime}]^\\mathrm{T}. \\] \\[ \\boldsymbol{P}_{\\mathrm{c}}=[u_{\\mathrm{c}},v_{\\mathrm{c}},1]^{\\mathrm{T}}=[X^{\\prime}/Z^{\\prime},Y^{\\prime}/Z^{\\prime},1]^{\\mathrm{T}}. \\] \\[ \\begin{cases}u_\\mathrm{c}'=u_\\mathrm{c}\\left(1+k_1r_\\mathrm{c}^2+k_2r_\\mathrm{c}^4\\right)\\\\v_\\mathrm{c}'=v_\\mathrm{c}\\left(1+k_1r_\\mathrm{c}^2+k_2r_\\mathrm{c}^4\\right)\\end{cases}. \\] \\[ \\begin{cases}u_s=f_xu_\\mathrm{c}'+c_x\\\\[2ex]v_s=f_yv_\\mathrm{c}'+c_y\\end{cases}. \\] \\[ z=h(\\boldsymbol{x},\\boldsymbol{y}). \\] \\[ e=z-h(\\boldsymbol{T},\\boldsymbol{p}). \\] \\[ z\\overset{\\mathrm{def}}{\\operatorname*{=}}[u_s,v_s]^\\mathrm{T} \\] \\[ \\frac12\\sum_{i=1}^m\\sum_{j=1}^n\\|e_{ij}\\|^2=\\frac12\\sum_{i=1}^m\\sum_{j=1}^n\\|z_{ij}-h(\\boldsymbol{T}_i,\\boldsymbol{p}_j)\\|^2. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#922-ba","title":"9.2.2 BA \u7684\u6c42\u89e3","text":"\\[ x=[T_1,\\ldots,T_m,p_1,\\ldots,p_n]^\\mathrm{T}. \\] \\[ \\frac12\\left\\|f(\\boldsymbol{x}+\\Delta\\boldsymbol{x})\\right\\|^2\\approx\\frac12\\sum_{i=1}^m\\sum_{j=1}^n\\left\\|\\boldsymbol{e}_{ij}+\\boldsymbol{F}_{ij}\\Delta\\boldsymbol{\\xi}_i+\\boldsymbol{E}_{ij}\\Delta\\boldsymbol{p}_j\\right\\|^2. \\] \\[ x_{\\mathfrak{c}}=[\\boldsymbol{\\xi}_1,\\boldsymbol{\\xi}_2,\\ldots,\\boldsymbol{\\xi}_m]^{\\mathrm{T}}\\in\\mathbb{R}^{6m} \\] \\[ \\boldsymbol{x}_p=[\\boldsymbol{p}_1,\\boldsymbol{p}_2,\\ldots,\\boldsymbol{p}_n]^\\mathrm{T}\\in\\mathbb{R}^{3n} \\] \\[ \\frac12\\left\\|f(\\boldsymbol{x}+\\Delta\\boldsymbol{x})\\right\\|^2=\\frac12\\left\\|\\boldsymbol{e}+\\boldsymbol{F}\\Delta\\boldsymbol{x}_c+\\boldsymbol{E}\\Delta\\boldsymbol{x}_p\\right\\|^2. \\] \\[ \\boldsymbol{J}=[\\boldsymbol{F}\\boldsymbol{E}]. \\] \\[ H=J^\\mathrm{T}J=\\begin{bmatrix}F^\\mathrm{T}F&F^\\mathrm{T}E\\\\E^\\mathrm{T}F&E^\\mathrm{T}E\\end{bmatrix}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#923","title":"9.2.3 \u7a00\u758f\u6027\u548c\u8fb9\u7f18\u5316","text":"\\[ J_{ij}(x)=\\left(\\mathbf{0}_{2\\times6},\\ldots\\mathbf{0}_{2\\times6},\\frac{\\partial\\boldsymbol{e}_{ij}}{\\partial\\boldsymbol{T}_{i}},\\mathbf{0}_{2\\times6},\\ldots\\mathbf{0}_{2\\times3},\\ldots\\mathbf{0}_{2\\times3},\\frac{\\partial\\boldsymbol{e}_{ij}}{\\partial\\boldsymbol{p}_{j}},\\mathbf{0}_{2\\times3},\\ldots\\mathbf{0}_{2\\times3}\\right). \\] \\[ H=\\sum_{i,j}J_{ij}^{\\top}J_{ij}, \\] \\[ H=\\begin{bmatrix}H_{11}&H_{12}\\\\\\\\H_{21}&H_{22}\\end{bmatrix}. \\]
- \u5bf9\u4e8e\u7a00\u758f\u77e9\u9635\uff0c\u6211\u4eec\u7528 Schur \u6d88\u5143\uff08Marginalization\uff09
\\[ \\begin{bmatrix}B&E\\\\E^\\mathrm{T}&C\\end{bmatrix}\\begin{bmatrix}\\Delta x_\\mathrm{c}\\\\\\Delta x_p\\end{bmatrix}=\\begin{bmatrix}v\\\\w\\end{bmatrix}. \\] \\[ \\begin{bmatrix}I&-EC^{-1}\\\\0&I\\end{bmatrix}\\begin{bmatrix}B&E\\\\E^{\\intercal}&C\\end{bmatrix}\\begin{bmatrix}\\Delta x_\\mathrm{c}\\\\\\Delta x_p\\end{bmatrix}=\\begin{bmatrix}I&-EC^{-1}\\\\0&I\\end{bmatrix}\\begin{bmatrix}v\\\\w\\end{bmatrix}. \\] \\[ \\begin{bmatrix}B-EC^{-1}E^\\mathrm{T}&0\\\\E^\\mathrm{T}&C\\end{bmatrix}\\begin{bmatrix}\\Delta x_\\mathrm{c}\\\\\\Delta x_p\\end{bmatrix}=\\begin{bmatrix}v-EC^{-1}w\\\\\\\\w\\end{bmatrix}. \\] \\[ \\begin{bmatrix}B-EC^{-1}E^\\mathrm{T}\\end{bmatrix}\\Delta x_\\mathrm{c}=v-EC^{-1}w. \\]
- \u4f18\u52bf
- \\(\\displaystyle \\boldsymbol{C}\\) \u4e3a\u5bf9\u89d2\u5757\uff0c\u9006\u6bd4\u8f83\u5bb9\u6613\u89e3\u51fa
- \u975e\u5bf9\u89d2\u7ebf\u4e0a\u7684\u975e\u96f6\u77e9\u9635\u5757\u8868\u793a\u5bf9\u5e94\u7684\u4e24\u4e2a\u76f8\u673a\u53d8\u91cf\u4e4b\u95f4\u5b58\u5728\u5171\u540c\u89c2\u6d4b\u7684\u8def\u6807\u70b9\uff0c\u5373\u5171\u89c6\uff08Co-visibility\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#924","title":"9.2.4 \u9c81\u68d2\u6838\u51fd\u6570","text":"
\\[ H(e)=\\begin{cases}\\frac{1}{2}e^2&\\text{\u5f53}|e|\\leqslant\\delta,\\\\\\\\\\delta\\left(|e|-\\frac{1}{2}\\delta\\right)&\\text{\u5176\u4ed6}\\end{cases} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#93-ceres-ba","title":"9.3 \u5b9e\u8df5: Ceres BA","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#931-bal","title":"9.3.1 BAL \u6570\u636e\u96c6","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#932-ceres-ba","title":"9.3.2 Ceres BA \u7684\u4e66\u5199","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#94-g-2-o-ba","title":"9.4 \u5b9e\u8df5: g 2 o \u6c42\u89e3 BA","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#95","title":"9.5 \u5c0f\u7ed3","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#10-2","title":"10 \u540e\u7aef 2","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#11_1","title":"11 \u56de\u73af\u68c0\u6d4b","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#12_1","title":"12 \u5efa\u56fe","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#13-slam","title":"13 \u5b9e\u8df5: \u8bbe\u8ba1 SLAM \u7cfb\u7edf","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#14-slam","title":"14 SLAM: \u73b0\u5728\u4e0e\u672a\u6765","text":""}]}
\ No newline at end of file
+{"config":{"lang":["en"],"separator":"[\\s\\u200b\\u3000\\-\u3001\u3002\uff0c\uff0e\uff1f\uff01\uff1b]+","pipeline":["stemmer"]},"docs":[{"location":"","title":"Welcome to wnc's note!","text":"
\u7ea6 153 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
\u670b\u53cb\u4eec! / \u7ad9\u70b9\u7edf\u8ba1
\u9875\u9762\u603b\u6570\uff1a60 \u603b\u5b57\u6570\uff1a77726 \u4ee3\u7801\u5757\u884c\u6570\uff1a13873 \u7f51\u7ad9\u8fd0\u884c\u65f6\u95f4\uff1a \u8bbf\u5ba2\u603b\u4eba\u6570\uff1a\u4eba \u603b\u8bbf\u95ee\u6b21\u6570\uff1a\u6b21"},{"location":"links/","title":"\u53cb\u94fe","text":"
Abstract
\u670b\u53cb\u4eec\uff01
Wnc \u7684\u5496\u5561\u9986 \u6211\u81ea\u5df1\uff01 donotknow DoNotKnow"},{"location":"AI/","title":"Index","text":"
\u7ea6 15 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- EECS 498-007
- \u7edf\u8ba1\u5b66\u4e60\u65b9\u6cd5
- \u52a8\u624b\u5b66\u6df1\u5ea6\u5b66\u4e60
"},{"location":"AI/Dive%20into%20Deep%20Learning/","title":"Dive into Deep Learning","text":"
\u7ea6 1547 \u4e2a\u5b57 387 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 10 \u5206\u949f
"},{"location":"AI/Dive%20into%20Deep%20Learning/#1","title":"1 \u5f15\u8a00","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#2","title":"2 \u9884\u5907\u77e5\u8bc6","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#21","title":"2.1 \u6570\u636e\u64cd\u4f5c","text":"
- tensor
- ndarray (MXNet)
- Tensor (TensorFlow)
Python
x = torch.arrange(12)\nx.shape\nx.numel()\nx.reshape(3, 4)\ntorch.zeros((2, 3, 4))\ntorch.ones((2, 3, 4))\ntorch.randn(3, 4)\n
- elementwise\uff1a
- concatenate
Python
torch.cat((X, Y), dim = 0) # \u7ad6\u7740\u52a0\ntorch.cat((X, Y), dim = 1) # \u6a2a\u7740\u52a0\nx.sum()\n
- broadcasting mechanism
- \u590d\u5236\u62d3\u5c55\u5230\u5f62\u72b6\u4e00\u81f4\u540e\u76f8\u52a0
- \u7d22\u5f15+\u5207\u7247
- \u5207\u7247\u4fdd\u6301\u5730\u5740\u4e0d\u53d8\uff1a\u8282\u7701\u5185\u5b58
- ndarry <-> Tensor
- item ()
"},{"location":"AI/Dive%20into%20Deep%20Learning/#22","title":"2.2 \u6570\u636e\u9884\u5904\u7406","text":"
- pandas
- read_csv ()
- NaN
- fillna (inputs.mean ())
- np.array (inputs. to_numpy (dtype = float))
"},{"location":"AI/Dive%20into%20Deep%20Learning/#23","title":"2.3 \u7ebf\u6027\u4ee3\u6570","text":"
- scalar
- variable
- space
- element / component
- dimension
- square matrix
- transpose
- symmetric matrix
- channel
- Hadamard product
\\[ \\begin{split}\\mathbf{A} \\odot \\mathbf{B} = \\begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & \\dots & a_{1n} b_{1n} \\\\ a_{21} b_{21} & a_{22} b_{22} & \\dots & a_{2n} b_{2n} \\\\ \\vdots & \\vdots & \\ddots & \\vdots \\\\ a_{m1} b_{m1} & a_{m2} b_{m2} & \\dots & a_{mn} b_{mn} \\end{bmatrix}.\\end{split} \\]
- A.sum (axis = 0) # \u7ad6\u7740\u6c42\u548c
- A.sum (axis = [0, 1]) = A.sum ()
- A.mean () = A.sum () / A.size ()
- A.cumsum (axis = 0)
- dot product
- torch.dot (x, y) = torch.sum (x * y)
- weighted average
- matrix-vector product
- matrix-matric multiplication
- norm
- \\(f(\\alpha \\mathbf{x}) = |\\alpha| f(\\mathbf{x}).\\)
- \\((\\mathbf{x} + \\mathbf{y}) \\leq f(\\mathbf{x}) + f(\\mathbf{y}).\\)
- \\(f(\\mathbf{x}) \\geq 0.\\)
"},{"location":"AI/Dive%20into%20Deep%20Learning/#24","title":"2.4 \u5fae\u79ef\u5206","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#241","title":"2.4.1 \u5bfc\u6570\u548c\u5fae\u5206","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#242","title":"2.4.2 \u504f\u5bfc\u6570","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#243","title":"2.4.3 \u68af\u5ea6","text":"\\[ \\nabla_{\\mathbf{x}} f(\\mathbf{x}) = \\bigg[\\frac{\\partial f(\\mathbf{x})}{\\partial x_1}, \\frac{\\partial f(\\mathbf{x})}{\\partial x_2}, \\ldots, \\frac{\\partial f(\\mathbf{x})}{\\partial x_n}\\bigg]^\\top, \\] \\[ \\nabla_{\\mathbf{x}} \\mathbf{A} \\mathbf{x} = \\mathbf{A}^\\top \\] \\[ \\nabla_{\\mathbf{x}} \\mathbf{x}^\\top \\mathbf{A} = \\mathbf{A} \\] \\[ \\nabla_{\\mathbf{x}} \\mathbf{x}^\\top \\mathbf{A} \\mathbf{x} = (\\mathbf{A} + \\mathbf{A}^\\top)\\mathbf{x} \\] \\[ \\nabla_{\\mathbf{x}} \\|\\mathbf{x} \\|^2 = \\nabla_{\\mathbf{x}} \\mathbf{x}^\\top \\mathbf{x} = 2\\mathbf{x} \\] \\[ \\nabla_{\\mathbf{X}} \\|\\mathbf{X} \\|_F^2 = 2\\mathbf{X} \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#244","title":"2.4.4 \u94fe\u5f0f\u6cd5\u5219","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#245","title":"2.4.5 \u5c0f\u7ed3","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#25-automatic-differentiation","title":"2.5 \u81ea\u52a8\u5fae\u5206\uff08automatic differentiation\uff09","text":"
- computational graph
- backpropagate
Python
x.requires_grad_(True) # \u7b49\u4ef7\u4e8ex=torch.arange(4.0,requires_grad=True)\nx.grad # \u9ed8\u8ba4\u503c\u662fNone\ny = 2 * torch.dot(x, x)\ny.backward()\nx.grad\nx.grad == 4 * x\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#251","title":"2.5.1 \u975e\u6807\u91cf\u53d8\u91cf\u7684\u53cd\u5411\u4f20\u64ad","text":"Python
# \u5bf9\u975e\u6807\u91cf\u8c03\u7528backward\u9700\u8981\u4f20\u5165\u4e00\u4e2agradient\u53c2\u6570\uff0c\u8be5\u53c2\u6570\u6307\u5b9a\u5fae\u5206\u51fd\u6570\u5173\u4e8eself\u7684\u68af\u5ea6\u3002\n# \u672c\u4f8b\u53ea\u60f3\u6c42\u504f\u5bfc\u6570\u7684\u548c\uff0c\u6240\u4ee5\u4f20\u9012\u4e00\u4e2a1\u7684\u68af\u5ea6\u662f\u5408\u9002\u7684\nx.grad.zero_()\ny = x * x\n# \u7b49\u4ef7\u4e8ey.backward(torch.ones(len(x)))\ny.sum().backward()\nx.grad\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#252","title":"2.5.2 \u5206\u79bb\u8ba1\u7b97","text":"Python
x.grad.zero_()\ny = x * x\nu = y.detach()\nz = u * x\n\nz.sum().backward()\nx.grad == u\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#26","title":"2.6 \u6982\u7387","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#261","title":"2.6.1 \u57fa\u672c\u6982\u7387\u8bba","text":"
- sampling
- distribution
- multinomial distribution
Python
fair_probs = torch.ones([6]) / 6\nmultinomial.Multinomial(10, fair_probs).sample() # \u591a\u4e2a\u6837\u672c\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#262","title":"2.6.2 \u5904\u7406\u591a\u4e2a\u968f\u673a\u53d8\u91cf","text":"
- joint probability
- conditional probability
- Bayes\u2019 theorem
\\[ P(A \\mid B) = \\frac{P(B \\mid A) P(A)}{P(B)}. \\]
- \u5176\u4e2d P (A, B) \u662f\u4e00\u4e2a\u8054\u5408\u5206\u5e03 (joint distribution)\uff0c\u00a0P (A\u2223B) \u662f\u4e00\u4e2a\u6761\u4ef6\u5206\u5e03 (conditional distribution)
- marginalization
- marginal probability
- marginal distribution
- conditionally independent
$$ P(A, B \\mid C) = P(A \\mid C)P(B \\mid C) $$
\\[ A \\perp B \\mid C \\]
\\[ E[X] = \\sum_{x} x P(X = x). \\] \\[ E_{x \\sim P}[f(x)] = \\sum_x f(x) P(x). \\]
\\[ \\mathrm{Var}[X] = E\\left[(X - E[X])^2\\right] = E[X^2] - E[X]^2. \\] \\[ \\mathrm{Var}[f(x)] = E\\left[\\left(f(x) - E[f(x)]\\right)^2\\right]. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#3","title":"3 \u7ebf\u6027\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#31","title":"3.1 \u7ebf\u6027\u56de\u5f52","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#311","title":"3.1.1 \u7ebf\u6027\u56de\u5f52\u7684\u57fa\u672c\u5143\u7d20","text":"
- regression
- prediction / inference
- training set
- sample / data point / data instance
- label / target
- feature / covariate
\\[ \\mathrm{price} = w_{\\mathrm{area}} \\cdot \\mathrm{area} + w_{\\mathrm{age}} \\cdot \\mathrm{age} + b. \\]
- weight
- bias / offset / intercept
- affine transformation
- linear transformation
- translation
- model parameters
- loss function
\\[ l^{(i)}(\\mathbf{w}, b) = \\frac{1}{2} \\left(\\hat{y}^{(i)} - y^{(i)}\\right)^2. \\] \\[ L(\\mathbf{w}, b) =\\frac{1}{n}\\sum_{i=1}^n l^{(i)}(\\mathbf{w}, b) =\\frac{1}{n} \\sum_{i=1}^n \\frac{1}{2}\\left(\\mathbf{w}^\\top \\mathbf{x}^{(i)} + b - y^{(i)}\\right)^2. \\] \\[ \\mathbf{w}^*, b^* = \\operatorname*{argmin}_{\\mathbf{w}, b}\\ L(\\mathbf{w}, b). \\] \\[ \\mathbf{w}^{*} = (\\mathbf X^\\top \\mathbf X)^{-1}\\mathbf X^\\top \\mathbf{y}. \\]
- analytical solution
- gradient descent
- minibatch stochastic gradient descent
\\[ (\\mathbf{w},b) \\leftarrow (\\mathbf{w},b) - \\frac{\\eta}{|\\mathcal{B}|} \\sum_{i \\in \\mathcal{B}} \\partial_{(\\mathbf{w},b)} l^{(i)}(\\mathbf{w},b). \\]
- \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\u7684\u503c\uff0c\u5982\u968f\u673a\u521d\u59cb\u5316
- \u4ece\u6570\u636e\u96c6\u4e2d\u968f\u673a\u62bd\u53d6\u5c0f\u6279\u91cf\u6837\u672c\u4e14\u5728\u8d1f\u68af\u5ea6\u7684\u65b9\u5411\u4e0a\u66f4\u65b0\u53c2\u6570\uff0c\u5e76\u4e0d\u65ad\u8fed\u4ee3\u8fd9\u4e00\u6b65\u9aa4 - hyperparameter
- \\(|\\mathcal{B}|\\): batch size
- \\(\\eta\\): learning rate
- hyperparameter tuning
- validationg dataset
- generalization
"},{"location":"AI/Dive%20into%20Deep%20Learning/#312","title":"3.1.2 \u77e2\u91cf\u5316\u52a0\u901f","text":"
- \u77e2\u91cf\u5316\u4ee3\u7801
"},{"location":"AI/Dive%20into%20Deep%20Learning/#313","title":"3.1.3 \u6b63\u6001\u5206\u5e03\u4e0e\u5e73\u65b9\u635f\u5931","text":"
- normal distribution / Gaussian distribution
\\[ p(x) = \\frac{1}{\\sqrt{2 \\pi \\sigma^2}} \\exp\\left(-\\frac{1}{2 \\sigma^2} (x - \\mu)^2\\right). \\] \\[ y = \\mathbf{w}^\\top \\mathbf{x} + b + \\epsilon, \\]
- \u5176\u4e2d \\(\\epsilon \\sim \\mathcal{N}(0, \\sigma^2)\\). \u56e0\u6b64 y \u7684 likelihood:
\\[ P(y \\mid \\mathbf{x}) = \\frac{1}{\\sqrt{2 \\pi \\sigma^2}} \\exp\\left(-\\frac{1}{2 \\sigma^2} (y - \\mathbf{w}^\\top \\mathbf{x} - b)^2\\right). \\] \\[ P(\\mathbf y \\mid \\mathbf X) = \\prod_{i=1}^{n} p(y^{(i)}|\\mathbf{x}^{(i)}). \\] \\[ -\\log P(\\mathbf y \\mid \\mathbf X) = \\sum_{i=1}^n \\frac{1}{2} \\log(2 \\pi \\sigma^2) + \\frac{1}{2 \\sigma^2} \\left(y^{(i)} - \\mathbf{w}^\\top \\mathbf{x}^{(i)} - b\\right)^2. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#314","title":"3.1.4 \u4ece\u7ebf\u6027\u56de\u5f52\u5230\u795e\u7ecf\u7f51\u7edc","text":"
- feature dimensionality
- fully-connected layer / dense layer
"},{"location":"AI/Dive%20into%20Deep%20Learning/#32","title":"3.2 \u7ebf\u6027\u56de\u5f52\u7684\u4ece\u96f6\u5f00\u59cb\u5b9e\u73b0","text":"Python
%matplotlib inline\nimport random\nimport torch\nfrom d2l import torch as d2l\ndef synthetic_data(w, b, num_examples): #@save\n \"\"\"\u751f\u6210y=Xw+b+\u566a\u58f0\"\"\"\n X = torch.normal(0, 1, (num_examples, len(w)))\n y = torch.matmul(X, w) + b\n y += torch.normal(0, 0.01, y.shape)\n return X, y.reshape((-1, 1))\n\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = synthetic_data(true_w, true_b, 1000)\n\ndef data_iter(batch_size, features, labels):\n num_examples = len(features)\n indices = list(range(num_examples))\n # \u8fd9\u4e9b\u6837\u672c\u662f\u968f\u673a\u8bfb\u53d6\u7684\uff0c\u6ca1\u6709\u7279\u5b9a\u7684\u987a\u5e8f\n random.shuffle(indices)\n for i in range(0, num_examples, batch_size):\n batch_indices = torch.tensor(\n indices[i: min(i + batch_size, num_examples)])\n yield features[batch_indices], labels[batch_indices]\n\nw = torch.normal(0, 0.01, size=(2,1), requires_grad=True)\nb = torch.zeros(1, requires_grad=True)\n\ndef linreg(X, w, b): #@save\n \"\"\"\u7ebf\u6027\u56de\u5f52\u6a21\u578b\"\"\"\n return torch.matmul(X, w) + b\n\ndef squared_loss(y_hat, y): #@save\n \"\"\"\u5747\u65b9\u635f\u5931\"\"\"\n return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2\n\ndef sgd(params, lr, batch_size): #@save\n \"\"\"\u5c0f\u6279\u91cf\u968f\u673a\u68af\u5ea6\u4e0b\u964d\"\"\"\n with torch.no_grad():\n for param in params:\n param -= lr * param.grad / batch_size\n param.grad.zero_()\n\nlr = 0.03\nnum_epochs = 3\nnet = linreg\nloss = squared_loss\n\nfor epoch in range(num_epochs):\n for X, y in data_iter(batch_size, features, labels):\n l = loss(net(X, w, b), y) # X\u548cy\u7684\u5c0f\u6279\u91cf\u635f\u5931\n # \u56e0\u4e3al\u5f62\u72b6\u662f(batch_size,1)\uff0c\u800c\u4e0d\u662f\u4e00\u4e2a\u6807\u91cf\u3002l\u4e2d\u7684\u6240\u6709\u5143\u7d20\u88ab\u52a0\u5230\u4e00\u8d77\uff0c\n # \u5e76\u4ee5\u6b64\u8ba1\u7b97\u5173\u4e8e[w,b]\u7684\u68af\u5ea6\n l.sum().backward()\n sgd([w, b], lr, batch_size) # \u4f7f\u7528\u53c2\u6570\u7684\u68af\u5ea6\u66f4\u65b0\u53c2\u6570\n with torch.no_grad():\n train_l = loss(net(features, w, b), labels)\n print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#33","title":"3.3 \u7ebf\u6027\u56de\u5f52\u7684\u7b80\u6d01\u5b9e\u73b0","text":"Python
import numpy as np\nimport torch\nfrom torch.utils import data\nfrom d2l import torch as d2l\n\ntrue_w = torch.tensor([2, -3.4])\ntrue_b = 4.2\nfeatures, labels = d2l.synthetic_data(true_w, true_b, 1000) # \u751f\u6210\u6570\u636e\u96c6\n\ndef load_array(data_arrays, batch_size, is_train=True): #@save\n \"\"\"\u6784\u9020\u4e00\u4e2aPyTorch\u6570\u636e\u8fed\u4ee3\u5668\"\"\"\n dataset = data.TensorDataset(*data_arrays)\n return data.DataLoader(dataset, batch_size, shuffle=is_train)\n\nbatch_size = 10\ndata_iter = load_array((features, labels), batch_size) # \u8bfb\u53d6\u6570\u636e\u96c6\n\n# nn\u662f\u795e\u7ecf\u7f51\u7edc\u7684\u7f29\u5199\nfrom torch import nn\n\nnet = nn.Sequential(nn.Linear(2, 1)) # \u5b9a\u4e49\u6a21\u578b \uff08\u8f93\u5165\uff0c\u8f93\u51fa\uff09\u7279\u5f81\u5f62\u72b6\nnet[0].weight.data.normal_(0, 0.01)\nnet[0].bias.data.fill_(0) # \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\nloss = nn.MSELoss() # \u5b9a\u4e49\u635f\u5931\u51fd\u6570\ntrainer = torch.optim.SGD(net.parameters(), lr=0.03) # \u5b9a\u4e49\u4f18\u5316\u7b97\u6cd5\n\n# \u8bad\u7ec3\nnum_epochs = 3\nfor epoch in range(num_epochs):\n for X, y in data_iter:\n l = loss(net(X) ,y)\n trainer.zero_grad()\n l.backward()\n trainer.step()\n l = loss(net(features), labels)\n print(f'epoch {epoch + 1}, loss {l:f}')\n\nw = net[0].weight.data\nprint('w\u7684\u4f30\u8ba1\u8bef\u5dee\uff1a', true_w - w.reshape(true_w.shape))\nb = net[0].bias.data\nprint('b\u7684\u4f30\u8ba1\u8bef\u5dee\uff1a', true_b - b)\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#34-softmax","title":"3.4 softmax \u56de\u5f52","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#341","title":"3.4.1 \u5206\u7c7b\u95ee\u9898","text":"
\\[ y \\in \\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\\}. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#342","title":"3.4.2 \u7f51\u7edc\u67b6\u6784","text":"
\\[ \\begin{split}\\begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + x_4 w_{14} + b_1,\\\\ o_2 &= x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + x_4 w_{24} + b_2,\\\\ o_3 &= x_1 w_{31} + x_2 w_{32} + x_3 w_{33} + x_4 w_{34} + b_3. \\end{aligned}\\end{split} \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#343","title":"3.4.3 \u5168\u8fde\u63a5\u5c42\u7684\u53c2\u6570\u5f00\u9500","text":"
- \u4e0d\u77e5\u9053\u662f\u4ec0\u4e48\u4e1c\u897f
"},{"location":"AI/Dive%20into%20Deep%20Learning/#344-softmax","title":"3.4.4 softmax \u8fd0\u7b97","text":"
\\[ \\hat{\\mathbf{y}} = \\mathrm{softmax}(\\mathbf{o})\\quad \\text{\u5176\u4e2d}\\quad \\hat{y}_j = \\frac{\\exp(o_j)}{\\sum_k \\exp(o_k)} \\] \\[ \\operatorname*{argmax}_j \\hat y_j = \\operatorname*{argmax}_j o_j. \\]
"},{"location":"AI/Dive%20into%20Deep%20Learning/#345","title":"3.4.5 \u5c0f\u6279\u6837\u672c\u7684\u77e2\u91cf\u5316","text":"\\[ \\begin{split}\\begin{aligned} \\mathbf{O} &= \\mathbf{X} \\mathbf{W} + \\mathbf{b}, \\\\ \\hat{\\mathbf{Y}} & = \\mathrm{softmax}(\\mathbf{O}). \\end{aligned}\\end{split} \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#346","title":"3.4.6 \u635f\u5931\u51fd\u6570","text":"\\[ P(\\mathbf{Y} \\mid \\mathbf{X}) = \\prod_{i=1}^n P(\\mathbf{y}^{(i)} \\mid \\mathbf{x}^{(i)}). \\] \\[ -\\log P(\\mathbf{Y} \\mid \\mathbf{X}) = \\sum_{i=1}^n -\\log P(\\mathbf{y}^{(i)} \\mid \\mathbf{x}^{(i)}) = \\sum_{i=1}^n l(\\mathbf{y}^{(i)}, \\hat{\\mathbf{y}}^{(i)}), \\] \\[ l(\\mathbf{y}, \\hat{\\mathbf{y}}) = - \\sum_{j=1}^q y_j \\log \\hat{y}_j. \\]
\\[ \\begin{split}\\begin{aligned} l(\\mathbf{y}, \\hat{\\mathbf{y}}) &= - \\sum_{j=1}^q y_j \\log \\frac{\\exp(o_j)}{\\sum_{k=1}^q \\exp(o_k)} \\\\ &= \\sum_{j=1}^q y_j \\log \\sum_{k=1}^q \\exp(o_k) - \\sum_{j=1}^q y_j o_j\\\\ &= \\log \\sum_{k=1}^q \\exp(o_k) - \\sum_{j=1}^q y_j o_j. \\end{aligned}\\end{split} \\] \\[ \\partial_{o_j} l(\\mathbf{y}, \\hat{\\mathbf{y}}) = \\frac{\\exp(o_j)}{\\sum_{k=1}^q \\exp(o_k)} - y_j = \\mathrm{softmax}(\\mathbf{o})_j - y_j. \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#347","title":"3.4.7 \u4fe1\u606f\u8bba\u57fa\u7840","text":"
- information theory
- entropy
\\[ H[P] = \\sum_j - P(j) \\log P(j). \\]"},{"location":"AI/Dive%20into%20Deep%20Learning/#348","title":"3.4.8 \u6a21\u578b\u9884\u6d4b\u548c\u8bc4\u4f30","text":"
"},{"location":"AI/Dive%20into%20Deep%20Learning/#35","title":"3.5 \u56fe\u50cf\u5206\u7c7b\u6570\u636e\u96c6","text":"Python
%matplotlib inline\nimport torch\nimport torchvision\nfrom torch.utils import data\nfrom torchvision import transforms\nfrom d2l import torch as d2l\n\nd2l.use_svg_display()\n\n# \u901a\u8fc7ToTensor\u5b9e\u4f8b\u5c06\u56fe\u50cf\u6570\u636e\u4ecePIL\u7c7b\u578b\u53d8\u6362\u621032\u4f4d\u6d6e\u70b9\u6570\u683c\u5f0f\uff0c\n# \u5e76\u9664\u4ee5255\u4f7f\u5f97\u6240\u6709\u50cf\u7d20\u7684\u6570\u503c\u5747\u57280\uff5e1\u4e4b\u95f4\ntrans = transforms.ToTensor()\nmnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\nmnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\n\ndef get_fashion_mnist_labels(labels): #@save\n \"\"\"\u8fd4\u56deFashion-MNIST\u6570\u636e\u96c6\u7684\u6587\u672c\u6807\u7b7e\"\"\"\n text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',\n 'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']\n return [text_labels[int(i)] for i in labels]\n\ndef show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): #@save\n \"\"\"\u7ed8\u5236\u56fe\u50cf\u5217\u8868\"\"\"\n figsize = (num_cols * scale, num_rows * scale)\n _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize)\n axes = axes.flatten()\n for i, (ax, img) in enumerate(zip(axes, imgs)):\n if torch.is_tensor(img):\n # \u56fe\u7247\u5f20\u91cf\n ax.imshow(img.numpy())\n else:\n # PIL\u56fe\u7247\n ax.imshow(img)\n ax.axes.get_xaxis().set_visible(False)\n ax.axes.get_yaxis().set_visible(False)\n if titles:\n ax.set_title(titles[i])\n return axes\n\nbatch_size = 256\n\ndef get_dataloader_workers(): #@save\n \"\"\"\u4f7f\u75284\u4e2a\u8fdb\u7a0b\u6765\u8bfb\u53d6\u6570\u636e\"\"\"\n return 4\n\ntrain_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,\n num_workers=get_dataloader_workers())\n\ndef load_data_fashion_mnist(batch_size, resize=None): #@save\n \"\"\"\u4e0b\u8f7dFashion-MNIST\u6570\u636e\u96c6\uff0c\u7136\u540e\u5c06\u5176\u52a0\u8f7d\u5230\u5185\u5b58\u4e2d\"\"\"\n trans = [transforms.ToTensor()]\n if resize:\n trans.insert(0, transforms.Resize(resize))\n trans = transforms.Compose(trans)\n mnist_train = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=True, transform=trans, download=True)\n mnist_test = torchvision.datasets.FashionMNIST(\n root=\"../data\", train=False, transform=trans, download=True)\n return (data.DataLoader(mnist_train, batch_size, shuffle=True,\n num_workers=get_dataloader_workers()),\n data.DataLoader(mnist_test, batch_size, shuffle=False,\n num_workers=get_dataloader_workers()))\n\ntrain_iter, test_iter = load_data_fashion_mnist(32, resize=64)\nfor X, y in train_iter:\n print(X.shape, X.dtype, y.shape, y.dtype)\n break\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#36-softmax","title":"3.6 softmax \u56de\u5f52\u7684\u4ece\u96f6\u5f00\u59cb\u5b9e\u73b0","text":"Python
import torch\nfrom IPython import display\nfrom d2l import torch as d2l\n\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\n\nnum_inputs = 784\nnum_outputs = 10\n\nW = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)\nb = torch.zeros(num_outputs, requires_grad=True) # \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\n\nX = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])\nX.sum(0, keepdim=True), X.sum(1, keepdim=True) \n\ndef softmax(X):\n X_exp = torch.exp(X)\n partition = X_exp.sum(1, keepdim=True)\n return X_exp / partition # \u8fd9\u91cc\u5e94\u7528\u4e86\u5e7f\u64ad\u673a\u5236\n\nX = torch.normal(0, 1, (2, 5))\nX_prob = softmax(X)\nX_prob, X_prob.sum(1) # \u5b9a\u4e49softmax\u64cd\u4f5c\n\ndef net(X):\n return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b) # \u5b9a\u4e49\u6a21\u578b\n\ny = torch.tensor([0, 2])\ny_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])\ny_hat[[0, 1], y] \ndef cross_entropy(y_hat, y):\n return - torch.log(y_hat[range(len(y_hat)), y])\n\ncross_entropy(y_hat, y) # \u5b9a\u4e49\u635f\u5931\u51fd\u6570\n\ndef accuracy(y_hat, y): #@save\n \"\"\"\u8ba1\u7b97\u9884\u6d4b\u6b63\u786e\u7684\u6570\u91cf\"\"\"\n if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:\n y_hat = y_hat.argmax(axis=1)\n cmp = y_hat.type(y.dtype) == y\n return float(cmp.type(y.dtype).sum())\n\ndef evaluate_accuracy(net, data_iter): #@save\n \"\"\"\u8ba1\u7b97\u5728\u6307\u5b9a\u6570\u636e\u96c6\u4e0a\u6a21\u578b\u7684\u7cbe\u5ea6\"\"\"\n if isinstance(net, torch.nn.Module):\n net.eval() # \u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bc4\u4f30\u6a21\u5f0f\n metric = Accumulator(2) # \u6b63\u786e\u9884\u6d4b\u6570\u3001\u9884\u6d4b\u603b\u6570\n with torch.no_grad():\n for X, y in data_iter:\n metric.add(accuracy(net(X), y), y.numel())\n return metric[0] / metric[1]\n\nclass Accumulator: #@save\n \"\"\"\u5728n\u4e2a\u53d8\u91cf\u4e0a\u7d2f\u52a0\"\"\"\n def __init__(self, n):\n self.data = [0.0] * n\n\n def add(self, *args):\n self.data = [a + float(b) for a, b in zip(self.data, args)]\n\n def reset(self):\n self.data = [0.0] * len(self.data)\n\n def __getitem__(self, idx):\n return self.data[idx]\n\nevaluate_accuracy(net, test_iter) # \u5206\u7c7b\u7cbe\u5ea6\n\ndef train_epoch_ch3(net, train_iter, loss, updater): #@save\n \"\"\"\u8bad\u7ec3\u6a21\u578b\u4e00\u4e2a\u8fed\u4ee3\u5468\u671f\uff08\u5b9a\u4e49\u89c1\u7b2c3\u7ae0\uff09\"\"\"\n # \u5c06\u6a21\u578b\u8bbe\u7f6e\u4e3a\u8bad\u7ec3\u6a21\u5f0f\n if isinstance(net, torch.nn.Module):\n net.train()\n # \u8bad\u7ec3\u635f\u5931\u603b\u548c\u3001\u8bad\u7ec3\u51c6\u786e\u5ea6\u603b\u548c\u3001\u6837\u672c\u6570\n metric = Accumulator(3)\n for X, y in train_iter:\n # \u8ba1\u7b97\u68af\u5ea6\u5e76\u66f4\u65b0\u53c2\u6570\n y_hat = net(X)\n l = loss(y_hat, y)\n if isinstance(updater, torch.optim.Optimizer):\n # \u4f7f\u7528PyTorch\u5185\u7f6e\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570\n updater.zero_grad()\n l.mean().backward()\n updater.step()\n else:\n # \u4f7f\u7528\u5b9a\u5236\u7684\u4f18\u5316\u5668\u548c\u635f\u5931\u51fd\u6570\n l.sum().backward()\n updater(X.shape[0])\n metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())\n # \u8fd4\u56de\u8bad\u7ec3\u635f\u5931\u548c\u8bad\u7ec3\u7cbe\u5ea6\n return metric[0] / metric[2], metric[1] / metric[2]\n\nclass Animator: #@save\n \"\"\"\u5728\u52a8\u753b\u4e2d\u7ed8\u5236\u6570\u636e\"\"\"\n def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,\n ylim=None, xscale='linear', yscale='linear',\n fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,\n figsize=(3.5, 2.5)):\n # \u589e\u91cf\u5730\u7ed8\u5236\u591a\u6761\u7ebf\n if legend is None:\n legend = []\n d2l.use_svg_display()\n self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)\n if nrows * ncols == 1:\n self.axes = [self.axes, ]\n # \u4f7f\u7528lambda\u51fd\u6570\u6355\u83b7\u53c2\u6570\n self.config_axes = lambda: d2l.set_axes(\n self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)\n self.X, self.Y, self.fmts = None, None, fmts\n\n def add(self, x, y):\n # \u5411\u56fe\u8868\u4e2d\u6dfb\u52a0\u591a\u4e2a\u6570\u636e\u70b9\n if not hasattr(y, \"__len__\"):\n y = [y]\n n = len(y)\n if not hasattr(x, \"__len__\"):\n x = [x] * n\n if not self.X:\n self.X = [[] for _ in range(n)]\n if not self.Y:\n self.Y = [[] for _ in range(n)]\n for i, (a, b) in enumerate(zip(x, y)):\n if a is not None and b is not None:\n self.X[i].append(a)\n self.Y[i].append(b)\n self.axes[0].cla()\n for x, y, fmt in zip(self.X, self.Y, self.fmts):\n self.axes[0].plot(x, y, fmt)\n self.config_axes()\n display.display(self.fig)\n display.clear_output(wait=True)\n\ndef train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save\n \"\"\"\u8bad\u7ec3\u6a21\u578b\uff08\u5b9a\u4e49\u89c1\u7b2c3\u7ae0\uff09\"\"\"\n animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],\n legend=['train loss', 'train acc', 'test acc'])\n for epoch in range(num_epochs):\n train_metrics = train_epoch_ch3(net, train_iter, loss, updater)\n test_acc = evaluate_accuracy(net, test_iter)\n animator.add(epoch + 1, train_metrics + (test_acc,))\n train_loss, train_acc = train_metrics\n assert train_loss < 0.5, train_loss\n assert train_acc <= 1 and train_acc > 0.7, train_acc\n assert test_acc <= 1 and test_acc > 0.7, test_acc\n\nlr = 0.1\n\ndef updater(batch_size):\n return d2l.sgd([W, b], lr, batch_size)\n\nnum_epochs = 10\ntrain_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater) # \u8bad\u7ec3\n\ndef predict_ch3(net, test_iter, n=6): #@save\n \"\"\"\u9884\u6d4b\u6807\u7b7e\uff08\u5b9a\u4e49\u89c1\u7b2c3\u7ae0\uff09\"\"\"\n for X, y in test_iter:\n break\n trues = d2l.get_fashion_mnist_labels(y)\n preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))\n titles = [true +'\\n' + pred for true, pred in zip(trues, preds)]\n d2l.show_images(\n X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])\n\npredict_ch3(net, test_iter) # \u9884\u6d4b\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#37-softmax","title":"3.7 softmax \u56de\u5f52\u7684\u7b80\u6d01\u5b9e\u73b0","text":"Python
import torch\nfrom torch import nn\nfrom d2l import torch as d2l\n\nbatch_size = 256\ntrain_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)\n\n# PyTorch\u4e0d\u4f1a\u9690\u5f0f\u5730\u8c03\u6574\u8f93\u5165\u7684\u5f62\u72b6\u3002\u56e0\u6b64\uff0c\n# \u6211\u4eec\u5728\u7ebf\u6027\u5c42\u524d\u5b9a\u4e49\u4e86\u5c55\u5e73\u5c42\uff08flatten\uff09\uff0c\u6765\u8c03\u6574\u7f51\u7edc\u8f93\u5165\u7684\u5f62\u72b6\nnet = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))\n\ndef init_weights(m):\n if type(m) == nn.Linear:\n nn.init.normal_(m.weight, std=0.01)\n\nnet.apply(init_weights); # \u521d\u59cb\u5316\u6a21\u578b\u53c2\u6570\n
\\[ \\begin{split}\\begin{aligned} \\hat y_j & = \\frac{\\exp(o_j - \\max(o_k))\\exp(\\max(o_k))}{\\sum_k \\exp(o_k - \\max(o_k))\\exp(\\max(o_k))} \\\\ & = \\frac{\\exp(o_j - \\max(o_k))}{\\sum_k \\exp(o_k - \\max(o_k))}. \\end{aligned}\\end{split} \\] \\[ \\begin{split}\\begin{aligned} \\log{(\\hat y_j)} & = \\log\\left( \\frac{\\exp(o_j - \\max(o_k))}{\\sum_k \\exp(o_k - \\max(o_k))}\\right) \\\\ & = \\log{(\\exp(o_j - \\max(o_k)))}-\\log{\\left( \\sum_k \\exp(o_k - \\max(o_k)) \\right)} \\\\ & = o_j - \\max(o_k) -\\log{\\left( \\sum_k \\exp(o_k - \\max(o_k)) \\right)}. \\end{aligned}\\end{split} \\] Python
loss = nn.CrossEntropyLoss(reduction='none') # LogSumExp\u6280\u5de7\n\ntrainer = torch.optim.SGD(net.parameters(), lr=0.1) # \u4f18\u5316\u7b97\u6cd5\n\nnum_epochs = 10\nd2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer) # \u8bad\u7ec3\n
"},{"location":"AI/Dive%20into%20Deep%20Learning/#_1","title":"\u591a\u5c42\u611f\u77e5\u673a","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_2","title":"\u8fc7\u62df\u5408\u548c\u6b20\u62df\u5408","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#dropout","title":"dropout","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_3","title":"\u6df1\u5ea6\u5b66\u4e60\u8ba1\u7b97","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_4","title":"\u5377\u79ef\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#lenet","title":"LeNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_5","title":"\u73b0\u4ee3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#alexnet","title":"AlexNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#vgg","title":"VGG","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#nin","title":"NiN","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#googlenet","title":"GoogLeNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#resnet","title":"ResNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#densenet","title":"DenseNet","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_6","title":"\u5faa\u73af\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_7","title":"\u73b0\u4ee3\u5faa\u73af\u795e\u7ecf\u7f51\u7edc","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#gru","title":"GRU","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#lstm","title":"LSTM","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#seq2seq","title":"seq2seq","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_8","title":"\u6ce8\u610f\u529b\u673a\u5236","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#nadaraya-watson","title":"Nadaraya-Watson","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#bahdanau","title":"Bahdanau","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#multi-headed-attention","title":"Multi-headed attention","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#transformer","title":"Transformer","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_9","title":"\u4f18\u5316\u7b97\u6cd5","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#adagrad","title":"AdaGrad","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#rmsprop","title":"RMSProp","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#adadelta","title":"Adadelta","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#adam","title":"Adam","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_10","title":"\u8ba1\u7b97\u6027\u80fd","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_11","title":"\u8ba1\u7b97\u673a\u89c6\u89c9","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#ssd","title":"SSD","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#r-cnn","title":"R-CNN","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_12","title":"\u81ea\u7136\u8bed\u8a00\u5904\u7406:\u9884\u8bad\u7ec3","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#word2vec","title":"word2vec","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#glove","title":"GloVe","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#bert","title":"BERT","text":""},{"location":"AI/Dive%20into%20Deep%20Learning/#_13","title":"\u81ea\u7136\u8bed\u8a00\u5904\u7406:\u5e94\u7528","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/","title":"\u7edf\u8ba1\u5b66\u4e60\u65b9\u6cd5","text":"
\u7ea6 3356 \u4e2a\u5b57 43 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 11 \u5206\u949f
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#1","title":"1 \u7edf\u8ba1\u5b66\u4e60\u65b9\u6cd5\u6982\u8bba","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#11","title":"1.1 \u7edf\u8ba1\u5b66\u4e60","text":"
- \u7edf\u8ba1\u5b66\u4e60\u7684\u7279\u70b9
- \u4ee5\u8ba1\u7b97\u673a\u53ca\u7f51\u7edc\u4e3a\u5e73\u53f0
- \u4ee5\u6570\u636e\u4e3a\u7814\u7a76\u5bf9\u8c61
- \u76ee\u7684\u662f\u5bf9\u6570\u636e\u8fdb\u884c\u9884\u6d4b\u4e0e\u5206\u6790
- \u4ea4\u53c9\u5b66\u79d1
- \u7edf\u8ba1\u5b66\u4e60\u7684\u5bf9\u8c61
- \u662f\u6570\u636e
- \u7edf\u8ba1\u5b66\u4e60\u7684\u76ee\u7684
- \u7edf\u8ba1\u5b66\u4e60\u7684\u65b9\u6cd5
- \u4e3b\u8981\u6709
- \u76d1\u7763\u5b66\u4e60\uff08\u672c\u4e66\u4e3b\u8981\u8ba8\u8bba\uff09
- \u975e\u76d1\u7763\u5b66\u4e60
- \u534a\u76d1\u7763\u5b66\u4e60
- \u5f3a\u5316\u5b66\u4e60
- \u4e09\u8981\u7d20
- \u6a21\u578b
- \u7b56\u7565
- \u7b97\u6cd5
- \u5b9e\u73b0\u6b65\u9aa4
- \u5f97\u5230\u4e00\u4e2a\u8bad\u7ec3\u6570\u636e\u96c6\u5408
- \u786e\u5b9a\u5b66\u4e60\u6a21\u578b\u7684\u96c6\u5408
- \u786e\u5b9a\u5b66\u4e60\u7684\u7b56\u7565
- \u786e\u5b9a\u5b66\u4e60\u7684\u7b97\u6cd5
- \u901a\u8fc7\u5b66\u4e60\u65b9\u6cd5\u9009\u62e9\u6700\u4f18\u6a21\u578b
- \u5229\u7528\u5b66\u4e60\u7684\u6700\u4f18\u6a21\u578b\u5bf9\u65b0\u6570\u636e\u8fdb\u884c\u9884\u6d4b\u6216\u5206\u6790
- \u7edf\u8ba1\u5b66\u4e60\u7684\u7814\u7a76
- \u65b9\u6cd5
- \u7406\u8bba
- \u5e94\u7528
- \u7edf\u8ba1\u5b66\u4e60\u7684\u91cd\u8981\u6027
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#12","title":"1.2 \u76d1\u7763\u5b66\u4e60","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#121","title":"1.2.1 \u57fa\u672c\u6982\u5ff5","text":"
- \u8f93\u5165\u7a7a\u95f4\u3001\u7279\u5f81\u7a7a\u95f4\u4e0e\u8f93\u51fa\u7a7a\u95f4
- \u6bcf\u4e2a\u8f93\u5165\u662f\u4e00\u4e2a\u5b9e\u4f8b\uff0c\u901a\u5e38\u7531\u7279\u5f81\u5411\u91cf\u8868\u793a
- \u76d1\u7763\u5b66\u4e60\u4ece\u8bad\u7ec3\u6570\u636e\u96c6\u5408\u4e2d\u5b66\u4e60\u6a21\u578b\uff0c\u5bf9\u6d4b\u8bd5\u6570\u636e\u8fdb\u884c\u9884\u6d4b
- \u6839\u636e\u8f93\u5165\u53d8\u91cf\u548c\u8f93\u51fa\u53d8\u91cf\u7684\u4e0d\u540c\u7c7b\u578b
- \u56de\u5f52\u95ee\u9898: \u90fd\u8fde\u7eed
- \u5206\u7c7b\u95ee\u9898: \u8f93\u51fa\u6709\u9650\u79bb\u6563
- \u6807\u6ce8\u95ee\u9898: \u90fd\u662f\u53d8\u91cf\u5e8f\u5217
- \u8054\u5408\u6982\u7387\u5206\u5e03
- \u5047\u8bbe\u7a7a\u95f4
- \u6a21\u578b\u5c5e\u4e8e\u7531\u8f93\u5165\u7a7a\u95f4\u5230\u8f93\u51fa\u7a7a\u95f4\u7684\u6620\u5c04\u7684\u96c6\u5408\uff0c\u8fd9\u4e2a\u96c6\u5408\u5c31\u662f\u5047\u8bbe\u7a7a\u95f4
- \u6a21\u578b\u53ef\u4ee5\u662f\uff08\u975e\uff09\u6982\u7387\u6a21\u578b
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#122","title":"1.2.2 \u95ee\u9898\u7684\u5f62\u5f0f\u5316","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#13","title":"1.3 \u7edf\u8ba1\u5b66\u4e60\u4e09\u8981\u8bfb","text":"
- \u65b9\u6cd5=\u6a21\u578b+\u7b56\u7565+\u7b97\u6cd5
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#131","title":"1.3.1 \u6a21\u578b","text":"
- \u6a21\u578b\u5c31\u662f\u7d22\u8981\u5b66\u4e60\u7684\u6761\u4ef6\u6982\u7387\u5206\u5e03\u6216\u51b3\u7b56\u51fd\u6570
\\[ \\mathcal{F}=\\{f\\mid Y=f(X)\\} \\]
\\[ \\mathcal{F}=\\{f | Y=f_{\\theta}(X),\\theta\\in\\mathbf{R}^{n}\\} \\]
- \u540c\u6837\u53ef\u4ee5\u5b9a\u4e49\u4e3a\u6761\u4ef6\u6982\u7387\u7684\u96c6\u5408
\\[ \\mathcal{F}=\\{P|P(Y|X)\\} \\] \\[ \\mathcal{F}=\\{P\\mid P_{\\theta}(Y\\mid X),\\theta\\in\\mathbf{R}^{n}\\} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#132","title":"1.3.2 \u7b56\u7565","text":"
- \u635f\u5931\u51fd\u6570\u548c\u98ce\u9669\u51fd\u6570
- loos function or cost function \\(\\displaystyle L(Y,f(X))\\)
- 0-1 loss function
- \\(\\displaystyle L(Y,f(X))=\\begin{cases}1,&Y\\neq f(X)\\\\0,&Y=f(X)\\end{cases}\\)
- quadratic loss function
- \\(\\displaystyle L(Y,f(X))=(Y-f(X))^{2}\\)
- absolute loss function
- \\(\\displaystyle L(Y,f(X))=|Y-f(X)|\\)
- logarithmic loss function or log-likelihood loss function
- \\(\\displaystyle L(Y,P(Y\\mid X))=-\\log P(Y\\mid X)\\)
- \\(\\displaystyle R_{\\exp}(f)=E_{P}[L(Y,f(X))]=\\int_{x\\times y}L(y,f(x))P(x,y)\\mathrm{d}x\\mathrm{d}y\\)
- risk function or expected loss
- \u4f46\u662f\u8054\u5408\u5206\u5e03\u4f4d\u7f6e\uff0c\u6240\u4ee5\u8981\u5b66\u4e60\uff0c\u4f46\u662f\u8fd9\u6837\u4ee5\u6765\u98ce\u9669\u6700\u5c0f\u53c8\u8981\u7528\u5230\u8054\u5408\u5206\u5e03\uff0c\u90a3\u4e48\u8fd9\u5c31\u6210\u4e3a\u4e86\u75c5\u6001\u95ee\u9898 (ill-formed problem)
- empirical risk or empirical loss
- \\(\\displaystyle R_{\\mathrm{emp}}(f)=\\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},f(x_{i}))\\)
- \u5f53 \\(\\displaystyle N\\) \u8d8b\u4e8e\u65e0\u7a77\u65f6\uff0c\u7ecf\u9a8c\u98ce\u9669\u8d8b\u4e8e\u671f\u671b\u98ce\u9669
- \u8fd9\u5c31\u5173\u7cfb\u5230\u4e24\u4e2a\u57fa\u672c\u7b56\u7565:
- \u7ecf\u9a8c\u98ce\u9669\u6700\u5c0f\u5316
- \u7ed3\u6784\u98ce\u9669\u6700\u5c0f\u5316
- \u7ecf\u9a8c\u98ce\u9669\u6700\u5c0f\u5316\u4e0e\u7ed3\u6784\u98ce\u9669\u6700\u5c0f\u5316
- empirical risk minimization \uff08\u6837\u672c\u5bb9\u91cf\u6bd4\u8f83\u5927\u7684\u65f6\u5019\uff09
- \\(\\displaystyle \\min_{f\\in\\mathcal{F}} \\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},f(x_{i}))\\)
- maximum likelihood estimation
- structural risk minimization
- regularization
- \\(\\displaystyle R_{\\mathrm{sm}}(f)=\\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},f(x_{i}))+\\lambda J(f)\\)
- \u590d\u6742\u5ea6\u8868\u793a\u4e86\u5bf9\u590d\u6742\u6a21\u578b\u7684\u4e58\u6cd5
- maximum posterior probability estimation
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#133","title":"1.3.3 \u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#14","title":"1.4 \u6a21\u578b\u8bc4\u4f30\u4e0e\u6a21\u578b\u9009\u62e9","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#141","title":"1.4.1 \u8bad\u7ec3\u8bef\u5dee\u4e0e\u6d4b\u8bd5\u8bef\u5dee","text":"\\[ R_{\\mathrm{emp}}(\\hat{f})=\\frac{1}{N}\\sum_{i=1}^{N}L(y_{i},\\hat{f}(x_{i})) \\] \\[ e_{\\mathrm{test}}=\\frac{1}{N^{\\prime}}\\sum_{i=1}^{N^{\\prime}}L(y_{i},\\hat{f}(x_{i})) \\] \\[ r_{\\mathrm{test}}+e_{\\mathrm{test}}=1 \\]
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#142","title":"1.4.2 \u8fc7\u62df\u5408\u4e0e\u6a21\u578b\u9009\u62e9","text":"
- model selection
- over-fitting
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#15","title":"1.5 \u6b63\u5219\u5316\u4e0e\u4ea4\u53c9\u9a8c\u8bc1","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#151","title":"1.5.1 \u6b63\u5219\u5316","text":"\\[ L(w)=\\frac{1}{N}\\sum_{i=1}^{N}(f(x_{i};w)-y_{i})^{2}+\\frac{\\lambda}{2}\\parallel w\\parallel^{2} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#152","title":"1.5.2 \u4ea4\u53c9\u9a8c\u8bc1","text":"
- cross validation
- \u6570\u636e\u96c6
- \u8bad\u7ec3\u96c6
- \u9a8c\u8bc1\u96c6
- \u6d4b\u8bd5\u96c6 1. \u7b80\u5355\u4ea4\u53c9\u9a8c\u8bc1 2. \\(\\displaystyle S\\) \u6298\u4ea4\u53c9\u9a8c\u8bc1 3. \u7559\u4e00\u4ea4\u53c9\u9a8c\u8bc1
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#16","title":"1.6 \u6cdb\u5316\u80fd\u529b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#161","title":"1.6.1 \u6cdb\u5316\u8bef\u5dee","text":"
\\[ R_{\\exp}(\\hat{f})=E_{P}[L(Y,\\hat{f}(X))]=\\int_{R\\times y}L(y,\\hat{f}(x))P(x,y)\\mathrm{d}x\\mathrm{d}y \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#162","title":"1.6.2 \u6cdb\u5316\u8bef\u5dee\u4e0a\u754c","text":"
- generalization error bound
- \u6837\u672c\u5bb9\u91cf\u589e\u52a0\u65f6\uff0c\u6cdb\u5316\u4e0a\u754c\u8d8b\u4e8e 0
- \u5047\u8bbe\u7a7a\u95f4\u8d8a\u5927\uff0c\u6cdb\u5316\u8bef\u5dee\u4e0a\u754c\u8d8a\u5927
- \u8fd9\u4e2a\u5b9a\u7406\u53ea\u9002\u7528\u4e8e\u5047\u8bbe\u7a7a\u95f4\u5305\u542b\u6709\u9650\u4e2a\u51fd\u6570
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#17","title":"1.7 \u751f\u6210\u6a21\u578b\u4e0e\u5224\u522b\u6a21\u578b","text":"
- generative model
- \u8fd8\u539f\u51fa\u8054\u5408\u6982\u7387\u5206\u5e03 \\(\\displaystyle P(X,Y)\\)
- \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5
- \u9690\u9a6c\u5c14\u53ef\u592b\u6a21\u578b
- \u6536\u655b\u901f\u5ea6\u5feb
- discriminative model
- \u76f4\u63a5\u5b66\u4e60\u51b3\u7b56\u51fd\u6570\u6216\u6761\u4ef6\u6982\u7387\u5206\u5e03 \\(\\displaystyle P(Y|X)\\)
- \\(\\displaystyle k\\) \u8fd1\u90bb\u6cd5
- \u611f\u77e5\u673a
- \u51b3\u7b56\u6811
- \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b
- \u6700\u5927\u71b5\u6a21\u578b
- \u652f\u6301\u5411\u91cf\u673a
- \u63d0\u5347\u65b9\u6cd5
- \u6761\u4ef6\u968f\u673a\u573a
- \u51c6\u786e\u5ea6\u9ad8
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#18","title":"1.8 \u5206\u7c7b\u95ee\u9898","text":"
- precision \\(\\displaystyle P=\\frac{TP}{TP+FP}\\)
- recall \\(\\displaystyle R=\\frac{TP}{TP+FN}\\)
\\[ \\frac{2}{F_{1}}=\\frac{1}{P}+\\frac{1}{R} \\] \\[ F_{1}=\\frac{2TP}{2TP+FP+FN} \\]
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#19","title":"1.9 \u6807\u6ce8\u95ee\u9898","text":"
- tagging \u662f classificationd \u4e00\u4e2a\u63a8\u5e7f
- \u662f structure prediction \u7684\u7b80\u5355\u5f62\u5f0f
- \u9690\u9a6c\u5c14\u53ef\u592b\u6a21\u578b
- \u6761\u4ef6\u968f\u673a\u573a
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#110","title":"1.10 \u56de\u5f52\u95ee\u9898","text":"
- regression
- \uff08\u975e\uff09\u7ebf\u6027\u56de\u5f52\uff0c\u4e00\u5143\u56de\u5f52\uff0c\u591a\u5143\u56de\u5f52
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#2","title":"2 \u611f\u77e5\u673a","text":"
- perception
- \u611f\u77e5\u673a\u5bf9\u5e94\u4e8e\u8f93\u5165\u7a7a\u95f4\u4e2d\u5c06\u5b9e\u4f8b\u5212\u5206\u6210\u6b63\u8d1f\u4e24\u7c7b\u7684\u5206\u79bb\u8d85\u5e73\u9762\uff0c\u5c5e\u4e8e\u5224\u522b\u6a21\u578b
- \u539f\u59cb\u5f62\u5f0f\u548c\u5bf9\u5076\u5f62\u5f0f
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#21","title":"2.1 \u611f\u77e5\u673a\u6a21\u578b","text":"
- \u5047\u8bbe\u7a7a\u95f4\u662f\u5b9a\u4e49\u5728\u7279\u5f81\u7a7a\u95f4\u4e2d\u6240\u6709\u7684\u7ebf\u6027\u5206\u7c7b\u6a21\u578b\uff08linear classification model\uff09\\(\\displaystyle \\{f|f(x) = w \\cdot x+b\\}\\)
- separating hyperplane
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#22","title":"2.2 \u611f\u77e5\u673a\u5b66\u4e60\u7b56\u7565","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#221","title":"2.2.1 \u6570\u636e\u96c6\u7684\u7ebf\u6027\u53ef\u5206\u6027","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#222","title":"2.2.2 \u611f\u77e5\u673a\u5b66\u4e60\u7b56\u7565","text":"
- \u5b9a\u4e49\u635f\u5931\u51fd\u6570\u5e76\u5c06\u635f\u5931\u51fd\u6570\u6781\u5c0f\u5316
\\[ L(w,b)=-\\sum_{x_{i}\\in M}y_{i}(w\\cdot x_{i}+b) \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#223","title":"2.2.3 \u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#224","title":"2.2.4 \u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5\u7684\u539f\u59cb\u5f62\u5f0f","text":"\\[ \\min_{w,b}L(w,b)=-\\sum_{x_{i}\\in M}y_{i}(w\\cdot x_{i}+b) \\]
- stochastic gradient descent
\\[ \\nabla_{_w}L(w,b)=-\\sum_{x_{i}\\in M}y_{i}x_{i} \\] \\[ \\nabla_{b}L(w,b)=-\\sum_{x_{i}eM}y_{i} \\] \\[ w\\leftarrow w+\\eta y_{i}x_{i} \\] \\[ b\\leftarrow b+\\eta y_{i} \\]
- \\(\\displaystyle \\eta\\) \u88ab\u79f0\u4e3a\u5b66\u4e60\u7387\uff08learning rate\uff09
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#225","title":"2.2.5 \u7b97\u6cd5\u7684\u6536\u655b\u6027","text":"
- \u4e3a\u4e86\u5f97\u5230\u552f\u4e00\u7684\u8d85\u5e73\u9762\uff0c\u9700\u8981\u5bf9\u5206\u79bb\u8d85\u5e73\u9762\u589e\u52a0\u7ea6\u675f\u6761\u4ef6\uff0c\u5373\u7ebf\u6027\u652f\u6301\u5411\u91cf\u673a
- \u5982\u679c\u8bad\u7ec3\u96c6\u7ebf\u6027\u4e0d\u53ef\u5206\uff0c\u90a3\u4e48\u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5\u4e0d\u6536\u655b
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#226","title":"2.2.6 \u611f\u77e5\u673a\u5b66\u4e60\u7b97\u6cd5\u7684\u5bf9\u5076\u5f62\u5f0f","text":"\\[ \\begin{aligned}&w\\leftarrow w+\\eta y_{i}x_{i}\\\\&b\\leftarrow b+\\eta y_{i}\\end{aligned} \\] \\[ w=\\sum_{i=1}^{N}\\alpha_{i}y_{i}x_{i} \\] \\[ b=\\sum_{i=1}^{N}\\alpha_{i}y_{i} \\]
\\[ G=[x_{i}\\cdot x_{j}]_{N\\times N} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#3-displaystyle-k","title":"3 \\(\\displaystyle k\\) \u8fd1\u90bb\u6cd5","text":"
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#31-displaystyle-k","title":"3.1 \\(\\displaystyle k\\) \u8fd1\u90bb\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#32-displaystyle-k","title":"3.2 \\(\\displaystyle k\\) \u8fd1\u90bb\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#321","title":"3.2.1 \u6a21\u578b","text":"
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#33","title":"3.3 \u8ddd\u79bb\u5ea6\u91cf","text":"
- \\(\\displaystyle L_{p}\\) distance or Minkowski distamce
- \\(\\displaystyle L_{p}(x_{i},x_{j})=\\left(\\sum_{l=1}^{n}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid^{p}\\right)^{\\frac{1}{p}}\\)
- \\(\\displaystyle L_{2}(x_{i},x_{j})=\\left(\\sum_{i=1}^{n}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid^{2}\\right)^{\\frac{1}{2}}\\)
- \\(\\displaystyle L_{1}(x_{i}, x_{j})=\\sum_{l=1}^{n}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid\\)
- \\(\\displaystyle L_{\\infty}(x_{i}, x_{j})=\\max_{l}\\mid x_{i}^{(l)}-x_{j}^{(l)}\\mid\\)
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#331-displaystyle-k","title":"3.3.1 \\(\\displaystyle k\\) \u503c\u7684\u9009\u62e9","text":"
- if k is small, then the approximation error will reduce
- estimation error
- \\(\\displaystyle k\\) \u503c\u7684\u51cf\u5c0f\u5c31\u610f\u5473\u7740\u6574\u4f53\u6a21\u578b\u53d8\u5f97\u590d\u6742\uff0c\u5bb9\u6613\u53d1\u751f\u8fc7\u62df\u5408
- \u5728\u5e94\u7528\u4e2d, \\(\\displaystyle k\\) \u503c\u4e00\u822c\u53d6\u4e00\u4e2a\u6bd4\u8f83\u5c0f\u7684\u6570\u503c\uff0c\u901a\u5e38\u91c7\u7528\u4ea4\u53c9\u9a8c\u8bc1\u6cd5\u6765\u9009\u53d6\u6700\u4f18\u7684 \\(\\displaystyle k\\) \u503c
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#332","title":"3.3.2 \u5206\u7c7b\u51b3\u7b56\u89c4\u5219","text":"
- \u591a\u6570\u8868\u51b3\u89c4\u5219\uff08majority voting rule\uff09
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#34-displaystyle-k-displaystyle-kd","title":"3.4 \\(\\displaystyle k\\) \u8fd1\u90bb\u6cd5\u7684\u5b9e\u73b0: \\(\\displaystyle kd\\) \u6811","text":"
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#341-displaystyle-kd","title":"3.4.1 \u6784\u9020 \\(\\displaystyle kd\\) \u6811","text":"
- \\(\\displaystyle kd\\) \u6811\u662f\u4e00\u4e8c\u53c9\u6811\uff0c\u8868\u793a\u5bf9 \\(\\displaystyle k\\) \u7ef4\u7a7a\u95f4\u7684\u4e00\u4e2a\u5212\u5206\uff08partition\uff09
- \u901a\u5e38\u9009\u62e9\u8bad\u7ec3\u5b9e\u4f8b\u70b9\u5728\u9009\u5b9a\u5750\u6807\u8f74\u4e0a\u7684\u4e2d\u4f4d\u6570\u4e3a\u5207\u5206\u70b9\uff0c\u867d\u7136\u8fd9\u6837\u5f97\u5230\u7684\u6811\u662f\u5e73\u8861\u7684\uff0c\u4f46\u6548\u7387\u672a\u5fc5\u662f\u6700\u4f18\u7684 \u6709\u610f\u601d
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#342-displaystyle-kd","title":"3.4.2 \u641c\u7d22 \\(\\displaystyle kd\\) \u6811","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#4","title":"4 \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5","text":"
- \u57fa\u4e8e\u8d1d\u53f6\u65af\u5b9a\u7406\u4e0e\u7279\u5f81\u6761\u4ef6\u72ec\u7acb\u5047\u8bbe\u7684\u5206\u7c7b\u65b9\u6cd5
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#41","title":"4.1 \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5\u7684\u5b66\u4e60\u4e0e\u5206\u7c7b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#411","title":"4.1.1 \u57fa\u672c\u65b9\u6cd5","text":"
- \u5b66\u4e60\u5148\u9a8c\u6982\u7387\u5206\u5e03\u548c\u6761\u4ef6\u6982\u7387\u5206\u5e03\u4e8e\u662f\u5b66\u4e60\u5230\u8054\u5408\u6982\u7387\u5206\u5e03
\\[ P(X=x\\mid Y=c_{k})=P(X^{(1)}=x^{(1)},\\cdots,X^{(n)}=x^{(n)}\\mid Y=c_{k}),\\quad k=1,2,\\cdots,K \\]
- \u5f15\u5165\u4e86\u6761\u4ef6\u72ec\u7acb\u6027\u5047\u8bbe
\\[ \\begin{aligned} P(X=x|Y=c_{k})& =P(X^{(1)}=x^{(1)},\\cdots,X^{(n)}=x^{(n)}\\mid Y=c_{k}) \\\\ &=\\prod_{j=1}^{n}P(X^{(j)}=x^{(j)}\\mid Y=c_{k}) \\end{aligned} \\] \\[ P(Y=c_{k}\\mid X=x)=\\frac{P(X=x\\mid Y=c_{k})P(Y=c_{k})}{\\sum_{k}P(X=x\\mid Y=c_{k})P(Y=c_{k})} \\] \\[ P(Y=c_{k}\\mid X=x)=\\frac{P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})}{\\sum_{k}P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})},\\quad k=1,2,\\cdots,K \\] \\[ y=f(x)=\\arg\\max_{c_{k}}\\frac{P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})}{\\sum_{k}P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k})} \\] \\[ y=\\arg\\max_{c_{k}}P(Y=c_{k})\\prod_{j}P(X^{(j)}=x^{(j)}\\mid Y=c_{k}) \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#412","title":"4.1.2 \u540e\u9a8c\u6982\u7387\u6700\u5927\u5316\u7684\u542b\u4e49","text":"\\[ L(Y,f(X))=\\begin{cases}1,&Y\\neq f(X)\\\\0,&Y=f(X)\\end{cases} \\] \\[ R_{\\exp}(f)=E[L(Y,f(X))] \\] \\[ R_{\\exp}(f)=E_{\\chi}\\sum_{k=1}^{K}[L(c_{k},f(X))]P(c_{k}\\mid X) \\] \\[ \\begin{align} f(x) &=\\arg\\min_{y\\in\\mathcal{Y}}\\sum_{k=1}^{K}L(c_{k},y)P(c_{k}\\mid X=x) \\\\ &=\\arg\\min_{y\\in\\mathcal{Y}}\\sum_{k=1}^{K}P(y\\neq c_{k}\\mid X=x) \\\\ &=\\arg\\min_{y\\in\\mathcal{Y}}(1-P(y=c_{k}\\mid X=x)) \\\\ &=\\arg\\max_{y\\in\\mathcal{Y}}P(y=c_{k}\\mid X=x) \\end{align} \\] \\[ f(x)=\\arg\\max_{c_{k}}P(c_{k}\\mid X=x) \\]
- \u671f\u671b\u98ce\u9669\u6700\u5c0f\u5316\u51c6\u5219\u5c31\u5f97\u5230\u8054\u8003\u540e\u9a8c\u6982\u7387\u6700\u5927\u5316\u51c6\u5219
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#42","title":"4.2 \u6734\u7d20\u8d1d\u53f6\u65af\u6cd5\u7684\u53c2\u6570\u4f30\u8ba1","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#421","title":"4.2.1 \u6781\u5927\u4f3c\u7136\u4f30\u8ba1","text":"\\[ P(Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(y_{i}=c_{k})}{N} , k=1,2,\\cdots,K \\] \\[ P(X^{(j)}=a_{ji}\\mid Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{ji},y_{i}=c_{k})}{\\sum_{i=1}^{N}I(y_{i}=c_{k})}\\\\j=1,2,\\cdots,n ;\\quad l=1,2,\\cdots,S_{j} ;\\quad k=1,2,\\cdots,K \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#422","title":"4.2.2 \u5b66\u4e60\u4e0e\u5206\u7c7b\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#423","title":"4.2.3 \u8d1d\u53f6\u65af\u4f30\u8ba1","text":"
- \u6781\u5927\u4f3c\u7136\u4f30\u8ba1\u53ef\u80fd\u4f1a\u51fa\u73b0\u6240\u8981\u4f30\u8ba1\u7684\u6982\u7387\u503c\u4e3a 0 \u7684\u60c5\u51b5
- \u6761\u4ef6\u6982\u7387\u7684\u8d1d\u53f6\u65af\u4f30\u8ba1
\\[ P_{\\lambda}(X^{(j)}=a_{ji}\\mid Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(x_{i}^{(j)}=a_{ji},y_{i}=c_{k})+\\lambda}{\\sum_{i=1}^{N}I(y_{i}=c_{k})+S_{j}\\lambda} \\]
- when \\(\\displaystyle \\lambda = 0\\), it's called Laplace smoothing
\\[ \\begin{aligned}&P_{\\lambda}(X^{(j)}=a_{jl}\\mid Y=c_{k})>0\\\\&\\sum_{l=1}^{s_{j}}P(X^{(j)}=a_{jl}\\mid Y=c_{k})=1\\end{aligned} \\]
- \u8868\u660e\u8d1d\u53f6\u65af\u4f30\u8ba1\u786e\u5b9e\u662f\u4e00\u79cd\u6982\u7387\u5206\u5e03
- \u5148\u9a8c\u6982\u7387\u7684\u8d1d\u53f6\u65af\u4f30\u8ba1
\\[ P_{\\lambda}(Y=c_{k})=\\frac{\\sum_{i=1}^{N}I(y_{i}=c_{k})+\\lambda}{N+K\\lambda} \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#5","title":"5 \u51b3\u7b56\u6811","text":"
- decision tree
- \u7279\u5f81\u9009\u62e9
- \u51b3\u7b56\u6811\u7684\u751f\u6210
- \u51b3\u7b56\u6811\u7684\u4fee\u526a
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#51","title":"5.1 \u51b3\u7b56\u6811\u6a21\u578b\u4e0e\u5b66\u4e60","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#511","title":"5.1.1 \u51b3\u7b56\u6811\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#512-if-then","title":"5.1.2 \u51b3\u7b56\u6811\u4e0e if-then \u89c4\u5219","text":"
- \u4e92\u65a5\u4e14\u5b8c\u5907
- \u6bcf\u4e00\u4e2a\u5b9e\u4f8b\u90fd\u88ab\u4e00\u6761\u8def\u5f84\u4f1a\u89c4\u5219\u6240\u8986\u76d6\uff0c\u800c\u4e14\u53ea\u88ab\u4e00\u6761\u8def\u5f84\u6216\u4e00\u6761\u89c4\u5219\u6240\u8986\u76d6
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#513","title":"5.1.3 \u51b3\u7b56\u6811\u4e0e\u6761\u4ef6\u6982\u7387\u5206\u5e03","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#514","title":"5.1.4 \u51b3\u7b56\u6811\u5b66\u4e60","text":"
- \u51b3\u7b56\u6811\u5b66\u4e60\u672c\u8d28\u4e0a\u662f\u4ece\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u5f52\u7eb3\u51fa\u4e00\u7ec4\u5206\u7c7b\u89c4\u5219
- \u5728\u635f\u5931\u51fd\u6570\u610f\u4e49\u4e0b\u9009\u62e9\u6700\u4f18\u51b3\u7b56\u6811\u7684\u95ee\u9898\uff0c\u662f NP \u5b8c\u5168\u95ee\u9898\uff0c\u91c7\u7528\u542f\u53d1\u5f0f\u65b9\u6cd5\uff0c\u8fd1\u4f3c\u6c42\u89e3\uff0c\u8fd9\u6837\u5f97\u5230\u7684\u51b3\u7b56\u6811\u662f\u6b21\u6700\u4f18\uff08sub-optimal\uff09
- \u4e3a\u4e86\u9632\u6b62\u8fc7\u62df\u5408\uff0c\u6211\u4eec\u9700\u8981\u5bf9\u5df2\u751f\u6210\u7684\u6811\u81ea\u4e0a\u800c\u4e0b\u8fdb\u884c\u526a\u679d
- \u51b3\u7b56\u6811\u7684\u751f\u6210\u503c\u8003\u8651\u5c40\u90e8\u6700\u4f18\uff0c\u526a\u679d\u5219\u8003\u8651\u5168\u5c40\u6700\u4f18
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#52","title":"5.2 \u7279\u5f81\u9009\u62e9","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#521","title":"5.2.1 \u7279\u5f81\u9009\u62e9\u95ee\u9898","text":"
- \u901a\u5e38\u7279\u5f81\u9009\u62e9\u7684\u51c6\u5219\u662f\u4fe1\u606f\u589e\u76ca\u6216\u4fe1\u606f\u589e\u76ca\u6bd4
- information gain
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#522","title":"5.2.2 \u4fe1\u606f\u589e\u76ca","text":"
- \u71b5\u548c\u6761\u4ef6\u71b5
\\[ P(X=x_{i})=p_{i} ,\\quad i=1,2,\\cdots,n \\] \\[ H(X)=-\\sum_{i=1}^{n}p_{i}\\log p_{i} \\] \\[ H(p)=-\\sum_{i=1}^{n}p_{i}\\log p_{i} \\] \\[ 0\\leqslant H(p)\\leqslant\\log n \\] \\[ P(X=x_{i},Y=y_{j})=p_{ij} ,\\quad i=1,2,\\cdots,n ;\\quad j=1,2,\\cdots,m \\] \\[ H(Y\\mid X)=\\sum_{i=1}^{n}p_{i}H(Y\\mid X=x_{i}) \\]
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#523","title":"5.2.3 \u4fe1\u606f\u589e\u76ca\u6bd4","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#53","title":"5.3 \u51b3\u7b56\u6811\u7684\u751f\u6210","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#531-id-3","title":"5.3.1 ID 3 \u7b97\u6cd5","text":"
- ID 3 \u7b97\u6cd5\u53ea\u6709\u6811\u7684\u751f\u6210\uff0c\u6240\u4ee5\u8be5\u7b97\u6cd5\u751f\u6210\u7684\u6811\u5bb9\u6613\u4ea7\u751f\u8fc7\u62df\u5408
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#532-c-45","title":"5.3.2 C 4.5 \u7684\u751f\u6210\u7b97\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#54","title":"5.4 \u51b3\u7b56\u6811\u7684\u526a\u679d","text":"
\\[ C_{\\alpha}(T)=\\sum_{t=1}^{|T|}N_{t}H_{t}(T)+\\alpha|T| \\] \\[ H_{t}(T)=-\\sum_{k}\\frac{N_{ik}}{N_{t}}\\log\\frac{N_{ik}}{N_{t}} \\] \\[ C(T)=\\sum_{t=1}^{|T|}N_{t}H_{t}(T)=-\\sum_{t=1}^{|T|}\\sum_{k=1}^{K}N_{tk}\\log\\frac{N_{tk}}{N_{t}} \\] \\[ C_{\\alpha}(T)=C(T)+\\alpha|T| \\]"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#55-cart","title":"5.5 CART \u7b97\u6cd5","text":"
- \u5206\u88c2\u4e0e\u56de\u5f52\u6811\uff08classification and regression tree\uff09
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#551-cart","title":"5.5.1 CART \u751f\u6210","text":"
- \u5bf9\u56de\u5f52\u6811\u7528\u5e73\u65b9\u8bef\u5dee\u6700\u5c0f\u5316\u51c6\u5219
- \u5bf9\u5206\u7c7b\u6811\u7528\u57fa\u5c3c\u6307\u6570\uff08Gini index\uff09\u6700\u5c0f\u5316\u51c6\u5219 1. \u56de\u5f52\u6811\u7684\u751f\u6210
\\[ f(x)=\\sum_{m=1}^{M}c_{m}I(x\\in R_{m}) \\] \\[ \\hat{c}_{m}=\\mathrm{ave}(y_{i}\\mid x_{i}\\in R_{m}) \\]
- splitting variable
- splitting point
\\[ R_{1}(j,s)=\\{x\\mid x^{(j)}\\leqslant s\\}\\quad\\text{\u548c}\\quad R_{2}(j,s)=\\{x\\mid x^{(j)}>s\\} \\] \\[ \\min_{j,s}\\biggl[\\min_{c_{1}}\\sum_{x_{i}\\in R_{i}(j,s)}(y_{i}-c_{1})^{2}+\\min_{c_{2}}\\sum_{x_{i}\\in R_{2}(j,s)}(y_{i}-c_{2})^{2}\\biggr] \\] \\[ \\hat{c}_{1}=\\mathrm{ave}(y_{i}\\mid x_{i}\\in R_{1}(j,s))\\quad\\hat{\\text{\u548c}}\\quad\\hat{c}_{2}=\\mathrm{ave}(y_{i}\\mid x_{i}\\in R_{2}(j,s)) \\]
- least squares regression tree 1. \u5206\u7c7b\u6811\u7684\u751f\u6210
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#552-cart","title":"5.5.2 CART \u526a\u679d","text":"
- \u526a\u679d\uff0c\u5f62\u6210\u4e00\u4e2a\u5b50\u6811\u5e8f\u5217
\\[ C_{\\alpha}(T)=C(T)+\\alpha\\left|T\\right| \\] \\[ g(t)=\\frac{C(t)-C(T_{t})}{\\mid T_{t}\\mid-1} \\]
- \u5728\u526a\u679d\u5f97\u5230\u7684\u5b50\u6811\u5e8f\u5217 \\(\\displaystyle T_0,T_1,\\cdots,T_n\\) \u4e2d\u901a\u8fc7\u4ea4\u53c9\u9a8c\u8bc1\u9009\u53d6\u6700\u4f18\u5b50\u6811 \\(\\displaystyle T_{\\alpha}\\)
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#6","title":"6 \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u4e0e\u6700\u5927\u71b5\u6a21\u578b","text":"
- logistic regression
- maximum entropy model
- \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b\u548c\u6700\u5927\u71b5\u6a21\u578b\u90fd\u5c5e\u4e8e\u5bf9\u6570\u7ebf\u6027\u6a21\u578b
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#61","title":"6.1 \u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#611","title":"6.1.1 \u903b\u8f91\u65af\u8c1b\u5206\u5e03","text":"
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#612","title":"6.1.2 \u4e8c\u9879\u903b\u8f91\u65af\u8c1b\u56de\u5f52\u6a21\u578b","text":"
- binomial logistic regression model
"},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#7","title":"7 \u652f\u6301\u5411\u91cf\u673a","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#8","title":"8 \u63d0\u5347\u65b9\u6cd5","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#9-displaystyle-boldsymbolem","title":"9 \\(\\displaystyle \\boldsymbol{EM}\\) \u7b97\u6cd5\u53ca\u5176\u63a8\u5e7f","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#10","title":"10 \u9690\u9a6c\u5c14\u53ef\u592b\u6a21\u578b","text":""},{"location":"AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/#11_1","title":"11 \u6761\u4ef6\u968f\u673a\u573a","text":""},{"location":"AI/CS231n/CS231n_notes/","title":"Computer Vision","text":"
\u7ea6 8852 \u4e2a\u5b57 167 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 30 \u5206\u949f
This note is based on GitHub - DaizeDong/Stanford-CS231n-2021-and-2022: Notes and slides for Stanford CS231n 2021 & 2022 in English. I merged the contents together to get a better version. Assignments are not included. \u65af\u5766\u798fcs231n\u7684\u8bfe\u7a0b\u7b14\u8bb0(\u82f1\u6587\u7248\u672c\uff0c\u4e0d\u542b\u5b9e\u9a8c\u4ee3\u7801)\uff0c\u5c062021\u4e0e2022\u4e24\u5e74\u7684\u8bfe\u7a0b\u8fdb\u884c\u4e86\u5408\u5e76\uff0c\u5206\u4eab\u4ee5\u4f9b\u4ea4\u6d41\u3002 And I will add some blogs, articles and other understanding.
Topic Chapter Deep Learning Basics 2 - 4 Perceiving and Understanding the Visual World 5 - 12 Reconstructing and Interacting with the Visual World 13 - 16 Human-Centered Applications and Implications 17 - 18"},{"location":"AI/CS231n/CS231n_notes/#1-introduction","title":"1 - Introduction","text":"
A brief history of computer vision & deep learning...
"},{"location":"AI/CS231n/CS231n_notes/#2-image-classification","title":"2 - Image Classification","text":"
Image Classification: A core task in Computer Vision. The main drive to the progress of CV.
Challenges: Viewpoint variation, background clutter, illumination, occlusion, deformation, intra-class variation...
"},{"location":"AI/CS231n/CS231n_notes/#k-nearest-neighbor","title":"K Nearest Neighbor","text":"
Hyperparameters: Distance metric (\\(p\\) norm), \\(k\\) number.
Choose hyperparameters using validation set.
Never use k-Nearest Neighbor with pixel distance.
"},{"location":"AI/CS231n/CS231n_notes/#linear-classifier","title":"Linear Classifier","text":"
Pass...
"},{"location":"AI/CS231n/CS231n_notes/#3-loss-functions-and-optimization","title":"3 - Loss Functions and Optimization","text":""},{"location":"AI/CS231n/CS231n_notes/#loss-functions","title":"Loss Functions","text":"Dataset \\(\\big\\{(x_i,y_i)\\big\\}_{i=1}^N\\\\\\) Loss Function \\(L=\\frac{1}{N}\\sum_{i=1}^NL_i\\big(f(x_i,W),y_i\\big)\\\\\\) Loss Function with Regularization \\(L=\\frac{1}{N}\\sum_{i=1}^NL_i\\big(f(x_i,W),y_i\\big)+\\lambda R(W)\\\\\\)
Motivation: Want to interpret raw classifier scores as probabilities.
Softmax Classifier \\(p_i=Softmax(y_i)=\\frac{\\exp(y_i)}{\\sum_{j=1}^N\\exp(y_j)}\\\\\\) Cross Entropy Loss \\(L_i=-y_i\\log p_i\\\\\\) Cross Entropy Loss with Regularization \\(L=-\\frac{1}{N}\\sum_{i=1}^Ny_i\\log p_i+\\lambda R(W)\\\\\\)
"},{"location":"AI/CS231n/CS231n_notes/#optimization","title":"Optimization","text":""},{"location":"AI/CS231n/CS231n_notes/#sgd-with-momentum","title":"SGD with Momentum","text":"
Problems that SGD can't handle:
- Inequality of gradient in different directions.
- Local minima and saddle point (much more common in high dimension).
- Noise of gradient from mini-batch.
Momentum: Build up \u201cvelocity\u201d \\(v_t\\) as a running mean of gradients.
SGD SGD + Momentum \\(x_{t+1}=x_t-\\alpha\\nabla f(x_t)\\) \\(\\begin{align}&v_{t+1}=\\rho v_t+\\nabla f(x_t)\\\\&x_{t+1}=x_t-\\alpha v_{t+1}\\end{align}\\) Naive gradient descent. \\(\\rho\\) gives \"friction\", typically \\(\\rho=0.9,0.99,0.999,...\\)
Nesterov Momentum: Use the derivative on point \\(x_t+\\rho v_t\\) as gradient instead point \\(x_t\\).
Momentum Nesterov Momentum \\(\\begin{align}&v_{t+1}=\\rho v_t+\\nabla f(x_t)\\\\&x_{t+1}=x_t-\\alpha v_{t+1}\\end{align}\\) \\(\\begin{align}&v_{t+1}=\\rho v_t+\\nabla f(x_t+\\rho v_t)\\\\&x_{t+1}=x_t-\\alpha v_{t+1}\\end{align}\\) Use gradient at current point. Look ahead for the gradient in velocity direction.
"},{"location":"AI/CS231n/CS231n_notes/#adagrad-and-rmsprop","title":"AdaGrad and RMSProp","text":"
AdaGrad: Accumulate squared gradient, and gradually decrease the step size.
RMSProp: Accumulate squared gradient while decaying former ones, and gradually decrease the step size. (\"Leaky AdaGrad\")
AdaGrad RMSProp \\(\\begin{align}\\text{Initialize:}&\\\\&r:=0\\\\\\text{Update:}&\\\\&r:=r+\\Big[\\nabla f(x_t)\\Big]^2\\\\&x_{t+1}=x_t-\\alpha\\frac{\\nabla f(x_t)}{\\sqrt{r}}\\end{align}\\) \\(\\begin{align}\\text{Initialize:}&\\\\&r:=0\\\\\\text{Update:}&\\\\&r:=\\rho r+(1-\\rho)\\Big[\\nabla f(x_t)\\Big]^2\\\\&x_{t+1}=x_t-\\alpha\\frac{\\nabla f(x_t)}{\\sqrt{r}}\\end{align}\\) Continually accumulate squared gradients. \\(\\rho\\) gives \"decay rate\", typically \\(\\rho=0.9,0.99,0.999,...\\)"},{"location":"AI/CS231n/CS231n_notes/#adam","title":"Adam","text":"
Sort of like \"RMSProp + Momentum\".
Adam (simple version) Adam (full version) \\(\\begin{align}\\text{Initialize:}&\\\\&r_1:=0\\\\&r_2:=0\\\\\\text{Update:}&\\\\&r_1:=\\beta_1r_1+(1-\\beta_1)\\nabla f(x_t)\\\\&r_2:=\\beta_2r_2+(1-\\beta_2)\\Big[\\nabla f(x_t)\\Big]^2\\\\&x_{t+1}=x_t-\\alpha\\frac{r_1}{\\sqrt{r_2}}\\end{align}\\) \\(\\begin{align}\\text{Initialize:}\\\\&r_1:=0\\\\&r_2:=0\\\\\\text{For }i\\text{:}\\\\&r_1:=\\beta_1r_1+(1-\\beta_1)\\nabla f(x_t)\\\\&r_2:=\\beta_2r_2+(1-\\beta_2)\\Big[\\nabla f(x_t)\\Big]^2\\\\&r_1'=\\frac{r_1}{1-\\beta_1^i}\\\\&r_2'=\\frac{r_2}{1-\\beta_2^i}\\\\&x_{t+1}=x_t-\\alpha\\frac{r_1'}{\\sqrt{r_2'}}\\end{align}\\) Build up \u201cvelocity\u201d for both gradient and squared gradient. Correct the \"bias\" that \\(r_1=r_2=0\\) for the first few iterations."},{"location":"AI/CS231n/CS231n_notes/#overview","title":"Overview","text":""},{"location":"AI/CS231n/CS231n_notes/#learning-rate-decay","title":"Learning Rate Decay","text":"
Reduce learning rate at a few fixed points to get a better convergence over time.
\\(\\alpha_0\\) : Initial learning rate.
\\(\\alpha_t\\) : Learning rate in epoch \\(t\\).
\\(T\\) : Total number of epochs.
Method Equation Picture Step Reduce \\(\\alpha_t\\) constantly in a fixed step. Cosine \\(\\begin{align}\\alpha_t=\\frac{1}{2}\\alpha_0\\Bigg[1+\\cos(\\frac{t\\pi}{T})\\Bigg]\\end{align}\\) Linear \\(\\begin{align}\\alpha_t=\\alpha_0\\Big(1-\\frac{t}{T}\\Big)\\end{align}\\) Inverse Sqrt \\(\\begin{align}\\alpha_t=\\frac{\\alpha_0}{\\sqrt{t}}\\end{align}\\)
High initial learning rates can make loss explode, linearly increasing learning rate in the first few iterations can prevent this.
Learning rate warm up:
Empirical rule of thumb: If you increase the batch size by \\(N\\), also scale the initial learning rate by \\(N\\) .
"},{"location":"AI/CS231n/CS231n_notes/#second-order-optimization","title":"Second-Order Optimization","text":"Picture Time Complexity Space Complexity First Order \\(O(n)\\) \\(O(n)\\) Second Order \\(O(n^2)\\) with BGFS optimization \\(O(n)\\) with L-BGFS optimization
L-BGFS : Limited memory BGFS.
- Works very well in full batch, deterministic \\(f(x)\\).
- Does not transfer very well to mini-batch setting.
"},{"location":"AI/CS231n/CS231n_notes/#summary","title":"Summary","text":"Method Performance Adam Often chosen as default method.Work ok even with constant learning rate. SGD + Momentum Can outperform Adam.Require more tuning of learning rate and schedule. L-BGFS If can afford to do full batch updates then try out.
- An article about gradient descent: Anoverview of gradient descent optimization algorithms
- A blog: An updated overview of recent gradient descent algorithms \u2013 John Chen \u2013 ML at Rice University
"},{"location":"AI/CS231n/CS231n_notes/#4-neural-networks-and-backpropagation","title":"4 - Neural Networks and Backpropagation","text":""},{"location":"AI/CS231n/CS231n_notes/#neural-networks","title":"Neural Networks","text":"
Motivation: Inducted bias can appear to be high when using human-designed features.
Activation: Sigmoid, tanh, ReLU, LeakyReLU...
Architecture: Input layer, hidden layer, output layer.
Do not use the size of a neural network as the regularizer. Use regularization instead!
Gradient Calculation: Computational Graph + Backpropagation.
"},{"location":"AI/CS231n/CS231n_notes/#backpropagation","title":"Backpropagation","text":"
Using Jacobian matrix to calculate the gradient of each node in a computation graph.
Suppose that we have a computation flow like this:
Input X Input W Output Y \\(X=\\begin{bmatrix}x_1\\\\x_2\\\\\\vdots\\\\x_n\\end{bmatrix}\\) \\(W=\\begin{bmatrix}w_{11}&w_{12}&\\cdots&w_{1n}\\\\w_{21}&w_{22}&\\cdots&w_{2n}\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\w_{m1}&w_{m2}&\\cdots&w_{mn}\\end{bmatrix}\\) \\(Y=\\begin{bmatrix}y_1\\\\y_2\\\\\\vdots\\\\y_m\\end{bmatrix}\\) \\(n\\times 1\\) \\(m\\times n\\) \\(m\\times 1\\)
After applying feed forward, we can calculate gradients like this:
Derivative Matrix of X Jacobian Matrix of X Derivative Matrix of Y \\(D_X=\\begin{bmatrix}\\frac{\\partial L}{\\partial x_1}\\\\\\frac{\\partial L}{\\partial x_2}\\\\\\vdots\\\\\\frac{\\partial L}{\\partial x_n}\\end{bmatrix}\\) \\(J_X=\\begin{bmatrix}\\frac{\\partial y_1}{\\partial x_1}&\\frac{\\partial y_1}{\\partial x_2}&\\cdots&\\frac{\\partial y_1}{\\partial x_n}\\\\\\frac{\\partial y_2}{\\partial x_1}&\\frac{\\partial y_2}{\\partial x_2}&\\cdots&\\frac{\\partial y_2}{\\partial x_n}\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\\\frac{\\partial y_m}{\\partial x_1}&\\frac{\\partial y_m}{\\partial x_2}&\\cdots&\\frac{\\partial y_m}{\\partial x_n}\\end{bmatrix}\\) \\(D_Y=\\begin{bmatrix}\\frac{\\partial L}{\\partial y_1}\\\\\\frac{\\partial L}{\\partial y_2}\\\\\\vdots\\\\\\frac{\\partial L}{\\partial y_m}\\end{bmatrix}\\) \\(n\\times 1\\) \\(m\\times n\\) \\(m\\times 1\\) Derivative Matrix of W Jacobian Matrix of W Derivative Matrix of Y \\(W=\\begin{bmatrix}\\frac{\\partial L}{\\partial w_{11}}&\\frac{\\partial L}{\\partial w_{12}}&\\cdots&\\frac{\\partial L}{\\partial w_{1n}}\\\\\\frac{\\partial L}{\\partial w_{21}}&\\frac{\\partial L}{\\partial w_{22}}&\\cdots&\\frac{\\partial L}{\\partial w_{2n}}\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\\\frac{\\partial L}{\\partial w_{m1}}&\\frac{\\partial L}{\\partial w_{m2}}&\\cdots&\\frac{\\partial L}{\\partial w_{mn}}\\end{bmatrix}\\) \\(J_W^{(k)}=\\begin{bmatrix}\\frac{\\partial y_k}{\\partial w_{11}}&\\frac{\\partial y_k}{\\partial w_{12}}&\\cdots&\\frac{\\partial y_k}{\\partial w_{1n}}\\\\\\frac{\\partial y_k}{\\partial w_{21}}&\\frac{\\partial y_k}{\\partial w_{22}}&\\cdots&\\frac{\\partial y_k}{\\partial w_{2n}}\\\\\\vdots&\\vdots&\\ddots&\\vdots\\\\\\frac{\\partial y_k}{\\partial w_{m1}}&\\frac{\\partial y_k}{\\partial w_{m2}}&\\cdots&\\frac{\\partial y_k}{\\partial w_{mn}}\\end{bmatrix}\\)\\(J_W=\\begin{bmatrix}J_W^{(1)}&J_W^{(2)}&\\cdots&J_W^{(m)}\\end{bmatrix}\\) \\(D_Y=\\begin{bmatrix}\\frac{\\partial L}{\\partial y_1}\\\\\\frac{\\partial L}{\\partial y_2}\\\\\\vdots\\\\\\frac{\\partial L}{\\partial y_m}\\end{bmatrix}\\) \\(m\\times n\\) \\(m\\times m\\times n\\) $ m\\times 1$
For each element in \\(D_X\\) , we have:
\\(D_{Xi}=\\frac{\\partial L}{\\partial x_i}=\\sum_{j=1}^m\\frac{\\partial L}{\\partial y_j}\\frac{\\partial y_j}{\\partial x_i}\\\\\\)
"},{"location":"AI/CS231n/CS231n_notes/#5-convolutional-neural-networks","title":"5 - Convolutional Neural Networks","text":""},{"location":"AI/CS231n/CS231n_notes/#convolution-layer","title":"Convolution Layer","text":""},{"location":"AI/CS231n/CS231n_notes/#introduction","title":"Introduction","text":"
Convolve a filter with an image: Slide the filter spatially within the image, computing dot products in each region.
Giving a \\(32\\times32\\times3\\) image and a \\(5\\times5\\times3\\) filter, a convolution looks like:
Convolve six \\(5\\times5\\times3\\) filters to a \\(32\\times32\\times3\\) image with step size \\(1\\), we can get a \\(28\\times28\\times6\\) feature:
With an activation function after each convolution layer, we can build the ConvNet with a sequence of convolution layers:
By changing the step size between each move for filters, or adding zero-padding around the image, we can modify the size of the output:
"},{"location":"AI/CS231n/CS231n_notes/#1times1-convolution-layer","title":"\\(1\\times1\\) Convolution Layer","text":"
This kind of layer makes perfect sense. It is usually used to change the dimension (channel) of features.
A \\(1\\times1\\) convolution layer can also be treated as a full-connected linear layer.
"},{"location":"AI/CS231n/CS231n_notes/#summary_1","title":"Summary","text":"Input image size \\(W_1\\times H_1\\times C\\) filter size \\(F\\times F\\times C\\) filter number \\(K\\) stride \\(S\\) zero padding \\(P\\) Output output size \\(W_2\\times H_2\\times K\\) output width \\(W_2=\\frac{W_1-F+2P}{S}+1\\\\\\) output height \\(H_2=\\frac{H_1-F+2P}{S}+1\\\\\\) Parameters parameter number (weight) \\(F^2CK\\) parameter number (bias) \\(K\\)"},{"location":"AI/CS231n/CS231n_notes/#pooling-layer","title":"Pooling layer","text":"
Make the representations smaller and more manageable.
An example of max pooling:
Input image size \\(W_1\\times H_1\\times C\\) spatial extent \\(F\\times F\\) stride \\(S\\) Output output size \\(W_2\\times H_2\\times C\\) output width \\(W_2=\\frac{W_1-F}{S}+1\\\\\\) output height \\(H_2=\\frac{H_1-F}{S}+1\\\\\\)"},{"location":"AI/CS231n/CS231n_notes/#convolutional-neural-networks-cnn","title":"Convolutional Neural Networks (CNN)","text":"
CNN stack CONV, POOL, FC layers.
CNN Trends:
- Smaller filters and deeper architectures.
- Getting rid of POOL/FC layers (just CONV).
Historically architectures of CNN looked like:
where usually \\(m\\) is large, \\(0\\le n\\le5\\), \\(0\\le k\\le2\\).
Recent advances such as ResNet / GoogLeNet have challenged this paradigm.
"},{"location":"AI/CS231n/CS231n_notes/#6-cnn-architectures","title":"6 - CNN Architectures","text":"
Best model in ImageNet competition:
"},{"location":"AI/CS231n/CS231n_notes/#alexnet","title":"AlexNet","text":"
8 layers.
First use of ConvNet in image classification problem.
Filter size decreases in deeper layer.
Channel number increases in deeper layer.
"},{"location":"AI/CS231n/CS231n_notes/#vgg","title":"VGG","text":"
19 layers. (also provide 16 layers edition)
Static filter size (\\(3\\times3\\)) in all layers:
- The effective receptive field expands with the layer gets deeper.
- Deeper architecture gets more non-linearities and few parameters.
Most memory is in early convolution layers.
Most parameter is in late FC layers.
"},{"location":"AI/CS231n/CS231n_notes/#googlenet","title":"GoogLeNet","text":"
22 layers.
No FC layers, only 5M parameters. ( \\(8.3\\%\\) of AlexNet, \\(3.7\\%\\) of VGG )
Devise efficient \"inception module\".
"},{"location":"AI/CS231n/CS231n_notes/#inception-module","title":"Inception Module","text":"
Design a good local network topology (network within a network) and then stack these modules on top of each other.
Naive Inception Module:
- Apply parallel filter operations on the input from previous layer.
- Concatenate all filter outputs together channel-wise.
- Problem: The depth (channel number) increases too fast, costing expensive computation.
Inception Module with Dimension Reduction:
- Add \"bottle neck\" layers to reduce the dimension.
- Also get fewer computation cost.
"},{"location":"AI/CS231n/CS231n_notes/#architecture","title":"Architecture","text":""},{"location":"AI/CS231n/CS231n_notes/#resnet","title":"ResNet","text":"
152 layers for ImageNet.
Devise \"residual connections\".
Use BN in place of dropout.
"},{"location":"AI/CS231n/CS231n_notes/#residual-connections","title":"Residual Connections","text":"
Hypothesis: Deeper models have more representation power than shallow ones. But they are harder to optimize.
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping.
It is necessary to use ReLU as activation function, in order to apply identity mapping when \\(F(x)=0\\) .
"},{"location":"AI/CS231n/CS231n_notes/#architecture_1","title":"Architecture","text":""},{"location":"AI/CS231n/CS231n_notes/#senet","title":"SENet","text":"
Using ResNeXt-152 as a base architecture.
Add a \u201cfeature recalibration\u201d module. (adjust weights of each channel)
Using the global avg-pooling layer + FC layers to determine feature map weights.
"},{"location":"AI/CS231n/CS231n_notes/#improvements-of-resnet","title":"Improvements of ResNet","text":"
Wide Residual Networks, ResNeXt, DenseNet, MobileNets...
"},{"location":"AI/CS231n/CS231n_notes/#other-interesting-networks","title":"Other Interesting Networks","text":"
NASNet: Neural Architecture Search with Reinforcement Learning.
EfficientNet: Smart Compound Scaling.
"},{"location":"AI/CS231n/CS231n_notes/#7-training-neural-networks","title":"7 - Training Neural Networks","text":""},{"location":"AI/CS231n/CS231n_notes/#activation-functions","title":"Activation Functions","text":"Activation Usage Sigmoid, tanh Do not use. ReLU Use as default. Leaky ReLU, Maxout, ELU, SELU Replace ReLU to squeeze out some marginal gains. Swish No clear usage."},{"location":"AI/CS231n/CS231n_notes/#data-processing","title":"Data Processing","text":"
Apply centralization and normalization before training.
In practice for pictures, usually we apply channel-wise centralization only.
"},{"location":"AI/CS231n/CS231n_notes/#weight-initialization","title":"Weight Initialization","text":"
Assume that we have 6 layers in a network.
\\(D_i\\) : input size of layer \\(i\\)
\\(W_i\\) : weights in layer \\(i\\)
\\(X_i\\) : output after activation of layer \\(i\\), we have \\(X_i=g(Z_i)=g(W_iX_{i-1}+B_i)\\)
We initialize each parameter in \\(W_i\\) randomly in \\([-k_i,k_i]\\) .
Tanh Activation Output Distribution \\(k_i=0.01\\) \\(k_i=0.05\\) Xavier Initialization \\(k_i=\\frac{1}{\\sqrt{D_i}\\\\}\\)
When \\(k_i=0.01\\), the variance keeps decreasing as the layer gets deeper. As a result, the output of each neuron in deep layer will all be 0. The partial derivative \\(\\frac{\\partial Z_i}{\\partial W_i}=X_{i-1}=0\\\\\\). (no gradient)
When \\(k_i=0.05\\), most neurons is saturated. The partial derivative \\(\\frac{\\partial X_i}{\\partial Z_i}=g'(Z_i)=0\\\\\\). (no gradient)
To solve this problem, We need to keep the variance same in each layer.
Assuming that \\(Var\\big(X_{i-1}^{(1)}\\big)=Var\\big(X_{i-1}^{(2)}\\big)=\\dots=Var\\big(X_{i-1}^{(D_i)}\\big)\\)
We have \\(Z_i=X_{i-1}^{(1)}W_i^{(:,1)}+X_{i-1}^{(2)}W_i^{(:,2)}+\\dots+X_{i-1}^{(D_i)}W_i^{(:,D_i)}=\\sum_{n=1}^{D_i}X_{i-1}^{(n)}W_i^{(:,n)}\\\\\\)
We want \\(Var\\big(Z_i\\big)=Var\\big(X_{i-1}^{(n)}\\big)\\)
Let's do some conduction:
\\(\\begin{aligned}Var\\big(Z_i\\big)&=Var\\Bigg(\\sum_{n=1}^{D_i}X_{i-1}^{(n)}W_i^{(:,n)}\\Bigg)\\\\&=D_i\\ Var\\Big(X_{i-1}^{(n)}W_i^{(:,n)}\\Big)\\\\&=D_i\\ Var\\Big(X_{i-1}^{(n)}\\Big)\\ Var\\Big(W_i^{(:,n)}\\Big)\\end{aligned}\\)
So \\(Var\\big(Z_i\\big)=Var\\big(X_{i-1}^{(n)}\\big)\\) only when \\(Var\\Big(W_i^{(:,n)}\\Big)=\\frac{1}{D_i}\\\\\\), that is to say \\(k_i=\\frac{1}{\\sqrt{D_i}}\\\\\\)
ReLU Activation Output Distribution Xavier Initialization \\(k_i=\\frac{1}{\\sqrt{D_i}\\\\}\\) Kaiming Initialization \\(k_i=\\sqrt{2D_i}\\)
For ReLU activation, when using xavier initialization, there still exist \"variance decreasing\" problem.
We can use kaiming initialization instead to fix this.
"},{"location":"AI/CS231n/CS231n_notes/#batch-normalization","title":"Batch Normalization","text":"
Force the inputs to be \"nicely scaled\" at each layer.
\\(N\\) : batch size
\\(D\\) : feature size
\\(x\\) : input with shape \\(N\\times D\\)
\\(\\gamma\\) : learnable scale and shift parameter with shape \\(D\\)
\\(\\beta\\) : learnable scale and shift parameter with shape \\(D\\)
The procedure of batch normalization:
- Calculate channel-wise mean \\(\\mu_j=\\frac{1}{N}\\sum_{i=1}^Nx_{i,j}\\\\\\) . The result \\(\\mu\\) with shape \\(D\\) .
- Calculate channel-wise variance \\(\\sigma_j^2=\\frac{1}{N}\\sum_{i=1}^N(x_{i,j}-\\mu_j)^2\\\\\\) . The result \\(\\sigma^2\\) with shape \\(D\\) .
- Calculate normalized \\(\\hat{x}_{i,j}=\\frac{x_{i,j}-\\mu_j}{\\sqrt{\\sigma_j^2+\\epsilon}}\\\\\\) . The result \\(\\hat{x}\\) with shape \\(N\\times D\\) .
- Scale normalized input to get output \\(y_{i,j}=\\gamma_j\\hat{x}_{i,j}+\\beta_j\\) . The result \\(y\\) with shape \\(N\\times D\\) .
Why scale: The constraint \"zero-mean, unit variance\" may be too hard.
Pros:
- Makes deep networks much easier to train!
- Improves gradient flow.
- Allows higher learning rates, faster convergence.
- Networks become more robust to initialization.
- Acts as regularization during training.
- Zero overhead at test-time: can be fused with conv!
Cons:
Behaves differently during training and testing: this is a very common source of bugs!
"},{"location":"AI/CS231n/CS231n_notes/#transfer-learning","title":"Transfer Learning","text":"
Train on a pre-trained model with other datasets.
An empirical suggestion:
very similar dataset very different dataset very little data Use Linear Classifier on top layer. You\u2019re in trouble\u2026 Try linear classifier from different stages. quite a lot of data Finetune a few layers. Finetune a larger number of layers."},{"location":"AI/CS231n/CS231n_notes/#regularization","title":"Regularization","text":""},{"location":"AI/CS231n/CS231n_notes/#common-pattern-of-regularization","title":"Common Pattern of Regularization","text":"
Training: Add some kind of randomness. \\(y=f(x,z)\\)
Testing: Average out randomness (sometimes approximate). \\(y=f(x)=E_z\\big[f(x,z)\\big]=\\int p(z)f(x,z)dz\\\\\\)
"},{"location":"AI/CS231n/CS231n_notes/#regularization-term","title":"Regularization Term","text":"
L2 regularization: \\(R(W)=\\sum_k\\sum_lW_{k,l}^2\\) (weight decay)
L1 regularization: \\(R(W)=\\sum_k\\sum_l|W_{k,l}|\\)
Elastic net : \\(R(W)=\\sum_k\\sum_l\\big(\\beta W_{k,l}^2+|W_{k,l}|\\big)\\) (L1+L2)
"},{"location":"AI/CS231n/CS231n_notes/#dropout","title":"Dropout","text":"
Training: Randomly set some neurons to 0 with a probability \\(p\\) .
Testing: Each neuron multiplies by dropout probability \\(p\\) . (scale the output back)
More common: Scale the output with \\(\\frac{1}{p}\\) when training, keep the original output when testing.
Why dropout works:
- Forces the network to have a redundant representation. Prevents co-adaptation of features.
- Another interpretation: Dropout is training a large ensemble of models (that share parameters).
"},{"location":"AI/CS231n/CS231n_notes/#batch-normalization_1","title":"Batch Normalization","text":"
See above.
"},{"location":"AI/CS231n/CS231n_notes/#data-augmentation","title":"Data Augmentation","text":"
- Horizontal Flips
- Random Crops and Scales
- Color Jitter
- Rotation
- Stretching
- Shearing
- Lens Distortions
- ...
There also exists automatic data augmentation method using neural networks.
"},{"location":"AI/CS231n/CS231n_notes/#other-methods-and-summary","title":"Other Methods and Summary","text":"
DropConnect: Drop connections between neurons.
Fractional Max Pooling: Use randomized pooling regions.
Stochastic Depth: Skip some layers in the network.
Cutout: Set random image regions to zero.
Mixup: Train on random blends of images.
Regularization Method Usage Dropout For large fully-connected layers. Batch Normalization & Data Augmentation Almost always a good idea. Cutout & Mixup For small classification datasets."},{"location":"AI/CS231n/CS231n_notes/#hyperparameter-tuning","title":"Hyperparameter Tuning","text":"Most Common Hyperparameters Less Sensitive Hyperparameters learning ratelearning rate decay scheduleweight decay setting of momentum...
Tips on hyperparameter tuning:
- Prefer one validation fold to cross-validation.
- Search for hyperparameters on log scale. (e.g. multiply the hyperparameter by a fixed number \\(k\\) at each search)
- Prefer random search to grid search.
- Careful with best values on border.
- Stage your search from coarse to fine.
"},{"location":"AI/CS231n/CS231n_notes/#implementation","title":"Implementation","text":"
Have a worker that continuously samples random hyperparameters and performs the optimization. During the training, the worker will keep track of the validation performance after every epoch, and writes a model checkpoint to a file.
Have a master that launches or kills workers across a computing cluster, and may additionally inspect the checkpoints written by workers and plot their training statistics.
"},{"location":"AI/CS231n/CS231n_notes/#common-procedures","title":"Common Procedures","text":"
- Check initial loss.
Turn off weight decay, sanity check loss at initialization \\(\\log(C)\\) for softmax with \\(C\\) classes.
- Overfit a small sample. (important)
Try to train to 100% training accuracy on a small sample of training data.
Fiddle with architecture, learning rate, weight initialization.
- Find learning rate that makes loss go down.
Use the architecture from the previous step, use all training data, turn on small weight decay, find a learning rate that makes the loss drop significantly within 100 iterations.
Good learning rates to try: \\(0.1,0.01,0.001,0.0001,\\dots\\)
- Coarse grid, train for 1-5 epochs.
Choose a few values of learning rate and weight decay around what worked from Step 3, train a few models for 1-5 epochs.\\
Good weight decay to try: \\(0.0001,0.00001,0\\)
- Refine grid, train longer.
Pick best models from Step 4, train them for longer (10-20 epochs) without learning rate decay.
- Look at loss and accuracy curves.
- GOTO step 5.
"},{"location":"AI/CS231n/CS231n_notes/#gradient-checks","title":"Gradient Checks","text":"
CS231n Convolutional Neural Networks for Visual Recognition
Compute analytical gradient manually using \\(f_a'=\\frac{\\partial f(x)}{\\partial x}=\\frac{f(x-h)-f(x+h)}{2h}\\\\\\)
Get relative error between numerical gradient \\(f_n'\\) and analytical gradient \\(f_a'\\) using \\(E=\\frac{|f_n'-f_a'|}{\\max{|f_n'|,|f_a'|}}\\\\\\)
Relative Error Result \\(E>10^{-2}\\) Probably \\(f_n'\\) is wrong. \\(10^{-2}>E>10^{-4}\\) Not good, should check the gradient. \\(10^{-4}>E>10^{-6}\\) Okay for objectives with kinks. (e.g. ReLU)Not good for objectives with no kink. (e.g. softmax, tanh) \\(10^{-7}>E\\) Good.
Tips on gradient checks:
- Use double precision.
- Use only few data points.
- Careful about kinks in the objective. (e.g. \\(x=0\\) for ReLU activation)
- Careful with the step size \\(h\\).
- Use gradient check after the loss starts to go down.
- Remember to turn off anything that may affect the gradient. (e.g. regularization / dropout / augmentations)
- Check only few dimensions for every parameter. (reduce time cost)
"},{"location":"AI/CS231n/CS231n_notes/#8-visualizing-and-understanding","title":"8 - Visualizing and Understanding","text":""},{"location":"AI/CS231n/CS231n_notes/#feature-visualization-and-inversion","title":"Feature Visualization and Inversion","text":""},{"location":"AI/CS231n/CS231n_notes/#visualizing-what-models-have-learned","title":"Visualizing what models have learned","text":"Visualize Areas Filters Visualize the raw weights of each convolution kernel. (better in the first layer) Final Layer Features Run dimensionality reduction for features in the last FC layer. (PCA, t-SNE...) Activations Visualize activated areas. (Understanding Neural Networks Through Deep Visualization)"},{"location":"AI/CS231n/CS231n_notes/#understanding-input-pixels","title":"Understanding input pixels","text":""},{"location":"AI/CS231n/CS231n_notes/#maximally-activating-patches","title":"Maximally Activating Patches","text":"
- Pick a layer and a channel.
- Run many images through the network, record values of the chosen channel.
- Visualize image patches that correspond to maximal activation features.
For example, we have a layer with shape \\(128\\times13\\times13\\). We pick the 17th channel from all 128 channels. Then we run many pictures through the network. During each run we can find a maximal activation feature among all the \\(13\\times13\\) features in channel 17. We then record the corresponding picture patch for each maximal activation feature. At last, we visualize all picture patches for each feature.
This will help us find the relationship between each maximal activation feature and its corresponding picture patches.
(each row of the following picture represents a feature)
"},{"location":"AI/CS231n/CS231n_notes/#saliency-via-occlusion","title":"Saliency via Occlusion","text":"
Mask part of the image before feeding to CNN, check how much predicted probabilities change.
"},{"location":"AI/CS231n/CS231n_notes/#saliency-via-backprop","title":"Saliency via Backprop","text":"
- Compute gradient of (unnormalized) class score with respect to image pixels.
- Take absolute value and max over RGB channels to get saliency maps.
"},{"location":"AI/CS231n/CS231n_notes/#intermediate-features-via-guided-backprop","title":"Intermediate Features via Guided Backprop","text":"
- Pick a single intermediate neuron. (e.g. one feature in a \\(128\\times13\\times13\\) feature map)
- Compute gradient of neuron value with respect to image pixels.
Striving for Simplicity: The All Convolutional Net
Just like \"Maximally Activating Patches\", this could find the part of an image that a neuron responds to.
"},{"location":"AI/CS231n/CS231n_notes/#gradient-ascent","title":"Gradient Ascent","text":"
Generate a synthetic image that maximally activates a neuron.
- Initialize image \\(I\\) to zeros.
- Forward image to compute current scores \\(S_c(I)\\) (for class \\(c\\) before softmax).
- Backprop to get gradient of neuron value with respect to image pixels.
- Make a small update to the image.
Objective: \\(\\max S_c(I)-\\lambda\\lVert I\\lVert^2\\)
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
"},{"location":"AI/CS231n/CS231n_notes/#adversarial-examples","title":"Adversarial Examples","text":"
Find an fooling image that can make the network misclassify correctly-classified images when it is added to the image.
- Start from an arbitrary image.
- Pick an arbitrary class.
- Modify the image to maximize the class.
- Repeat until network is fooled.
"},{"location":"AI/CS231n/CS231n_notes/#deepdream-and-style-transfer","title":"DeepDream and Style Transfer","text":""},{"location":"AI/CS231n/CS231n_notes/#feature-inversion","title":"Feature Inversion","text":"
Given a CNN feature vector \\(\\Phi_0\\) for an image, find a new image \\(x\\) that:
- Features of new image \\(\\Phi(x)\\) matches the given feature vector \\(\\Phi_0\\).
- \"looks natural\u201d. (image prior regularization)
Objective: \\(\\min \\lVert\\Phi(x)-\\Phi_0\\lVert+\\lambda R(x)\\)
Understanding Deep Image Representations by Inverting Them
"},{"location":"AI/CS231n/CS231n_notes/#deepdream-amplify-existing-features","title":"DeepDream: Amplify Existing Features","text":"
Given an image, amplify the neuron activations at a layer to generate a new one.
- Forward: compute activations at chosen layer.
- Set gradient of chosen layer equal to its activation.
- Backward: Compute gradient on image.
- Update image.
"},{"location":"AI/CS231n/CS231n_notes/#texture-synthesis","title":"Texture Synthesis","text":""},{"location":"AI/CS231n/CS231n_notes/#nearest-neighbor","title":"Nearest Neighbor","text":"
- Generate pixels one at a time in scanline order
- Form neighborhood of already generated pixels, copy the nearest neighbor from input.
"},{"location":"AI/CS231n/CS231n_notes/#neural-texture-synthesis","title":"Neural Texture Synthesis","text":"
Gram Matrix: \u683c\u62c9\u59c6\u77e9\u9635\uff08Gram matrix\uff09\u8be6\u7ec6\u89e3\u8bfb
- Pretrain a CNN on ImageNet.
- Run input texture forward through CNN, record activations on every layer.
Layer \\(i\\) gives feature map of shape \\(C_i\\times H_i\\times W_i\\).
- At each layer compute the Gram matrix \\(G_i\\) giving outer product of features.
- Reshape feature map at layer \\(i\\) to \\(C_i\\times H_iW_i\\).
- Compute the Gram matrix \\(G_i\\) with shape \\(C_i\\times C_i\\).
- Initialize generated image from random noise.
- Pass generated image through CNN, compute Gram matrix \\(\\hat{G}_l\\) on each layer.
- Compute loss: Weighted sum of L2 distance between Gram matrices.
- \\(E_l=\\frac{1}{aN_l^2M_l^2}\\sum_{i,j}\\Big(G_i^{(i,j)}-\\hat{G}_i^{(i,j)}\\Big)^2\\\\\\)
- \\(\\mathcal{L}(\\vec{x},\\hat{\\vec{x}})=\\sum_{l=0}^L\\omega_lE_l\\\\\\)
- Backprop to get gradient on image.
- Make gradient step on image.
- GOTO 5.
Texture Synthesis Using Convolutional Neural Networks
"},{"location":"AI/CS231n/CS231n_notes/#style-transfer","title":"Style Transfer","text":""},{"location":"AI/CS231n/CS231n_notes/#feature-gram-reconstruction","title":"Feature + Gram Reconstruction","text":"
Problem: Style transfer requires many forward / backward passes. Very slow!
"},{"location":"AI/CS231n/CS231n_notes/#fast-style-transfer","title":"Fast Style Transfer","text":""},{"location":"AI/CS231n/CS231n_notes/#9-object-detection-and-image-segmentation","title":"9 - Object Detection and Image Segmentation","text":""},{"location":"AI/CS231n/CS231n_notes/#semantic-segmentation","title":"Semantic Segmentation","text":"
Paired Training Data: For each training image, each pixel is labeled with a semantic category.
Fully Convolutional Network: Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!
Problem: Convolutions at original image resolution will be very expensive...
Solution: Design fully convolutional network with downsampling and upsampling inside it!
- Downsampling: Pooling, strided convolution.
- Upsampling: Unpooling, transposed convolution.
Unpooling:
Nearest Neighbor \"Bed of Nails\" \"Position Memory\"
Transposed Convolution: (example size \\(3\\times3\\), stride \\(2\\), pad \\(1\\))
Normal Convolution Transposed Convolution
"},{"location":"AI/CS231n/CS231n_notes/#object-detection","title":"Object Detection","text":""},{"location":"AI/CS231n/CS231n_notes/#single-object","title":"Single Object","text":"
Classification + Localization. (classification + regression problem)
"},{"location":"AI/CS231n/CS231n_notes/#multiple-object","title":"Multiple Object","text":""},{"location":"AI/CS231n/CS231n_notes/#r-cnn","title":"R-CNN","text":"
Using selective search to find \u201cblobby\u201d image regions that are likely to contain objects.
- Find regions of interest (RoI) using selective search. (region proposal)
- Forward each region through ConvNet.
- Classify features with SVMs.
Problem: Very slow. Need to do 2000 independent forward passes for each image!
"},{"location":"AI/CS231n/CS231n_notes/#fast-r-cnn","title":"Fast R-CNN","text":"
Pass the image through ConvNet before cropping. Crop the conv feature instead.
- Run whole image through ConvNet.
- Find regions of interest (RoI) from conv features using selective search. (region proposal)
- Classify RoIs using CNN.
Problem: Runtime is dominated by region proposals. (about \\(90\\%\\) time cost)
"},{"location":"AI/CS231n/CS231n_notes/#faster-r-cnn","title":"Faster R-CNN","text":"
Insert Region Proposal Network (RPN) to predict proposals from features.
Otherwise same as Fast R-CNN: Crop features for each proposal, classify each one.
Region Proposal Network (RPN) : Slide many fixed windows over ConvNet features.
- Treat each point in the feature map as the anchor.
We have \\(k\\) fixed windows (anchor boxes) of different size/scale centered with each anchor.
- For each anchor box, predict whether it contains an object.
For positive boxes, also predict a corrections to the ground-truth box.
- Slide anchor over the feature map, get the \u201cobjectness\u201d score for each box at each point.
- Sort the \u201cobjectness\u201d score, take top \\(300\\) as the proposals.
Faster R-CNN is a Two-stage object detector:
- First stage: Run once per image
Backbone network
Region proposal network
- Second stage: Run once per region
Crop features: RoI pool / align
Predict object class
Prediction bbox offset
"},{"location":"AI/CS231n/CS231n_notes/#single-stage-object-detectors-yolo","title":"Single-Stage Object Detectors: YOLO","text":"
You Only Look Once: Unified, Real-Time Object Detection
- Divide image into grids. (example image grids shape \\(7\\times7\\))
- Set anchors in the middle of each grid.
- For each grid: - Using \\(B\\) anchor boxes to regress \\(5\\) numbers: \\(\\text{dx, dy, dh, dw, confidence}\\). - Predict scores for each of \\(C\\) classes.
- Finally the output is \\(7\\times7\\times(5B+C)\\).
"},{"location":"AI/CS231n/CS231n_notes/#instance-segmentation","title":"Instance Segmentation","text":"
Mask R-CNN: Add a small mask network that operates on each RoI and predicts a \\(28\\times28\\) binary mask.
Mask R-CNN performs very good results!
"},{"location":"AI/CS231n/CS231n_notes/#10-recurrent-neural-networks","title":"10 - Recurrent Neural Networks","text":"
Supplement content added according to Deep Learning Book - RNN.
"},{"location":"AI/CS231n/CS231n_notes/#recurrent-neural-network-rnn","title":"Recurrent Neural Network (RNN)","text":""},{"location":"AI/CS231n/CS231n_notes/#motivation-sequence-processing","title":"Motivation: Sequence Processing","text":"One to One One to Many Many to One Many to Many Many to Many Vanilla Neural Networks Image Captioning Action Prediction Video Captioning Video Classification on Frame Level"},{"location":"AI/CS231n/CS231n_notes/#vanilla-rnn","title":"Vanilla RNN","text":"
\\(x^{(t)}\\) : Input at time \\(t\\).
\\(h^{(t)}\\) : State at time \\(t\\).
\\(o^{(t)}\\) : Output at time \\(t\\)\u200b\u200b.
\\(y^{(t)}\\) : Expected output at time \\(t\\).
"},{"location":"AI/CS231n/CS231n_notes/#many-to-one","title":"Many to One","text":"Calculation State Transition \\(h^{(t)}=\\tanh(Wh^{(t-1)}+Ux^{(t)}+b)\\) Output Calculation \\(o^{(\\tau)}=\\text{sigmoid}\\ \\big(Vh^{(\\tau)}+c\\big)\\)"},{"location":"AI/CS231n/CS231n_notes/#many-to-many-type-2","title":"Many to Many (type 2)","text":"Calculation State Transition \\(h^{(t)}=\\tanh(Wh^{(t-1)}+Ux^{(t)}+b)\\) Output Calculation \\(o^{(t)}=\\text{sigmoid}\\ \\big(Vh^{(t)}+c\\big)\\)"},{"location":"AI/CS231n/CS231n_notes/#rnn-with-teacher-forcing","title":"RNN with Teacher Forcing","text":"
Update current state according to last-time output instead of last-time state.
Calculation State Transition \\(h^{(t)}=\\tanh(Wo^{(t-1)}+Ux^{(t)}+b)\\) Output Calculation \\(o^{(t)}=\\text{sigmoid}\\ \\big(Vh^{(t)}+c\\big)\\)"},{"location":"AI/CS231n/CS231n_notes/#rnn-with-output-forwarding","title":"RNN with \"Output Forwarding\"","text":"
We can also combine last-state output with this-state input together.
Calculation State Transition (training) \\(h^{(t)}=\\tanh(Wh^{(t-1)}+Ux^{(t)}+Ry^{(t-1)}+b)\\) State Transition (testing) \\(h^{(t)}=\\tanh(Wh^{(t-1)}+Ux^{(t)}+Ro^{(t-1)}+b)\\) Output Calculation \\(o^{(t)}=\\text{sigmoid}\\ \\big(Vh^{(t)}+c\\big)\\)
Usually we use \\(o^{(t-1)}\\) in place of \\(y^{(t-1)}\\) at testing time.
"},{"location":"AI/CS231n/CS231n_notes/#bidirectional-rnn","title":"Bidirectional RNN","text":"
When dealing with a whole input sequence, we can process features from two directions.
Calculation State Transition (forward) \\(h^{(t)}=\\tanh(W_1h^{(t-1)}+U_1x^{(t)}+b_1)\\) State Transition (backward) \\(g^{(t)}=\\tanh(W_2g^{(t+1)}+U_2x^{(t)}+b_2)\\) Output Calculation \\(o^{(t)}=\\text{sigmoid}\\ \\big(Vh^{(t)}+Wg^{(t)}+c\\big)\\)"},{"location":"AI/CS231n/CS231n_notes/#encoder-decoder-sequence-to-sequence-rnn","title":"Encoder-Decoder Sequence to Sequence RNN","text":"
This is a many-to-many structure (type 1).
First we encode information according to \\(x\\) with no output.
Later we decode information according to \\(y\\) with no input.
\\(C\\) : Context vector, often \\(C=h^{(T)}\\) (last state of encoder).
Calculation State Transition (encode) \\(h^{(t)}=\\tanh(W_1h^{(t-1)}+U_1x^{(t)}+b_1)\\) State Transition (decode, training) \\(s^{(t)}=\\tanh(W_2s^{(t-1)}+U_2y^{(t)}+TC+b_2)\\) State Transition (decode, testing) \\(s^{(t)}=\\tanh(W_2s^{(t-1)}+U_2o^{(t)}+TC+b_2)\\) Output Calculation \\(o^{(t)}=\\text{sigmoid}\\ \\big(Vs^{(t)}+c\\big)\\)"},{"location":"AI/CS231n/CS231n_notes/#example-image-captioning","title":"Example: Image Captioning","text":""},{"location":"AI/CS231n/CS231n_notes/#summary_2","title":"Summary","text":"
Advantages of RNN:
- Can process any length input.
- Computation for step \\(t\\) can (in theory) use information from many steps back.
- Model size doesn\u2019t increase for longer input.
- Same weights applied on every timestep, so there is symmetry in how inputs are processed.
Disadvantages of RNN:
- Recurrent computation is slow.
- In practice, difficult to access information from many steps back.
- Problems with gradient exploding and gradient vanishing. (check Deep Learning Book - RNN Page 396, Chap 10.7)
"},{"location":"AI/CS231n/CS231n_notes/#long-short-term-memory-lstm","title":"Long Short Term Memory (LSTM)","text":"
Add a \"cell block\" to store history weights.
\\(c^{(t)}\\) : Cell at time \\(t\\).
\\(f^{(t)}\\) : Forget gate at time \\(t\\). Deciding whether to erase the cell.
\\(i^{(t)}\\) : Input gate at time \\(t\\). Deciding whether to write to the cell.
\\(g^{(t)}\\) : External input gate at time \\(t\\). Deciding how much to write to the cell.
\\(o^{(t)}\\) : Output gate at time \\(t\\). Deciding how much to reveal the cell.
Calculation (Gate) Forget Gate \\(f^{(t)}=\\text{sigmoid}\\ \\big(W_fh^{(t-1)}+U_fx^{(t)}+b_f\\big)\\) Input Gate \\(i^{(t)}=\\text{sigmoid}\\ \\big(W_ih^{(t-1)}+U_ix^{(t)}+b_i\\big)\\) External Input Gate \\(g^{(t)}=\\tanh(W_gh^{(t-1)}+U_gx^{(t)}+b_g)\\) Output Gate \\(o^{(t)}=\\text{sigmoid}\\ \\big(W_oh^{(t-1)}+U_ox^{(t)}+b_o\\big)\\) Calculation (Main) Cell Transition \\(c^{(t)}=f^{(t)}\\odot c^{(t-1)}+i^{(t)}\\odot g^{(t)}\\) State Transition \\(h^{(t)}=o^{(t)}\\odot\\tanh(c^{(t)})\\) Output Calculation \\(O^{(t)}=\\text{sigmoid}\\ \\big(Vh^{(t)}+c\\big)\\)
"},{"location":"AI/CS231n/CS231n_notes/#other-rnn-variants","title":"Other RNN Variants","text":"
GRU...
"},{"location":"AI/CS231n/CS231n_notes/#11-attention-and-transformers","title":"11 - Attention and Transformers","text":""},{"location":"AI/CS231n/CS231n_notes/#rnn-with-attention","title":"RNN with Attention","text":"
Encoder-Decoder Sequence to Sequence RNN Problem:
Input sequence bottlenecked through a fixed-sized context vector \\(C\\). (e.g. \\(T=1000\\))
Intuitive Solution:
Generate new context vector \\(C_t\\) at each step \\(t\\) !
\\(e_{t,i}\\) : Alignment score for input \\(i\\) at state \\(t\\). (scalar)
\\(a_{t,i}\\) : Attention weight for input \\(i\\) at state \\(t\\).
\\(C_t\\) : Context vector at state \\(t\\).
Calculation Alignment Score \\(e_i^{(t)}=f(s^{(t-1)},h^{(i)})\\).Where \\(f\\) is an MLP. Attention Weight \\(a_i^{(t)}=\\text{softmax}\\ (e_i^{(t)})\\).Softmax includes all \\(e_i\\) at state \\(t\\). Context Vector \\(C^{(t)}=\\sum_i a_i^{(t)}h^{(i)}\\) Decoder State Transition \\(s^{(t)}=\\tanh(Ws^{(t-1)}+Uy^{(t)}+TC^{(t)}+b)\\)
Example on Image Captioning:
"},{"location":"AI/CS231n/CS231n_notes/#general-attention-layer","title":"General Attention Layer","text":"
Add linear transformations to the input vector before attention.
Notice:
- Number of queries \\(q\\) is variant. (can be different from the number of keys \\(k\\))
- Number of outputs \\(y\\) is equal to the number of queries \\(q\\).
Each \\(y\\) is a linear weighting of values \\(v\\).
- Alignment \\(e\\) is divided by \\(\\sqrt{D}\\) to avoid \"explosion of softmax\", where \\(D\\) is the dimension of input feature.
"},{"location":"AI/CS231n/CS231n_notes/#self-attention-layer","title":"Self-attention Layer","text":"
The query vectors \\(q\\) are also generated from the inputs.
In this way, the shape of \\(y\\) is equal to the shape of \\(x\\).
Example with CNN:
"},{"location":"AI/CS231n/CS231n_notes/#positional-encoding","title":"Positional Encoding","text":"
Self-attention layer doesn\u2019t care about the orders of the inputs!
To encode ordered sequences like language or spatially ordered image features, we can add positional encoding to the inputs.
We use a function \\(P:R\\rightarrow R^d\\) to process the position \\(i\\) into a d-dimensional vector \\(p_i=P(i)\\).
Constraint Condition of \\(P\\) Uniqueness \\(P(i)\\ne P(j)\\) Equidistance \\(\\lVert P(i+k)-P(i)\\rVert^2=\\lVert P(j+k)-P(j)\\rVert^2\\) Boundness \\(P(i)\\in[a,b]\\) Determinacy \\(P(i)\\) is always a static value. (function is not dynamic)
We can either train a encoder model, or design a fixed function.
A Practical Positional Encoding Method: Using \\(\\sin\\) and \\(\\cos\\) with different frequency \\(\\omega\\) at different dimension.
\\(P(t)=\\begin{bmatrix}\\sin(\\omega_1,t)\\\\\\cos(\\omega_1,t)\\\\\\\\\\sin(\\omega_2,t)\\\\\\cos(\\omega_2,t)\\\\\\vdots\\\\\\sin(\\omega_{\\frac{d}{2}},t)\\\\\\cos(\\omega_{\\frac{d}{2}},t)\\end{bmatrix}\\), where frequency \\(\\omega_k=\\frac{1}{10000^{\\frac{2k}{d}}}\\\\\\). (wave length \\(\\lambda=\\frac{1}{\\omega}=10000^{\\frac{2k}{d}}\\\\\\))
\\(P(t)=\\begin{bmatrix}\\sin(1/10000^{\\frac{2}{d}},t)\\\\\\cos(1/10000^{\\frac{2}{d}},t)\\\\\\\\\\sin(1/10000^{\\frac{4}{d}},t)\\\\\\cos(1/10000^{\\frac{4}{d}},t)\\\\\\vdots\\\\\\sin(1/10000^1,t)\\\\\\cos(1/10000^1,t)\\end{bmatrix}\\), after we substitute \\(\\omega_k\\) into the equation.
\\(P(t)\\) is a vector with size \\(d\\), where \\(d\\) is a hyperparameter to choose according to the length of input sequence.
An intuition of this method is the binary encoding of numbers.
[lecture 11d] \u6ce8\u610f\u529b\u548ctransformer (positional encoding \u8865\u5145\uff0c\u4ee3\u7801\u5b9e\u73b0\uff0c\u8ddd\u79bb\u8ba1\u7b97)
It is easy to prove that \\(P(t)\\) satisfies \"Equidistance\": (set \\(d=2\\) for example)
\\(\\begin{aligned}\\lVert P(i+k)-P(i)\\rVert^2&=\\big[\\sin(\\omega_1,i+k)-\\sin(\\omega_1,i)\\big]^2+\\big[\\cos(\\omega_1,i+k)-\\cos(\\omega_1,i)\\big]^2\\\\&=2-2\\sin(\\omega_1,i+k)\\sin(\\omega_1,i)-2\\cos(\\omega_1,i+k)\\cos(\\omega_1,i)\\\\&=2-2\\cos(\\omega_1,k)\\end{aligned}\\)
So the distance is not associated with \\(i\\), we have \\(\\lVert P(i+k)-P(i)\\rVert^2=\\lVert P(j+k)-P(j)\\rVert^2\\).
Visualization of \\(P(t)\\) features: (set \\(d=32\\), \\(x\\) axis represents the position of sequence)
"},{"location":"AI/CS231n/CS231n_notes/#masked-self-attention-layer","title":"Masked Self-attention Layer","text":"
To prevent vectors from looking at future vectors, we manually set alignment scores to \\(-\\infty\\).
"},{"location":"AI/CS231n/CS231n_notes/#multi-head-self-attention-layer","title":"Multi-head Self-attention Layer","text":"
Multiple self-attention heads in parallel.
"},{"location":"AI/CS231n/CS231n_notes/#transformer","title":"Transformer","text":"
Attention Is All You Need
"},{"location":"AI/CS231n/CS231n_notes/#encoder-block","title":"Encoder Block","text":"
Inputs: Set of vectors \\(z\\). (in which \\(z_i\\) can be a word in a sentence, or a pixel in a picture...)
Output: Set of context vectors \\(c\\). (encoded features of \\(z\\))
The number of blocks \\(N=6\\) in original paper.
Notice:
- Self-attention is the only interaction between vectors \\(x_0,x_1,\\dots,x_n\\).
- Layer norm and MLP operate independently per vector.
- Highly scalable, highly parallelizable, but high memory usage.
"},{"location":"AI/CS231n/CS231n_notes/#decoder-block","title":"Decoder Block","text":"
Inputs: Set of vectors \\(y\\). (\\(y_i\\) can be a word in a sentence, or a pixel in a picture...)
Inputs: Set of context vectors \\(c\\).
Output: Set of vectors \\(y'\\). (decoded result, \\(y'_i=y_{i+1}\\) for the first \\(n-1\\) number of \\(y'\\))
The number of blocks \\(N=6\\) in original paper.
Notice:
- Masked self-attention only interacts with past inputs.
- Multi-head attention block is NOT self-attention. It attends over encoder outputs.
- Highly scalable, highly parallelizable, but high memory usage. (same as encoder)
Why we need mask in decoder:
- Needs for the special formation of output \\(y'_i=y_{i+1}\\).
- Needs for parallel computation.
\u4e3e\u4e2a\u4f8b\u5b50\u8bb2\u4e0btransformer\u7684\u8f93\u5165\u8f93\u51fa\u7ec6\u8282\u53ca\u5176\u4ed6
\u5728\u6d4b\u8bd5\u6216\u8005\u9884\u6d4b\u65f6\uff0cTransformer\u91ccdecoder\u4e3a\u4ec0\u4e48\u8fd8\u9700\u8981seq mask\uff1f
"},{"location":"AI/CS231n/CS231n_notes/#example-on-image-captioning-only-with-transformers","title":"Example on Image Captioning (Only with Transformers)","text":""},{"location":"AI/CS231n/CS231n_notes/#comparing-rnns-to-transformer","title":"Comparing RNNs to Transformer","text":"RNNs Transformer Pros LSTMs work reasonably well for long sequences. 1. Good at long sequences. Each attention calculation looks at all inputs.2. Can operate over unordered sets or ordered sequences with positional encodings.3. Parallel computation: All alignment and attention scores for all inputs can be done in parallel. Cons 1. Expects an ordered sequences of inputs.2. Sequential computation: Subsequent hidden states can only be computed after the previous ones are done. Requires a lot of memory: \\(N\\times M\\) alignment and attention scalers need to be calculated and stored for a single self-attention head."},{"location":"AI/CS231n/CS231n_notes/#comparing-convnets-to-transformer","title":"Comparing ConvNets to Transformer","text":"
ConvNets strike back!
"},{"location":"AI/CS231n/CS231n_notes/#12-video-understanding","title":"12 - Video Understanding","text":""},{"location":"AI/CS231n/CS231n_notes/#video-classification","title":"Video Classification","text":"
Take video classification task for example.
Input size: \\(C\\times T\\times H\\times W\\).
The problem is, videos are quite big. We can't afford to train on raw videos, instead we train on video clips.
Raw Videos Video Clips \\(1920\\times1080,\\ 30\\text{fps}\\) \\(112\\times112,\\ 5\\text{f}/3.2\\text{s}\\) \\(10\\text{GB}/\\text{min}\\) \\(588\\text{KB}/\\text{min}\\)
"},{"location":"AI/CS231n/CS231n_notes/#plain-cnn-structure","title":"Plain CNN Structure","text":""},{"location":"AI/CS231n/CS231n_notes/#single-frame-2d-cnn","title":"Single Frame 2D-CNN","text":"
Train a normal 2D-CNN model.
Classify each frame independently.
Average the result of each frame as the final result.
"},{"location":"AI/CS231n/CS231n_notes/#late-fusion","title":"Late Fusion","text":"
Get high-level appearance of each frame, and combine them.
Run 2D-CNN on each frame, pool features and feed to Linear Layers.
Problem: Hard to compare low-level motion between frames.
"},{"location":"AI/CS231n/CS231n_notes/#early-fusion","title":"Early Fusion","text":"
Compare frames with very first Conv Layer, after that normal 2D-CNN.
Problem: One layer of temporal processing may not be enough!
"},{"location":"AI/CS231n/CS231n_notes/#3d-cnn","title":"3D-CNN","text":"
Convolve on 3 dimensions: Height, Width, Time.
Input size: \\(C_{in}\\times T\\times H\\times W\\).
Kernel size: \\(C_{in}\\times C_{out}\\times 3\\times 3\\times 3\\).
Output size: \\(C_{out}\\times T\\times H\\times W\\). (with zero paddling)
"},{"location":"AI/CS231n/CS231n_notes/#c3d-vgg-of-3d-cnns","title":"C3D (VGG of 3D-CNNs)","text":"
The cost is quite expensive...
Network Calculation AlexNet 0.7 GFLOP VGG-16 13.6 GFLOP C3D 39.5 GFLOP"},{"location":"AI/CS231n/CS231n_notes/#two-stream-networks","title":"Two-Stream Networks","text":"
Separate motion and appearance.
"},{"location":"AI/CS231n/CS231n_notes/#i3d-inflating-2d-networks-to-3d","title":"I3D (Inflating 2D Networks to 3D)","text":"
Take a 2D-CNN architecture.
Replace each 2D conv/pool layer with a 3D version.
"},{"location":"AI/CS231n/CS231n_notes/#modeling-long-term-temporal-structure","title":"Modeling Long-term Temporal Structure","text":""},{"location":"AI/CS231n/CS231n_notes/#recurrent-convolutional-network","title":"Recurrent Convolutional Network","text":"
Similar to multi-layer RNN, we replace the dot-product operation with convolution.
Feature size in layer \\(L\\), time \\(t-1\\): \\(W_h\\times H\\times W\\).
Feature size in layer \\(L-1\\), time \\(t\\): \\(W_x\\times H\\times W\\).
Feature size in layer \\(L\\), time \\(t\\): \\((W_h+W_x)\\times H\\times W\\).
Problem: RNNs are slow for long sequences. (can\u2019t be parallelized)
"},{"location":"AI/CS231n/CS231n_notes/#spatio-temporal-self-attention","title":"Spatio-temporal Self-attention","text":"
Introduce self-attention into video classification problems.
"},{"location":"AI/CS231n/CS231n_notes/#vision-transformers-for-video","title":"Vision Transformers for Video","text":"
Factorized attention: Attend over space / time.
So many papers...
"},{"location":"AI/CS231n/CS231n_notes/#visualizing-video-models","title":"Visualizing Video Models","text":""},{"location":"AI/CS231n/CS231n_notes/#multimodal-video-understanding","title":"Multimodal Video Understanding","text":""},{"location":"AI/CS231n/CS231n_notes/#temporal-action-localization","title":"Temporal Action Localization","text":"
Given a long untrimmed video sequence, identify frames corresponding to different actions.
"},{"location":"AI/CS231n/CS231n_notes/#spatio-temporal-detection","title":"Spatio-Temporal Detection","text":"
Given a long untrimmed video, detect all the people in both space and time and classify the activities they are performing.
"},{"location":"AI/CS231n/CS231n_notes/#visually-guided-audio-source-separation","title":"Visually-guided Audio Source Separation","text":"
And So on...
"},{"location":"AI/CS231n/CS231n_notes/#13-generative-models","title":"13 - Generative Models","text":""},{"location":"AI/CS231n/CS231n_notes/#pixelrnn-and-pixelcnn","title":"PixelRNN and PixelCNN","text":""},{"location":"AI/CS231n/CS231n_notes/#fully-visible-belief-network-fvbn","title":"Fully Visible Belief Network (FVBN)","text":"
\\(p(x)\\) : Likelihood of image \\(x\\).
\\(p(x_1,x_2,\\dots,x_n)\\) : Joint likelihood of all \\(n\\) pixels in image \\(x\\).
\\(p(x_i|x_1,x_2,\\dots,x_{i-1})\\) : Probability of pixel \\(i\\) value given all previous pixels.
For explicit density models, we have \\(p(x)=p(x_1,x_2,\\dots,x_n)=\\prod_{i=1}^np(x_i|x_1,x_2,\\dots,x_{i-1})\\\\\\).
Objective: Maximize the likelihood of training data.
"},{"location":"AI/CS231n/CS231n_notes/#pixelrnn","title":"PixelRNN","text":"
Generate image pixels starting from corner.
Dependency on previous pixels modeled using an RNN (LSTM).
Drawback: Sequential generation is slow in both training and inference!
"},{"location":"AI/CS231n/CS231n_notes/#pixelcnn","title":"PixelCNN","text":"
Still generate image pixels starting from corner.
Dependency on previous pixels modeled using a CNN over context region (masked convolution).
Drawback: Though its training is faster, its generation is still slow. (pixel by pixel)
"},{"location":"AI/CS231n/CS231n_notes/#variational-autoencoder","title":"Variational Autoencoder","text":"
Supplement content added according to Tutorial on Variational Autoencoders. (paper with notes: VAE Tutorial.pdf)
\u53d8\u5206\u81ea\u7f16\u7801\u5668VAE\uff1a\u539f\u6765\u662f\u8fd9\u4e48\u4e00\u56de\u4e8b | \u9644\u5f00\u6e90\u4ee3\u7801
"},{"location":"AI/CS231n/CS231n_notes/#autoencoder","title":"Autoencoder","text":"
Learn a lower-dimensional feature representation with unsupervised approaches.
\\(x\\rightarrow z\\) : Dimension reduction for input features.
\\(z\\rightarrow \\hat{x}\\) : Reconstruct input features.
After training, we throw the decoder away and use the encoder for transferring.
For generative models, there is a problem:
We can\u2019t generate new images from an autoencoder because we don\u2019t know the space of \\(z\\).
"},{"location":"AI/CS231n/CS231n_notes/#variational-autoencoder_1","title":"Variational Autoencoder","text":""},{"location":"AI/CS231n/CS231n_notes/#character-description","title":"Character Description","text":"
\\(X\\) : Images. (random variable)
\\(Z\\) : Latent representations. (random variable)
\\(P(X)\\) : True distribution of all training images \\(X\\).
\\(P(Z)\\) : True distribution of all latent representations \\(Z\\).
\\(P(X|Z)\\) : True posterior distribution of all images \\(X\\) with condition \\(Z\\).
\\(P(Z|X)\\) : True prior distribution of all latent representations \\(Z\\) with condition \\(X\\).
\\(Q(Z|X)\\) : Approximated prior distribution of all latent representations \\(Z\\) with condition \\(X\\).
\\(x\\) : A specific image.
\\(z\\) : A specific latent representation.
\\(\\theta\\): Learned parameters in decoder network.
\\(\\phi\\): Learned parameters in encoder network.
\\(p_\\theta(x)\\) : Probability that \\(x\\sim P(X)\\).
\\(p_\\theta(z)\\) : Probability that \\(z\\sim P(Z)\\).
\\(p_\\theta(x|z)\\) : Probability that \\(x\\sim P(X|Z)\\).
\\(p_\\theta(z|x)\\) : Probability that \\(z\\sim P(Z|X)\\).
\\(q_\\phi(z|x)\\) : Probability that \\(z\\sim Q(Z|X)\\).
"},{"location":"AI/CS231n/CS231n_notes/#decoder","title":"Decoder","text":"
Objective:
Generate new images from \\(\\mathscr{z}\\).
- Generate a value \\(z^{(i)}\\) from the prior distribution \\(P(Z)\\).
- Generate a value \\(x^{(i)}\\) from the conditional distribution \\(P(X|Z)\\).
Lemma:
Any distribution in \\(d\\) dimensions can be generated by taking a set of \\(d\\) variables that are normally distributed and mapping them through a sufficiently complicated function. (source: Tutorial on Variational Autoencoders, Page 6)
Solutions:
- Choose prior distribution \\(P(Z)\\) to be a simple distribution, for example \\(P(Z)\\sim N(0,1)\\).
- Learn the conditional distribution \\(P(X|Z)\\) through a neural network (decoder) with parameter \\(\\theta\\).
"},{"location":"AI/CS231n/CS231n_notes/#encoder","title":"Encoder","text":"
Objective:
Learn \\(\\mathscr{z}\\) with training images.
Given: (From the decoder, we can deduce the following probabilities.)
- data likelihood: \\(p_\\theta(x)=\\int p_\\theta(x|z)p_\\theta(z)dz\\).
- posterior density: \\(p_\\theta(z|x)=\\frac{p_\\theta(x|z)p_\\theta(z)}{p_\\theta(x)}=\\frac{p_\\theta(x|z)p_\\theta(z)}{\\int p_\\theta(x|z)p_\\theta(z)dz}\\).
Problem:
Both \\(p_\\theta(x)\\) and \\(p_\\theta(z|x)\\) are intractable. (can't be optimized directly as they contain integral operation)
Solution:
Learn \\(Q(Z|X)\\) to approximate the true posterior \\(P(Z|X)\\).
Use \\(q_\\phi(z|x)\\) in place of \\(p_\\theta(z|x)\\).
"},{"location":"AI/CS231n/CS231n_notes/#variational-autoencoder-combination-of-encoder-and-decoder","title":"Variational Autoencoder (Combination of Encoder and Decoder)","text":"
Objective:
Maximize \\(p_\\theta(x)\\) for all \\(x^{(i)}\\) in the training set.
$$ \\begin{aligned} \\log p_\\theta\\big(x^{(i)}\\big)&=\\mathbb{E}{z\\sim q\\phi\\big(z|x^{(i)}\\big)}\\Big[\\log p_\\theta\\big(x^{(i)}\\big)\\Big]\\
&=\\mathbb{E}z\\Bigg[\\log\\frac{p\\theta\\big(x^{(i)}|z\\big)p_\\theta\\big(z\\big)}{p_\\theta\\big(z|x^{(i)}\\big)}\\Bigg]\\quad\\text{(Bayes' Rule)}\\
&=\\mathbb{E}z\\Bigg[\\log\\frac{p\\theta\\big(x^{(i)}|z\\big)p_\\theta\\big(z\\big)}{p_\\theta\\big(z|x^{(i)}\\big)}\\frac{q_\\phi\\big(z|x^{(i)}\\big)}{q_\\phi\\big(z|x^{(i)}\\big)}\\Bigg]\\quad\\text{(Multiply by Constant)}\\
&=\\mathbb{E}z\\Big[\\log p\\theta\\big(x^{(i)}|z\\big)\\Big]-\\mathbb{E}z\\Bigg[\\log\\frac{q\\phi\\big(z|x^{(i)}\\big)}{p_\\theta\\big(z\\big)}\\Bigg]+\\mathbb{E}z\\Bigg[\\log\\frac{p\\theta\\big(z|x^{(i)}\\big)}{q_\\phi\\big(z|x^{(i)}\\big)}\\Bigg]\\quad\\text{(Logarithm)}\\
&=\\mathbb{E}z\\Big[\\log p\\theta\\big(x^{(i)}|z\\big)\\Big]-D_{\\text{KL}}\\Big[q_\\phi\\big(z|x^{(i)}\\big)||p_\\theta\\big(z\\big)\\Big]+D_{\\text{KL}}\\Big[p_\\theta\\big(z|x^{(i)}\\big)||q_\\phi\\big(z|x^{(i)}\\big)\\Big]\\quad\\text{(KL Divergence)} \\end{aligned} $$
Analyze the Formula by Term:
\\(\\mathbb{E}_z\\Big[\\log p_\\theta\\big(x^{(i)}|z\\big)\\Big]\\): Decoder network gives \\(p_\\theta\\big(x^{(i)}|z\\big)\\), can compute estimate of this term through sampling.
\\(D_{\\text{KL}}\\Big[q_\\phi\\big(z|x^{(i)}\\big)||p_\\theta\\big(z\\big)\\Big]\\): This KL term (between Gaussians for encoder and \\(z\\) prior) has nice closed-form solution!
\\(D_{\\text{KL}}\\Big[p_\\theta\\big(z|x^{(i)}\\big)||q_\\phi\\big(z|x^{(i)}\\big)\\Big]\\): The part \\(p_\\theta\\big(z|x^{(i)}\\big)\\) is intractable. However, we know KL divergence always \\(\\ge0\\).
Tractable Lower Bound:
We can maximize the lower bound of that formula.
As \\(D_{\\text{KL}}\\Big[p_\\theta\\big(z|x^{(i)}\\big)||q_\\phi\\big(z|x^{(i)}\\big)\\Big]\\ge0\\) , we can deduce that:
$$ \\begin{aligned} \\log p_\\theta\\big(x^{(i)}\\big)&=\\mathbb{E}z\\Big[\\log p\\theta\\big(x^{(i)}|z\\big)\\Big]-D_{\\text{KL}}\\Big[q_\\phi\\big(z|x^{(i)}\\big)||p_\\theta\\big(z\\big)\\Big]+D_{\\text{KL}}\\Big[p_\\theta\\big(z|x^{(i)}\\big)||q_\\phi\\big(z|x^{(i)}\\big)\\Big]\\
&\\ge\\mathbb{E}z\\Big[\\log p\\theta\\big(x^{(i)}|z\\big)\\Big]-D_{\\text{KL}}\\Big[q_\\phi\\big(z|x^{(i)}\\big)||p_\\theta\\big(z\\big)\\Big] \\end{aligned} $$
So the loss function \\(\\mathcal{L}\\big(x^{(i)},\\theta,\\phi\\big)=-\\mathbb{E}_z\\Big[\\log p_\\theta\\big(x^{(i)}|z\\big)\\Big]+D_{\\text{KL}}\\Big[q_\\phi\\big(z|x^{(i)}\\big)||p_\\theta\\big(z\\big)\\Big]\\).
\\(\\mathbb{E}_z\\Big[\\log p_\\theta\\big(x^{(i)}|z\\big)\\Big]\\): Decoder, reconstruct the input data.
\\(D_{\\text{KL}}\\Big[q_\\phi\\big(z|x^{(i)}\\big)||p_\\theta\\big(z\\big)\\Big]\\): Encoder, make approximate posterior distribution close to prior.
"},{"location":"AI/CS231n/CS231n_notes/#generative-adversarial-networks-gans","title":"Generative Adversarial Networks (GANs)","text":""},{"location":"AI/CS231n/CS231n_notes/#motivation-modeling","title":"Motivation & Modeling","text":"
Objective: Not modeling any explicit density function.
Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!
Solution: Sample from a simple distribution, e.g. random noise. Learn the transformation to training distribution.
Problem: We can't learn the mapping relation between sample \\(z\\) and training images.
Solution: Use a discriminator network to tell whether the generate image is within data distribution or not.
Discriminator network: Try to distinguish between real and fake images.
Generator network: Try to fool the discriminator by generating real-looking images.
\\(x\\) : Real data.
\\(y\\) : Fake data, which is generated by the generator network. \\(y=G_{\\theta_g}(z)\\).
\\(D_{\\theta_d}(x)\\) : Discriminator score, which is the likelihood of real image. \\(D_{\\theta_d}(x)\\in[0,1]\\).
Objective of discriminator network:
\\(\\max_{\\theta_d}\\bigg[\\mathbb{E}_x\\Big(\\log D_{\\theta_d}(x)\\Big)+\\mathbb{E}_{z\\sim p(z)}\\Big(\\log\\big(1-D_{\\theta_d}(y)\\big)\\Big)\\bigg]\\)
Objective of generator network:
\\(\\min_{\\theta_g}\\max_{\\theta_d}\\bigg[\\mathbb{E}_x\\Big(\\log D_{\\theta_d}(x)\\Big)+\\mathbb{E}_{z\\sim p(z)}\\Big(\\log\\big(1-D_{\\theta_d}(y)\\big)\\Big)\\bigg]\\)
"},{"location":"AI/CS231n/CS231n_notes/#training-strategy","title":"Training Strategy","text":"
Two combine this two networks together, we can train them alternately:
- Gradient ascent on discriminator.
\\(\\max_{\\theta_d}\\bigg[\\mathbb{E}_x\\Big(\\log D_{\\theta_d}(x)\\Big)+\\mathbb{E}_{z\\sim p(z)}\\Big(\\log\\big(1-D_{\\theta_d}(y)\\big)\\Big)\\bigg]\\)
- Gradient descent on generator.
\\(\\min_{\\theta_g}\\bigg[\\mathbb{E}_{z\\sim p(z)}\\Big(\\log\\big(1-D_{\\theta_d}(y)\\big)\\Big)\\bigg]\\)
However, the gradient of generator decreases with the value itself, making it hard to optimize.
So we replace \\(\\log\\big(1-D_{\\theta_d}(y)\\big)\\) with \\(-\\log D_{\\theta_d}(y)\\), and use gradient ascent instead.
- Gradient ascent on discriminator.
\\(\\max_{\\theta_d}\\bigg[\\mathbb{E}_x\\Big(\\log D_{\\theta_d}(x)\\Big)+\\mathbb{E}_{z\\sim p(z)}\\Big(\\log\\big(1-D_{\\theta_d}(y)\\big)\\Big)\\bigg]\\)
- Gradient ascent on generator.
\\(\\max_{\\theta_g}\\bigg[\\mathbb{E}_{z\\sim p(z)}\\Big(\\log D_{\\theta_d}(y)\\Big)\\bigg]\\)
"},{"location":"AI/CS231n/CS231n_notes/#summary_3","title":"Summary","text":"
Pros: Beautiful, state-of-the-art samples!
Cons:
- Trickier / more unstable to train.
- Can\u2019t solve inference queries such as \\(p(x), p(z|x)\\).
"},{"location":"AI/CS231n/CS231n_notes/#14-self-supervised-learning","title":"14 - Self-supervised Learning","text":"
Aim: Solve \u201cpretext\u201d tasks that produce good features for downstream tasks.
Application:
- Learn a feature extractor from pretext tasks. (self-supervised)
- Attach a shallow network on the feature extractor.
- Train the shallow network on target task with small amount of labeled data. (supervised)
"},{"location":"AI/CS231n/CS231n_notes/#pretext-tasks","title":"Pretext Tasks","text":"
Labels are generated automatically.
"},{"location":"AI/CS231n/CS231n_notes/#rotation","title":"Rotation","text":"
Train a classifier on randomly rotated images.
"},{"location":"AI/CS231n/CS231n_notes/#rearrangement","title":"Rearrangement","text":"
Train a classifier on randomly shuffled image pieces.
Predict the location of image pieces.
"},{"location":"AI/CS231n/CS231n_notes/#inpainting","title":"Inpainting","text":"
Mask part of the image, train a network to predict the masked area.
Method referencing Context Encoders: Feature Learning by Inpainting.
Combine two types of loss together to get better performance:
- Reconstruction loss (L2 loss): Used for reconstructing global features.
- Adversarial loss: Used for generating texture features.
"},{"location":"AI/CS231n/CS231n_notes/#coloring","title":"Coloring","text":"
Transfer between greyscale images and colored images.
Cross-channel predictions for images: Split-Brain Autoencoders.
Video coloring: Establish mappings between reference and target frames in a learned feature space. Tracking Emerges by Colorizing Videos.
"},{"location":"AI/CS231n/CS231n_notes/#summary-for-pretext-tasks","title":"Summary for Pretext Tasks","text":"
- Pretext tasks focus on \u201cvisual common sense\u201d.
- The models are forced learn good features about natural images.
- We don\u2019t care about the performance of these pretext tasks.
What we care is the performance of downstream tasks.
"},{"location":"AI/CS231n/CS231n_notes/#problems-of-specific-pretext-tasks","title":"Problems of Specific Pretext Tasks","text":"
- Coming up with individual pretext tasks is tedious.
- The learned representations may not be general.
Intuitive Solution: Contrastive Learning.
"},{"location":"AI/CS231n/CS231n_notes/#contrastive-representation-learning","title":"Contrastive Representation Learning","text":"
Local additional references: Contrastive Learning.md.
Objective:
Given a chosen score function \\(s\\), we aim to learn an encoder function \\(f\\) that yields:
- For each sample \\(x\\), increase the similarity \\(s\\big(f(x),f(x^+)\\big)\\) between \\(x\\) and positive samples \\(x^+\\).
- Finally we want \\(s\\big(f(x),f(x^+)\\big)\\gg s\\big(f(x),f(x^-)\\big)\\).
Loss Function:
Given \\(1\\) positive sample and \\(N-1\\) negative samples:
InfoNCE Loss Cross Entropy Loss \\(\\begin{aligned}\\mathcal{L}=-\\mathbb{E}_X\\Bigg[\\log\\frac{\\exp{s\\big(f(x),f(x^+)\\big)}}{\\exp{s\\big(f(x),f(x^+)\\big)}+\\sum_{j=1}^{N-1}\\exp{s\\big(f(x),f(x^+)\\big)}}\\Bigg]\\\\\\end{aligned}\\) \\(\\begin{aligned}\\mathcal{L}&=-\\sum_{i=1}^Np(x_i)\\log q(x_i)\\\\&=-\\mathbb{E}_X\\big[\\log q(x)\\big]\\\\&=-\\mathbb{E}_X\\Bigg[\\log\\frac{\\exp(x)}{\\sum_{j=1}^N\\exp(x_j)}\\Bigg]\\end{aligned}\\)
The InfoNCE Loss is a lower bound on the mutual information between \\(f(x)\\) and \\(f(x^+)\\):
\\(\\text{MI}\\big[f(x),f(x^+)\\big]\\ge\\log(N)-\\mathcal{L}\\)
The larger the negative sample size \\(N\\), the tighter the bound.
So we use \\(N-1\\) negative samples.
"},{"location":"AI/CS231n/CS231n_notes/#instance-contrastive-learning","title":"Instance Contrastive Learning","text":""},{"location":"AI/CS231n/CS231n_notes/#simclr","title":"SimCLR","text":"
Use a projection function \\(g(\\cdot)\\) to project features to a space where contrastive learning is applied.
The extra projection contributes a lot to the final performance.
Score Function: Cos similarity \\(s(u,v)=\\frac{u^Tv}{||u||||v||}\\\\\\).
Positive Pair: Pair of augmented data.
"},{"location":"AI/CS231n/CS231n_notes/#momentum-contrastive-learning-moco","title":"Momentum Contrastive Learning (MoCo)","text":"
There are mainly \\(3\\) training strategy in contrastive learning:
- end-to-end: Keys are updated together with queries, e.g. SimCLR.
(limited by GPU size)
- memory bank: Store last-time keys for sampling.
(inconsistency between \\(q\\) and \\(k\\))
- MoCo: Use momentum methods to encode keys.
(combination of end-to-end & memory bank)
Key differences to SimCLR:
- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules:
\\(\\theta_k\\leftarrow m\\theta_k+(1-m)\\theta_q\\)
"},{"location":"AI/CS231n/CS231n_notes/#sequence-contrastive-learning","title":"Sequence Contrastive Learning","text":""},{"location":"AI/CS231n/CS231n_notes/#contrastive-predictive-coding-cpc","title":"Contrastive Predictive Coding (CPC)","text":"
Contrastive: Contrast between \u201cright\u201d and \u201cwrong\u201d sequences using contrastive learning.
Predictive: The model has to predict future patterns given the current context.
Coding: The model learns useful feature vectors, or \u201ccode\u201d, for downstream tasks, similar to other self-supervised methods.
"},{"location":"AI/CS231n/CS231n_notes/#other-examples-frontier","title":"Other Examples (Frontier)","text":""},{"location":"AI/CS231n/CS231n_notes/#contrastive-language-image-pre-training-clip","title":"Contrastive Language Image Pre-training (CLIP)","text":"
Contrastive learning between image and natural language sentences.
"},{"location":"AI/CS231n/CS231n_notes/#15-low-level-vision","title":"15 - Low-Level Vision","text":"
Pass...
"},{"location":"AI/CS231n/CS231n_notes/#16-3d-vision","title":"16 - 3D Vision","text":""},{"location":"AI/CS231n/CS231n_notes/#representation","title":"Representation","text":""},{"location":"AI/CS231n/CS231n_notes/#explicit-vs-implicit","title":"Explicit vs Implicit","text":"
Explicit: Easy to sample examples, hard to do inside/outside check.
Implicit: Hard to sample examples, easy to do inside/outside check.
Non-parametric Parametric Explicit Points.Meshes. Splines.Subdivision Surfaces. Implicit Level Sets.Voxels. Algebraic Surfaces.Constructive Solid Geometry."},{"location":"AI/CS231n/CS231n_notes/#point-clouds","title":"Point Clouds","text":"
The simplest representation.
Collection of \\((x,y,z)\\) coordinates.
Cons:
- Difficult to draw in under-sampled regions.
- No simplification or subdivision.
- No direction smooth rendering.
- No topological information.
"},{"location":"AI/CS231n/CS231n_notes/#polygonal-meshes","title":"Polygonal Meshes","text":"
Collection of vertices \\(v\\) and edges \\(e\\).
Pros:
- Can apply downsampling or upsampling on meshes.
- Error decreases by \\(O(n^2)\\) while meshes increase by \\(O(n)\\).
- Can approximate arbitrary topology.
- Efficient rendering.
"},{"location":"AI/CS231n/CS231n_notes/#splines","title":"Splines","text":"
Use specific functions to approximate the surface. (e.g. B\u00e9zier Curves)
"},{"location":"AI/CS231n/CS231n_notes/#algebraic-surfaces","title":"Algebraic Surfaces","text":"
Use specific functions to represent the surface.
"},{"location":"AI/CS231n/CS231n_notes/#constructive-solid-geometry","title":"Constructive Solid Geometry","text":"
Combine implicit geometry with Boolean operations.
"},{"location":"AI/CS231n/CS231n_notes/#level-sets","title":"Level Sets","text":"
Store a grim of values to approximate the function.
Surface is found where interpolated value equals to \\(0\\).
"},{"location":"AI/CS231n/CS231n_notes/#voxels","title":"Voxels","text":"
Binary thresholding the volumetric grid.
"},{"location":"AI/CS231n/CS231n_notes/#ai-3d","title":"AI + 3D","text":"
Pass...
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/","title":"Image Classification-Data-driven Approach, k-Nearest Neighbor, train_val_test splits","text":"
\u7ea6 653 \u4e2a\u5b57 28 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#image-classification","title":"image classification","text":"
- challenges
- viewpoint variation
- scale variation
- deformation
- occlusion
- illumination conditions
- background clutter
- intra-class variation
- data-driven approach
- the image classification pipeline
- input
- learning
- training a classifier
- learning a model
- evaluation
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#nearest-neighbor-classifier","title":"Nearest Neighbor Classifier","text":"\\[ d_1 (I_1, I_2) = \\sum_{p} \\left| I^p_1 - I^p_2 \\right| \\] Python
import numpy as np\n\nclass NearestNeighbor(object): \n def **init**(self): \n pass\n\n def train(self, X, y): \n \"\"\" X is N x D where each row is an example. Y is 1-dimension of size N \"\"\" \n # the nearest neighbor classifier simply remembers all the training data \n self.Xtr = X \n self.ytr = y\n\n def predict(self, X): \n \"\"\" X is N x D where each row is an example we wish to predict label for \"\"\" \n num_test = X.shape[0] \n # lets make sure that the output type matches the input type \n Ypred = np.zeros(num_test, dtype = self.ytr.dtype)\n\n # loop over all test rows\n for i in range(num_test):\n # find the nearest training image to the i'th test image\n # using the L1 distance (sum of absolute value differences)\n distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)\n min_index = np.argmin(distances) # get the index with smallest distance\n Ypred[i] = self.ytr[min_index] # predict the label of the nearest example\n\n return Ypred\n
\\[ d_2 (I_1, I_2) = \\sqrt{\\sum_{p} \\left( I^p_1 - I^p_2 \\right)^2} \\] Python
distances = np.sqrt(np.sum(np.square(self.Xtr - X[i,:]), axis = 1))\n
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#k-nearest-neighbor-classifier","title":"k - Nearest Neighbor Classifier","text":"
![[Pasted image 20241031202452.jpg]]
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#validation-sets-for-hyperparameter-tuning","title":"Validation sets for Hyperparameter tuning","text":"
Evaluate on the test only a single time, at the very end
Split your training set into training set and a validation set. Use validation set to tune all hyperparameters. At the end run a single time on the test set and report performance.
- cross-validation
- single calidation split ![[Pasted image 20241031202849.png]]
"},{"location":"AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/#pros-and-cons-of-nearest-neighbor-classifier","title":"Pros and Cons of Nearest Neighbor classifier","text":"
- simple to implement and understand
- take no time to train
- however, pay a cost at test time
As an aside, the computational complexity of the Nearest Neighbor classifier is an active area of research, and several\u00a0Approximate Nearest Neighbor\u00a0(ANN) algorithms and libraries exist that can accelerate the nearest neighbor lookup in a dataset (e.g.\u00a0FLANN). These algorithms allow one to trade off the correctness of the nearest neighbor retrieval with its space/time complexity during retrieval, and usually rely on a pre-processing/indexing stage that involves building a kdtree, or running the k-means algorithm.
- \\(\\displaystyle L_{2}\\) isn't enough sensitive
In particular, note that images that are nearby each other are much more a function of the general color distribution of the images, or the type of background rather than their semantic identity.
[!note]+ Applying kNN in practice 1. Preprocess your data: Normalize the features in your data (e.g. one pixel in images) to have zero mean and unit variance. We will cover this in more detail in later sections, and chose not to cover data normalization in this section because pixels in images are usually homogeneous and do not exhibit widely different distributions, alleviating the need for data normalization. 2. If your data is very high-dimensional, consider using a dimensionality reduction technique such as PCA (wiki ref,\u00a0CS229ref,\u00a0blog ref), NCA (wiki ref,\u00a0blog ref), or even\u00a0Random Projections. 3. Split your training data randomly into train/val splits. As a rule of thumb, between 70-90% of your data usually goes to the train split. This setting depends on how many hyperparameters you have and how much of an influence you expect them to have. If there are many hyperparameters to estimate, you should err on the side of having larger validation set to estimate them effectively. If you are concerned about the size of your validation data, it is best to split the training data into folds and perform cross-validation. If you can afford the computational budget it is always safer to go with cross-validation (the more folds the better, but more expensive). 4. Train and evaluate the kNN classifier on the validation data (for all folds, if doing cross-validation) for many choices of\u00a0k\u00a0(e.g. the more the better) and across different distance types (L1 and L2 are good candidates) 5. If your kNN classifier is running too long, consider using an Approximate Nearest Neighbor library (e.g.\u00a0FLANN) to accelerate the retrieval (at cost of some accuracy). 6. Take note of the hyperparameters that gave the best results. There is a question of whether you should use the full training set with the best hyperparameters, since the optimal hyperparameters might change if you were to fold the validation data into your training set (since the size of the data would be larger). In practice it is cleaner to not use the validation data in the final classifier and consider it to be\u00a0burned\u00a0on estimating the hyperparameters. Evaluate the best model on the test set. Report the test set accuracy and declare the result to be the performance of the kNN classifier on your data.
[[more about Machine Learing]]
"},{"location":"AI/CS231n/Linear%20classification-Support%20Vector%20Machine%2C%20Softmax/","title":"Linear classification-Support Vector Machine, Softmax","text":"
\u7ea6 129 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
"},{"location":"AI/CS231n/Linear%20classification-Support%20Vector%20Machine%2C%20Softmax/#linear-classifiaction","title":"Linear Classifiaction","text":"\\[ L_i = \\sum_{j\\neq y_i} \\max(0, s_j - s_{y_i} + \\Delta) \\] \\[ L = \\frac{1}{N} \\sum_i \\sum_{j\\neq y_i} \\left[ \\max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + \\Delta) \\right] + \\lambda \\sum_k\\sum_l W_{k,l}^2 \\] \\[ L_i = -\\log\\left(\\frac{e^{f_{y_i}}}{ \\sum_j e^{f_j} }\\right) \\hspace{0.5in} \\text{or equivalently} \\hspace{0.5in} L_i = -f_{y_i} + \\log\\sum_j e^{f_j} \\] \\[ \\frac{e^{f_{y_i}}}{\\sum_j e^{f_j}} = \\frac{Ce^{f_{y_i}}}{C\\sum_j e^{f_j}} = \\frac{e^{f_{y_i} + \\log C}}{\\sum_j e^{f_j + \\log C}} \\]
![[Pasted image 20241031210509.png]]
"},{"location":"AI/CS231n/Python%20Numpy/","title":"Python Numpy","text":""},{"location":"AI/CS231n/Python%20Numpy/#python","title":"Python","text":""},{"location":"AI/CS231n/Python%20Numpy/#string","title":"string","text":"Python
s = \"hello\"\nprint(s.capitalize()) # Capitalize a string; prints \"Hello\"\nprint(s.upper()) # Convert a string to uppercase; prints \"HELLO\"\nprint(s.rjust(7)) # Right-justify a string, padding with spaces; prints \" hello\"\nprint(s.center(7)) # Center a string, padding with spaces; prints \" hello \"\nprint(s.replace('l', '(ell)')) # Replace all instances of one substring with another;\n # prints \"he(ell)(ell)o\"\n<div markdown=\"1\" style=\"margin-top: -30px; font-size: 0.75em; opacity: 0.7;\">\n:material-circle-edit-outline: \u7ea6 49 \u4e2a\u5b57 :fontawesome-solid-code: 104 \u884c\u4ee3\u7801 :material-clock-time-two-outline: \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f\n</div>\nprint(' world '.strip()) # Strip leading and trailing whitespace; prints \"world\"\n
"},{"location":"AI/CS231n/Python%20Numpy/#containers","title":"Containers","text":"Python
animals = ['cat', 'dog', 'monkey']\nfor idx, animal in enumerate(animals):\n print('#%d: %s' % (idx + 1, animal))\n# Prints \"#1: cat\", \"#2: dog\", \"#3: monkey\", each on its own line\n
\u5217\u8868\u63a8\u5bfc\u5f0f
Python
nums = [0, 1, 2, 3, 4]\neven_squares = [x ** 2 for x in nums if x % 2 == 0]\nprint(even_squares) # Prints \"[0, 4, 16]\"\n
\u540c\u6837\u4e5f\u6709\u5b57\u5178\u63a8\u5bfc\u5f0f
Tuples \u53ef\u4ee5\u7528\u4f5c\u5b57\u5178\u4e2d\u7684\u952e\u548c\u96c6\u5408\u7684\u5143\u7d20\uff0c\u4f46\u662f lists \u4e0d\u80fd
"},{"location":"AI/CS231n/Python%20Numpy/#numpy","title":"Numpy","text":"Python
import numpy as np\n\n# Create a new array from which we will select elements\na = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])\n\nprint(a) # prints \"array([[ 1, 2, 3],\n # [ 4, 5, 6],\n # [ 7, 8, 9],\n # [10, 11, 12]])\"\n\n# Create an array of indices\nb = np.array([0, 2, 0, 1])\n\n# Select one element from each row of a using the indices in b\nprint(a[np.arange(4), b]) # Prints \"[ 1 6 7 11]\"\n\n# Mutate one element from each row of a using the indices in b\na[np.arange(4), b] += 10\n\nprint(a) # prints \"array([[11, 2, 3],\n # [ 4, 5, 16],\n # [17, 8, 9],\n # [10, 21, 12]])\n
Python
import numpy as np\n\na = np.array([[1,2], [3, 4], [5, 6]])\n\nbool_idx = (a > 2) # Find the elements of a that are bigger than 2;\n # this returns a numpy array of Booleans of the same\n # shape as a, where each slot of bool_idx tells\n # whether that element of a is > 2.\n\nprint(bool_idx) # Prints \"[[False False]\n # [ True True]\n # [ True True]]\"\n\n# We use boolean array indexing to construct a rank 1 array\n# consisting of the elements of a corresponding to the True values\n# of bool_idx\nprint(a[bool_idx]) # Prints \"[3 4 5 6]\"\n\n# We can do all of the above in a single concise statement:\nprint(a[a > 2]) # Prints \"[3 4 5 6]\"\n
Python
x = np.array([1, 2], dtype=np.int64) # Force a particular datatype\nprint(x.dtype) # Prints \"int64\"\n
Python
import numpy as np\n\nx = np.array([[1,2],[3,4]], dtype=np.float64)\ny = np.array([[5,6],[7,8]], dtype=np.float64)\n\n# Elementwise sum; both produce the array\n# [[ 6.0 8.0]\n# [10.0 12.0]]\nprint(x + y)\nprint(np.add(x, y))\n\n# Elementwise difference; both produce the array\n# [[-4.0 -4.0]\n# [-4.0 -4.0]]\nprint(x - y)\nprint(np.subtract(x, y))\n\n# Elementwise product; both produce the array\n# [[ 5.0 12.0]\n# [21.0 32.0]]\nprint(x * y)\nprint(np.multiply(x, y))\n\n# Elementwise division; both produce the array\n# [[ 0.2 0.33333333]\n# [ 0.42857143 0.5 ]]\nprint(x / y)\nprint(np.divide(x, y))\n\n# Elementwise square root; produces the array\n# [[ 1. 1.41421356]\n# [ 1.73205081 2. ]]\nprint(np.sqrt(x))\n
\u5e7f\u64ad\u53ef\u4ee5\u907f\u514d\u5faa\u73af
Python
import numpy as np\n\n# We will add the vector v to each row of the matrix x,\n# storing the result in the matrix y\nx = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])\nv = np.array([1, 0, 1])\ny = x + v # Add v to each row of x using broadcasting\nprint(y) # Prints \"[[ 2 2 4]\n # [ 5 5 7]\n # [ 8 8 10]\n # [11 11 13]]\"\n
"},{"location":"AI/CS231n/Python%20Numpy/#scipy","title":"SciPy","text":""},{"location":"AI/CS231n/Python%20Numpy/#matplotlib","title":"Matplotlib","text":""},{"location":"AI/EECS%20498-007/KNN/","title":"KNN","text":"
\u7ea6 374 \u4e2a\u5b57 100 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u5bf9\u4e8e\u4e00\u4e2a\u5f85\u5206\u7c7b\u7684\u6837\u672c\uff0c\u627e\u5230\u8bad\u7ec3\u6570\u636e\u96c6\u4e2d\u4e0e\u5176\u6700\u63a5\u8fd1\u7684K\u4e2a\u6837\u672c\uff08\u5373\u6700\u8fd1\u90bb\uff09\uff0c\u7136\u540e\u6839\u636e\u8fd9K\u4e2a\u6837\u672c\u7684\u7c7b\u522b\u6765\u51b3\u5b9a\u5f85\u5206\u7c7b\u6837\u672c\u7684\u7c7b\u522b\u3002
"},{"location":"AI/EECS%20498-007/KNN/#_1","title":"\u6570\u5b66\u63a8\u5bfc","text":"
\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u8bad\u7ec3\u6570\u636e\u96c6 \\(T = \\{(x_1, y_1), (x_2, y_2), \\ldots, (x_N, y_N)\\}\\)\uff0c\u5176\u4e2d \\(x_i\\) \u662f\u7279\u5f81\u5411\u91cf\uff0c \\(y_i\\) \u662f\u5bf9\u5e94\u7684\u7c7b\u522b\u6807\u7b7e\u3002\u5bf9\u4e8e\u4e00\u4e2a\u65b0\u7684\u5f85\u5206\u7c7b\u6837\u672c x\uff0cKNN\u7b97\u6cd5\u7684\u76ee\u6807\u662f\u9884\u6d4b\u5176\u7c7b\u522b \\(y\\) \u3002
- \u8ddd\u79bb\u5ea6\u91cf\uff1a\u9996\u5148\uff0c\u6211\u4eec\u9700\u8981\u4e00\u4e2a\u8ddd\u79bb\u5ea6\u91cf\u6765\u8ba1\u7b97\u5f85\u5206\u7c7b\u6837\u672c \\(x\\) \u4e0e\u8bad\u7ec3\u96c6\u4e2d\u6bcf\u4e2a\u6837\u672c \\(x_i\\) \u4e4b\u95f4\u7684\u8ddd\u79bb\u3002\u5e38\u7528\u7684\u8ddd\u79bb\u5ea6\u91cf\u5305\u62ec\u6b27\u6c0f\u8ddd\u79bb\uff08Euclidean distance\uff09\u3001\u66fc\u54c8\u987f\u8ddd\u79bb\uff08Manhattan distance\uff09\u548c\u95f5\u53ef\u592b\u65af\u57fa\u8ddd\u79bb\uff08Minkowski distance\uff09\u3002\u4ee5\u6b27\u6c0f\u8ddd\u79bb\u4e3a\u4f8b\uff0c\u4e24\u4e2a\u6837\u672c \\(x\\) \u548c \\(x_i\\) \u4e4b\u95f4\u7684\u8ddd\u79bb\u5b9a\u4e49\u4e3a\uff1a
\\[ d(x, x_i) = \\sqrt{\\sum_{j=1}^{d} (x_j - x_{i,j})^2} \\]
\u5176\u4e2d\uff0c \\(d\\) \u662f\u7279\u5f81\u7684\u7ef4\u5ea6\u3002
- \u5bfb\u627e\u6700\u8fd1\u90bb\uff1a\u7136\u540e\uff0c\u6211\u4eec\u6839\u636e\u8ba1\u7b97\u51fa\u7684\u8ddd\u79bb\uff0c\u9009\u62e9\u8ddd\u79bb\u6700\u8fd1\u7684K\u4e2a\u6837\u672c\uff0c\u6784\u6210\u5f85\u5206\u7c7b\u6837\u672c\u7684\u90bb\u57df \\(N_k(x)\\)\u3002
- \u51b3\u7b56\u89c4\u5219\uff1a\u6700\u540e\uff0c\u6839\u636e\u90bb\u57df \\( N_k(x) \\) \u4e2d\u7684\u6837\u672c\u7c7b\u522b\uff0c\u901a\u8fc7\u591a\u6570\u6295\u7968\u7684\u65b9\u5f0f\u6765\u51b3\u5b9a\u5f85\u5206\u7c7b\u6837\u672c\u7684\u7c7b\u522b\u3002\u5373\uff1a
\\[ y = \\arg\\max_{c_j} \\sum_{x_i \\in N_k(x)} I(y_i = c_j) \\]
\u5176\u4e2d\uff0c \\(I\\) \u662f\u6307\u793a\u51fd\u6570\uff0c\u5f53 \\(y_i = c_j\\) \u65f6\u53d6\u503c\u4e3a1\uff0c\u5426\u5219\u4e3a0\u3002
"},{"location":"AI/EECS%20498-007/KNN/#_2","title":"\u4f5c\u4e1a\u4e2d\u7684\u5b9e\u73b0","text":"Python
import torch\n\ndef compute_distances_two_loops(x_train, x_test):\n num_train = x_train.shape[0]\n num_test = x_test.shape[0]\n dists = x_train.new_zeros(num_train, num_test)\n\n for i in range(num_train):\n for j in range(num_test):\n dists[i,j] = ((x_train[i] - x_test[j]) ** 2).sum() ** (1/2)\n\n return dists\n\ndef compute_distances_one_loop(x_train, x_test):\n num_train = x_train.shape[0]\n num_test = x_test.shape[0]\n dists = x_train.new_zeros(num_train, num_test)\n\n for i in range(num_train):\n dists[i] = ((x_train[i] - x_test) ** 2).sum(dim=(1,2,3)) ** (1/2)\n\n return dists\n\ndef compute_distances_no_loops(x_train, x_test):\n num_train = x_train.shape[0]\n num_test = x_test.shape[0]\n dists = x_train.new_zeros(num_train, num_test)\n\n A = x_train.reshape(num_train, -1)\n B = x_test.reshape(num_test, -1)\n AB2 = A.mm(B.T) * 2\n dists = ((A ** 2).sum(dim=1).reshape(-1, 1) - AB2 + (B ** 2).sum(dim=1).reshape(1, -1)) ** (1/2)\n\n return dists\n\ndef predict_labels(dists, y_train, k=1):\n num_train, num_test = dists.shape\n y_pred = torch.zeros(num_test, dtype=torch.int64)\n\n values, indices = torch.topk(dists, k, dim=0, largest=False)\n for i in range(indices.shape[1]):\n _, idx = torch.max(y_train[indices[:, i]].bincount(), dim=0)\n y_pred[i] = idx\n\n return y_pred\n\nclass KnnClassifier:\n def __init__(self, x_train, y_train):\n self.x_train = x_train\n self.y_train = y_train\n\n def predict(self, x_test, k=1):\n dists = compute_distances_no_loops(self.x_train, x_test)\n y_test_pred = predict_labels(dists, self.y_train, k)\n return y_test_pred\n\n def check_accuracy(self, x_test, y_test, k=1, quiet=False):\n y_test_pred = self.predict(x_test, k=k)\n num_samples = x_test.shape[0]\n num_correct = (y_test == y_test_pred).sum().item()\n accuracy = 100.0 * num_correct / num_samples\n msg = (f'Got {num_correct} / {num_samples} correct; accuracy is {accuracy:.2f}%')\n if not quiet:\n print(msg)\n return accuracy\n\ndef knn_cross_validate(x_train, y_train, num_folds=5, k_choices=None):\n if k_choices is None:\n k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]\n\n x_train_folds = torch.chunk(x_train, num_folds, dim=0)\n y_train_folds = torch.chunk(y_train, num_folds, dim=0)\n\n k_to_accuracies = {}\n\n for k in k_choices:\n list_of_acc = []\n for num_fold in range(num_folds):\n x_train_folds_local = [x for x in x_train_folds]\n y_train_folds_local = [x for x in y_train_folds]\n x_test = x_train_folds_local[num_fold]\n y_test = y_train_folds_local[num_fold]\n del x_train_folds_local[num_fold]\n del y_train_folds_local[num_fold]\n x_train = torch.cat(x_train_folds_local, dim=0)\n y_train = torch.cat(y_train_folds_local, dim=0)\n classifier = KnnClassifier(x_train, y_train)\n list_of_acc.append(classifier.check_accuracy(x_test, y_test, k))\n k_to_accuracies[k] = list_of_acc\n\n return k_to_accuracies\n\ndef knn_get_best_k(k_to_accuracies):\n best_k = 0\n new_dict = {}\n for k, accs in sorted(k_to_accuracies.items()):\n new_dict[k] = sum(accs) / len(accs) \n max_value = max(new_dict.values())\n best_k = [k for k, v in new_dict.items() if v == max_value][0]\n return best_k\n
"},{"location":"AI/EECS%20498-007/linear_classifer/","title":"Linear classifer","text":"
\u7ea6 677 \u4e2a\u5b57 216 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
"},{"location":"AI/EECS%20498-007/linear_classifer/#_1","title":"\u539f\u7406","text":"
\u4e24\u79cd\u7ebf\u6027\u5206\u7c7b\u5668\uff1a\u652f\u6301\u5411\u91cf\u673a\uff08SVM\uff09\u548cSoftmax\u5206\u7c7b\u5668\u3002\u8fd9\u4e24\u79cd\u5206\u7c7b\u5668\u90fd\u662f\u76d1\u7763\u5b66\u4e60\u7b97\u6cd5\uff0c\u7528\u4e8e\u5206\u7c7b\u4efb\u52a1\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#svm","title":"\u652f\u6301\u5411\u91cf\u673a\uff08SVM\uff09","text":"
SVM\u7684\u76ee\u6807\u662f\u627e\u5230\u4e00\u4e2a\u8d85\u5e73\u9762\uff0c\u5b83\u53ef\u4ee5\u6700\u5927\u5316\u4e0d\u540c\u7c7b\u522b\u4e4b\u95f4\u7684\u8fb9\u754c\u3002\u8fd9\u4e2a\u8d85\u5e73\u9762\u88ab\u79f0\u4e3a\u6700\u4f18\u5206\u5272\u8d85\u5e73\u9762\u3002\u5bf9\u4e8e\u4e8c\u5206\u7c7b\u95ee\u9898\uff0cSVM\u7684\u635f\u5931\u51fd\u6570\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W, b) = \\frac{1}{N} \\sum_{i=1}^{N} \\max(0, 1 - y_i (W \\cdot x_i + b)) \\]
\u5176\u4e2d\uff0c\\(W\\) \u662f\u6743\u91cd\u5411\u91cf\uff0c\\(b\\) \u662f\u504f\u7f6e\u9879\uff0c\\(x_i\\) \u662f\u8f93\u5165\u7279\u5f81\uff0c\\(y_i\\) \u662f\u6807\u7b7e\uff08-1\u62161\uff09\uff0c\\(N\\) \u662f\u6837\u672c\u6570\u91cf\u3002
\u4e3a\u4e86\u5b9e\u73b0\u591a\u5206\u7c7b\uff0c\u6211\u4eec\u4f7f\u7528\u7ed3\u6784\u5316SVM\u635f\u5931\u51fd\u6570\uff0c\u5b83\u8003\u8651\u4e86\u6bcf\u4e2a\u7c7b\u522b\u7684\u5206\u6570\uff0c\u5e76\u5c1d\u8bd5\u6700\u5927\u5316\u6b63\u786e\u7c7b\u522b\u7684\u5206\u6570\u4e0e\u6b21\u9ad8\u7c7b\u522b\u5206\u6570\u4e4b\u95f4\u7684\u5dee\u8ddd\u3002\u635f\u5931\u51fd\u6570\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W) = \\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j \\neq y_i} \\max(0, \\text{score}_j - \\text{score}_{y_i} + \\Delta) \\]
\u5176\u4e2d\uff0c\\(\\text{score}_j = W_j \\cdot x_i\\)\uff0c\\(\\Delta\\) \u662f\u4e00\u4e2a\u5e38\u6570\uff0c\u901a\u5e38\u8bbe\u7f6e\u4e3a1\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#softmax","title":"Softmax\u5206\u7c7b\u5668","text":"
Softmax\u5206\u7c7b\u5668\u4f7f\u7528Softmax\u51fd\u6570\u5c06\u8f93\u5165\u7279\u5f81\u6620\u5c04\u5230\u6982\u7387\u5206\u5e03\u4e0a\u3002\u5bf9\u4e8e\u6bcf\u4e2a\u6837\u672c\uff0cSoftmax\u51fd\u6570\u8f93\u51fa\u6bcf\u4e2a\u7c7b\u522b\u7684\u6982\u7387\u3002Softmax\u51fd\u6570\u5b9a\u4e49\u4e3a\uff1a
\\[ \\text{softmax}(z_i) = \\frac{e^{z_i}}{\\sum_{j=1}^{K} e^{z_j}} \\]
\u5176\u4e2d\uff0c\\(z_i\\) \u662f\u7b2c\\(i\\)\u4e2a\u7c7b\u522b\u7684\u5206\u6570\uff0c\\(K\\) \u662f\u7c7b\u522b\u603b\u6570\u3002
Softmax\u5206\u7c7b\u5668\u7684\u635f\u5931\u51fd\u6570\u662f\u4ea4\u53c9\u71b5\u635f\u5931\uff0c\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W) = -\\frac{1}{N} \\sum_{i=1}^{N} \\sum_{j=1}^{K} y_{ij} \\log(\\text{softmax}(z_j)) \\]
\u5176\u4e2d\uff0c\\(y_{ij}\\) \u662f\u4e00\u4e2a\u6307\u793a\u53d8\u91cf\uff0c\u5982\u679c\u6837\u672c\\(i\\)\u5c5e\u4e8e\u7c7b\u522b\\(j\\)\uff0c\u5219\u4e3a1\uff0c\u5426\u5219\u4e3a0\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_2","title":"\u6b63\u5219\u5316","text":"
\u4e3a\u4e86\u9632\u6b62\u8fc7\u62df\u5408\uff0c\u6211\u4eec\u5728\u635f\u5931\u51fd\u6570\u4e2d\u6dfb\u52a0\u4e86\u6b63\u5219\u5316\u9879\u3002L2\u6b63\u5219\u5316\u7684\u635f\u5931\u51fd\u6570\u53ef\u4ee5\u8868\u793a\u4e3a\uff1a
\\[ L(W) = L(W) + \\lambda \\lVert W \\rVert^2 \\]
\u5176\u4e2d\uff0c\\(\\lambda\\) \u662f\u6b63\u5219\u5316\u5f3a\u5ea6\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_3","title":"\u4ee3\u7801\u5b9e\u73b0","text":"
\u4ee3\u7801\u4e2d\u5b9e\u73b0\u4e86\u4e24\u79cd\u635f\u5931\u51fd\u6570\u7684\u6734\u7d20\u7248\u672c\uff08svm_loss_naive
\u548c softmax_loss_naive
\uff09\u548c\u5411\u91cf\u5316\u7248\u672c\uff08svm_loss_vectorized
\u548c softmax_loss_vectorized
\uff09\u3002\u5411\u91cf\u5316\u7248\u672c\u901a\u8fc7\u907f\u514d\u663e\u5f0f\u5faa\u73af\u6765\u63d0\u9ad8\u8ba1\u7b97\u6548\u7387\u3002
\u8bad\u7ec3\u8fc7\u7a0b\uff08train_linear_classifier
\uff09\u4f7f\u7528\u968f\u673a\u68af\u5ea6\u4e0b\u964d\uff08SGD\uff09\u6765\u4f18\u5316\u635f\u5931\u51fd\u6570\u3002\u5728\u6bcf\u6b21\u8fed\u4ee3\u4e2d\uff0c\u6211\u4eec\u968f\u673a\u62bd\u53d6\u4e00\u4e2a\u6279\u6b21\u7684\u6837\u672c\uff0c\u8ba1\u7b97\u635f\u5931\u548c\u68af\u5ea6\uff0c\u7136\u540e\u66f4\u65b0\u6743\u91cd\u3002
\u9884\u6d4b\u8fc7\u7a0b\uff08predict_linear_classifier
\uff09\u4f7f\u7528\u8bad\u7ec3\u597d\u7684\u6743\u91cd\u6765\u9884\u6d4b\u65b0\u6837\u672c\u7684\u7c7b\u522b\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_4","title":"\u8d85\u53c2\u6570\u641c\u7d22","text":"
\u4ee3\u7801\u4e2d\u8fd8\u5305\u542b\u4e86\u8d85\u53c2\u6570\u641c\u7d22\u7684\u51fd\u6570\uff08svm_get_search_params
\u548c softmax_get_search_params
\uff09\uff0c\u5b83\u4eec\u8fd4\u56de\u4e0d\u540c\u7684\u5b66\u4e60\u7387\u548c\u6b63\u5219\u5316\u5f3a\u5ea6\u7684\u5019\u9009\u503c\uff0c\u4ee5\u4fbf\u627e\u5230\u6700\u4f73\u7684\u6a21\u578b\u53c2\u6570\u3002
"},{"location":"AI/EECS%20498-007/linear_classifer/#_5","title":"\u4f5c\u4e1a\u5b9e\u73b0","text":"Python
import torch\nimport random\nfrom abc import abstractmethod\n\ndef hello_linear_classifier():\n print('Hello from linear_classifier.py!')\n\nclass LinearClassifier(object):\n def __init__(self):\n random.seed(0)\n torch.manual_seed(0)\n self.W = None\n\n def train(self, X_train, y_train, learning_rate=1e-3, reg=1e-5, num_iters=100,\n batch_size=200, verbose=False):\n train_args = (self.loss, self.W, X_train, y_train, learning_rate, reg,\n num_iters, batch_size, verbose)\n self.W, loss_history = train_linear_classifier(*train_args)\n return loss_history\n\n def predict(self, X):\n return predict_linear_classifier(self.W, X)\n\n @abstractmethod\n def loss(self, W, X_batch, y_batch, reg):\n raise NotImplementedError\n\n def _loss(self, X_batch, y_batch, reg):\n self.loss(self.W, X_batch, y_batch, reg)\n\n def save(self, path):\n torch.save({'W': self.W}, path)\n print(\"Saved in {}\".format(path))\n\n def load(self, path):\n W_dict = torch.load(path, map_location='cpu')\n self.W = W_dict['W']\n print(\"load checkpoint file: {}\".format(path))\n\n\nclass LinearSVM(LinearClassifier):\n def loss(self, W, X_batch, y_batch, reg):\n return svm_loss_vectorized(W, X_batch, y_batch, reg)\n\n\nclass Softmax(LinearClassifier):\n def loss(self, W, X_batch, y_batch, reg):\n return softmax_loss_vectorized(W, X_batch, y_batch, reg)\n\n\ndef svm_loss_naive(W, X, y, reg):\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n loss = 0.0\n for i in range(num_train):\n scores = W.t().mv(X[i])\n correct_class_score = scores[y[i]]\n for j in range(num_classes):\n if j == y[i]:\n continue\n margin = scores[j] - correct_class_score + 1\n if margin > 0:\n loss += margin\n dW[:, j] += X[i]\n dW[:, y[i]] -= X[i]\n\n loss /= num_train\n loss += reg * torch.sum(W * W)\n dW /= num_train\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef svm_loss_vectorized(W, X, y, reg):\n loss = 0.0\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n scores = X.mm(W)\n correct_class_score = scores[range(num_train), y]\n margin = scores - correct_class_score.view(-1, 1) + 1\n margin[range(num_train), y] = 0\n mask = (margin > 0)\n loss = margin[mask].sum()\n mask_correct_y = torch.zeros_like(scores, dtype=torch.bool)\n mask_correct_y[range(num_train), y] = True\n margin[margin > 0] = 1\n margin[margin < 0] = 0\n margin[mask_correct_y] = torch.sum(margin, axis=1) * -1\n dW = margin.T.mm(X).T\n loss /= num_train\n dW /= num_train\n loss += reg * torch.sum(W * W)\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef sample_batch(X, y, num_train, batch_size):\n indices = torch.randint(num_train, (batch_size,))\n y_batch = y[indices]\n X_batch = X[indices]\n return X_batch, y_batch\n\n\ndef train_linear_classifier(loss_func, W, X, y, learning_rate=1e-3,\n reg=1e-5, num_iters=100, batch_size=200,\n verbose=False):\n num_train, dim = X.shape\n if W is None:\n num_classes = torch.max(y) + 1\n W = 0.000001 * torch.randn(dim, num_classes, device=X.device, dtype=X.dtype)\n else:\n num_classes = W.shape[1]\n\n loss_history = []\n for it in range(num_iters):\n X_batch, y_batch = sample_batch(X, y, num_train, batch_size)\n loss, grad = loss_func(W, X_batch, y_batch, reg)\n loss_history.append(loss.item())\n W -= learning_rate * grad\n if verbose and it % 100 == 0:\n print('iteration %d / %d: loss %f' % (it, num_iters, loss))\n\n return W, loss_history\n\n\ndef predict_linear_classifier(W, X):\n y_pred = torch.zeros(X.shape[0], dtype=torch.int64)\n _, y_pred = X.mm(W).max(dim=1)\n return y_pred\n\n\ndef svm_get_search_params():\n learning_rates = [0.000001, 0.0001, 0.001, 0.005, 0.01, 0.05]\n regularization_strengths = [0.001, 0.5, 1, 3]\n return learning_rates, regularization_strengths\n\n\ndef test_one_param_set(cls, data_dict, lr, reg, num_iters=2000):\n train_acc = 0.0\n val_acc = 0.0\n cls.train(data_dict['X_train'], data_dict['y_train'], lr, reg, num_iters,\n batch_size=200, verbose=False)\n y_train_pred = cls.predict(data_dict['X_train'])\n train_acc = 100.0 * (data_dict['y_train'] == y_train_pred).double().mean().item()\n\n y_test_pred = cls.predict(data_dict['X_val'])\n val_acc = 100.0 * (data_dict['y_val'] == y_test_pred).double().mean().item()\n\n return cls, train_acc, val_acc\n\n\ndef softmax_loss_naive(W, X, y, reg):\n loss = 0.0\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n\n scores = W.t().mv(X[0])\n correct_class_score = scores[y[0]]\n\n for i in range(num_train):\n scores = W.t().mv(X[i])\n scores = scores - scores.max()\n correct_class_score = scores[y[i]]\n loss += -correct_class_score + torch.log(torch.exp(scores).sum())\n for j in range(num_classes):\n if j == y[i]:\n dW[:, j] += torch.exp(scores[j]) / torch.exp(scores).sum() * X[i, :] - X[i, :]\n else:\n dW[:, j] += torch.exp(scores[j]) / torch.exp(scores).sum() * X[i, :]\n\n loss /= num_train\n loss += reg * torch.sum(W * W)\n dW /= num_train\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef softmax_loss_vectorized(W, X, y, reg):\n loss = 0.0\n dW = torch.zeros_like(W)\n num_classes = W.shape[1]\n num_train = X.shape[0]\n\n\n scores = X.mm(W)\n val, _ = scores.max(dim=1)\n scores = scores - val.view(-1, 1)\n exp_scores = scores.exp()\n exp_scores_sum = exp_scores.sum(dim=1)\n exp_scores_sum_log = exp_scores_sum.log()\n correct_class_scores = scores[range(num_train), y]\n loss = (exp_scores_sum_log - correct_class_scores).sum()\n zeros = torch.zeros((num_train, num_classes), dtype=torch.float64, device='cuda')\n zeros[range(num_train), y] = -1\n minus_X = zeros.t().mm(X)\n dW += minus_X.t()\n dW += ((exp_scores / exp_scores_sum.view(-1, 1)).t().mm(X)).t()\n\n loss /= num_train\n loss += reg * torch.sum(W * W)\n dW /= num_train\n dW += 2 * reg * W\n\n return loss, dW\n\n\ndef softmax_get_search_params():\n learning_rates = [1e-4, 1e-3,1e-2, 1e-1, 1]\n regularization_strengths = [1e-4, 1e-3, 1e-2, 1e-1] \n return learning_rates, regularization_strengths\n
"},{"location":"AI/EECS%20498-007/pytorch%20%E7%9A%84%E5%9F%BA%E6%9C%AC%E4%BD%BF%E7%94%A8/","title":"pytorch \u7684\u57fa\u672c\u4f7f\u7528","text":"
\u7ea6 564 \u4e2a\u5b57 45 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
Python
# Create a rank 1 tensor from a Python list\na = torch.tensor([[1, 2, 3], [4, 5, 6]])\nprint('Here is a:')\nprint(a)\nprint('type(a): ', type(a))\nprint('rank of a: ', a.dim())\nprint('a.shape: ', a.shape)\n\ntorch.zeros(2, 3)\ntorch.ones(2, 3)\ntorch.eye(3)\ntorch.rand(2, 3)\ntorch.full((M, N), 3.14)\n\ny2 = torch.tensor([1, 2], dtype=torch.int64)\nprint(y2.dtype)\n\nx3 = x0.to(torch.float32)\n\nx0 = torch.eye(3, dtype=torch.float64) \u00a0# Shape (3, 3), dtype torch.float64\nx1 = torch.zeros_like(x0) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 # Shape (3, 3), dtype torch.float64\nx2 = x0.new_zeros(4, 5) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 # Shape (4, 5), dtype torch.float64\nx3 = torch.ones(6, 7).to(x0) \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0# Shape (6, 7), dtype torch.float64\n
Even though PyTorch provides a large number of numeric datatypes, the most commonly used datatypes are:
torch.float32
: Standard floating-point type; used to store learnable parameters, network activations, etc. Nearly all arithmetic is done using this type. torch.int64
: Typically used to store indices torch.bool
: Stores boolean values: 0 is false and 1 is true torch.float16
: Used for mixed-precision arithmetic, usually on NVIDIA GPUs with tensor cores. You won't need to worry about this datatype in this course. - \u6ce8\u610f
a[:, 1]
\u548c a[:, 1:2]
\u7684\u533a\u522b\uff0c\u540e\u8005\u4f1a\u4fdd\u7559\u7684\u591a\u4e00\u70b9 clone()
\u4ee5\u540e\u7684\u53d8\u91cf\u8ddf\u539f\u53d8\u91cf\u662f\u72ec\u7acb\u7684\uff0c\u4f46\u662f\u7b49\u53f7\u76f4\u63a5\u8d4b\u503c\u7684\u662f\u540c\u4e00\u4e2a\u6307\u9488
Python
mask = (a > 3)\nprint('\\nMask tensor:')\nprint(mask)\n# Mask tensor: tensor([[False, False], [False, True], [ True, True]])\n
- As its name implies, a tensor returned by
.view()
shares the same data as the input, so changes to one will affect the other.
Reshape\u548cview\u7684\u533a\u522b
- \u5185\u5b58\u8fde\u7eed\u6027\uff1a
view
\u8981\u6c42\u539f\u59cb\u5f20\u91cf\u548c\u76ee\u6807\u5f20\u91cf\u5728\u5185\u5b58\u4e2d\u662f\u8fde\u7eed\u7684\u3002\u5982\u679c\u539f\u59cb\u5f20\u91cf\u4e0d\u662f\u8fde\u7eed\u7684\uff0c view
\u4f1a\u9996\u5148\u8c03\u7528 contiguous
\u65b9\u6cd5\u4f7f\u5176\u8fde\u7eed\uff0c\u7136\u540e\u6539\u53d8\u5f62\u72b6\u3002\u5982\u679c\u5f20\u91cf\u5df2\u7ecf\u662f\u8fde\u7eed\u7684\uff0c view
\u64cd\u4f5c\u4e0d\u4f1a\u590d\u5236\u6570\u636e\u3002 reshape
\u4e0d\u8981\u6c42\u539f\u59cb\u5f20\u91cf\u662f\u8fde\u7eed\u7684\u3002\u5982\u679c\u539f\u59cb\u5f20\u91cf\u4e0d\u662f\u8fde\u7eed\u7684\uff0creshape
\u4f1a\u521b\u5efa\u4e00\u4e2a\u65b0\u7684\u5f20\u91cf\u5e76\u590d\u5236\u6570\u636e\uff0c\u4ee5\u786e\u4fdd\u65b0\u5f20\u91cf\u662f\u8fde\u7eed\u7684\u3002
- \u8fd4\u56de\u503c
view
\u8fd4\u56de\u4e00\u4e2a\u65b0\u7684\u5f20\u91cf\uff0c\u5b83\u4e0e\u539f\u59cb\u5f20\u91cf\u5171\u4eab\u76f8\u540c\u7684\u6570\u636e\uff0c\u4f46\u662f\u6709\u4e0d\u540c\u7684\u5f62\u72b6\u3002\u5982\u679c\u539f\u59cb\u5f20\u91cf\u4e0d\u662f\u8fde\u7eed\u7684\uff0cview
\u4f1a\u8fd4\u56de\u4e00\u4e2a\u526f\u672c\u3002 reshape
\u4e5f\u8fd4\u56de\u4e00\u4e2a\u65b0\u7684\u5f20\u91cf\uff0c\u4f46\u603b\u662f\u521b\u5efa\u6570\u636e\u7684\u526f\u672c\uff0c\u5373\u4f7f\u539f\u59cb\u5f20\u91cf\u662f\u8fde\u7eed\u7684\u3002
- \u4f7f\u7528\u573a\u666f\uff1a
- \u5f53\u4f60\u786e\u5b9a\u539f\u59cb\u5f20\u91cf\u662f\u8fde\u7eed\u7684\uff0c\u5e76\u4e14\u4f60\u60f3\u8981\u907f\u514d\u4e0d\u5fc5\u8981\u7684\u6570\u636e\u590d\u5236\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528
view
\u3002 - \u5f53\u4f60\u4e0d\u786e\u5b9a\u539f\u59cb\u5f20\u91cf\u662f\u5426\u8fde\u7eed\uff0c\u6216\u8005\u4f60\u60f3\u8981\u786e\u4fdd\u64cd\u4f5c\u4e0d\u4f1a\u56e0\u975e\u8fde\u7eed\u6027\u800c\u5931\u8d25\u65f6\uff0c\u53ef\u4ee5\u4f7f\u7528
reshape
\u3002
- \u53c2\u6570\uff1a
view
\u7684\u53c2\u6570\u662f\u76ee\u6807\u5f62\u72b6\u7684\u7ef4\u5ea6\u3002 reshape
\u7684\u53c2\u6570\u4e5f\u662f\u76ee\u6807\u5f62\u72b6\u7684\u7ef4\u5ea6\uff0c\u4f46\u5b83\u53ef\u4ee5\u63a5\u53d7\u4e00\u4e2a\u989d\u5916\u7684\u53c2\u6570inplace
\uff0c\u5982\u679c\u8bbe\u7f6e\u4e3aTrue
\uff0c\u5219\u4f1a\u5728\u539f\u5730\u4fee\u6539\u5f20\u91cf\u7684\u5f62\u72b6\u3002
torch.sin(x)
\u548c x.sin()
\u662f\u7b49\u4ef7\u7684
Python
x = torch.tensor([[1, 2, 3],\n\u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 \u00a0 [4, 5, 6]], dtype=torch.float32)\nprint('Original tensor:')\nprint(x)\n\nprint('\\nSum over entire tensor:')\nprint(torch.sum(x))\nprint(x.sum())\n\n# We can sum over each row:\nprint('\\nSum of each row:')\nprint(torch.sum(x, dim=0))\nprint(x.sum(dim=0))\n\n# Sum over each column:\nprint('\\nSum of each column:')\nprint(torch.sum(x, dim=1))\nprint(x.sum(dim=1))\n
torch.dot
: Computes inner product of vectors torch.mm
: Computes matrix-matrix products torch.mv
: Computes matrix-vector products torch.addmm
/ torch.addmv
: Computes matrix-matrix and matrix-vector multiplications plus a bias torch.bmm
/ torch.baddmm
: Batched versions of torch.mm
and torch.addmm
, respectively torch.matmul
: General matrix product that performs different operations depending on the rank of the inputs. Confusingly, this is similar to np.dot
in numpy.
"},{"location":"AI/ffb6d/ffb6d-docker/","title":"Docker\u4ece\u5165\u95e8\u5230\u5b9e\u8df5\uff1a\u4ee5FFB6D\u73af\u5883\u914d\u7f6e\u4e3a\u4f8b","text":"
\u7ea6 653 \u4e2a\u5b57 213 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
"},{"location":"AI/ffb6d/ffb6d-docker/#1","title":"1. \u7b80\u4ecb","text":"
Docker\u662f\u4e00\u4e2a\u5f00\u6e90\u7684\u5e94\u7528\u5bb9\u5668\u5f15\u64ce\uff0c\u8ba9\u5f00\u53d1\u8005\u53ef\u4ee5\u6253\u5305\u4ed6\u4eec\u7684\u5e94\u7528\u4ee5\u53ca\u4f9d\u8d56\u5305\u5230\u4e00\u4e2a\u53ef\u79fb\u690d\u7684\u5bb9\u5668\u4e2d\uff0c\u7136\u540e\u53d1\u5e03\u5230\u4efb\u4f55\u6d41\u884c\u7684Linux\u6216Windows\u64cd\u4f5c\u7cfb\u7edf\u4e0a\u3002\u672c\u6587\u5c06\u4ee5\u914d\u7f6eFFB6D\uff08\u4e00\u4e2a3D\u76ee\u6807\u68c0\u6d4b\u6a21\u578b\uff09\u7684\u8fd0\u884c\u73af\u5883\u4e3a\u4f8b\uff0c\u4ecb\u7ecdDocker\u7684\u57fa\u672c\u4f7f\u7528\u3002
"},{"location":"AI/ffb6d/ffb6d-docker/#2","title":"2. \u73af\u5883\u51c6\u5907","text":""},{"location":"AI/ffb6d/ffb6d-docker/#21","title":"2.1 \u7cfb\u7edf\u8981\u6c42","text":"
- Ubuntu 20.04/22.04/24.04
- NVIDIA GPU\uff08\u652f\u6301CUDA\uff09
- \u81f3\u5c118GB\u5185\u5b58
- \u81f3\u5c1130GB\u78c1\u76d8\u7a7a\u95f4
"},{"location":"AI/ffb6d/ffb6d-docker/#22","title":"2.2 \u57fa\u7840\u7ec4\u4ef6\u5b89\u88c5","text":"
\u5b89\u88c5Docker
Bash
# \u66f4\u65b0apt\u5305\u7d22\u5f15\nsudo apt-get update\n\n# \u5b89\u88c5\u5fc5\u8981\u7684\u7cfb\u7edf\u5de5\u5177\nsudo apt-get install -y \\\n apt-transport-https \\\n ca-certificates \\\n curl \\\n gnupg \\\n lsb-release\n\n# \u6dfb\u52a0Docker\u7684\u5b98\u65b9GPG\u5bc6\u94a5\ncurl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg\n\n# \u8bbe\u7f6e\u7a33\u5b9a\u7248\u4ed3\u5e93\necho \\\n \"deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] https://download.docker.com/linux/ubuntu \\\n $(lsb_release -cs) stable\" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null\n\n# \u5b89\u88c5Docker Engine\nsudo apt-get update\nsudo apt-get install -y docker-ce docker-ce-cli containerd.io\n\n# \u9a8c\u8bc1\u5b89\u88c5\nsudo docker run hello-world\n
\u5b89\u88c5NVIDIA\u9a71\u52a8
Bash
# \u6dfb\u52a0NVIDIA\u5305\u4ed3\u5e93\nsudo add-apt-repository ppa:graphics-drivers/ppa\nsudo apt-get update\n\n# \u5b89\u88c5NVIDIA\u9a71\u52a8\nsudo apt-get install -y nvidia-driver-535 # \u6839\u636e\u9700\u8981\u9009\u62e9\u7248\u672c\n\n# \u91cd\u542f\u7cfb\u7edf\nsudo reboot\n\n# \u9a8c\u8bc1\u5b89\u88c5\nnvidia-smi\n
\u5b89\u88c5NVIDIA Container Toolkit
Bash
# \u8bbe\u7f6e\u7a33\u5b9a\u7248\u4ed3\u5e93\ncurl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg\n\necho \"deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://nvidia.github.io/libnvidia-container/stable/ubuntu22.04/$(arch) /\" | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list\n\n# \u66f4\u65b0\u8f6f\u4ef6\u5305\u5217\u8868\nsudo apt-get update\n\n# \u5b89\u88c5nvidia-docker2\nsudo apt-get install -y nvidia-container-toolkit\n\n# \u91cd\u542fDocker\u670d\u52a1\nsudo systemctl restart docker\n\n# \u6d4b\u8bd5GPU\u652f\u6301\nsudo docker run --rm --gpus all nvidia/cuda:12.0-base nvidia-smi\n
"},{"location":"AI/ffb6d/ffb6d-docker/#23-docker","title":"2.3 Docker\u914d\u7f6e\u4f18\u5316","text":"
\u914d\u7f6e\u955c\u50cf\u52a0\u901f
Bash
sudo tee /etc/docker/daemon.json << EOF\n{\n \"registry-mirrors\": [\n \"https://docker.1panel.dev\",\n \"https://docker.zhai.cm\",\n \"https://hub.littlediary.cn\",\n \"https://docker.nastool.de\"\n ],\n \"dns\": [\"8.8.8.8\", \"8.8.4.4\"],\n \"max-concurrent-downloads\": 10,\n \"log-driver\": \"json-file\",\n \"log-opts\": {\n \"max-size\": \"10m\",\n \"max-file\": \"3\"\n }\n}\nEOF\n\nsudo systemctl daemon-reload\nsudo systemctl restart docker\n
"},{"location":"AI/ffb6d/ffb6d-docker/#3-ffb6d","title":"3. FFB6D\u73af\u5883\u914d\u7f6e\u5b9e\u4f8b","text":""},{"location":"AI/ffb6d/ffb6d-docker/#31","title":"3.1 \u9879\u76ee\u7ed3\u6784","text":"Bash
ffb6d_docker/\n\u251c\u2500\u2500 Dockerfile\n\u251c\u2500\u2500 docker-compose.yml\n\u251c\u2500\u2500 build_and_run.sh\n\u251c\u2500\u2500 downloads/\n\u2502 \u251c\u2500\u2500 apex/\n\u2502 \u2514\u2500\u2500 normalspeed/\n\u251c\u2500\u2500 code/\n\u251c\u2500\u2500 datasets/\n\u251c\u2500\u2500 models/\n\u2514\u2500\u2500 train_log/\n
"},{"location":"AI/ffb6d/ffb6d-docker/#32-dockerfile","title":"3.2 \u521b\u5efaDockerfile","text":"Docker
# \u4f7f\u7528\u8f83\u65b0\u7684 CUDA \u955c\u50cf\nFROM nvcr.io/nvidia/cuda:11.0.3-cudnn8-devel-ubuntu18.04\n\n# \u4f7f\u7528 NVIDIA CUDA 11.3 \u57fa\u7840\u955c\u50cf\n# FROM nvcr.io/nvidia/cuda:11.3.1-cudnn8-devel-ubuntu20.04\n\n# \u907f\u514d\u4ea4\u4e92\u5f0f\u63d0\u793a\nENV DEBIAN_FRONTEND=noninteractive\nENV PYTHONPATH=/workspace/code\nENV CUDA_HOME=/usr/local/cuda\nENV PATH=$CUDA_HOME/bin:$PATH\nENV LD_LIBRARY_PATH=$CUDA_HOME/lib64:$LD_LIBRARY_PATH\n\nWORKDIR /workspace\n\n# \u5b89\u88c5\u7cfb\u7edf\u4f9d\u8d56\nRUN apt-get update && apt-get install -y \\\n python3.6 \\\n python3.6-dev \\\n python3-pip \\\n git \\\n cmake \\\n build-essential \\\n libopencv-dev \\\n libglib2.0-0 \\\n libsm6 \\\n libxext6 \\\n libxrender-dev \\\n libboost-all-dev \\\n libeigen3-dev \\\n wget \\\n && rm -rf /var/lib/apt/lists/*\n\n# \u8bbe\u7f6e Python 3.6 \u4e3a\u9ed8\u8ba4\u7248\u672c\nRUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1\nRUN update-alternatives --set python3 /usr/bin/python3.6\n\n# \u5347\u7ea7 pip\nRUN python3 -m pip install --upgrade pip\n\n# \u914d\u7f6epip\u955c\u50cf\u6e90\nRUN pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n\n# \u5148\u5b89\u88c5 PyTorch (\u4f7f\u7528\u8f83\u65b0\u4f46\u517c\u5bb9\u7684\u7248\u672c)\nRUN pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/torch_stable.html\n\n# \u590d\u5236\u9884\u4e0b\u8f7d\u7684\u6587\u4ef6\nCOPY downloads/apex /workspace/apex\nCOPY downloads/normalspeed /workspace/normalspeed\nCOPY code /workspace/code\n\n# \u5b89\u88c5 apex\n#RUN cd /workspace/apex && \\\n# pip install -v --no-cache-dir --global-option=\"--cpp_ext\" --global-option=\"--cuda_ext\" ./ || \\\n# (echo \"Apex installation failed. Check the error messages above.\" && exit 1)\n\n# \u5b89\u88c5 normalspeed\n#RUN cd /workspace/normalspeed && \\\n# python3 setup.py build_ext --inplace && \\\n# python3 setup.py install\n\nWORKDIR /workspace/code\n
\u66f4\u6539 requirement.txt
Text Only
h5py \nnumpy \npyyaml==5.4.1\nenum34 \nfuture \nscipy==1.4.1 \nopencv_contrib_python==3.4.2.16 \ntransforms3d==0.3.1 \nscikit_image==0.13.1 \nlmdb==0.94 \nsetuptools==41.0.0 \ncffi==1.11.5 \neasydict==1.7 \nplyfile==0.6 \npillow==8.2.0 \ndataclasses\nglumpy \ntqdm\ntensorboardX \npandas\nscikit-learn \nscipy \ntermcolor\npybind11\n
"},{"location":"AI/ffb6d/ffb6d-docker/#33-docker-composeyml","title":"3.3 \u521b\u5efadocker-compose.yml","text":"YAML
version: '3'\nservices:\n ffb6d:\n build: .\n image: ffb6d:latest\n container_name: ffb6d_container\n runtime: nvidia\n environment:\n - NVIDIA_VISIBLE_DEVICES=all\n volumes:\n - ./datasets:/workspace/code/datasets\n - ./train_log:/workspace/code/train_log\n - ./models:/workspace/code/models\n shm_size: '8gb'\n tty: true\n stdin_open: true\n
"},{"location":"AI/ffb6d/ffb6d-docker/#34","title":"3.4 \u6784\u5efa\u548c\u8fd0\u884c\u811a\u672c","text":"
\u521b\u5efabuild_and_run.sh
\uff1a
Bash
#!/bin/bash\n\n# \u521b\u5efa\u5fc5\u8981\u76ee\u5f55\nmkdir -p downloads datasets models train_log\n\n# \u4e0b\u8f7d\u4f9d\u8d56\ncd downloads\nif [ ! -d \"apex\" ]; then\n git clone https://github.com/NVIDIA/apex.git\nfi\nif [ ! -d \"normalspeed\" ]; then\n git clone https://github.com/hfutcgncas/normalspeed.git\nfi\ncd ..\n\n# \u514b\u9686FFB6D\u4ee3\u7801\nif [ ! -d \"code\" ]; then\n git clone https://github.com/ethnhe/FFB6D.git code\nfi\n\n# \u6784\u5efa\u955c\u50cf\ndocker-compose build\n\n# \u8fd0\u884c\u5bb9\u5668\ndocker-compose up -d\ndocker exec -it ffb6d_container bash\n
"},{"location":"AI/ffb6d/ffb6d-docker/#35","title":"3.5 \u542f\u52a8\u548c\u9a8c\u8bc1","text":"Bash
# \u6dfb\u52a0\u6267\u884c\u6743\u9650\nchmod +x build_and_run.sh\n\n# \u8fd0\u884c\n./build_and_run.sh\n\n# \u5728\u5bb9\u5668\u5185\u9a8c\u8bc1\npython3 -c \"import torch; print('CUDA available:', torch.cuda.is_available())\"\npython3 -c \"from apex import amp; print('APEX installed')\"\npython3 -c \"import normalspeed; print('normalspeed installed')\"\n
"},{"location":"AI/ffb6d/ffb6d-docker/#36-apex","title":"3.6 \u7f16\u8bd1 apex","text":"Text Only
git clone https://github.com/NVIDIA/apex\ncd apex\nexport TORCH_CUDA_ARCH_LIST=\"6.0;6.1;6.2;7.0;7.5\"\npython setup.py install -v\n
"},{"location":"AI/ffb6d/ffb6d-docker/#37-normalspeed","title":"3.7 \u7f16\u8bd1 normalspeed","text":"Text Only
# 1. \u5378\u8f7d\u5f53\u524dcv2\npip uninstall opencv-python opencv-python-headless -y\n\n# 2. \u5b89\u88c5\u7279\u5b9a\u7248\u672c\u7684OpenCV\uff0c\u9009\u62e9\u4e0ePython 3.6\u517c\u5bb9\u7684\u7248\u672c\npip install opencv-python==4.5.3.56\n\n# 3. \u9a8c\u8bc1\u5b89\u88c5\npython3 -c \"import cv2; print(cv2.__version__)\"\n
Text Only
# \u8fdb\u5165normalSpeed\u76ee\u5f55\ncd /workspace/code/normalspeed/normalSpeed\n\n# \u5b89\u88c5\u4f9d\u8d56\napt-get update\napt-get install python3-pybind11\npip3 install Cython==0.29.15\n\n# \u6e05\u7406\u4e4b\u524d\u7684\u6784\u5efa\nrm -rf build/\nrm -rf dist/\nrm -rf *.egg-info/\n\n# \u91cd\u65b0\u5b89\u88c5\npython3 setup.py install\n\n# \u9a8c\u8bc1\u5b89\u88c5\npython3 -c \"import normalSpeed\"\n\n# \u8fd4\u56deffb6d\u76ee\u5f55\ncd /workspace/code/ffb6d/\n
Text Only
python3 setup.py install --user\n
"},{"location":"AI/ffb6d/ffb6d-docker/#38","title":"3.8 \u8bad\u7ec3","text":"
\u628a LineMOD \u590d\u5236\u5230\u5bf9\u5e94\u7684\u8def\u5f84\u4e0b\uff0c\u7136\u540e\u6309\u5b98\u7f51\u6765\u5c31\u597d\u4e86
"},{"location":"AI/ffb6d/ffb6d-docker/#4","title":"4. \u5e38\u89c1\u95ee\u9898","text":""},{"location":"AI/ffb6d/ffb6d-docker/#41","title":"4.1 \u7f51\u7edc\u95ee\u9898","text":"
\u5982\u679c\u9047\u5230\u4e0b\u8f7d\u6162\u6216\u5931\u8d25\uff1a
Bash
# \u4e34\u65f6\u4f7f\u7528\u4ee3\u7406\nexport http_proxy=\"http://proxy:port\"\nexport https_proxy=\"http://proxy:port\"\n\n# \u6216\u4fee\u6539pip\u6e90\npip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n
\u6ce8\u610f\u7528\u4e86\u4ee3\u7406\u7684\u8bdd\uff0cdocker hub \u955c\u50cf\u5c31\u4f1a\u88ab\u8986\u76d6\u6389\uff0c\u5bfc\u81f4\u901f\u5ea6\u5f88\u6162\u3002\u6240\u4ee5\u5230\u65f6\u5019\u4e00\u5b9a\u8981\u53d6\u6d88\u4ee3\u7406 / \u5220\u9664\u4ee3\u7406\u6587\u4ef6
docker hub \u955c\u50cf\u8bbe\u7f6e\u4e0a\u9762\u5199\u4e86\uff0c\u5b98\u7f51\u662f\u8fd9\u4e2a GitHub - dongyubin/DockerHub: 2024\u5e7411\u6708\u66f4\u65b0\uff0c\u76ee\u524d\u56fd\u5185\u53ef\u7528Docker\u955c\u50cf\u6e90\u6c47\u603b\uff0cDockerHub\u56fd\u5185\u955c\u50cf\u52a0\u901f\u5217\u8868\uff0c\ud83d\ude80DockerHub\u955c\u50cf\u52a0\u901f\u5668
"},{"location":"AI/ffb6d/ffb6d-docker/#42-cuda","title":"4.2 CUDA\u517c\u5bb9\u6027","text":"
\u786e\u4fddNVIDIA\u9a71\u52a8\u7248\u672c\u652f\u6301\u6240\u9700\u7684CUDA\u7248\u672c\uff1a
Bash
# \u68c0\u67e5\u652f\u6301\u7684\u6700\u9ad8CUDA\u7248\u672c\nnvidia-smi\n
"},{"location":"AI/ffb6d/ffb6d-docker/#43","title":"4.3 \u5185\u5b58\u4e0d\u8db3","text":"
\u8c03\u6574Docker\u5185\u5b58\u9650\u5236\uff1a
YAML
# \u5728docker-compose.yml\u4e2d\u6dfb\u52a0\nservices:\n ffb6d:\n deploy:\n resources:\n limits:\n memory: 16G\n
"},{"location":"AI/ffb6d/ffb6d-docker/#5","title":"5. \u603b\u7ed3","text":"
\u672c\u6587\u4ecb\u7ecd\u4e86\u4f7f\u7528Docker\u914d\u7f6e\u6df1\u5ea6\u5b66\u4e60\u73af\u5883\u7684\u5b8c\u6574\u6d41\u7a0b\uff0c\u4ee5FFB6D\u4e3a\u4f8b\u5c55\u793a\u4e86\u5982\u4f55\u5904\u7406\u590d\u6742\u4f9d\u8d56\u5173\u7cfb\u3002\u901a\u8fc7\u5bb9\u5668\u5316\u6280\u672f\uff0c\u6211\u4eec\u53ef\u4ee5\uff1a
- \u786e\u4fdd\u73af\u5883\u4e00\u81f4\u6027
- \u7b80\u5316\u90e8\u7f72\u6d41\u7a0b
- \u63d0\u9ad8\u5f00\u53d1\u6548\u7387
- \u65b9\u4fbf\u56e2\u961f\u534f\u4f5c
\u5e0c\u671b\u672c\u6559\u7a0b\u80fd\u5e2e\u52a9\u4f60\u66f4\u597d\u5730\u7406\u89e3\u548c\u4f7f\u7528Docker\u3002
"},{"location":"AI/ffb6d/ffb6d-docker/#_1","title":"\u53c2\u8003\u8d44\u6599","text":"
- Docker\u5b98\u65b9\u6587\u6863
- NVIDIA Docker\u6587\u6863
- FFB6D\u9879\u76ee
- \u3010\u8bba\u6587\u7b14\u8bb0\u3011FFB6D | \u9a6c\u6d69\u98de\u4e28\u535a\u5ba2
"},{"location":"AI/ffb6d/ffb6d/","title":"FFB6D\u73af\u5883\u914d\u7f6e\u6307\u5357\uff1a\u539f\u751f\u7cfb\u7edf\u5b89\u88c5","text":"
\u7ea6 293 \u4e2a\u5b57 96 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
"},{"location":"AI/ffb6d/ffb6d/#1","title":"1. \u7cfb\u7edf\u8981\u6c42","text":"
- Ubuntu 20.04/22.04/24.04
- NVIDIA GPU\uff08\u652f\u6301CUDA\uff09
- \u81f3\u5c118GB\u5185\u5b58
- \u81f3\u5c1130GB\u78c1\u76d8\u7a7a\u95f4
"},{"location":"AI/ffb6d/ffb6d/#2","title":"2. \u57fa\u7840\u73af\u5883\u914d\u7f6e","text":""},{"location":"AI/ffb6d/ffb6d/#21-nvidia","title":"2.1 \u5b89\u88c5NVIDIA\u9a71\u52a8","text":"Bash
# \u6dfb\u52a0NVIDIA\u5305\u4ed3\u5e93\nsudo add-apt-repository ppa:graphics-drivers/ppa\nsudo apt-get update\n\n# \u5b89\u88c5NVIDIA\u9a71\u52a8\nsudo apt-get install -y nvidia-driver-535 # \u6839\u636e\u9700\u8981\u9009\u62e9\u7248\u672c\n\n# \u91cd\u542f\u7cfb\u7edf\nsudo reboot\n\n# \u9a8c\u8bc1\u5b89\u88c5\nnvidia-smi\n
"},{"location":"AI/ffb6d/ffb6d/#22-cudacudnn","title":"2.2 \u5b89\u88c5CUDA\u548ccuDNN","text":"Bash
# \u4e0b\u8f7d\u5e76\u5b89\u88c5CUDA 11.0\nwget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run\nsudo sh cuda_11.0.3_450.51.06_linux.run\n\n# \u914d\u7f6e\u73af\u5883\u53d8\u91cf\necho 'export PATH=/usr/local/cuda-11.0/bin:$PATH' >> ~/.bashrc\necho 'export LD_LIBRARY_PATH=/usr/local/cuda-11.0/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc\nsource ~/.bashrc\n\n# \u4e0b\u8f7d\u5e76\u5b89\u88c5cuDNN 8.0\n# \u6ce8\uff1a\u9700\u8981\u4eceNVIDIA\u5f00\u53d1\u8005\u7f51\u7ad9\u4e0b\u8f7dcuDNN v8.0\uff0c\u89e3\u538b\u540e\uff1a\nsudo cp cuda/include/cudnn*.h /usr/local/cuda/include\nsudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64\nsudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*\n
"},{"location":"AI/ffb6d/ffb6d/#23","title":"2.3 \u5b89\u88c5\u7cfb\u7edf\u4f9d\u8d56","text":"Bash
sudo apt-get update\nsudo apt-get install -y \\\n python3.6 \\\n python3.6-dev \\\n python3-pip \\\n git \\\n cmake \\\n build-essential \\\n libopencv-dev \\\n libglib2.0-0 \\\n libsm6 \\\n libxext6 \\\n libxrender-dev \\\n libboost-all-dev \\\n libeigen3-dev\n
"},{"location":"AI/ffb6d/ffb6d/#24-python","title":"2.4 \u914d\u7f6ePython\u73af\u5883","text":"Bash
# \u8bbe\u7f6ePython 3.6\u4e3a\u9ed8\u8ba4\u7248\u672c\nsudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1\nsudo update-alternatives --set python3 /usr/bin/python3.6\n\n# \u914d\u7f6epip\u955c\u50cf\u6e90\npip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n\n# \u5347\u7ea7pip\npython3 -m pip install --upgrade pip\n
"},{"location":"AI/ffb6d/ffb6d/#3-pytorch","title":"3. \u5b89\u88c5PyTorch\u548c\u4f9d\u8d56\u5305","text":""},{"location":"AI/ffb6d/ffb6d/#31-pytorch","title":"3.1 \u5b89\u88c5PyTorch","text":"Bash
pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/torch_stable.html\n
"},{"location":"AI/ffb6d/ffb6d/#32","title":"3.2 \u5b89\u88c5\u9879\u76ee\u4f9d\u8d56","text":"
\u521b\u5efarequirements.txt\u5e76\u5b89\u88c5\u4f9d\u8d56\uff1a
Bash
pip3 install -r requirements.txt\n
requirements.txt\u5185\u5bb9\uff1a Text Only
h5py \nnumpy \npyyaml==5.4.1\nenum34 \nfuture \nscipy==1.4.1 \nopencv_contrib_python==3.4.2.16 \ntransforms3d==0.3.1 \nscikit_image==0.13.1 \nlmdb==0.94 \nsetuptools==41.0.0 \ncffi==1.11.5 \neasydict==1.7 \nplyfile==0.6 \npillow==8.2.0 \ndataclasses\nglumpy \ntqdm\ntensorboardX \npandas\nscikit-learn \nscipy \ntermcolor\npybind11\n
"},{"location":"AI/ffb6d/ffb6d/#4","title":"4. \u7f16\u8bd1\u548c\u5b89\u88c5\u7279\u6b8a\u7ec4\u4ef6","text":""},{"location":"AI/ffb6d/ffb6d/#41-apex","title":"4.1 \u7f16\u8bd1apex","text":"Bash
git clone https://github.com/NVIDIA/apex\ncd apex\nexport TORCH_CUDA_ARCH_LIST=\"6.0;6.1;6.2;7.0;7.5\"\npython setup.py install -v\ncd ..\n
"},{"location":"AI/ffb6d/ffb6d/#42-normalspeed","title":"4.2 \u5b89\u88c5\u548c\u7f16\u8bd1normalspeed","text":"Bash
# 1. \u51c6\u5907OpenCV\u73af\u5883\npip uninstall opencv-python opencv-python-headless -y\npip install opencv-python==4.5.3.56\n\n# 2. \u514b\u9686\u5e76\u5b89\u88c5normalspeed\ngit clone https://github.com/hfutcgncas/normalspeed.git\ncd normalspeed/normalSpeed\n\n# \u5b89\u88c5\u7f16\u8bd1\u4f9d\u8d56\nsudo apt-get install python3-pybind11\npip3 install Cython==0.29.15\n\n# \u6e05\u7406\u5e76\u91cd\u65b0\u5b89\u88c5\nrm -rf build/ dist/ *.egg-info/\npython3 setup.py install --user\ncd ../..\n
"},{"location":"AI/ffb6d/ffb6d/#5-ffb6d","title":"5. \u514b\u9686\u548c\u914d\u7f6eFFB6D","text":"Bash
# \u514b\u9686\u4ee3\u7801\ngit clone https://github.com/ethnhe/FFB6D.git\ncd FFB6D\n\n# \u521b\u5efa\u5fc5\u8981\u7684\u76ee\u5f55\nmkdir -p datasets models train_log\n\n# \u914d\u7f6e\u73af\u5883\u53d8\u91cf\nexport PYTHONPATH=$PYTHONPATH:$(pwd)\n
"},{"location":"AI/ffb6d/ffb6d/#6","title":"6. \u9a8c\u8bc1\u5b89\u88c5","text":"Bash
# \u9a8c\u8bc1CUDA\u652f\u6301\npython3 -c \"import torch; print('CUDA available:', torch.cuda.is_available())\"\n\n# \u9a8c\u8bc1apex\u5b89\u88c5\npython3 -c \"from apex import amp; print('APEX installed')\"\n\n# \u9a8c\u8bc1normalspeed\u5b89\u88c5\npython3 -c \"import normalSpeed; print('normalspeed installed')\"\n
"},{"location":"AI/ffb6d/ffb6d/#7","title":"7. \u5e38\u89c1\u95ee\u9898","text":""},{"location":"AI/ffb6d/ffb6d/#71","title":"7.1 \u7f51\u7edc\u95ee\u9898","text":"Bash
# \u4f7f\u7528\u4ee3\u7406\uff08\u5982\u9700\u8981\uff09\nexport http_proxy=\"http://proxy:port\"\nexport https_proxy=\"http://proxy:port\"\n\n# \u6216\u4f7f\u7528\u56fd\u5185\u955c\u50cf\u6e90\npip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n
"},{"location":"AI/ffb6d/ffb6d/#72","title":"7.2 \u7248\u672c\u517c\u5bb9\u6027\u95ee\u9898","text":"
- \u786e\u4fddNVIDIA\u9a71\u52a8\u7248\u672c\u652f\u6301CUDA 11.0
- \u786e\u4fddPython\u5305\u7248\u672c\u76f8\u4e92\u517c\u5bb9
- \u68c0\u67e5CUDA\u7248\u672c\u4e0ePyTorch\u7248\u672c\u7684\u5339\u914d
"},{"location":"AI/ffb6d/ffb6d/#73","title":"7.3 \u7f16\u8bd1\u9519\u8bef","text":"
- \u786e\u4fdd\u5df2\u5b89\u88c5\u6240\u6709\u5fc5\u8981\u7684\u7f16\u8bd1\u5de5\u5177
- \u68c0\u67e5CUDA\u8def\u5f84\u914d\u7f6e\u662f\u5426\u6b63\u786e
- \u786e\u8ba4\u7cfb\u7edf\u5e93\u7248\u672c\u662f\u5426\u6ee1\u8db3\u8981\u6c42
"},{"location":"AI/ffb6d/ffb6d/#8","title":"8. \u8bad\u7ec3","text":"
\u6309\u7167\u5b98\u65b9\u6587\u6863\u914d\u7f6eLineMOD\u6570\u636e\u96c6\u5e76\u5f00\u59cb\u8bad\u7ec3\u3002
"},{"location":"AI/ffb6d/ffb6d/#_1","title":"\u53c2\u8003\u8d44\u6599","text":"
- FFB6D\u9879\u76ee
- CUDA\u5b89\u88c5\u6307\u5357
- PyTorch\u5b89\u88c5\u6307\u5357
- \u3010\u8bba\u6587\u7b14\u8bb0\u3011FFB6D | \u9a6c\u6d69\u98de\u4e28\u535a\u5ba2
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/","title":"\u6df1\u5165\u7406\u89e3\u8ba1\u7b97\u673a\u7cfb\u7edf","text":"
\u7ea6 1012 \u4e2a\u5b57 36 \u884c\u4ee3\u7801 14 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#1","title":"1 \u8ba1\u7b97\u673a\u7cfb\u7edf\u6f2b\u6e38","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#2","title":"2 \u4fe1\u606f\u7684\u8868\u793a\u548c\u5904\u7406","text":"
- \u628a\u4f4d\u7ec4\u5408\u518d\u4e00\u8d77\uff0c\u518d\u52a0\u4e0a interpretation
- \u4e09\u79cd\u91cd\u8981\u7684\u6570\u5b57\u8868\u793a
- unsigned
- two's-complement
- floating-point
- overflow
- \u6d6e\u70b9\u6570\u662f\u8fd1\u4f3c\u7684
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#21","title":"2.1 \u4fe1\u606f\u5b58\u50a8","text":"
- 1 byte = 8 bits
- virtual memory
- address
- \u8bb2\u5b58\u50a8\u5668\u7a7a\u95f4\u5212\u5206\u4e3a\u66f4\u53ef\u7ba1\u7406\u7684\u5355\u5143\uff0c\u6765\u5b58\u653e\u4e0d\u540c\u7684 program object
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#211","title":"2.1.1 \u5341\u516d\u8fdb\u5236\u8868\u793a\u6cd5","text":"
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#212","title":"2.1.2 \u5b57\u6570\u636e\u5927\u5c0f","text":"
- word size
- nominal size
- \u5b57\u957f\u51b3\u5b9a\u7684\u6700\u91cd\u8981\u7684\u7cfb\u7edf\u53c2\u6570\u5c31\u662f\u865a\u62df\u5730\u5740\u7a7a\u95f4\u7684\u6700\u5927\u5927\u5c0f
- \u5b57\u957f\u4e3a \\(\\displaystyle \\omega\\) \u4e3a\u7684\u673a\u5668\uff0c\u865a\u62df\u5730\u5740\u7684\u8303\u56f4\u4e3a \\(\\displaystyle 0\\sim2^{\\omega} - 1\\)
- \u5927\u591a\u6570 64 \u4f4d\u673a\u5668\u53ef\u4ee5\u8fd0\u884c 32 \u4f4d\u673a\u5668\u7f16\u8bd1\u7684\u7a0b\u5e8f\uff0c\u5373\u5411\u540e\u517c\u5bb9
- \u4e3a\u4e86\u907f\u514d\u5927\u5c0f\u548c\u4e0d\u540c\u7f16\u8bd1\u5668\u8bbe\u7f6e\u5e26\u6765\u7684\u5947\u602a\u884c\u4e3a\uff0c\u6211\u4eec\u6709\u4e86 int 32_t \u548c int 64_t
- C \u8bed\u8a00\u5bf9\u58f0\u660e\u7684\u5173\u952e\u8bcd\u987a\u5e8f\u4e0d\u654f\u611f
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#213","title":"2.1.3 \u5bfb\u5740\u548c\u5b57\u8282\u987a\u5e8f","text":"
- [[\u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u786c\u4ef6\u8f6f\u4ef6\u63a5\u53e3#^da8be4|\u5c0f\u7aef\u7f16\u5740]]
- \u5c31\u662f\u53f3\u8fb9\u653e\u5c0f\u7684\uff0c\u8981\u4ece\u53f3\u5f80\u5de6\u8bfb
- \u5b57\u8282\u987a\u5e8f\u53d8\u5f97\u91cd\u8981\u7684\u4e09\u79cd\u60c5\u51b5
- \u7f51\u7edc\u5e94\u7528\u7a0b\u5e8f\u7684\u4ee3\u7801\u7f16\u5199\u5fc5\u987b\u9075\u5b88\u5df2\u5efa\u7acb\u7684\u5173\u4e8e\u5b57\u8282\u987a\u5e8f\u7684\u89c4\u5219
- disassembler
- \u7f16\u5199\u89c4\u907f\u6b63\u5e38\u7684\u7c7b\u578b\u7cfb\u7edf\u7684\u7a0b\u5e8f
- cast or union in C
- \u5bf9\u5e94\u7528\u7f16\u7a0b\u4e0d\u63a8\u8350\uff0c\u4f46\u662f\u5bf9\u7cfb\u7edf\u7ea7\u7f16\u7a0b\u662f\u5fc5\u9700\u7684
C
#include <stdio.h>\n\n\n\ntypedef unsigned char *byte_pointer;\n\nvoid show_bytes(byte_pointer start, size_t len) {\n\u00a0 size_t i;\n\u00a0 for (i = 0; i < len; i++)\n\u00a0 \u00a0 printf(\" %.2x\", start[i]);\n\u00a0 printf(\"\\n\");\n}\n\nvoid show_int(int x) { show_bytes((byte_pointer)&x, sizeof(int)); }\n\nvoid show_float(float x) { show_bytes((byte_pointer)&x, sizeof(float)); }\n\nvoid show_pointer(void *x) { show_bytes((byte_pointer)&x, sizeof(void *)); }\n\nvoid test_show_bytes(int val) {\n\u00a0 int ival = val;\n\u00a0 float fval = (float)ival;\n\u00a0 int *pval = &ival;\n\u00a0 show_int(ival);\n\u00a0 show_float(fval);\n\u00a0 show_pointer(pval);\n}\n\nint main() {\n\u00a0 int val = 12345;\n\u00a0 test_show_bytes(val);\n\u00a0 return 0;\n}\n
Text Only
39 30 00 00 //\u5c0f\u7aef\u6cd5\n 00 e4 40 46\n 8c f6 bf ef b4 00 00 00\n
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#214","title":"2.1.4 \u8868\u793a\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#215","title":"2.1.5 \u8868\u793a\u4ee3\u7801","text":"
- \u4e8c\u8fdb\u5236\u4ee3\u7801\u5f88\u5c11\u80fd\u5728\u4e0d\u540c\u673a\u5668\u548c\u64cd\u4f5c\u7cfb\u7edf\u7ec4\u5408\u4e4b\u95f4\u79fb\u690d
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#216","title":"2.1.6 \u5e03\u5c14\u4ee3\u6570\u7b80\u4ecb","text":"
- \u53ef\u4ee5\u6269\u5c55\u5230\u4f4d\u5411\u91cf\u7684\u8fd0\u7b97
- \u5e03\u5c14\u4ee3\u6570
- Boolean ring
- \u548c\u96c6\u5408\u7684\u5bf9\u5e94
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#217-c","title":"2.1.7 C \u8bed\u8a00\u4e2d\u7684\u4f4d\u7ea7\u8fd0\u7b97","text":"
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#218-c","title":"2.1.8 C \u8bed\u8a00\u4e2d\u7684\u903b\u8f91\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#219-c","title":"2.1.9 C \u8bed\u8a00\u4e2d\u7684\u79fb\u4f4d\u8fd0\u7b97","text":"
- \u903b\u8f91\u53f3\u79fb
- \u7b97\u6570\u53f3\u79fb
- \u5b9e\u9645\u4e0a\uff0c\u51e0\u4e4e\u6240\u6709\u7684\u7f16\u8bd1\u5668\u90fd\u5bf9\u6709\u7b26\u53f7\u6570\u4f7f\u7528\u7b97\u672f\u53f3\u79fb\uff0c\u800c\u5bf9\u4e8e\u65e0\u7b26\u53f7\u6570\uff0c\u53f3\u79fb\u5fc5\u987b\u662f\u903b\u8f91\u7684\uff08C \u8bed\u8a00\uff09
- \u800c\u5bf9\u4e8e Java
x>>k
\u662f\u7b97\u6570\u53f3\u79fb\uff0c x>>>k
\u662f\u903b\u8f91\u53f3\u79fb - \u5bf9\u4e8e C \u8bed\u8a00\uff0c\u79fb\u52a8 \\(\\displaystyle k \\text{ mod } \\omega\\)
- \u52a0\u51cf\u7684\u4f18\u5148\u7ea7\u6bd4\u79fb\u4f4d\u7b97\u6cd5\u8981\u641e
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#22","title":"2.2 \u6574\u6570\u8868\u793a","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#221","title":"2.2.1 \u6574\u578b\u6570\u636e\u7c7b\u578b","text":"
- 64 \u4f4d\u548c 32 \u4f4d\u662f\u4e0d\u4e00\u6837\u7684
- \u53d6\u503c\u8303\u56f4\u4e0d\u662f\u5bf9\u79f0\u7684
- Java \u53ea\u652f\u6301\u6709\u7b26\u53f7\u6570
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#222","title":"2.2.2 \u65e0\u7b26\u53f7\u6570\u7684\u7f16\u7801","text":"
- \u628a\u5411\u91cf\u5199\u6210\u4e8c\u8fdb\u5236\u8868\u793a\u7684\u6570\uff0c\u5c31\u5f97\u5230\u4e86\u65e0\u7b26\u53f7\u8868\u793a
\\[ B2U_w(\\vec{x})\\doteq\\sum_{i=0}^{u-1}x_i2^i \\] \\[ B2U_w:\\{0, 1\\}^w\\to\\{0, \\cdots,2^w-1\\} \\]
- \u65e0\u7b26\u53f7\u6570\u7f16\u7801\u7684\u552f\u4e00\u6027
- \\(\\displaystyle \u51fd\u6570B2U_w\u662f\u4e00\u4e2a\u53cc\u5c04\u3002\\)
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#223","title":"2.2.3 \u8865\u7801\u7f16\u7801","text":"
- two's-complement
- negative weight
\\[ B2T_w(\\vec{x})\\doteq- x_{w-1}2^{w-1}+\\sum_{i=0}^{w-2}x_i2^i \\] \\[ B2T_{w}\\colon \\{0, 1\\}^{w}\\to\\langle TMin_{w}, \\cdots, TMax_{w} \\rangle \\]
\\[ B2O_w(\\vec{x})\\doteq-x_{w-1}(2^{w-1}-1)+\\sum_{i=0}^{w-2}x_i2^i \\]
\\[ B2S_w(\\vec{x})\\doteq(-1)^{x_{w-1}}\\cdot\\bigl(\\sum_{i=0}^{w-2}x_i2^i\\bigr) \\]
- \u5bf9\u4e8e\u6570\u5b57 0 \u6709\u4e24\u79cd\u4e0d\u540c\u7684\u7f16\u7801\u65b9\u5f0f
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#224","title":"2.2.4 \u6709\u7b26\u53f7\u6570\u548c\u65e0\u7b26\u53f7\u6570\u4e4b\u95f4\u7684\u8f6c\u6362","text":"
- \u4fdd\u6301\u4f4d\u503c\u4e0d\u53d8\uff0c\u6539\u53d8\u89e3\u91ca\u65b9\u5f0f
\\[ T2U_{_w}(x)\\doteq B2U_{_w}( T2B_{_w}(x) ) \\]
- \u8865\u7801\u8f6c\u6362\u4e3a\u65e0\u7b26\u53f7\u6570
\\[ T2U_w(x)=\\begin{cases}x+2^w,&x<0\\\\x,&x\\geqslant0\\end{cases} \\]
- \u65e0\u7b26\u53f7\u6570\u8f6c\u6362\u4e3a\u8865\u7801
\\[ U2T_w(u)=\\begin{cases}u ,&u\\leqslant TMax_w\\\\u-2^w ,&u>TMax_w\\end{cases} \\]"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#225-c","title":"2.2.5 C \u8bed\u8a00\u4e2d\u7684\u6709\u7b26\u53f7\u6570\u4e0e\u65e0\u7b26\u53f7\u6570","text":"
- \u4e00\u4e2a\u8fd0\u7b97\u7b26\u662f\u6709\u7b26\u53f7\u7684\u800c\u53e6\u4e00\u4e2a\u662f\u65e0\u7b26\u53f7\u7684\uff0c\u90a3 C \u7a0b\u5e8f\u4f1a\u628a\u6709\u7b26\u53f7\u7684\u8f6c\u6362\u4e3a\u65e0\u7b26\u53f7\u7684\u3002
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#226","title":"2.2.6 \u6269\u5c55\u4e00\u4e2a\u6570\u5b57\u7684\u4f4d\u8868\u793a","text":"
- \u65e0\u7b26\u53f7\u6570\u7684 zero extension
- \u8865\u7801\u6570\u7684\u7b26\u53f7\u6269\u5c55
"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#227","title":"2.2.7 \u622a\u65ad\u6570\u5b57","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#228","title":"2.2.8 \u5173\u4e8e\u6709\u7b26\u53f7\u6570\u4e0e\u65e0\u7b26\u53f7\u6570\u7684\u5efa\u8bae","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#23","title":"2.3 \u6574\u6570\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#231","title":"2.3.1 \u65e0\u7b26\u53f7\u52a0\u6cd5","text":"
- Lisp \u652f\u6301\u65e0\u9650\u7cbe\u5ea6\u7684\u8fd0\u7b97
\\[ x+_w^uy=\\begin{cases}x+y,&x+y<2^w&\\text{\u6b63\u5e38}\\\\x+y-2^w,&2^w\\leqslant x+y<2^{w+1}&\\text{\u6ea2\u51fa}\\end{cases} \\]"},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#3","title":"3 \u7a0b\u5e8f\u7684\u673a\u5668\u7ea7\u8868\u793a","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#4","title":"4 \u5904\u7406\u5668\u4f53\u7cfb\u7ed3\u6784","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#5","title":"5 \u4f18\u5316\u7a0b\u5e8f\u6027\u80fd","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#6","title":"6 \u5b58\u50a8\u5668\u5c42\u6b21\u7ed3\u6784","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#7","title":"7 \u94fe\u63a5","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#8","title":"8 \u5f02\u5e38\u63a7\u5236\u6d41","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#9","title":"9 \u865a\u62df\u5185\u5b58","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#10-io","title":"10 \u7cfb\u7edf\u7ea7 I/O","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#11","title":"11 \u7f51\u7edc\u7f16\u7a0b","text":""},{"location":"CS%20basic/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F/#12","title":"12 \u5e76\u53d1\u7f16\u7a0b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/","title":"\u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u786c\u4ef6\u8f6f\u4ef6\u63a5\u53e3","text":"
\u7ea6 2978 \u4e2a\u5b57 13 \u884c\u4ee3\u7801 4 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 10 \u5206\u949f
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#1","title":"1 \u8ba1\u7b97\u673a\u62bd\u8c61\u53ca\u76f8\u5173\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2","title":"2 \u6307\u4ee4: \u8ba1\u7b97\u673a\u7684\u8bed\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#21","title":"2.1 \u5f15\u8a00","text":"
\u8bbe\u8ba1\u539f\u5219:
- \u7b80\u5355\u6e90\u4e8e\u89c4\u6574
- \u66f4\u5c11\u5219\u66f4\u5feb
- \u4f18\u79c0\u7684\u8bbe\u8ba1\u9700\u8981\u9002\u5f53\u7684\u6298\u4e2d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#22","title":"2.2 \u8ba1\u7b97\u673a\u786c\u4ef6\u7684\u64cd\u4f5c","text":"
Java \u7f16\u8bd1\u5668: Just In Time \u7f16\u8bd1\u5668
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#23","title":"2.3 \u8ba1\u7b97\u673a\u786c\u4ef6\u7684\u64cd\u4f5c\u6570","text":"
- \u5bc4\u5b58\u5668
- \u5927\u5c0f\u4e3a64 bits \u53cc\u5b57
- \u6570\u91cf\u6709\u9650\u901a\u5e38\u4e3a 32 \u4e2a
- x +\u5bc4\u5b58\u5668\u7f16\u53f7
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#231","title":"2.3.1 \u5b58\u50a8\u5668\u64cd\u4f5c\u6570","text":"
\u5728\u5185\u5b58\u548c\u5bc4\u5b58\u5668\u4e4b\u95f4\u4f20\u8f93\u6307\u4ee4:\u6570\u636e\u4f20\u8f93\u6307\u4ee4 \u6307\u4ee4\u63d0\u4f9b\u5185\u5b58\u5730\u5740 \u8f7d\u5165\u6307\u4ee4\uff08load\uff09:ld
Text Only
Ld x9, 8(x22)\n
X 22 \u57fa\u5740\u5bc4\u5b58\u5668 8 \u504f\u79fb\u91cf \u5b57\u8282\u5730\u5740: 0 8 16 24 RICS- V \u662f\u5c0f\u7aef\u7f16\u5740: \u53ea\u5728\u4ee5\u53cc\u5b57\u5f62\u5f0f\u548c\u516b\u4e2a\u5355\u72ec\u5b57\u8282\u8bbf\u95ee\u76f8\u540c\u6570\u636e\u65f6\u4f1a\u6709\u5f71\u54cd ^da8be4
\u5b58\u50a8\u6307\u4ee4\uff08store\uff09\u5b58\u50a8\u53cc\u5b57
Text Only
sd x9, 96(x22)\n
- \u5bf9\u9f50\u9650\u5236:
- \u5b57\u7684\u8d77\u59cb\u5730\u5740\u662f 4 \u7684\u500d\u6570
- \u53cc\u5b57\u7684\u8d77\u59cb\u5730\u5740\u662f 8 \u7684\u500d\u6570
- \u4f46\u662f risc-v and Intel x 86 \u6ca1\u6709
- MIPS \u6709 Gibibyte (\\(\\displaystyle 2^{30}\\)) and tebibyte (\\(\\displaystyle 2^{40}\\)) \u5982\u679c\u53d8\u91cf\u6bd4\u5bc4\u5b58\u5668\u6570\u91cf\u66f4\u591a\uff0c\u90a3\u4e48\u4f1a\u628a\u4e00\u4e9b\u653e\u5230\u5185\u5b58\uff0c\u5373\u5bc4\u5b58\u5668\u6362\u51fa\u3002
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#232","title":"2.3.2 \u5e38\u6570\u6216\u7acb\u5373\u6570\u64cd\u4f5c\u6570","text":"Text Only
ld x9, AddConstant4(x3)\nAdd x22, x22, x9\n\n# Equals to \n\naddi x22, x22, 4 # x22 = x22 + 4\n
\u5e38\u6570\u79f0\u4e3a\u7b97\u6570\u6307\u4ee4\u64cd\u4f5c\u6570 X0 \u53ef\u4ee5\u7528\u6765\u8868\u793a 0 \u5176\u5b9e\u8fd8\u6709 RV 32 \u57fa\u5740\u5bc4\u5b58\u5668\u4e5f\u88ab\u79f0\u4e3a\u4e0b\u6807\u5bc4\u5b58\u5668 \u6211\u4eec\u5047\u8bbe\u6307\u4ee4\u90fd\u662f 64 \u4f4d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#24","title":"2.4 \u6709\u7b26\u53f7\u6570\u4e0e\u65e0\u7b26\u53f7\u6570","text":"
- Binary digit Or bit
- Least significant bit
- Most significant bit
- sign and magnitude
- \u8865\u7801\u8f6c\u5316:
- \u62d3\u5c55\u7b26\u53f7\u4f4d
- \u53d6\u53cd
- \u52a0\u4e00
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#25","title":"2.5 \u8ba1\u7b97\u673a\u4e2d\u7684\u6307\u4ee4\u8868\u793a","text":"
- \u5b57\u6bb5
- \u6307\u4ee4 32 \u4f4d\u957f
- \u6307\u4ee4\u7684\u6570\u5b57\u8868\u793a:\u673a\u5668\u8bed\u8a00
- \u6307\u4ee4\u5e8f\u5217: \u673a\u5668\u7801
- C \u548c java \u7528 0 xnnnn \u6765\u8868\u793a\u5341\u516d\u8fdb\u5236\u6570
- RISC-V:\uff08R\uff09
- funct7 + rs 2 + rs 1 + funct 3 + rd + opcode
- rd: \u76ee\u7684\u64cd\u4f5c\u6570\u5bc4\u5b58\u5668
- rs 1: \u7b2c\u4e00\u4e2a\u539f\u64cd\u4f5c\u6570\u5bc4\u5b58\u5668
- rs 2: \u7b2c\u4e8c\u4e2a\u539f\u64cd\u4f5c\u6570\u5bc4\u5b58\u5668
- funct 7 (3): \u64cd\u4f5c\u7801\u5b57\u6bb5
- \u5bf9\u4e0d\u540c\u7684\u6307\u4ee4\u4f7f\u7528\u4e0d\u540c\u7684\u6307\u4ee4\u683c\u5f0f
- I
- immediate + rs 1 + funct 3 + rd + opcode
- \u8d85\u8fc7 32 \u4e2a\u5bc4\u5b58\u5668\u7684\u8bdd\uff0crd and rs 1 \u90fd\u8981\u589e\u52a0\u989d\u5916\u7684\u4e00\u4f4d
- ld
- S
- immediate + rs 2 + rs 1 + funct 3 + immediate + opcode
- Reg \u8868\u793a 0 \u5230 31 \u4e4b\u95f4\u7684\u5bc4\u5b58\u5668\u7f16\u53f7
- \u6ca1\u6709 subi \u56e0\u4e3a\u53ef\u4ee5\u901a\u8fc7\u52a0\u8d1f\u6570\u6765\u5b9e\u73b0
- \u8ba1\u7b97\u673a\u6784\u5efa\u57fa\u4e8e\u4e24\u4e2a\u5173\u952e\u539f\u5219:
- \u6307\u4ee4\u7531\u6570\u5b57\u5f62\u5f0f\u8868\u793a
- \u7a0b\u5e8f\u548c\u6570\u636e\u4e00\u6837\u4fdd\u5b58\u5728\u5b58\u50a8\u5668\u4e2d\u8fdb\u884c\u8bfb\u5199
- \u7a0b\u5e8f\u4f1a\u4ee5\u4e8c\u8fdb\u5236\u6570\u636e\u6587\u4ef6\u7684\u5f62\u5f0f\u6765\u53d1\u5e03
- \u4e8c\u8fdb\u5236\u517c\u5bb9\u6027\u8ba9\u884c\u4e1a\u56f4\u7ed5\u5c11\u6570\u51e0\u4e2a\u6307\u4ee4\u7cfb\u7edf\u7ed3\u6784\u5f62\u6210\u8054\u76df
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#26","title":"2.6 \u903b\u8f91\u64cd\u4f5c","text":"
- sll, slli
- srl, srli
- sra, srai
- and, andi
- or, ori
- xor, xori
- not
- \u4f4d\u79fb\u6307\u4ee4\u7528\u7684 I \u578b\u683c\u5f0f:
- \u4f46\u5b83\u7684\u683c\u5f0f\u6709\u53d8\u5316:
- funct 6 + immediate + rs 1 + funct 3 + rd + opcode
- \u7b97\u6570\u53f3\u79fb\u7528\u7684\u662f\u7b26\u53f7\u4f4d
- AND \u5b9e\u73b0\u4e86\u63a9\u7801
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#27","title":"2.7 \u7528\u4e8e\u51b3\u7b56\u7684\u6307\u4ee4","text":"
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#271","title":"2.7.1 \u5faa\u73af","text":"C
while (save[i] == k) \n i += 1;\n
I -> x 22 K -> x 24 Save -> x 25
Text Only
loop: slli, x10, x22, 3\nAdd x10, x10, x25\nLd x9, 0(x10)\nBen x9, x24, Exit\nAddi x22, x22, l\nBeq x0, x0, loop\nExit:\n
\u57fa\u672c\u5757:
- \u9664\u4e86\u5728\u6307\u4ee4\u5e8f\u5217\u7684\u7ed3\u5c3e\uff0c\u5e8f\u5217\u4e2d\u6ca1\u6709\u5206\u652f\u3002
- \u9664\u4e86\u5728\u5e8f\u5217\u8d77\u59cb\u5904\uff0c\u5e8f\u5217\u4e2d\u6ca1\u6709\u5206\u652f\u76ee\u6807\u548c\u5206\u652f\u6807\u7b7e\u3002
- \u5bf9\u4e8e\u7b26\u53f7:
- RISC-V \u7528\u4e0d\u540c\u7684\u6307\u4ee4
- MIPS \u8bbe\u7f6e\u4e34\u65f6\u5bc4\u5b58\u5668
- ARM \u6761\u4ef6\u4ee3\u7801\u6216\u6807\u5fd7\u4f4d
- \u4e0d\u8fc7\u4e5f\u4f1a\u6709\u7f3a\u70b9: \u8fc7\u591a\u7684\u6307\u4ee4\u8bbe\u7f6e\u6761\u4ef6\u4ee3\u7801\uff0c\u4f1a\u8ba9\u6d41\u6c34\u7ebf\u6267\u884c\u56f0\u96be
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#272","title":"2.7.2 \u8fb9\u754c\u68c0\u67e5\u7684\u7b80\u4fbf\u65b9\u6cd5","text":"
\u5c06\u7b26\u53f7\u6570\u5f53\u4f5c\u65e0\u7b26\u53f7\u6570\u5904\u7406
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#273-caseswitch","title":"2.7.3 Case/switch \u8bed\u53e5","text":"
- \u7f16\u7801\u5f62\u6210\u6307\u4ee4\u5e8f\u5217\u7684\u5730\u5740\u8868: \u5206\u652f\u5730\u5740\u8868/\u5206\u652f\u8868
- \u95f4\u63a5\u8df3\u8f6c\u6307\u4ee4 jalr
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#28","title":"2.8 \u8ba1\u7b97\u673a\u786c\u4ef6\u5bf9\u8fc7\u7a0b\u7684\u652f\u6301","text":"
- Procedure
- \u6267\u884c\u8fc7\u7a0b\u7684\u516d\u4e2a\u6b65\u9aa4:
- \u5c06\u53c2\u6570\u653e\u5728\u8fc7\u7a0b\u53ef\u4ee5\u8bbf\u95ee\u5230\u7684\u4f4d\u7f6e
- \u5c06\u63a7\u5236\u8f6c\u4ea4\u7ed9\u8fc7\u7a0b
- \u83b7\u53d6\u8fc7\u7a0b\u6240\u9700\u7684\u5b58\u50a8\u8d44\u6e90
- \u6267\u884c\u6240\u9700\u7684\u4efb\u52a1
- \u5c06\u7ed3\u679c\u503c\u653e\u5728\u8c03\u7528\u7a0b\u5e8f\u53ef\u4ee5\u8bbf\u95ee\u5230\u7684\u4f4d\u7f6e
- \u5c06\u63a7\u5236\u8fd4\u56de\u5230\u521d\u59cb\u70b9\uff0c\u56e0\u4e3a\u8fc7\u7a0b\u53ef\u4ee5\u4ece\u7a0b\u5e8f\u4e2d\u7684\u591a\u4e2a\u70b9\u8c03\u7528
- x 10~x 17: \u53c2\u6570\u5bc4\u5b58\u5668\uff0c\u7528\u4e8e\u4f20\u9012\u53c2\u6570\u6216\u8fd4\u56de\u503c
- x 1: \u8fd4\u56de\u5730\u5740\u5bc4\u5b58\u5668\uff0c\u7528\u4e8e\u8fd4\u56de\u5230\u8d77\u59cb\u70b9
- jal \u8df3\u8f6c-\u94fe\u63a5\u6307\u4ee4
Text Only
Jal x1, ProcedureAddress\nJalr x0, 0(x1)\n
\u8c03\u7528\u8005\u5c06\u53c2\u6570\u503c\u653e\u5165 x 10~x 17 \u8fc7\u7a0b\u662f\u88ab\u8c03\u7528\u8005 Program counter:PC \u6307\u4ee4\u5730\u5740\u5bc4\u5b58\u5668
Text Only
jal x0, Label // unconditionally branch to Label\n
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#281","title":"2.8.1 \u4f7f\u7528\u66f4\u591a\u7684\u5bc4\u5b58\u5668","text":"
- Stack
- Stack pointer x2:sp
- \u538b\u6808\u5f39\u6808
Text Only
leaf_example:\nAddi sp, sp, -14\nSd x5, 16(sp)\nSd x6, 8(sp)\nSd x20, 0(sp)\nAdd x5, x10, x11\nAdd x6, x12, x13\nSub x20, x5, x6\nAddi x10, x20, 0\nLd x20, 0(sp)\nLd x6, 8(sp)\nLd x5, 16(sp)\nAddi sp, sp, 24\nJalr x0, 0(x1)\n
- X 5~x 7, x 28~x 31: \u4e34\u65f6\u5bc4\u5b58\u5668
- x 8~x 9, x 18~x 27: \u4fdd\u5b58\u5bc4\u5b58\u5668
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#282","title":"2.8.2 \u5d4c\u5957\u8fc7\u7a0b","text":"
- Leaf procedure
- \u5c06\u6240\u6709\u5fc5\u987b\u4fdd\u5b58\u7684\u5bc4\u5b58\u5668\u538b\u6808\uff0c\u9632\u6b62\u51b2\u7a81
C
long long int fact (long long int n) {\n if (n < 1) return (1);\n else return (n * fact(n - 1))\n}\n
n -> x 10
Text Only
fact:\n addi sp, sp, -16\n Sd x1, 8(sp)\n Sd x10, 0(sp)\n\n Addi x5, x10, -1\n Bge x5, x0, L1\n\n Addi x10, x0, 1\n Addi sp, sp, 16\n Jalr x0, 0(x1)\n\nL1: addi x10, x10, -1\n Jal x1, fact\n\naddi x6, x10, 0\nLd x10, 0(sp)\nLd x1, 8(sp)\nAddi sp, sp, 16\nMul x10, x10, x6\nJalr x0, 0(x1)\n
- \u4e00\u4e9b\u7f16\u8bd1\u5668\u4fdd\u7559\u4e00\u4e2a\u5bc4\u5b58\u5668 x 3 \u7528\u4f5c\u5168\u5c40\u6307\u9488 gp
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#283","title":"2.8.3 \u5728\u6808\u4e2d\u4f4d\u65b0\u6570\u636e\u5206\u914d\u7a7a\u95f4","text":"
\u6808\u4e5f\u7528\u4e8e\u5b58\u50a8\u8fc7\u7a0b\u7684\u5c40\u90e8\u53d8\u91cf \u8fc7\u7a0b\u5e27/\u6d3b\u52a8\u8bb0\u5f55
\u6ca1\u770b\u61c2
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#284","title":"2.8.4 \u5728\u5806\u4e2d\u4e3a\u65b0\u6570\u636e\u5206\u914d\u7a7a\u95f4","text":"
Static data segment text segment \u50cf\u94fe\u8868\u7b49\u6570\u636e\u7ed3\u6784\u5f80\u5f80\u4f1a\u968f\u751f\u547d\u5468\u671f\u589e\u957f\u548c\u7f29\u77ed\uff0c\u6240\u4ee5\u4f1a\u628a\u4ed6\u4eec\u5b58\u5728\u5806\u91cc (heap)
- malloc ()
- free () \u8be6\u7ec6\u9610\u8ff0\u6ca1\u770b
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#29","title":"2.9 \u4eba\u673a\u4ea4\u4e92","text":"
ASCII: american standard code for information interchange
\u52a0\u8f7d\u65e0\u7b26\u53f7\u5b57\u8282 (lbu) \u5b58\u50a8\u5b57\u8282 (sb)
Text Only
lbu x12, 0(x10)\nsb x12, 0(x11)\n
\u5b57\u7b26\u4e32\u7684\u8868\u793a\u6709\u4e09\u79cd\u9009\u62e9:
- \u7b2c\u4e00\u4e2a\u4f4d\u7f6e\u4fdd\u7559\u6765\u7ed9\u51fa\u5b57\u7b26\u4e32\u7684\u957f\u5ea6
- \u7528\u989d\u5916\u7684\u53d8\u91cf\u6765\u5b58\u50a8\u957f\u5ea6\uff08\u5982\u7ed3\u6784\u4f53\uff09
- \u5b57\u7b26\u4e32\u7684\u6700\u540e\u4e00\u4e2a\u4f4d\u7f6e\u7528\u5b57\u7b26\u6807\u8bb0\u7ed3\u5c3e \u5176\u4e2d C \u8bed\u8a00\u7528\u7b2c\u4e09\u79cd\uff0c\u4f7f\u7528\u503c\u4e3a 0 \u7684\u5b57\u8282\u6765\u7ec8\u6b62\u5b57\u7b26\u4e32\uff08null in ASCII\uff09
C
void strcpy (char x[], char y[])\n{\n size_t i;\n i = 0;\n while ((x[i] = y[i]) != '\\0')\n i += 1;\n}\n
x -> x 10 y -> x 11 i -> x 19
Text Only
strcpy:\n addi sp, sp, -8\n sd x19, 0(sp)\n add x19, x0, x0\nL1: add x5, x19, x11\n lbu x6, 0(x5)\n add x7, x19, x10\n sb x6, 0(x7)\n beq x6, x0, L2\n addi x19, x19, 1\n jal x0, L1\nL2: ld x19, 0(sp)\n addi sp, sp, 8\n jalr x0, 0(x1)\n
load half unsigned \u52a0\u8f7d\u534a\u5b57: lh lhu sh
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#210-risc-v","title":"2.10 \u5bf9\u5927\u7acb\u5373\u6570\u7684 RISC-V \u7684\u7f16\u5740\u548c\u5bfb\u5740","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2101","title":"2.10.1 \u5927\u7acb\u5373\u6570","text":"
load upper immediate \u53d6\u7acb\u5373\u6570\u9ad8\u4f4d lui lui \u53ef\u4ee5\u52a0\u8f7d 12~31 \u4f4d addi \u53ef\u4ee5\u52a0\u8f7d 0~11 \u4f4d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2102","title":"2.10.2 \u5206\u652f\u4e2d\u7684\u5bfb\u5740","text":"
\u5206\u652f\u6307\u4ee4\u4f7f\u7528 SB \u578b\u7684\u6307\u4ee4\u683c\u5f0f
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#211","title":"2.11 \u6307\u4ee4\u4e0e\u5e76\u884c\u6027\uff1a\u540c\u6b65","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#212","title":"2.12 \u7ffb\u8bd1\u5e76\u542f\u52a8\u7a0b\u5e8f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2121","title":"2.12.1 \u7f16\u8bd1\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2122","title":"2.12.2 \u6c47\u7f16\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2123","title":"2.12.3 \u94fe\u63a5\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2124","title":"2.12.4 \u52a0\u8f7d\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2125","title":"2.12.5 \u52a8\u6001\u94fe\u63a5\u5e93","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#21251-java","title":"2.12.5.1 \u542f\u52a8 Java \u7a0b\u5e8f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#213-c","title":"2.13 \u4ee5 C \u6392\u5e8f\u7a0b\u5e8f\u4e3a\u4f8b\u7684\u6c47\u603b\u6574\u7406","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2131-swap","title":"2.13.1 swap \u8fc7\u7a0b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2132-sort","title":"2.13.2 sort \u8fc7\u7a0b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#214","title":"2.14 \u6570\u7ec4\u4e0e\u6307\u9488","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2141-clear","title":"2.14.1 \u7528\u6570\u7ec4\u5b9e\u73b0 clear","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2142-clear","title":"2.14.2 \u7528\u6307\u9488\u5b9e\u73b0 clear","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2143-clear","title":"2.14.3 \u6bd4\u8f83\u4e24\u4e2a\u7248\u672c\u7684 clear","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#215-c-java","title":"2.15 \u9ad8\u7ea7\u4e13\u9898: \u7f16\u8bd1 C \u8bed\u8a00\u548c\u89e3\u91ca Java \u7a0b\u5e8f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#216-mips","title":"2.16 \u5b9e\u4f8b: MIPS \u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#217-x-86","title":"2.17 \u5b9e\u4f8b: x 86 \u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2171-intel-x-86","title":"2.17.1 Intel x 86 \u7684\u6f14\u53d8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2172-x-86","title":"2.17.2 x 86 \u5bc4\u5b58\u5668\u548c\u5bfb\u5740\u6a21\u5f0f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2173-x-86","title":"2.17.3 x 86 \u6574\u6570\u64cd\u4f5c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2174-x-86","title":"2.17.4 x 86 \u6307\u4ee4\u7f16\u7801","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#2175-x-86","title":"2.17.5 x 86 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#218-risc-v","title":"2.18 \u5b9e\u4f8b: RISC-V \u6307\u4ee4\u7cfb\u7edf\u7684\u5269\u4f59\u90e8\u5206","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#219","title":"2.19 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#220","title":"2.20 \u672c\u7ae0\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#3","title":"3 \u8ba1\u7b97\u673a\u7684\u7b97\u6570\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#31","title":"3.1 \u5f15\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#32","title":"3.2 \u52a0\u6cd5\u548c\u51cf\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#33","title":"3.3 \u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#331","title":"3.3.1 \u4e32\u884c\u7248\u7684\u4e58\u6cd5\u7b97\u6cd5\u53ca\u5176\u786c\u4ef6\u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#332","title":"3.3.2 \u5e26\u7b26\u53f7\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#333","title":"3.3.3 \u5feb\u901f\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#334-risc-v","title":"3.3.4 RISC-V \u4e2d\u7684\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#335","title":"3.3.5 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#34","title":"3.4 \u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#341","title":"3.4.1 \u9664\u6cd5\u7b97\u6cd5\u53ca\u786c\u4ef6\u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#342","title":"3.4.2 \u6709\u7b26\u53f7\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#343","title":"3.4.3 \u5feb\u901f\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#344-risc-v","title":"3.4.4 RISC-V \u4e2d\u7684\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#345","title":"3.4.5 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#35","title":"3.5 \u6d6e\u70b9\u8fd0\u7b97","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#351","title":"3.5.1 \u6d6e\u70b9\u8868\u793a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#352","title":"3.5.2 \u4f8b\u5916\u548c\u4e2d\u65ad","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#353-ieee-754","title":"3.5.3 IEEE 754 \u6d6e\u70b9\u6570\u6807\u51c6","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#354","title":"3.5.4 \u6d6e\u70b9\u52a0\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#355","title":"3.5.5 \u6d6e\u70b9\u9664\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#356-risc-v","title":"3.5.6 RISC-V \u4e2d\u7684\u6d6e\u70b9\u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#357","title":"3.5.7 \u7cbe\u786e\u7b97\u6570","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#358","title":"3.5.8 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#36","title":"3.6 \u5e76\u884c\u6027\u4e0e\u8ba1\u7b97\u673a\u7b97\u6570: \u5b50\u5b57\u5e76\u884c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#37-x-86-simd","title":"3.7 \u5b9e\u4f8b: x 86 \u4e2d\u7684 SIMD \u6269\u5c55\u548c\u9ad8\u7ea7\u5411\u91cf\u6269\u5c55","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#38","title":"3.8 \u52a0\u901f: \u5b50\u5b57\u5e76\u884c\u548c\u77e9\u9635\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#39","title":"3.9 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#310","title":"3.10 \u672c\u7ae0\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4","title":"4 \u5904\u7406\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#41","title":"4.1 \u5f15\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#411-risc-v","title":"4.1.1 \u4e00\u79cd\u57fa\u672c\u7684 RISC-V \u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#412","title":"4.1.2 \u5b9e\u73b0\u6982\u8ff0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#42","title":"4.2 \u903b\u8f91\u8bbe\u8ba1\u7684\u4e00\u822c\u65b9\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#43","title":"4.3 \u5efa\u7acb\u6570\u636e\u901a\u8def","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#44","title":"4.4 \u4e00\u4e2a\u7b80\u5355\u7684\u5b9e\u73b0\u65b9\u6848","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#441-alu","title":"4.4.1 ALU\u63a7\u5236","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#442","title":"4.4.2 \u8bbe\u8ba1\u4e3b\u63a7\u5236\u5355\u5143","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#443","title":"4.4.3 \u6570\u636e\u901a\u8def\u64cd\u4f5c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#444","title":"4.4.4 \u63a7\u5236\u7684\u7ed3\u675f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#445","title":"4.4.5 \u4e3a\u4ec0\u4e48\u73b0\u5728\u4e0d\u9002\u7528\u5355\u5468\u671f\u5b9e\u73b0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#45","title":"4.5 \u6d41\u6c34\u7ebf\u6982\u8ff0","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#451","title":"4.5.1 \u9762\u5411\u6d41\u6c34\u7ebf\u7684\u6307\u4ee4\u7cfb\u7edf\u8bbe\u8ba1","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#452","title":"4.5.2 \u6d41\u6c34\u4e0b\u5192\u9669","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#453","title":"4.5.3 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#46","title":"4.6 \u6d41\u6c34\u7ebf\u6570\u636e\u901a\u8def\u548c\u63a7\u5236","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#461","title":"4.6.1 \u6d41\u6c34\u7ebf\u7684\u56fe\u5f62\u5316\u8868\u793a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#462","title":"4.6.2 \u6d41\u6c34\u7ebf\u63a7\u5236","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#47","title":"4.7 \u6570\u636e\u5192\u9669: \u524d\u9012\u4e0e\u505c\u987f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#48","title":"4.8 \u63a7\u5236\u5192\u9669","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#481","title":"4.8.1 \u5047\u8bbe\u5206\u652f\u4e0d\u53d1\u751f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#482","title":"4.8.2 \u7f29\u77ed\u5206\u652f\u5ef6\u8fdf","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#483","title":"4.8.3 \u52a8\u6001\u5206\u652f\u9884\u6d4b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#484","title":"4.8.4 \u6d41\u6c34\u7ebf\u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#49","title":"4.9 \u4f8b\u5916","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#491-risc-v","title":"4.9.1 RISC-V \u4f53\u7cfb\u7ed3\u6784\u4e2d\u5982\u4f55\u5904\u7406\u4f8b\u5916","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#492","title":"4.9.2 \u6d41\u6c34\u7ebf\u5b9e\u73b0\u4e2d\u7684\u4f8b\u5916","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#410","title":"4.10 \u6307\u4ee4\u95f4\u7684\u5e76\u884c\u6027","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4101","title":"4.10.1 \u63a8\u6d4b\u7684\u6982\u5ff5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4102","title":"4.10.2 \u9759\u6001\u591a\u53d1\u5c04","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4103","title":"4.10.3 \u52a8\u6001\u591a\u53d1\u5c04\u5904\u7406\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4104","title":"4.10.4 \u9ad8\u7ea7\u6d41\u6c34\u7ebf\u548c\u80fd\u6548","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#411-armcortex-a-53-intel-core-i-7","title":"4.11 \u5b9e\u4f8b: armCortex-A 53 \u548c Intel Core i 7 \u6d41\u6c34\u7ebf\u7ed3\u6784","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4111-arm-cortex-a-53","title":"4.11.1 ARM Cortex-A 53","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4112-intel-core-i-7-920","title":"4.11.2 Intel Core i 7 920","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#4113-intel-core-i-7","title":"4.11.3 Intel Core i 7 \u5904\u7406\u5668\u7684\u6027\u80fd","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#412_1","title":"4.12 \u52a0\u901f: \u6307\u4ee4\u96c6\u5e76\u884c\u548c\u77e9\u9635\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#413","title":"4.13 \u9ad8\u7ea7\u4e13\u9898: \u6570\u5b57\u8bbe\u8ba1\u6982\u8ff0\u2014\u2014\u4f7f\u7528\u786c\u4ef6\u8bbe\u8ba1\u8bed\u8a00\u8fdb\u884c\u6d41\u6c34\u7ebf\u5efa\u6a21\u4ee5\u53ca\u66f4\u591a\u6d41\u6c34\u7ebf\u793a\u4f8b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#414","title":"4.14 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#415","title":"4.15 \u672c\u7ae0\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#416","title":"4.16 \u5386\u53f2\u89c6\u89d2\u548c\u6269\u5c55\u9605\u8bfb","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5","title":"5 \u5927\u800c\u5feb: \u5c42\u6b21\u5316\u5b58\u50a8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#51","title":"5.1 \u5f15\u8a00","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#52","title":"5.2 \u5b58\u50a8\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#521-sram","title":"5.2.1 SRAM \u5b58\u50a8\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#522-dram","title":"5.2.2 DRAM \u5b58\u50a8\u6280\u672f","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#523","title":"5.2.3 \u95ea\u5b58","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#524","title":"5.2.4 \u78c1\u76d8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#53-cache","title":"5.3 cache \u57fa\u7840","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#531-cache","title":"5.3.1 cache \u8bbf\u95ee","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#532-cache","title":"5.3.2 \u5904\u7406 cache \u5931\u6548","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#533","title":"5.3.3 \u5904\u7406\u5199\u64cd\u4f5c","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#534-cache-intrinsity-fastmath","title":"5.3.4 cache \u5b9e\u4f8b: Intrinsity FastMATH \u5904\u7406\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#535","title":"5.3.5 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#54-cache","title":"5.4 cache \u7684\u6027\u80fd\u8bc4\u4f30\u548c\u6539\u8fdb","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#541-cache","title":"5.4.1 \u4f7f\u7528\u66f4\u4e3a\u7075\u6d3b\u7684\u66ff\u6362\u7b56\u7565\u964d\u4f4e cache \u5931\u6548\u7387","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#542-cache","title":"5.4.2 \u5728 cache \u4e2d\u67e5\u627e\u6570\u636e\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#543","title":"5.4.3 \u9009\u62e9\u66ff\u6362\u7684\u6570\u636e\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#544-cache","title":"5.4.4 \u4f7f\u7528\u591a\u7ea7 cache \u51cf\u5c11\u5931\u6548\u4ee3\u4ef7","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#545","title":"5.4.5 \u901a\u8fc7\u5206\u5757\u8fdb\u884c\u8f6f\u4ef6\u4f18\u5316","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#546","title":"5.4.6 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#55","title":"5.5 \u53ef\u9760\u7684\u5b58\u50a8\u5668\u66fe\u6d4b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#551","title":"5.5.1 \u5931\u6548\u7684\u5b9a\u4e49","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#552-1-2","title":"5.5.2 \u7ea0\u6b63 1 \u4f4d\u9519\u3001\u68c0\u6d4b 2 \u4f4d\u9519\u7684\u6c49\u660e\u7f16\u7801","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#56","title":"5.6 \u865a\u62df\u673a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#561","title":"5.6.1 \u865a\u62df\u673a\u76d1\u89c6\u5668\u7684\u5fc5\u5907\u6761\u4ef6","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#562","title":"5.6.2 \u6307\u4ee4\u7cfb\u7edf\u4f53\u7cfb\u7ed3\u6784\uff08\u7f3a\u4e4f\uff09\u5bf9\u865a\u62df\u673a\u7684\u652f\u6301\u3001","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#563","title":"5.6.3 \u4fdd\u62a4\u548c\u6307\u4ee4\u7cfb\u7edf\u4f53\u7cfb\u7ed3\u6784","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#57","title":"5.7 \u865a\u62df\u5185\u5b58","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#571","title":"5.7.1 \u9875\u7684\u5b58\u653e\u548c\u67e5\u627e","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#572","title":"5.7.2 \u7f3a\u9875\u5931\u6548","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#573","title":"5.7.3 \u652f\u6301\u5927\u865a\u62df\u5730\u5740\u7a7a\u95f4\u7684\u865a\u62df\u5b58\u50a8","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#574","title":"5.7.4 \u5173\u4e8e\u5199","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#575-tlb","title":"5.7.5 \u52a0\u5feb\u5730\u5740\u8f6c\u6362:TLB","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#576-intrinsity-fastmath-tlb","title":"5.7.6 Intrinsity FastMATH TLB","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#577-tlb-cache","title":"5.7.7 \u7ee7\u627f\u865a\u62df\u5b58\u50a8\u3001TLB \u548c cache","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#578","title":"5.7.8 \u865a\u62df\u5b58\u50a8\u4e2d\u7684\u4fdd\u62a4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#579-tlb","title":"5.7.9 \u5904\u7406 TLB \u5931\u6548\u548c\u7f3a\u9875\u5931\u8d25","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5710","title":"5.7.10 \u603b\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#58","title":"5.8 \u5b58\u50a8\u5c42\u6b21\u7ed3\u6784\u7684\u4e00\u822c\u6846\u67b6","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#581","title":"5.8.1 \u95ee\u9898\u4e00: \u5757\u53ef\u4ee5\u88ab\u653e\u5728\u4f55\u5904","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#582","title":"5.8.2 \u95ee\u9898\u4e8c: \u5982\u4f55\u627e\u5230\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#583-cache","title":"5.8.3 \u95ee\u9898\u4e09: \u5f53 cache \u53d1\u751f\u5931\u6548\u65f6\u66ff\u6362\u54ea\u4e00\u5757","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#584","title":"5.8.4 \u95ee\u9898\u56db: \u5199\u64cd\u4f5c\u5982\u4f55\u5904\u7406","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#585-c","title":"5.8.5 C: \u4e00\u79cd\u7406\u89e3\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784\u7684\u76f4\u89c2\u6a21\u578b","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#59-cache","title":"5.9 \u4f7f\u7528\u6709\u9650\u72b6\u6001\u81ea\u52a8\u673a\u63a7\u5236\u7b80\u5355\u7684 cache","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#591-cache","title":"5.9.1 \u4e00\u4e2a\u7b80\u5355\u7684 cache","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#592","title":"5.9.2 \u6709\u9650\u72b6\u6001\u81ea\u52a8\u673a","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#593-cache","title":"5.9.3 \u4f7f\u7528\u6709\u9650\u8f6c\u53f0\u81ea\u52a8\u673a\u4f5c\u4e3a\u7b80\u5355\u7684 cache \u63a7\u5236\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#510-cache","title":"5.10 \u5e76\u884c\u548c\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784: cache \u4e00\u81f4\u6027","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5101","title":"5.10.1 \u5b9e\u884c\u4e00\u81f4\u6027\u7684\u57fa\u672c\u65b9\u6848","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#5102","title":"5.10.2 \u76d1\u542c\u534f\u8bae","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#511","title":"5.11 \u5e76\u884c\u4e0e\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784: \u5ec9\u4ef7\u78c1\u76d8\u5197\u4f59\u9635\u5217","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#512","title":"5.12 \u9ad8\u7ea7\u4e13\u9898: \u5b9e\u73b0\u7f13\u5b58\u63a7\u5236\u5668","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#513-arm-cortex-a-53-intel-core-i-7","title":"5.13 \u5b9e\u4f8b: ARM Cortex-A 53 \u548c Intel Core i 7 \u7684\u5b58\u50a8\u5c42\u6b21\u7ed3\u6784","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#514-risc-v","title":"5.14 \u5b9e\u4f8b: RISC-V \u7cfb\u7edf\u5176\u4ed6\u90e8\u5206\u548c\u7279\u6b8a\u6307\u4ee4","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#515-cache","title":"5.15 \u52a0\u901f: cache \u5206\u5757\u548c\u77e9\u9635\u4e58\u6cd5","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#516","title":"5.16 \u8c2c\u8bef\u4e0e\u9677\u9631","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#517","title":"5.17 \u672c\u8eab\u5c0f\u7ed3","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#518","title":"5.18 \u5386\u53f2\u89c6\u89d2\u548c\u62d3\u5c55\u9605\u8bfb","text":""},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BB%84%E6%88%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E7%A1%AC%E4%BB%B6%E8%BD%AF%E4%BB%B6%E6%8E%A5%E5%8F%A3/#6","title":"6 \u5e76\u884c\u5904\u7406\u5668: \u4ece\u5ba2\u6237\u7aef\u5230\u4e91","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/","title":"Accelerated C++","text":"
\u7ea6 2520 \u4e2a\u5b57 489 \u884c\u4ee3\u7801 2 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 15 \u5206\u949f
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#0-c","title":"0 \u5f00\u59cb\u5b66\u4e60 C++","text":"C++
#include <iostream>\n\nint main()\n{\n std::cout << \"Hello, World!\" << std::endl;\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#01","title":"0.1 \u6ce8\u91ca","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#02-displaystyle-include","title":"0.2 \\(\\displaystyle \\#\\)include \u6307\u4ee4","text":"
- \u8f93\u5165\u3001\u8f93\u51fa\u4e0d\u5c5e\u4e8e\u8bed\u8a00\u6838\u5fc3\uff0c\u800c\u662f\u6807\u51c6\u5e93\u7684\u4e00\u90e8\u5206
- iostream \u4ee3\u8868 C++\u5e93\u7684\u6807\u51c6\u5934\u6587\u4ef6
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#03-main","title":"0.3 \u4e3b\u51fd\u6570 main","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#04","title":"0.4 \u82b1\u62ec\u53f7","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#05","title":"0.5 \u4f7f\u7528\u6807\u51c6\u5e93\u8fdb\u884c\u8f93\u51fa","text":"
- std:: cout \u6307\u6807\u51c6\u8f93\u51fa\u6d41
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#06","title":"0.6 \u8fd4\u56de\u8bed\u53e5","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#07","title":"0.7 \u4e00\u4e9b\u8f83\u4e3a\u6df1\u5165\u7684\u89c2\u5bdf","text":"
- \u8868\u8fbe\u5f0f
- \u8fd0\u7b97\u4f1a\u4ea7\u751f\u4e00\u4e2a\u7ed3\u679c\uff0c\u53ef\u80fd\u4f1a\u5177\u6709\u526f\u4f5c\u7528
- \u6bcf\u4e2a\u64cd\u4f5c\u6570\u90fd\u5177\u6709\u4e00\u4e2a\u7c7b\u578b
- <<\u662f\u5de6\u7ed3\u5408\u7684\uff0c\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u4f7f\u7528\u4e24\u4e2a<<\u8fd0\u7b97\u7b26\u548c\u4e09\u4e2a\u64cd\u4f5c\u6570
C++
(std::cout << \"Hello, World!\") << std::endl\n
- std:: cout \u7684\u7c7b\u578b\u662f std::ostream
- std:: endl \u662f\u4e00\u4e2a\u63a7\u5236\u5668\uff08manipulator\uff09
- \u7b2c\u4e00\u79cd\u4f5c\u7528\u57df: \u540d\u5b57\u7a7a\u95f4
- :: \u662f\u4f5c\u7528\u57df\u8fd0\u7b97\u7b26\uff0cstd:: cout \u662f\u4e00\u4e2a\u9650\u5b9a\u540d\u79f0
- \u82b1\u62ec\u53f7\u662f\u53e6\u4e00\u79cd\u4f5c\u7528\u57df
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#08","title":"0.8 \u5c0f\u7ed3","text":"
- main \u53ef\u4ee5\u6ca1\u6709 return \u8bed\u53e5
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#1","title":"1 \u4f7f\u7528\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#11","title":"1.1 \u8f93\u5165","text":"C++
#include <iostream>\n#include <string>\n\nint main() \n{\n std::cout << \"Please enter your first name:\";\n\n std::string name;\n std::cin >> name;\n\n std::cout << \"Hello\" << name << \"!\" << std::endl;\n return 0;\n}\n
- \u53d8\u91cf\u662f\u4e00\u4e2a\u5bf9\u8c61\uff0c\u4f46\u6709\u4e9b\u5bf9\u8c61\u53ef\u80fd\u6ca1\u6709\u540d\u79f0
- \u5c40\u90e8\u53d8\u91cf\u6709\u9650\u7684\u751f\u5b58\u671f\u662f\u533a\u5206\u53d8\u91cf\u548c\u5bf9\u8c61\u7684\u4e00\u4e2a\u91cd\u8981\u4f9d\u636e
- \u9690\u85cf\u5728\u5bf9\u8c61\u7c7b\u578b\u4e2d\u7684\u8fd8\u6709\u5176\u63a5\u53e3
- \u63a5\u53e3\u662f\u53ef\u5b9e\u73b0\u64cd\u4f5c\u7684\u96c6\u5408
- \u7f13\u51b2\u533a\u6765\u4fdd\u5b58\u8f93\u51fa
- \u4f55\u65f6\u5237\u65b0\u7f13\u51b2\u533a:
- \u7f13\u51b2\u533a\u6ee1\u4e86
- \u8f93\u5165\u6d41\u8bfb\u6570\u636e
- \u660e\u786e\u8981\u6c42\u5237\u65b0
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#12","title":"1.2 \u4e3a\u59d3\u540d\u88c5\u6846","text":"
- \u8fd0\u7b97\u7b26\u88ab\u91cd\u8f7d\u4e86
- \u8fd0\u7b97\u7b26\u4e00\u4e2a\u6c38\u8fdc\u4e0d\u4f1a\u6539\u53d8\u7684\u6027\u8d28\u662f\u7ed3\u5408\u5f8b\uff0c+\u662f\u5de6\u7ed3\u5408\u7684
C++
std::string stars(10, '*')\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#13","title":"1.3 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#2","title":"2 \u5faa\u73af\u548c\u8ba1\u6570","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#21","title":"2.1 \u95ee\u9898","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#22","title":"2.2 \u7a0b\u5e8f\u7684\u6574\u4f53\u7ed3\u6784","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#23","title":"2.3 \u8f93\u51fa\u6570\u76ee\u672a\u77e5\u7684\u884c","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#231-while","title":"2.3.1 while \u8bed\u53e5","text":"
- ++\u662f\u4e00\u4e2a\u589e\u91cf\u8fd0\u7b97\u7b26
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#232-while","title":"2.3.2 \u8bbe\u8ba1 while \u8bed\u53e5","text":"
- \u5faa\u73af\u4e0d\u53d8\u5f0f\uff08Loop invariant\uff09
- \u521d\u59cb\u5316\uff1a\u5728\u5faa\u73af\u5f00\u59cb\u4e4b\u524d\uff0c\u5faa\u73af\u4e0d\u53d8\u5f0f\u5e94\u8be5\u88ab\u786e\u7acb\u4e3a\u771f\u3002
- \u4fdd\u6301\uff1a\u5faa\u73af\u7684\u6bcf\u6b21\u8fed\u4ee3\u90fd\u5fc5\u987b\u4fdd\u6301\u5faa\u73af\u4e0d\u53d8\u5f0f\u4e3a\u771f\uff0c\u5373\u5982\u679c\u8fdb\u5165\u67d0\u6b21\u8fed\u4ee3\u65f6\u5faa\u73af\u4e0d\u53d8\u5f0f\u4e3a\u771f\uff0c\u90a3\u4e48\u5728\u8be5\u6b21\u8fed\u4ee3\u7ed3\u675f\u65f6\uff0c\u5faa\u73af\u4e0d\u53d8\u5f0f\u4ecd\u7136\u4e3a\u771f\u3002
- \u7ec8\u6b62\uff1a\u5f53\u5faa\u73af\u7ed3\u675f\u65f6\uff0c\u5faa\u73af\u4e0d\u53d8\u5f0f\u5e94\u8be5\u80fd\u591f\u7528\u6765\u8bc1\u660e\u5faa\u73af\u7684\u7ec8\u6b62\u6761\u4ef6\u6210\u7acb\uff0c\u6216\u8005\u7528\u6765\u8bc1\u660e\u5faa\u73af\u7684\u8f93\u51fa\u6216\u7ed3\u679c\u6ee1\u8db3\u7279\u5b9a\u7684\u5c5e\u6027\u3002
- \u5faa\u73af\u4e0d\u53d8\u5f0f\u7684\u4e00\u4e2a\u5178\u578b\u4f8b\u5b50\u662f\u5728\u6392\u5e8f\u7b97\u6cd5\u4e2d\uff0c\u4f8b\u5982\u5192\u6ce1\u6392\u5e8f\u3002\u5728\u5192\u6ce1\u6392\u5e8f\u4e2d\uff0c\u4e00\u4e2a\u53ef\u80fd\u7684\u5faa\u73af\u4e0d\u53d8\u5f0f\u662f\uff1a\u201c\u6bcf\u6b21\u5faa\u73af\u8fed\u4ee3\u540e\uff0c\u6570\u7ec4\u7684\u6700\u540en\u4e2a\u5143\u7d20\u662f\u6392\u5e8f\u597d\u7684\u201d\uff0c\u5176\u4e2dn\u662f\u5faa\u73af\u8fed\u4ee3\u7684\u6b21\u6570\u3002
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#24","title":"2.4 \u8f93\u51fa\u4e00\u884c","text":"C++
const std::string::size_type cols = greeting.size() + pad * 2 + 2;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#241","title":"2.4.1 \u8f93\u51fa\u8fb9\u754c\u5b57\u7b26","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#2411-if","title":"2.4.1.1 if \u8bed\u53e5","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#2412","title":"2.4.1.2 \u903b\u8f91\u8fd0\u7b97\u7b26","text":"
- ||\u662f\u5de6\u7ed3\u5408\uff0c\u4f1a\u6709\u77ed\u8def\u6c42\u503c\uff08short-circuit evaluation\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#242","title":"2.4.2 \u8f93\u51fa\u975e\u8fb9\u754c\u5b57\u7b26","text":"
- +=\u590d\u5408\u8d4b\u503c\u8fd0\u7b97\u7b26
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#25","title":"2.5 \u5b8c\u6574\u7684\u6846\u67b6\u7a0b\u5e8f","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#251-std","title":"2.5.1 \u7565\u53bb\u91cd\u590d\u4f7f\u7528\u7684 std::","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#252-for","title":"2.5.2 \u4f7f\u7528 for \u8bed\u53e5\u6765\u7f29\u77ed\u7a0b\u5e8f","text":"
- \u533a\u95f4\u7684\u8d8a\u754c\u503c\uff08off-the-end value\uff09
C++
for (int r = 0; r != rows; ++r) {\n\n}\n
- \u8fd9\u662f\u534a\u5f00\u533a\u95f4
C++
for (init-statement condition; expression)\n statement\n\n#equals to\n\n{\n inti-statement\n while (condition) {\n statement\n expression;\n }\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#253","title":"2.5.3 \u538b\u7f29\u68c0\u6d4b","text":"
- \u5c31\u662f\u628a if \u8bed\u53e5\u5408\u5e76\u4e00\u4e0b
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#254","title":"2.5.4 \u5b8c\u6574\u7684\u6846\u67b6\u7a0b\u5e8f","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#26","title":"2.6 \u8ba1\u6570","text":"
- \u4e0d\u5bf9\u6210\u533a\u95f4\u53ef\u4ee5\u76f4\u63a5\u770b\u51fa\u6709\u591a\u5c11\u4e2a\u5143\u7d20
- \\(\\displaystyle [m, n]\\) \u6709 m - n \u4e2a\u5143\u7d20
- \u800c\u4e14\u53ef\u4ee5\u8868\u793a\u7a7a\u533a\u95f4 \\(\\displaystyle [n, n]\\)
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#27","title":"2.7 \u5c0f\u7ed3","text":"
- \u8868\u8fbe\u5f0f
- \u64cd\u4f5c\u6570\u7684\u7ec4\u5408\u65b9\u5f0f
- \u64cd\u4f5c\u6570\u5982\u4f55\u88ab\u8f6c\u6362
- \u64cd\u4f5c\u6570\u7684\u8fd0\u7b97\u6b21\u5e8f
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#3","title":"3 \u4f7f\u7528\u6279\u91cf\u6570\u636e","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#31","title":"3.1 \u8ba1\u7b97\u5b66\u751f\u6210\u7ee9","text":"C++
#include <iomanip>\n#include <ios>\n#include <iostream>\n#include <string>\n\nusing std::cin;\nusing std::cout;\nusing std::endl;\nusing std::precision;\n\nint main() {\n cout << \"Please enter your first name:\";\n string name;\n cin >> name;\n cout << \"Hello, \" << name << \"!\" << endl;\n\n cout << \"Please enter your midterm and final exam grades:\";\n double midterm, final;\n cin >> midterm >> final;\n\n cout << \"Enter all your homework grades, \" \n \"followed by end-of-file:\";\n\n int count = 0;\n double sum = 0;\n\n double x;\n\n while (cin >> x) {\n ++ count;\n sum += x;\n }\n\n streamsize prec = cout.precision();\n cout << \"Your final grade is \" << setprecision(3)\n << 0.2 * midterm + 0.4 * final + 0.4 * sum / count\n << setprecision(prec) << endl; //\u91cd\u7f6e\u6709\u6548\u4f4d\u6570 \u6216\u5199\u6210cout.precision(prec);\n return 0;\n}\n
- \u8f93\u5165\u8fd0\u7b97\u7b26\u8fd4\u56de\u5b83\u7684\u5de6\u64cd\u4f5c\u6570\u4f5c\u4e3a\u7ed3\u679c
- \u5374\u7701\u521d\u59cb\u5316
- setprecision \u4e5f\u662f\u4e00\u4e2a\u63a7\u5236\u5668: \u4e3a\u6d41\u7684\u540e\u7ee7\u8f93\u51fa\u8bbe\u7f6e\u4e86\u4e00\u4e2a\u7279\u5b9a\u7684\u6709\u6548\u4f4d\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#311","title":"3.1.1 \u68c0\u6d4b\u8f93\u51fa","text":"
- istream \u53ef\u4ee5\u88ab\u8f6c\u6362\u6210 bool \u503c
- \u6709\u4e09\u79cd\u60c5\u51b5\u6761\u4ef6\u4f1a\u53d8\u5047:
- \u8fbe\u5230\u8f93\u5165\u6587\u4ef6\u7684\u7ed3\u5c3e
- \u8f93\u5165\u548c\u6211\u4eec\u8bd5\u56fe\u8bfb\u53d6\u7684\u53d8\u91cf\u7c7b\u578b\u4e0d\u4e00\u81f4
- \u68c0\u6d4b\u5230\u4e00\u4e2a\u786c\u4ef6\u95ee\u9898
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#312","title":"3.1.2 \u5faa\u73af\u4e0d\u53d8\u5f0f","text":"
\u4e0d\u662f\u5f88\u61c2
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#32","title":"3.2 \u7528\u4e2d\u503c\u4ee3\u66ff\u5e73\u5747\u503c","text":"
\u90a3\u4e48\u5c31\u8981\u6392\u5e8f\u4e86
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#321","title":"3.2.1 \u628a\u6570\u636e\u96c6\u5408\u5b58\u50a8\u5728\u5411\u91cf\u4e2d","text":"C++
double x;\nvector<double> homework;\n\nwhile(cin >> x)\n homework.push_back(x);\n
- \u6211\u4eec\u4f7f\u7528\u4e86\u4e00\u79cd\u540d\u4e3a\u6a21\u677f\u7c7b\u7684\u8bed\u8a00\u7279\u5f81
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#322","title":"3.2.2 \u4ea7\u751f\u8f93\u51fa","text":"C++
typedef vector<double>::size_type vec_sz;\nvec_sz size = homework.size();\n
- \u6211\u4eec\u5e0c\u671b\u4fdd\u6301\u7cfb\u7edf\u73af\u5883\u7684\u72ec\u7acb\u6027
C++
if (size == 0) {\n cout << endl << \"You must enter your grades. \"\n \"Please try again.\" << endl;\n return 1;\n}\n\nsort (homework.begin(), homework.end());\n\nvec_sz mid = size / 2;\ndouble median;\nmedian = size % 2 == 0 ? (homework[mid] + homework[mid - 1]) / 2\n : homework[mid];\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#323","title":"3.2.3 \u4e00\u4e9b\u66f4\u4e3a\u6df1\u5165\u7684\u89c2\u5bdf","text":"
- size_type \u662f\u65e0\u7b26\u53f7\u6574\u6570\u7c7b\u578b
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#33","title":"3.3 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#4","title":"4 \u7ec4\u7ec7\u7a0b\u5e8f\u548c\u6570\u636e","text":"
- \u8fd9\u4e9b\u5e93\u5de5\u5177\u6709\u51e0\u4e2a\u540c\u6837\u7684\u7279\u6027:
- \u80fd\u89e3\u51b3\u67d0\u4e9b\u7279\u5b9a\u7c7b\u578b\u7684\u95ee\u9898
- \u4e0e\u5176\u4ed6\u7684\u5927\u591a\u6570\u5de5\u5177\u90fd\u76f8\u4e92\u72ec\u7acb
- \u90fd\u5177\u6709\u4e00\u4e2a\u540d\u79f0
- \u4e24\u79cd\u65b9\u6cd5\u6765\u7ec4\u7ec7\u5927\u578b\u7684\u7a0b\u5e8f
- \u51fd\u6570
- \u6570\u636e\u7ed3\u6784
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#41","title":"4.1 \u7ec4\u7ec7\u8ba1\u7b97","text":"
- \u53c2\u6570\u7684\u521d\u59cb\u503c\u662f\u76f8\u5e94\u53c2\u6570\u503c\u7684\u590d\u5236\uff0c\u5373\u6309\u503c\u8c03\u7528\uff08call by value\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#411","title":"4.1.1 \u67e5\u627e\u4e2d\u503c","text":"C++
double median(vector<double> vec)\n{\n typedef vector<double>::size_type vec_sz;\n vec_sz size = vec.size();\n if (size == 0)\n throw domain_error(\"median of an empty vector\");\n sort(vec.begin(), vec.end());\n vec_sz mid = size / 2;\n return size % 2 == 0 ? (vec[mid] + vec[mid - 1]) / 2 : vec[mid];\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#412","title":"4.1.2 \u91cd\u65b0\u5236\u5b9a\u8ba1\u7b97\u6210\u7ee9\u7684\u7b56\u7565","text":"
- \u53ea\u80fd\u628a\u4e0d\u662f\u5e38\u91cf\u7684\u5f15\u7528\u7ed9\u5e38\u91cf\u7684\uff0c\u5373\u6761\u4ef6\u53ea\u80fd\u52a0\u5f3a
- \u6709\u597d\u51e0\u4e2a\u540c\u6837\u51fd\u6570\u540d\u7684\u51fd\u6570\u65f6\uff0c\u4f1a\u53d1\u751f\u91cd\u8f7d
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#413","title":"4.1.3 \u8bfb\u5bb6\u5ead\u4f5c\u4e1a\u6210\u7ee9","text":"
- \u5de6\u503c\u53c2\u6570: \u975e\u4e34\u65f6\u5bf9\u8c61
C++
istream read_hw(istream& in, vector<double>& hw)\n{\n if (in) {\n hw.clear();\n double x;\n while (in >> x) \n hw.push_back(x);\n in.clear();\n }\n return in;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#414","title":"4.1.4 \u4e09\u79cd\u51fd\u6570\u53c2\u6570","text":"
- \u4e00\u822c\u800c\u8a00\uff0c\u6211\u4eec\u6ca1\u6709\u5fc5\u8981\u4e3a\u4e86 int \u6216 double \u8fd9\u6837\u89c1\u5230\u4f60\u7684\u5185\u90e8\u7c7b\u578b\u7684\u53c2\u6570\u800c\u53bb\u4f7f\u7528 const \u5f15\u7528
- \u5982\u679c\u4f20\u5165 read_hw () \u7684\u4e0d\u662f\u4e00\u4e2a\u5de6\u503c\uff0c\u90a3\u4e48\u6211\u4eec\u4f1a\u628a\u8f93\u5165\u5b58\u5230\u4e00\u4e2a\u6211\u4eec\u65e0\u59a8\u8bbf\u95ee\u7684\u5bf9\u8c61\u4e2d\uff08\u6539\u5bf9\u8c61\u4f1a\u5728 read_hw() \u8fd4\u56de\u65f6\u7acb\u5373\u6d88\u5931\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#415","title":"4.1.5 \u4f7f\u7528\u51fd\u6570\u6765\u8ba1\u7b97\u5b66\u751f\u7684\u6210\u7ee9","text":"
- \u4e0d\u8981\u8ba9\u4e00\u6761\u8bed\u53e5\u4e2d\u7684\u526f\u4f5c\u7528\u4e2a\u6570\u8d85\u8fc7\u4e00\u4e2a
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#42","title":"4.2 \u7ec4\u7ec7\u6570\u636e","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#421","title":"4.2.1 \u628a\u4e00\u4e2a\u5b66\u751f\u7684\u6240\u6709\u6570\u636e\u653e\u7f6e\u5728\u4e00\u8d77","text":"C++
struct Student_info {\n string name;\n double midterm, final;\n vector<double> homework;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#422","title":"4.2.2 \u5904\u7406\u5b66\u751f\u8bb0\u5f55","text":"C++
istream& read(istream& is, Student_info& s)\n{\n is >> s.name >> s.midterm >> s.final;\n read_hw(is, s.homework);\n return is;\n}\n\ndouble grade(const Student_info& s) \n{\n return grade(s.midterm, s.final, s.homework);\n}\n\nbool compare(const Student_info& x, const Studeng_info& y)\n{\n return x.name < y.name;\n}\n\nsort(students.begin(), students.end(), compare;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#423","title":"4.2.3 \u751f\u6210\u62a5\u8868","text":"C++
cout << setw(maxlen + 1) << student[i].name;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#43","title":"4.3 \u628a\u5404\u90e8\u5206\u4ee3\u7801\u8fde\u63a5\u5230\u4e00\u8d77","text":"Text Only
#ifndef GUARD_median_h\n#define GUARD_median_h //\u9884\u5904\u7406\u7a0b\u5e8f\n\n#include <vector>\ndouble median(vector<double>);\n\n#endif\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#44","title":"4.4 \u628a\u8ba1\u7b97\u6210\u7ee9\u7684\u7a0b\u5e8f\u5206\u5757","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#45","title":"4.5 \u4fee\u6b63\u540e\u7684\u8ba1\u7b97\u6210\u7ee9\u7684\u7a0b\u5e8f","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#46","title":"4.6 \u5c0f\u7ed3","text":"
- \u7528\u6237\u5b9a\u4e49\u7684\u5934\u6587\u4ef6\u4e00\u822c\u4ee5 .h \u7ed3\u5c3e
- \u4e0d\u5e94\u8be5\u5728\u5934\u6587\u4ef6\u4e2d\u4f7f\u7528 using \u58f0\u660e
- \u7528 \\(\\displaystyle \\#\\) ifndef \u6307\u4ee4\u6765\u9632\u6b62\u5bf9\u5934\u6587\u4ef6\u7684\u91cd\u590d\u5305\u542b
- \u5185\u8054\u5b50\u8fc7\u7a0b\u901a\u5e38\u65f6\u5728\u5934\u6587\u4ef6\u800c\u4e0d\u662f\u5728\u6e90\u6587\u4ef6\u4e2d\u5b9a\u4e49 inline
- \u4e3a\u4e86\u6bd4\u5356\u4f60\u51fd\u6570\u8c03\u7528\u7684\u989d\u5916\u5f00\u9500\uff0c\u7f16\u8bd1\u5668\u4f1a\u7528\u51fd\u6570\u4f53\u7684\u4e00\u4e2a\u590d\u5236\u6765\u66ff\u6362\u5bf9\u51fd\u6570\u7684\u6bcf\u4e00\u4e2a\u8c03\u7528\u5e76\u6839\u636e\u9700\u8981\u8fdb\u884c\u4fee\u6b63
- \u5f02\u5e38\u5904\u7406
C++
try{\n} catch (t) { }\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#5","title":"5 \u4f7f\u7528\u987a\u5e8f\u5bb9\u5668\u5e76\u5206\u6790\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#51","title":"5.1 \u6309\u7c7b\u522b\u6765\u533a\u5206\u5b66\u751f","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students)\n{\n vector<Student_info> pass, fail;\n for (vector<Student_info>::size_type i = 0; i != students.size(); ++i;)\n if (fgrade(student[i]))\n fail.push_back(student[i]);\n else\n pass.push_back(student[i]);\n students = pass;\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#511","title":"5.1.1 \u5c31\u5730\u5220\u9664\u51fd\u6570","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students)\n{\n vector<Student_info> fail;\n vector<Student_info>::size_type i = 0;\n while (i != students.size()) {\n if (fgrade(studentp[i])) {\n fail.push_back(students[i]);\n students.erase(students.begin() + i);\n } else\n ++i;\n }\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#512","title":"5.1.2 \u987a\u5e8f\u5b58\u53d6\u4e0e\u968f\u673a\u5b58\u53d6","text":"
- \u8bbf\u95ee\u5bb9\u5668\u65f6\u6240\u91c7\u53d6\u7684\u6b21\u5e8f\u4f1a\u5bfc\u81f4\u4e0d\u540c\u7684\u6027\u80fd\u7279\u6027
- \u4e8e\u662f\u4fbf\u6709\u4e86 iterator
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#52","title":"5.2 \u8fed\u4ee3\u5668","text":"
- iterator
- \u8bc6\u522b\u4e00\u4e2a\u5bb9\u5668\u4ee5\u53ca\u5bb9\u5668\u4e2d\u7684\u4e00\u4e2a\u5143\u7d20
- \u8ba9\u6211\u4eec\u68c0\u67e5\u5b58\u50a8\u5728\u8fd9\u4e2a\u5143\u7d20\u4e2d\u7684\u503c
- \u63d0\u4f9b\u64cd\u4f5c\u6765\u79fb\u52a8\u5728\u5bb9\u6613\u4e2d\u7684\u5143\u7d20
- \u91c7\u7528\u5bf9\u5e94\u4e8e\u5bb9\u5668\u6240\u80fd\u591f\u6709\u6548\u5904\u7406\u7684\u65b9\u5f0f\u5bf9\u53ef\u7528\u7684\u64cd\u4f5c\u8fdb\u884c\u7ea6\u675f
C++
for (vector<Student_info>::size_type i = 0; i != students.end(); ++i)\n cout << students[i].name << endl;\nfor (vector<Student_info>::const_iterator iter = students.begin();\n iter != students.end(); ++iter) {\n cout << (*iter).name << endl; }\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#521","title":"5.2.1 \u8fed\u4ee3\u5668\u7c7b\u578b","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#522","title":"5.2.2 \u8fed\u4ee3\u5668\u64cd\u4f5c","text":"
- end \u7d27\u63a5\u5728\u5bb9\u5668\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u540e\u9762\u7684\u4f4d\u7f6e
- ++iter \u7528\u4e86\u8fed\u4ee3\u5668\u7c7b\u578b\u91cd\u8f7d
- \u5f53\u6211\u4eec\u7528\u95f4\u63a5\u5f15\u7528\u8fd0\u7b97\u7b26 \\(\\displaystyle *\\) \u6765\u8bbf\u95ee\u8fd9\u4e2a\u5143\u7d20\uff0c\u90a3\u4e48\u4ed6\u4f1a\u8fd4\u56de\u4e00\u4e2a\u5de6\u503c\uff08\u8fed\u4ee3\u5668\u6240\u6307\u5411\u7684\u5143\u7d20\uff09
- \\(\\displaystyle .\\) \u7684\u4f18\u5148\u7ea7\u6bd4 \\(\\displaystyle *\\) \u9ad8
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#523","title":"5.2.3 \u4e00\u70b9\u8bed\u6cd5\u77e5\u8bc6","text":"C++
(*iter).name\niter->name\n//both are ok\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#524-students-erase-students-begin-i","title":"5.2.4 students. erase (students. begin () + i) \u7684\u542b\u4e49","text":"
- students \u4e0d\u652f\u6301\u968f\u673a\u8bbf\u95ee\u7d22\u5f15\u64cd\u4f5c\u7684\u5bb9\u5668\uff0c\u4f46\u662f\u4ecd\u4f1a\u5141\u8bb8\u8fed\u4ee3\u5668\u7684\u968f\u673a\u8bbf\u95ee
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#53","title":"5.3 \u7528\u8fed\u4ee3\u5668\u6765\u4ee3\u66ff\u7d22\u5f15","text":"C++
vecotr<Student_info> extract_fails(vector<Student_info>& students)\n{\n vector<Student_info> fail;\n vector<Student_info>::iterator iter = students.begin();\n while (iter != students.end()) {\n if (fgrade(*iter)) {\n fail.push_back(*iter);\n iter = students.erase(iter); //important\n } else\n ++iter;\n }\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#54","title":"5.4 \u91cd\u65b0\u601d\u8003\u6570\u636e\u7ed3\u6784\u4ee5\u5b9e\u73b0\u66f4\u597d\u7684\u6027\u80fd","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#55-list","title":"5.5 list \u7c7b\u578b","text":"
- \u76f4\u63a5\u628a\u6240\u6709\u7684 vector \u6362\u6210 list \u5c31\u53ef\u4ee5\u4e86
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#551","title":"5.5.1 \u4e00\u4e9b\u91cd\u8981\u7684\u5dee\u522b","text":"
- list \u7c7b\u7684\u8fed\u4ee3\u5668\u5e76\u4e0d\u652f\u6301\u5b8c\u5168\u968f\u673a\u7684\u8bbf\u95ee
- \u6240\u4ee5\u6211\u4eec\u4e0d\u80fd\u7528 sort \u51fd\u6570
- \u4f46\u662f list \u6709\u81ea\u5df1\u6210\u5458\u51fd\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#552","title":"5.5.2 \u4e00\u4e2a\u607c\u4eba\u7684\u8bdd\u9898","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#56","title":"5.6 \u5206\u5272\u5b57\u7b26\u4e32","text":"C++
vector<string> split(const string& s)\n{\n vector<string> ret;\n typedef string::size_def string_size;\n string_size i = 0;\n while (i != s.size()) {\n while (i != s.size() && isspace(s[i])) // is from <cctype>\n ++i;\n string_size j = i;\n while (j != s.size() && !isspace(s[i]))\n ++j;\n if (i != j) {\n ret.push_back(s.substr(i, j - i));\n i = j;\n }\n }\n return ret;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#57-split","title":"5.7 \u6d4b\u8bd5 split \u51fd\u6570","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#58","title":"5.8 \u8fde\u63a5\u5b57\u7b26\u4e32","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#581","title":"5.8.1 \u4e3a\u56fe\u6848\u88c5\u6846","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#582","title":"5.8.2 \u7eb5\u5411\u8fde\u63a5","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#583","title":"5.8.3 \u6a2a\u5411\u8fde\u63a5","text":"
TODO
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#59","title":"5.9 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#6","title":"6 \u4f7f\u7528\u5e93\u7b97\u6cd5","text":"
- \u5229\u7528\u516c\u7528\u63a5\u53e3\u6765\u63d0\u4f9b\u4e00\u4e2a\u6807\u51c6\u7b97\u6cd5\u96c6\u5408
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#61","title":"6.1 \u5206\u6790\u5b57\u7b26\u4e32","text":"C++
for (vector<string>::const_iterator it = bottom.begin(); it != bottom.end(); ++i)\n ret.push_back(*it);\n\nret.insert(ret.end(), bottom.begin(), bottom.end());\n\ncopy(bottom.begin(), bottom.end(), back_inserter(ret));\n
- copy \u662f\u4e00\u4e2a\u6cdb\u578b (generic) \u7b97\u6cd5\u7684\u4f8b\u5b50
- back_inserter \u662f\u4e00\u4e2a\u8fed\u4ee3\u5668\u9002\u914d\u5668\u7684\u4f8b\u5b50
C++
copy(begin, end, out);\n//equals to\nwhile (begin != end)\n *out++ = *begin++;\n // equals to \n // *out = *begin; ++out; ++begin;\n\nit = begin++;\n//equals to\nit = begin;\n++begin;\n
- \u8fed\u4ee3\u5668\u9002\u914d\u5668\u662f\u4e00\u4e2a\u4ea7\u751f\u8fed\u4ee3\u5668\u7684\u4e1c\u897f
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#611-split","title":"6.1.1 \u53e6\u4e00\u4e2a\u5b9e\u73b0 split \u7684\u65b9\u6cd5","text":"C++
bool space(char c) {\n return isspace(c);\n}\nbool not_space(char c) {\n return !isspace(c);\n}\nvector<string> split(const string& str) {\n typedef string::const_iterator iter;\n vector<string> ret;\n iter i = str.begin();\n while(i != str.end()) {\n i = find_if(i, str.end(), not_space);\n iter j = find_if(i, str.end(), space);\n if (i != str.end()) ret.push_back(string(i, j));\n i = j; \n }\n return ret;\n}\n
- \u6211\u4eec\u9700\u8981\u7f16\u5199\u6211\u4eec space \u548c not_space \u662f\u7528\u6765\u89e3\u91ca\u6211\u4eec\u6240\u6307\u7684\u662f\u54ea\u4e2a\u7248\u672c\u7684 isspace
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#612","title":"6.1.2 \u56de\u6587","text":"C++
bool is_palindrome(const string& s) {\n return equal(s.begin(), s.end(), s.rbegin());\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#613-url","title":"6.1.3 \u67e5\u627e URL","text":"
C++
vector<string> find_urls(const string& s) {\n vector<string> ret;\n typedef string::const_iterator iter;\n iter b = s.begin(), e = s.end();\n while (b != e) {\n b = url_beg(b, e);\n if (b != e) {\n iter after = url_end(b, e);\n ret.push_back(string(b, after));\n b = after;\n }\n }\n return ret;\n}\n\nstring::const_iterator url_end(string::const_iterator b, string::const_iterator e) {\n return find_if(b, e, not_url_char);\n}\n\nbool not_url_char(char c) {\n static const string url_ch = \"~;/?@=&$-_.+!*{},'\";\n return !(isalnum(c)) || find(url_ch.begin(), url_ch.end(), c) != url_end());\n //static\u58f0\u660e\u7684\u5c40\u90e8\u53d8\u91cf\u5177\u6709\u5168\u5c40\u5bff\u547d\uff0c\u751f\u5b58\u671f\u8d2f\u7a7f\u6574\u4e2a\u51fd\u6570\u8c03\u7528\u8fc7\u7a0b\n}\n\nstring::const_iterator url_beg(string::const_iterator b, string::const_iterator e) {\n static const string sep = \"://\";\n typedef string::const_iterator iter;\n iter i = b;\n while ((i = search(i, e, sep.begin(), sep.end())) != e) {\n if (i != b && i + sep.size() != e) {\n iter beg = i;\n while (beg != b && isalpha(beg[-1]))\n --beg;\n if (beg != i && i + sep.size() != e && !not_url_char(i[sep.size()])) return beg;\n }\n if (i != e) i += sep.size();\n }\n return e;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#62","title":"6.2 \u5bf9\u8ba1\u7b97\u6210\u7ee9\u7684\u65b9\u6848\u8fdb\u884c\u6bd4\u8f83","text":"
- \u8bfb\u6240\u6709\u7684\u5b66\u751f\u8bb0\u5f55\uff0c\u628a\u505a\u4e86\u5168\u90e8\u5bb6\u5ead\u4f5c\u4e1a\u7684\u5b66\u751f\u4e0e\u5176\u4ed6\u7684\u5b66\u751f\u5206\u9694\u5f00\u3002
- \u5bf9\u6bcf\u4e00\u7ec4\u4e2d\u7684\u6240\u6709\u5b66\u751f\u5206\u522b\u4f7f\u7528\u6bcf\u4e00\u4e2a\u7684\u8ba1\u7b97\u6210\u7ee9\u7684\u65b9\u6848\uff0c\u62a5\u544a\u6bcf\u4e00\u7ec4\u7684\u4e2d\u503c\u6210\u7ee9\u3002
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#621","title":"6.2.1 \u5904\u7406\u5b66\u751f\u8bb0\u5f55","text":"C++
bool did_all_hw(const Student_info& s) {\n reutrn ((fint(s.homework.begin(), s.homework.end(), 0)) == s.homework.end());\n}\n\nvector<Student_info> did, didnt;\nStudent_info student;\n\nwhile (read(cin, student)) {\n if (did_all_hw(student))\n did.push_back(student);\n else\n didnt.push_back(student);\n}\nif (did.empty()) {\n cout << \"No student did all the homework!\" << endl;\n return 1;\n}\nif (didnt.empty()) {\n cout << \"Every student did all the homework!\" << endl;\n return 1;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#622","title":"6.2.2 \u5206\u6790\u6210\u7ee9","text":"C++
write_analysis(cout, \"median\", median_analysis, did, didn't);\n\ndouble grade_aux(const Student_info& s) {\n tru {\n return grade(s);\n } catch (domain_error) {\n return grade(s.midterm, s.final, 0);\n }\n}\n\ndouble median_analysis(const vector<Student_info>& students) {\n vector<double> grades;\n transdorm(students.begin(), students.end(), back_inserter(grades), grade_aux);\n return medina(grades);\n}\n\nvoid write_analysis(ostream& out, const string& name, double analysis(const vector<Student_info>&), const vector<Student_info>& did, const vector<Student_info>& didnt) {\n out << name << \": median(did) = \" << analysis(did) << \", median(didnt) = \" << analysis(didnt) << endl; \n}\n\nint main() {\n vector<Student_info> did, didnt;\n Student_info student;\n while (read(cin, student)) {\n if (did_all_hw(student))\n did.push_back(student);\n else \n didnt.push_back(student);\n }\n if (did.empty()) {\n cout << \"No student did all the homework!\" << endl;\n return 1;\n }\n if (didnt.empty()) {\n cout << \"Every student did all the homework!\" << endl;\n return 1;\n }\n write_analysis(cout, \"median\", median_analysis, did, didnt);\n write_analysis(cout, \"average\", average_analysis, did, didnt);\n write_analysis(cout, \"medina of homework turned in\", optimistic_median_analysis, did, didnt);\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#623","title":"6.2.3 \u8ba1\u7b97\u57fa\u4e8e\u5bb6\u5ead\u4f5c\u4e1a\u5e73\u5747\u6210\u7ee9\u7684\u603b\u6210\u7ee9","text":"C++
double average(const vector<double>& v) {\n return accumulate(v.begin(), v.end(), 0.0) / v.size();\n}\n\ndouble average_analysis(const Student_info& s) {\n return grade(s.midterm, s.final, average(s.homework));\n}\n\ndouble average_analysis(const vector<Student_info>& students) {\n vector<double> grades;\n transform(students.begin(), students.end(), back_inserter(grades), average_grade);\n return median(grades);\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#624","title":"6.2.4 \u4e0a\u4ea4\u7684\u5bb6\u5ead\u4f5c\u4e1a\u7684\u4e2d\u503c","text":"C++
double optimistic_median(const Student_info& s) {\n vector<double> nonzero;\n remove_copy(s.homework.begin(), s.homework.end(), back_inserter(nonzero), 0);\n if (nonzero.empty())\n return grade(s.midterm, s.final, 0);\n else \n return grade(s.midterm, s.final, median(nonzero));\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#63","title":"6.3 \u5bf9\u5b66\u751f\u8fdb\u884c\u5206\u7c7b\u5e76\u56de\u987e\u4e00\u4e0b\u6211\u4eec\u7684\u95ee\u9898","text":"
- \u4f7f\u7528\u4e00\u4e9b\u7b97\u6cd5\u5e93\u6765\u89e3\u51b3\u95ee\u9898
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#631","title":"6.3.1 \u4e00\u79cd\u4e24\u6b21\u4f20\u9012\u7684\u89e3\u51b3\u65b9\u6848","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students) {\n vector<Student_info> fail;\n remove_copy_if(students.begin(), students.end(), back_inserter(fail), pgrade);\n students.earse(remove_if(students.begin(), students.end(), fgrade), student.end());\n return fail;\n}\n\nbool pgrade(const Student_info& s) {\n return !fgrade(s);\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#64","title":"6.4 \u4e00\u79cd\u4e00\u6b21\u4f20\u9012\u7684\u89e3\u51b3\u65b9\u6848","text":"C++
vector<Student_info> extract_fails(vector<Student_info>& students) {\n vector<Student_info>::iterator iter = stable_partition(students.begin(), students.end(), pgrade);\n vector<Student_info> fail(iter, students.end());\n students.erase(iter, students.end());\n return fail;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#65","title":"6.5 \u7b97\u6cd5\u3001\u5bb9\u5668\u4ee5\u53ca\u8fed\u4ee3\u5668","text":"
- \u7b97\u6cd5\u4f5c\u7528\u4e8e\u5bb9\u5668\u7684\u5143\u7d20\uff0c\u800c\u4e0d\u662f\u4f5c\u7528\u4e8e\u5bb9\u5668
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#7","title":"7 \u4f7f\u7528\u5173\u8054\u5bb9\u5668","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#71","title":"7.1 \u652f\u6301\u9ad8\u6548\u67e5\u627e\u7684\u5bb9\u5668","text":"
- \u5173\u8054\u5bb9\u5668\u4f1a\u5bf9\u63d2\u5165\u7684\u5143\u7d20\u8fdb\u884c\u6392\u5e8f\u6765\u63d0\u9ad8\u67e5\u627e\u7684\u901f\u5ea6
- \u5173\u8054\u6570\u7ec4\u5c31\u662f\u6709 key-value \u7684\u6570\u7ec4
- map: \u6620\u5c04\u8868\u7684\u7d22\u5f15\u4e0d\u4e00\u5b9a\u662f\u6574\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#72","title":"7.2 \u8ba1\u7b97\u5355\u8bcd\u6570","text":"C++
int main() {\n string s;\n map<string, int> counters;\n while (cin >> s) ++counters[s];\n for (map<string, int>::const_iterator it = counters.begin(); it != couners.end(); ++it) {\n cout << it->first << \"\\t\" << it->second << endl;\n }\n return 0;\n}\n
- \u6570\u5bf9\uff08pair\uff09
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#73","title":"7.3 \u4ea7\u751f\u4e00\u4e2a\u4ea4\u53c9\u5f15\u7528\u8868","text":"C++
map<string, vector<int> > xref(istream& in, vector<string> find_words(const string&) = split) {\n string line;\n int line_number = 0'\n map<string, vector<int>> ret;\n while (getline(in, line)) {\n ++line_number;\n vector<string> words = find_words(line);\n for (vector<string>::const_iterator it = words.begin(); it != words.end(); ++it)\n ret(*it).push_back(line_number);\n }\n return ret;\n}\n\n\nint main() {\n map<string, vector<int> > ret = cref(cin);\n for (map<string, vector<int> >::const_iterator it = ret.begin(); it != ret.end(); ++it) {\n cout << it->first << \" occurs on line(s): \";\n vector<int>::const_iterator line_it = it->second.begin();\n cout << *lint_it;\n ++line_it;\n while (line_it != it->second.end()) {\n cout << \", \" << *line_it;\n ++line_it;\n }\n cout << endl;\n }\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#74","title":"7.4 \u751f\u6210\u53e5\u5b50","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#741","title":"7.4.1 \u8868\u793a\u89c4\u5219","text":"C++
typedef vector<string> Rule;\ntypedef vector<Rule> Rule_collection;\ntypedef map<string, Rule_collection> Grammer;\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#742","title":"7.4.2 \u8bfb\u5165\u6587\u6cd5","text":"C++
Grammer read_grammer(istream& in) {\n Grammer ret;\n string line;\n while (getline(in, line)) {\n vector<string> entry = split(line);\n if (!entry.empty())\n ret[entry[0]].push_back(Rule(entry.begin() + 1, entry.end()));\n }\n return ret;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#743","title":"7.4.3 \u751f\u6210\u53e5\u5b50","text":"C++
vector<string> gen_sentence(const Grammar& g) {\n vector<string> ret;\n gen_aux(g, \"<sentence>\", ret);\n return ret;\n}\n\nbool bracketed(const string& s) {\n return s.size() > 1 && s[0] == '<' && s[s.size() - 1] == '>';\n}\n\nvoid gen_aux(const Grammar& g, const string& word, vector<string>& ret) {\n if (!bracketed(word)) {\n ret.push_back(word);\n } else {\n Grammar::const_iterator it = g.find(word);\n if (it == g.end())\n throw logic_error(\"empty rule\");\n const Rule_collection& c = it->seond;\n const Rule& r = c[nrand(c.size())];\n for (Rule::const_iterator i = r.begin(); i != r.end(); ++i)\n gen_aux(g, *i, ret);\n }\n}\n\nint main() {\n vector<string> sentence = gen_sentence(read_grammar(cin));\n vector<string>::const_iterator it = sentence.begin();\n if (!sentence.empty()) {\n cout << *it;\n ++it; \n }\n while (it != sentence.end()) {\n cout << \" \" << *it;\n ++it;\n }\n cout << endl;\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#744","title":"7.4.4 \u9009\u62e9\u4e00\u4e2a\u968f\u673a\u51fd\u6570","text":"C++
int nrand(int n) {\n if (n <= 0 || n > RAND_MAX)\n throw domain_error(\"Argument to nrand is out of range\");\n const int bucket_size = RAND_MAX / n;\n int r;\n do r = rand() / bucket_size;\n while (r >= n);\n return r;\n}\n
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#75","title":"7.5 \u5173\u4e8e\u6027\u80fd\u7684\u4e00\u70b9\u8bf4\u660e","text":"
- \u7528\u6563\u5217\u8868\u5b9e\u73b0\u5173\u8054\u6570\u7ec4\u5728 C++\u4e2d\u7684\u662f\u5f88\u56f0\u96be\u7684 \u6ca1\u641e\u61c2
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#76","title":"7.6 \u5c0f\u7ed3","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#8","title":"8 \u7f16\u5199\u6cdb\u578b\u51fd\u6570","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#81","title":"8.1 \u6cdb\u578b\u51fd\u6570\u662f\u4ec0\u4e48","text":"
- \u5728\u4f7f\u7528\u51fd\u6570\u4e4b\u524d\u4e0d\u77e5\u9053\u53c2\u6570\u6216\u8005\u8fd4\u56de\u7c7b\u578b\u662f\u4ec0\u4e48
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#811","title":"8.1.1 \u672a\u77e5\u7c7b\u578b\u7684\u4e2d\u503c","text":"
- \u5b9e\u73b0\u4e86\u6cdb\u578b\u51fd\u6570\u7684\u8bed\u8a00\u7279\u5f81\u88ab\u79f0\u4f5c\u6a21\u677f\u51fd\u6570
"},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#9","title":"9 \u5b9a\u4e49\u65b0\u7c7b\u578b","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#10","title":"10 \u7ba1\u7406\u5185\u5b58\u548c\u4f4e\u7ea7\u6570\u636e\u7ed3\u6784","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#11_1","title":"11 \u5b9a\u4e49\u62bd\u8c61\u6570\u636e\u7c7b\u578b","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#12_1","title":"12 \u4f7f\u7c7b\u5bf9\u8c61\u50cf\u4e00\u4e2a\u6570\u503c\u4e00\u6837\u5de5\u4f5c","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#13_1","title":"13 \u4f7f\u7528\u7ee7\u627f\u4e0e\u52a8\u6001\u7ed1\u5b9a","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#14","title":"14 \u8fd1\u4e4e\u81ea\u52a8\u5730\u7ba1\u7406\u5185\u5b58","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#15","title":"15 \u518d\u8c08\u5b57\u7b26\u56fe\u5f62","text":""},{"location":"CS%20basic/C%2B%2B/Accelerated%20C%2B%2B/#16-c","title":"16 \u4eca\u540e\u5982\u4f55\u5b66\u4e60 C++","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/","title":"C++","text":"
\u7ea6 3115 \u4e2a\u5b57 523 \u884c\u4ee3\u7801 9 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 17 \u5206\u949f
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#1","title":"1 \u6587\u4ef6\u64cd\u4f5c","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#11","title":"1.1 \u6587\u4ef6\u7684\u6982\u5ff5","text":"
- C/C++\u628a\u6bcf\u4e00\u4e2a\u6587\u4ef6\u90fd\u770b\u6210\u662f\u4e00\u4e2a\u6709\u5e8f\u7684\u5b57\u8282\u6d41\uff0c\u4ee5\u6587\u4ef6\u7ed3\u675f\u6807\u5fd7\uff08EOF\uff09\u7ed3\u675f
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#12","title":"1.2 \u6587\u4ef6\u7684\u64cd\u4f5c\u6b65\u9aa4","text":"
- \u6253\u5f00\u6587\u4ef6\uff0c\u8bb2\u6587\u4ef6\u6307\u9488\u6307\u5411\u6587\u4ef6\uff0c\u51b3\u5b9a\u6253\u5f00\u6587\u4ef6\u7684\u7c7b\u578b
- \u5bf9\u6587\u4ef6\u8fdb\u884c\u8bfb/\u5199\u64cd\u4f5c
- \u5728\u4f7f\u7528\u5b8c\u6587\u4ef6\u540e\uff0c\u5173\u95ed\u6587\u4ef6
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#13","title":"1.3 \u4e00\u4e9b\u51fd\u6570","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#131-freopen","title":"1.3.1 freopen \u51fd\u6570","text":"C++
FILE* freopen(const char* filename, const char* mode, FILE* stream);\n
- \u53c2\u6570\u8bf4\u660e
filename
: \u8981\u6253\u5f00\u7684\u6587\u4ef6\u540d mode
: \u6587\u4ef6\u6253\u5f00\u7684\u6a21\u5f0f\uff0c\u8868\u793a\u6587\u4ef6\u8bbf\u95ee\u7684\u6743\u9650 stream
: \u6587\u4ef6\u6307\u9488\uff0c\u901a\u5e38\u4f7f\u7528\u6807\u51c6\u6587\u4ef6\u6d41 (stdin/stdout
) \u6216\u6807\u51c6\u9519\u8bef\u8f93\u51fa\u6d41 (stderr
) - \u8fd4\u56de\u503c\uff1a\u6587\u4ef6\u6307\u9488\uff0c\u6307\u5411\u88ab\u6253\u5f00\u6587\u4ef6
- \u6587\u4ef6\u6253\u5f00\u683c\u5f0f
r
\uff1a\u4ee5\u53ea\u8bfb\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u53ea\u5141\u8bb8\u8bfb\u5165\u6570\u636e\u00a0\uff08\u5e38\u7528\uff09 r+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e rb
\uff1a\u4ee5\u53ea\u8bfb\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u53ea\u5141\u8bb8\u8bfb\u5165\u6570\u636e rb+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u5fc5\u987b\u5b58\u5728\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e rt+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u672c\u6587\u4ef6\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e w
\uff1a\u4ee5\u53ea\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u4f1a\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u53ea\u5141\u8bb8\u5199\u5165\u6570\u636e\u00a0\uff08\u5e38\u7528\uff09 w+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e wb
\uff1a\u4ee5\u53ea\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u4f1a\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u53ea\u5141\u8bb8\u5199\u5165\u6570\u636e wb+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5426\u5219\u6e05\u7a7a\u5185\u5bb9\uff0c\u5141\u8bb8\u8bfb/\u5199\u6570\u636e a
\uff1a\u4ee5\u53ea\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e\uff08\u4fdd\u7559 EOF \u7b26\uff09 a+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u4ef6\uff0c\u6587\u4ef6\u4e0d\u5b58\u5728\u5c06\u65b0\u5efa\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e\uff08\u4e0d\u4fdd\u7559 EOF \u7b26\uff09 at+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u6587\u672c\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e ab+
\uff1a\u4ee5\u8bfb/\u5199\u65b9\u5f0f\u6253\u5f00\u4e8c\u8fdb\u5236\u6587\u4ef6\uff0c\u5199\u5165\u6570\u636e\u5c06\u88ab\u9644\u52a0\u5728\u6587\u4ef6\u672b\u5c3e \u4f7f\u7528\u65b9\u5f0f
C++
#include <cstdio>\n#include <iostream>\nint mian(void) {\n freopen(\"data.in\", \"r\", stdin); \n // data.in \u5c31\u662f\u8bfb\u53d6\u7684\u6587\u4ef6\u540d\uff0c\u8981\u548c\u53ef\u6267\u884c\u6587\u4ef6\u653e\u5728\u540c\u4e00\u76ee\u5f55\u4e0b\n freopen(\"data.out\", \"w\", stdout); \n // data.out \u5c31\u662f\u8f93\u51fa\u6587\u4ef6\u7684\u6587\u4ef6\u540d\uff0c\u548c\u53ef\u6267\u884c\u6587\u4ef6\u5728\u540c\u4e00\u76ee\u5f55\u4e0b\n fclose(stdin);\n fclose(stdout);\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#132-fopen","title":"1.3.2 fopen \u51fd\u6570","text":"C++
FILE* fopen(const char* path, const char* mode)\n
\u4f7f\u7528\u65b9\u5f0f
C++
FILE *in, *out; // \u5b9a\u4e49\u6587\u4ef6\u6307\u9488 \nin = fopen(\"data.in\", \"r\"); \nout = fopen(\"data.out\", \"w\"); \n/* do what you want to do */ \nfclose(in); \nfclose(out);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#14-c-ifstreamofstream","title":"1.4 C++ \u7684\u00a0
ifstream/ofstream
\u00a0\u6587\u4ef6\u8f93\u5165\u8f93\u51fa\u6d41","text":"C++
#include <fstream> \nusing namespace std; \n// \u4e24\u4e2a\u7c7b\u578b\u90fd\u5728 std \u547d\u540d\u7a7a\u95f4\u91cc \nifstream fin(\"data.in\"); \nofstream fout(\"data.out\"); \nint main(void) { \n /* \u4e2d\u95f4\u7684\u4ee3\u7801\u6539\u53d8 cin \u4e3a fin \uff0ccout \u4e3a fout \u5373\u53ef */ \n fin.close(); \n fout.close(); \n return 0; \n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2","title":"2 \u6807\u51c6\u5e93","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#21-stl","title":"2.1 STL \u5bb9\u5668","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#211","title":"2.1.1 \u5e8f\u5217\u5f0f\u5bb9\u5668","text":"
- \u5411\u91cf(
vector
) \u540e\u7aef\u53ef\u9ad8\u6548\u589e\u52a0\u5143\u7d20\u7684\u987a\u5e8f\u8868\u3002 - \u53ef\u4ee5\u52a8\u6001\u5206\u914d\u5185\u5b58
- \u91cd\u5199\u4e86\u6bd4\u8f83\u8fd0\u7b97\u7b26\u53ca\u8d4b\u503c\u8fd0\u7b97\u7b26
- \u4fbf\u5229\u7684\u521d\u59cb\u5316
- std::vector - cppreference.com
- \u6570\u7ec4(
array
)C++11\uff0c\u5b9a\u957f\u7684\u987a\u5e8f\u8868\uff0cC \u98ce\u683c\u6570\u7ec4\u7684\u7b80\u5355\u5305\u88c5\u3002 - \u53cc\u7aef\u961f\u5217(
deque
) \u53cc\u7aef\u90fd\u53ef\u9ad8\u6548\u589e\u52a0\u5143\u7d20\u7684\u987a\u5e8f\u8868\u3002 - \u5217\u8868(
list
) \u53ef\u4ee5\u6cbf\u53cc\u5411\u904d\u5386\u7684\u94fe\u8868\u3002 - \u5355\u5411\u5217\u8868(
forward_list
) \u53ea\u80fd\u6cbf\u4e00\u4e2a\u65b9\u5411\u904d\u5386\u7684\u94fe\u8868\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#212","title":"2.1.2 \u5173\u8054\u5f0f\u5bb9\u5668","text":"
- \u96c6\u5408(
set
) \u7528\u4ee5\u6709\u5e8f\u5730\u5b58\u50a8\u00a0\u4e92\u5f02\u00a0\u5143\u7d20\u7684\u5bb9\u5668\u3002\u5176\u5b9e\u73b0\u662f\u7531\u8282\u70b9\u7ec4\u6210\u7684\u7ea2\u9ed1\u6811\uff0c\u6bcf\u4e2a\u8282\u70b9\u90fd\u5305\u542b\u7740\u4e00\u4e2a\u5143\u7d20\uff0c\u8282\u70b9\u4e4b\u95f4\u4ee5\u67d0\u79cd\u6bd4\u8f83\u5143\u7d20\u5927\u5c0f\u7684\u8c13\u8bcd\u8fdb\u884c\u6392\u5217\u3002 - \u591a\u91cd\u96c6\u5408(
multiset
) \u7528\u4ee5\u6709\u5e8f\u5730\u5b58\u50a8\u5143\u7d20\u7684\u5bb9\u5668\u3002\u5141\u8bb8\u5b58\u5728\u76f8\u7b49\u7684\u5143\u7d20\u3002 - \u6620\u5c04(
map
) \u7531 {\u952e\uff0c\u503c} \u5bf9\u7ec4\u6210\u7684\u96c6\u5408\uff0c\u4ee5\u67d0\u79cd\u6bd4\u8f83\u952e\u5927\u5c0f\u5173\u7cfb\u7684\u8c13\u8bcd\u8fdb\u884c\u6392\u5217\u3002 - \u591a\u91cd\u6620\u5c04(
multimap
) \u7531 {\u952e\uff0c\u503c} \u5bf9\u7ec4\u6210\u7684\u591a\u91cd\u96c6\u5408\uff0c\u4ea6\u5373\u5141\u8bb8\u952e\u6709\u76f8\u7b49\u60c5\u51b5\u7684\u6620\u5c04\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#213","title":"2.1.3 \u65e0\u5e8f\uff08\u5173\u8054\u5f0f\uff09\u5bb9\u5668","text":"
- \u65e0\u5e8f\uff08\u591a\u91cd\uff09\u96c6\u5408(
unordered_set
/unordered_multiset
)C++11\uff0c\u4e0e\u00a0set
/multiset
\u00a0\u7684\u533a\u522b\u5728\u4e8e\u5143\u7d20\u65e0\u5e8f\uff0c\u53ea\u5173\u5fc3\u300c\u5143\u7d20\u662f\u5426\u5b58\u5728\u300d\uff0c\u4f7f\u7528\u54c8\u5e0c\u5b9e\u73b0\u3002 - \u65e0\u5e8f\uff08\u591a\u91cd\uff09\u6620\u5c04(
unordered_map
/unordered_multimap
)C++11\uff0c\u4e0e\u00a0map
/multimap
\u00a0\u7684\u533a\u522b\u5728\u4e8e\u952e (key) \u65e0\u5e8f\uff0c\u53ea\u5173\u5fc3 \"\u952e\u4e0e\u503c\u7684\u5bf9\u5e94\u5173\u7cfb\"\uff0c\u4f7f\u7528\u54c8\u5e0c\u5b9e\u73b0\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#214","title":"2.1.4 \u5bb9\u5668\u9002\u914d\u5668","text":"
\u5bb9\u5668\u9002\u914d\u5668\u5176\u5b9e\u5e76\u4e0d\u662f\u5bb9\u5668\u3002\u5b83\u4eec\u4e0d\u5177\u6709\u5bb9\u5668\u7684\u67d0\u4e9b\u7279\u70b9\uff08\u5982\uff1a\u6709\u8fed\u4ee3\u5668\u3001\u6709\u00a0clear()
\u00a0\u51fd\u6570\u2026\u2026\uff09\u3002
\u300c\u9002\u914d\u5668\u662f\u4f7f\u4e00\u79cd\u4e8b\u7269\u7684\u884c\u4e3a\u7c7b\u4f3c\u4e8e\u53e6\u5916\u4e00\u79cd\u4e8b\u7269\u884c\u4e3a\u7684\u4e00\u79cd\u673a\u5236\u300d\uff0c\u9002\u914d\u5668\u5bf9\u5bb9\u5668\u8fdb\u884c\u5305\u88c5\uff0c\u4f7f\u5176\u8868\u73b0\u51fa\u53e6\u5916\u4e00\u79cd\u884c\u4e3a\u3002
- \u6808(
stack
) \u540e\u8fdb\u5148\u51fa (LIFO) \u7684\u5bb9\u5668\uff0c\u9ed8\u8ba4\u662f\u5bf9\u53cc\u7aef\u961f\u5217\uff08deque
\uff09\u7684\u5305\u88c5\u3002 - \u961f\u5217(
queue
) \u5148\u8fdb\u5148\u51fa (FIFO) \u7684\u5bb9\u5668\uff0c\u9ed8\u8ba4\u662f\u5bf9\u53cc\u7aef\u961f\u5217\uff08deque
\uff09\u7684\u5305\u88c5\u3002 - \u4f18\u5148\u961f\u5217(
priority_queue
) \u5143\u7d20\u7684\u6b21\u5e8f\u662f\u7531\u4f5c\u7528\u4e8e\u6240\u5b58\u50a8\u7684\u503c\u5bf9\u4e0a\u7684\u67d0\u79cd\u8c13\u8bcd\u51b3\u5b9a\u7684\u7684\u4e00\u79cd\u961f\u5217\uff0c\u9ed8\u8ba4\u662f\u5bf9\u5411\u91cf\uff08vector
\uff09\u7684\u5305\u88c5\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#215","title":"2.1.5 \u5171\u540c\u70b9","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2151","title":"2.1.5.1 \u5bb9\u5668\u58f0\u660e","text":"
- \u90fd\u662f\u00a0
containerName<typeName,...> name
\u00a0\u7684\u5f62\u5f0f\uff0c\u4f46\u6a21\u677f\u53c2\u6570\uff08<>
\u00a0\u5185\u7684\u53c2\u6570\uff09\u7684\u4e2a\u6570\u3001\u5f62\u5f0f\u4f1a\u6839\u636e\u5177\u4f53\u5bb9\u5668\u800c\u53d8\u3002 - \u672c\u8d28\u539f\u56e0\uff1aSTL \u5c31\u662f\u300c\u6807\u51c6\u6a21\u677f\u5e93\u300d\uff0c\u6240\u4ee5\u5bb9\u5668\u90fd\u662f\u6a21\u677f\u7c7b\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2152","title":"2.1.5.2 \u8fed\u4ee3\u5668","text":"C++
vector<int> data(10);\n\nfor (int i = 0; i < data.size(); i++)\n cout << data[i] << endl;\n\nfor (vector<int>::iterator iter = data.begin(); iter != data.end(); iter++)\n cout << *iter << endl;\n//C++11 \u4ee5\u540e\u53ef\u4ee5\u7528 auto iter = data.begin() \u6765\u7b80\u5316\n
- \u5206\u7c7b
- InputIterator\uff08\u8f93\u5165\u8fed\u4ee3\u5668\uff09\uff1a\u53ea\u8981\u6c42\u652f\u6301\u62f7\u8d1d\u3001\u81ea\u589e\u548c\u89e3\u5f15\u8bbf\u95ee\u3002
- OutputIterator\uff08\u8f93\u51fa\u8fed\u4ee3\u5668\uff09\uff1a\u53ea\u8981\u6c42\u652f\u6301\u62f7\u8d1d\u3001\u81ea\u589e\u548c\u89e3\u5f15\u8d4b\u503c\u3002
- ForwardIterator\uff08\u5411\u524d\u8fed\u4ee3\u5668\uff09\uff1a\u540c\u65f6\u6ee1\u8db3 InputIterator \u548c OutputIterator \u7684\u8981\u6c42\u3002
- BidirectionalIterator\uff08\u53cc\u5411\u8fed\u4ee3\u5668\uff09\uff1a\u5728 ForwardIterator \u7684\u57fa\u7840\u4e0a\u652f\u6301\u81ea\u51cf\uff08\u5373\u53cd\u5411\u8bbf\u95ee\uff09\u3002
- RandomAccessIterator\uff08\u968f\u673a\u8bbf\u95ee\u8fed\u4ee3\u5668\uff09\uff1a\u5728 BidirectionalIterator \u7684\u57fa\u7840\u4e0a\u652f\u6301\u52a0\u51cf\u8fd0\u7b97\u548c\u6bd4\u8f83\u8fd0\u7b97\uff08\u5373\u968f\u673a\u8bbf\u95ee\uff09\u3002
- ContiguousIterator\uff08\u8fde\u7eed\u8fed\u4ee3\u5668\uff09\uff1a\u5728 RandomAccessIterator \u7684\u57fa\u7840\u4e0a\u8981\u6c42\u5bf9\u53ef\u89e3\u5f15\u7528\u7684\u8fed\u4ee3\u5668\u00a0
a + n
\u00a0\u6ee1\u8db3\u00a0*(a + n)
\u00a0\u4e0e\u00a0*(std::address_of(*a) + n)
\u00a0\u7b49\u4ef7\uff08\u5373\u8fde\u7eed\u5b58\u50a8\uff0c\u5176\u4e2d\u00a0a
\u00a0\u4e3a\u8fde\u7eed\u8fed\u4ee3\u5668\u3001n
\u00a0\u4e3a\u6574\u578b\u503c\uff09\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#2153","title":"2.1.5.3 \u5171\u6709\u51fd\u6570","text":"
=
\uff1a\u6709\u8d4b\u503c\u8fd0\u7b97\u7b26\u4ee5\u53ca\u590d\u5236\u6784\u9020\u51fd\u6570\u3002 begin()
\uff1a\u8fd4\u56de\u6307\u5411\u5f00\u5934\u5143\u7d20\u7684\u8fed\u4ee3\u5668\u3002 end()
\uff1a\u8fd4\u56de\u6307\u5411\u672b\u5c3e\u7684\u4e0b\u4e00\u4e2a\u5143\u7d20\u7684\u8fed\u4ee3\u5668\u3002end()
\u00a0\u4e0d\u6307\u5411\u67d0\u4e2a\u5143\u7d20\uff0c\u4f46\u5b83\u662f\u672b\u5c3e\u5143\u7d20\u7684\u540e\u7ee7\u3002 size()
\uff1a\u8fd4\u56de\u5bb9\u5668\u5185\u7684\u5143\u7d20\u4e2a\u6570\u3002 max_size()
\uff1a\u8fd4\u56de\u5bb9\u5668\u00a0\u7406\u8bba\u4e0a\u00a0\u80fd\u5b58\u50a8\u7684\u6700\u5927\u5143\u7d20\u4e2a\u6570\u3002\u4f9d\u5bb9\u5668\u7c7b\u578b\u548c\u6240\u5b58\u50a8\u53d8\u91cf\u7684\u7c7b\u578b\u800c\u53d8\u3002 empty()
\uff1a\u8fd4\u56de\u5bb9\u5668\u662f\u5426\u4e3a\u7a7a\u3002 swap()
\uff1a\u4ea4\u6362\u4e24\u4e2a\u5bb9\u5668\u3002 clear()
\uff1a\u6e05\u7a7a\u5bb9\u5668\u3002 ==
/!=
/<
/>
/<=
/>=
\uff1a\u6309\u00a0\u5b57\u5178\u5e8f\u00a0\u6bd4\u8f83\u4e24\u4e2a\u5bb9\u5668\u7684\u5927\u5c0f\u3002\uff08\u6bd4\u8f83\u5143\u7d20\u5927\u5c0f\u65f6\u00a0map
\u00a0\u7684\u6bcf\u4e2a\u5143\u7d20\u76f8\u5f53\u4e8e\u00a0set<pair<key, value> >
\uff0c\u65e0\u5e8f\u5bb9\u5668\u4e0d\u652f\u6301\u00a0<
/>
/<=
/>=
\u3002\uff09
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#216-stl","title":"2.1.6 STL \u7b97\u6cd5","text":"
find
\uff1a\u987a\u5e8f\u67e5\u627e\u3002find(v.begin(), v.end(), value)
\uff0c\u5176\u4e2d\u00a0value
\u00a0\u4e3a\u9700\u8981\u67e5\u627e\u7684\u503c\u3002 reverse
\uff1a\u7ffb\u8f6c\u6570\u7ec4\u3001\u5b57\u7b26\u4e32\u3002reverse(v.begin(), v.end())
\u00a0\u6216\u00a0reverse(a + begin, a + end)
\u3002 unique
\uff1a\u53bb\u9664\u5bb9\u5668\u4e2d\u76f8\u90bb\u7684\u91cd\u590d\u5143\u7d20\u3002unique(ForwardIterator first, ForwardIterator last)
\uff0c\u8fd4\u56de\u503c\u4e3a\u6307\u5411\u00a0\u53bb\u91cd\u540e\u00a0\u5bb9\u5668\u7ed3\u5c3e\u7684\u8fed\u4ee3\u5668\uff0c\u539f\u5bb9\u5668\u5927\u5c0f\u4e0d\u53d8\u3002\u4e0e\u00a0sort
\u00a0\u7ed3\u5408\u4f7f\u7528\u53ef\u4ee5\u5b9e\u73b0\u5b8c\u6574\u5bb9\u5668\u53bb\u91cd\u3002 sort
\uff1a\u6392\u5e8f\u3002sort(v.begin(), v.end(), cmp)
\u00a0\u6216\u00a0sort(a + begin, a + end, cmp)
\uff0c\u5176\u4e2d\u00a0end
\u00a0\u662f\u6392\u5e8f\u7684\u6570\u7ec4\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u540e\u4e00\u4f4d\uff0ccmp
\u00a0\u4e3a\u81ea\u5b9a\u4e49\u7684\u6bd4\u8f83\u51fd\u6570\u3002 stable_sort
\uff1a\u7a33\u5b9a\u6392\u5e8f\uff0c\u7528\u6cd5\u540c\u00a0sort()
\u3002 nth_element
\uff1a\u6309\u6307\u5b9a\u8303\u56f4\u8fdb\u884c\u5206\u7c7b\uff0c\u5373\u627e\u51fa\u5e8f\u5217\u4e2d\u7b2c \\(\\displaystyle n\\) \u5927\u7684\u5143\u7d20\uff0c\u4f7f\u5176\u5de6\u8fb9\u5747\u4e3a\u5c0f\u4e8e\u5b83\u7684\u6570\uff0c\u53f3\u8fb9\u5747\u4e3a\u5927\u4e8e\u5b83\u7684\u6570\u3002 nth_element(v.begin(), v.begin() + mid, v.end(), cmp)
\u00a0\u6216\u00a0nth_element(a + begin, a + begin + mid, a + end, cmp)
\u3002 binary_search
\uff1a\u4e8c\u5206\u67e5\u627e\u3002binary_search(v.begin(), v.end(), value)
\uff0c\u5176\u4e2d\u00a0value
\u00a0\u4e3a\u9700\u8981\u67e5\u627e\u7684\u503c\u3002 merge
\uff1a\u5c06\u4e24\u4e2a\uff08\u5df2\u6392\u5e8f\u7684\uff09\u5e8f\u5217\u00a0\u6709\u5e8f\u5408\u5e76\u00a0\u5230\u7b2c\u4e09\u4e2a\u5e8f\u5217\u7684\u00a0\u63d2\u5165\u8fed\u4ee3\u5668\u00a0\u4e0a\u3002merge(v1.begin(), v1.end(), v2.begin(), v2.end() ,back_inserter(v3))
\u3002 inplace_merge
\uff1a\u5c06\u4e24\u4e2a\uff08\u5df2\u6309\u5c0f\u4e8e\u8fd0\u7b97\u7b26\u6392\u5e8f\u7684\uff09\uff1a[first,middle), [middle,last)
\u00a0\u8303\u56f4\u00a0\u539f\u5730\u5408\u5e76\u4e3a\u4e00\u4e2a\u6709\u5e8f\u5e8f\u5217\u3002inplace_merge(v.begin(), v.begin() + middle, v.end())
\u3002 lower_bound
\uff1a\u5728\u4e00\u4e2a\u6709\u5e8f\u5e8f\u5217\u4e2d\u8fdb\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u8fd4\u56de\u6307\u5411\u7b2c\u4e00\u4e2a\u00a0\u5927\u4e8e\u7b49\u4e8e \u00a0\u7684\u5143\u7d20\u7684\u4f4d\u7f6e\u7684\u8fed\u4ee3\u5668\u3002\u5982\u679c\u4e0d\u5b58\u5728\u8fd9\u6837\u7684\u5143\u7d20\uff0c\u5219\u8fd4\u56de\u5c3e\u8fed\u4ee3\u5668\u3002lower_bound(v.begin(),v.end(),x)
\u3002 upper_bound
\uff1a\u5728\u4e00\u4e2a\u6709\u5e8f\u5e8f\u5217\u4e2d\u8fdb\u884c\u4e8c\u5206\u67e5\u627e\uff0c\u8fd4\u56de\u6307\u5411\u7b2c\u4e00\u4e2a\u00a0\u5927\u4e8e \u00a0\u7684\u5143\u7d20\u7684\u4f4d\u7f6e\u7684\u8fed\u4ee3\u5668\u3002\u5982\u679c\u4e0d\u5b58\u5728\u8fd9\u6837\u7684\u5143\u7d20\uff0c\u5219\u8fd4\u56de\u5c3e\u8fed\u4ee3\u5668\u3002upper_bound(v.begin(),v.end(),x)
\u3002 next_permutation
\uff1a\u5c06\u5f53\u524d\u6392\u5217\u66f4\u6539\u4e3a\u00a0\u5168\u6392\u5217\u4e2d\u7684\u4e0b\u4e00\u4e2a\u6392\u5217\u3002\u5982\u679c\u5f53\u524d\u6392\u5217\u5df2\u7ecf\u662f\u00a0\u5168\u6392\u5217\u4e2d\u7684\u6700\u540e\u4e00\u4e2a\u6392\u5217\uff08\u5143\u7d20\u5b8c\u5168\u4ece\u5927\u5230\u5c0f\u6392\u5217\uff09\uff0c\u51fd\u6570\u8fd4\u56de\u00a0false
\u00a0\u5e76\u5c06\u6392\u5217\u66f4\u6539\u4e3a\u00a0\u5168\u6392\u5217\u4e2d\u7684\u7b2c\u4e00\u4e2a\u6392\u5217\uff08\u5143\u7d20\u5b8c\u5168\u4ece\u5c0f\u5230\u5927\u6392\u5217\uff09\uff1b\u5426\u5219\uff0c\u51fd\u6570\u8fd4\u56de\u00a0true
\u3002next_permutation(v.begin(), v.end())
\u00a0\u6216\u00a0next_permutation(v + begin, v + end)
\u3002 prev_permutation
\uff1a\u5c06\u5f53\u524d\u6392\u5217\u66f4\u6539\u4e3a\u00a0\u5168\u6392\u5217\u4e2d\u7684\u4e0a\u4e00\u4e2a\u6392\u5217\u3002\u7528\u6cd5\u540c\u00a0next_permutation
\u3002 partial_sum
\uff1a\u6c42\u524d\u7f00\u548c\u3002\u8bbe\u6e90\u5bb9\u5668\u4e3a\u00a0\uff0c\u76ee\u6807\u5bb9\u5668\u4e3a\u00a0\uff0c\u5219\u4ee4\u00a0\u3002partial_sum(src.begin(), src.end(), back_inserter(dst))
\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#22-bitset","title":"2.2 bitset","text":"
TODO bitset - OI Wiki
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#23-string","title":"2.3 string","text":"
- \u91cd\u8f7d\u8fd0\u7b97\u7b26
- \u52a8\u6001\u5206\u914d\u7a7a\u95f4
C++
std::string s;\nprintf(\"%s\", s.c_str());\nprintf(\"s \u7684\u957f\u5ea6\u4e3a %lu\", s.size()); \nprintf(\"s \u7684\u957f\u5ea6\u4e3a %lu\", s.length()); \nprintf(\"s \u7684\u957f\u5ea6\u4e3a %lu\", strlen(s.c_str()));\nsubstr(pos, len);\ninsert(index, count, ch);\ninsert(index, str);\nerase(index, count);\nreplace(pos, count, str);\nreplace(first, last, str);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#24-pair","title":"2.4 pair","text":"
pair
\u4e0d\u9700\u8981\u989d\u5916\u5b9a\u4e49\u7ed3\u6784\u4e0e\u91cd\u8f7d\u8fd0\u7b97\u7b26
C++
pair<int, double> p0(1, 2.0);\npair<int, double> p2 = make_pair(1, 2.0);\nauto p3 = make_pair(1, 2.0);\n\nint i = p0.first; \ndouble d = p0.second;\np1.first++;\n\npriority_queue<pair<int, double> > q;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3","title":"3 \u8fdb\u9636","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#31","title":"3.1 \u7c7b","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#32","title":"3.2 \u52a8\u6001\u5185\u5b58","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#321-new-delete","title":"3.2.1 new \u548c delete \u8fd0\u7b97\u7b26","text":"
- \u6808: \u58f0\u660e\u7684\u6240\u6709\u53d8\u91cf\u5c06\u5360\u7528\u6808\u5185\u5b58
- \u5806: \u672a\u4f7f\u7528\u7684\u5185\u5b58
C++
new data-type;\n\ndouble* pvalue = NULL;\npvalue = new double;\n\nif (!(pvalue = new double)) {\n cout << \"Error: out of memory.\" << endl;\n exit(1);\n}\n\ndelete pvalue;\n
- new \u4e0d\u4ec5\u5206\u914d\u7684\u5185\u5b58\u8fd8\u521b\u5efa\u4e86\u5bf9\u8c61
- malloc () \u53ea\u5206\u914d\u7684\u5185\u5b58
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#322","title":"3.2.2 \u6570\u7ec4\u7684\u52a8\u6001\u5185\u5b58\u5206\u914d","text":"C++
int ***array;\n// \u5047\u5b9a\u6570\u7ec4\u7b2c\u4e00\u7ef4\u4e3a m\uff0c \u7b2c\u4e8c\u7ef4\u4e3a n\uff0c \u7b2c\u4e09\u7ef4\u4e3ah\n// \u52a8\u6001\u5206\u914d\u7a7a\u95f4\narray = new int **[m];\nfor( int i=0; i<m; i++ )\n{\n array[i] = new int *[n];\n for( int j=0; j<n; j++ )\n {\n array[i][j] = new int [h];\n }\n}\n//\u91ca\u653e\nfor( int i=0; i<m; i++ )\n{\n for( int j=0; j<n; j++ )\n {\n delete [] array[i][j];\n }\n delete [] array[i];\n}\ndelete [] array;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#323","title":"3.2.3 \u5bf9\u8c61\u7684\u52a8\u6001\u5185\u5b58\u5206\u914d","text":"C++
#include <iostream>\nusing namespace std;\n\nclass Box\n{\n public:\n Box() { \n cout << \"\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\" <<endl; \n }\n ~Box() { \n cout << \"\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\" <<endl; \n }\n};\n\nint main( )\n{\n Box* myBoxArray = new Box[4]; // \u4e00\u4e2a\u5305\u542b 4 \u4e2a Box \u5bf9\u8c61\u7684\u6570\u7ec4\n\n delete [] myBoxArray; // \u5220\u9664\u6570\u7ec4\n return 0;\n}\n
Text Only
\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6784\u9020\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n\u8c03\u7528\u6790\u6784\u51fd\u6570\uff01\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#33","title":"3.3 \u547d\u540d\u7a7a\u95f4","text":"
- \u7f16\u8bd1\u5668\u4e3a\u4e86\u533a\u522b\u540c\u540d\u51fd\u6570\u5f15\u5165\u4e86\u547d\u540d\u7a7a\u95f4
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#331","title":"3.3.1 \u5b9a\u4e49\u547d\u540d\u7a7a\u95f4","text":"C++
namespace namespace_name {\n // code\n}\n\nnamespace_name::code;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#332-using","title":"3.3.2 using \u6307\u4ee4","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#333","title":"3.3.3 \u4e0d\u8fde\u7eed\u7684\u547d\u540d\u7a7a\u95f4","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#334","title":"3.3.4 \u5d4c\u5957\u7684\u547d\u540d\u7a7a\u95f4","text":"C++
namespace namespace_name1 {\n // \u4ee3\u7801\u58f0\u660e\n namespace namespace_name2 {\n // \u4ee3\u7801\u58f0\u660e\n }\n}\n\n// \u8bbf\u95ee namespace_name2 \u4e2d\u7684\u6210\u5458\nusing namespace namespace_name1::namespace_name2;\n\n// \u8bbf\u95ee namespace_name1 \u4e2d\u7684\u6210\u5458\nusing namespace namespace_name1;\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#34","title":"3.4 \u6a21\u677f","text":"
- \u6cdb\u578b\u7f16\u7a0b: \u72ec\u7acb\u4e8e\u4efb\u4f55\u7279\u5b9a\u7c7b\u578b\u7684\u65b9\u5f0f\u5199\u4ee3\u7801
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#341","title":"3.4.1 \u51fd\u6570\u6a21\u677f","text":"C++
template <typename type> ret-type func-name(parameter list)\n{\n // \u51fd\u6570\u7684\u4e3b\u4f53\n}\n
C++
#include <iostream>\n#include <string>\n\nusing namespace std;\n\ntemplate <typename T>\ninline T const& Max (T const& a, T const& b) \n{ \n return a < b ? b:a; \n} \n\nint main ()\n{\n\n int i = 39;\n int j = 20;\n cout << \"Max(i, j): \" << Max(i, j) << endl; \n\n double f1 = 13.5; \n double f2 = 20.7; \n cout << \"Max(f1, f2): \" << Max(f1, f2) << endl; \n\n string s1 = \"Hello\"; \n string s2 = \"World\"; \n cout << \"Max(s1, s2): \" << Max(s1, s2) << endl; \n\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#342","title":"3.4.2 \u7c7b\u6a21\u677f","text":"C++
template <class type> class class-name {\n// code\n}\n
C++
#include <iostream>\n#include <vector>\n#include <cstdlib>\n#include <string>\n#include <stdexcept>\n\nusing namespace std;\n\ntemplate <class T>\nclass Stack { \n private: \n vector<T> elems; // \u5143\u7d20 \n\n public: \n void push(T const&); // \u5165\u6808\n void pop(); // \u51fa\u6808\n T top() const; // \u8fd4\u56de\u6808\u9876\u5143\u7d20\n bool empty() const{ // \u5982\u679c\u4e3a\u7a7a\u5219\u8fd4\u56de\u771f\u3002\n return elems.empty(); \n } \n}; \n\ntemplate <class T>\nvoid Stack<T>::push (T const& elem) \n{ \n // \u8ffd\u52a0\u4f20\u5165\u5143\u7d20\u7684\u526f\u672c\n elems.push_back(elem); \n} \n\ntemplate <class T>\nvoid Stack<T>::pop () \n{ \n if (elems.empty()) { \n throw out_of_range(\"Stack<>::pop(): empty stack\"); \n }\n // \u5220\u9664\u6700\u540e\u4e00\u4e2a\u5143\u7d20\n elems.pop_back(); \n} \n\ntemplate <class T>\nT Stack<T>::top () const \n{ \n if (elems.empty()) { \n throw out_of_range(\"Stack<>::top(): empty stack\"); \n }\n // \u8fd4\u56de\u6700\u540e\u4e00\u4e2a\u5143\u7d20\u7684\u526f\u672c \n return elems.back(); \n} \n\nint main() \n{ \n try { \n Stack<int> intStack; // int \u7c7b\u578b\u7684\u6808 \n Stack<string> stringStack; // string \u7c7b\u578b\u7684\u6808 \n\n // \u64cd\u4f5c int \u7c7b\u578b\u7684\u6808 \n intStack.push(7); \n cout << intStack.top() <<endl; \n\n // \u64cd\u4f5c string \u7c7b\u578b\u7684\u6808 \n stringStack.push(\"hello\"); \n cout << stringStack.top() << std::endl; \n stringStack.pop(); \n stringStack.pop(); \n } \n catch (exception const& ex) { \n cerr << \"Exception: \" << ex.what() <<endl; \n return -1;\n } \n}\n
Text Only
7\nhello\nException: Stack<>::pop(): empty stack\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#35","title":"3.5 \u9884\u5904\u7406\u5668","text":"
- \u4e0d\u662f C++\u8bed\u53e5\uff0c\u4e0d\u4f1a\u4ee5\u5206\u53f7\u7ed3\u5c3e
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#351-define","title":"3.5.1 #define \u9884\u5904\u7406","text":"C++
#define macro-name replacement-text \n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#352","title":"3.5.2 \u53c2\u6570\u5b8f","text":"C++
#include <iostream>\nusing namespace std;\n\n#define MIN(a,b) (a<b ? a : b)\n\nint main ()\n{\n int i, j;\n i = 100;\n j = 30;\n cout <<\"\u8f83\u5c0f\u7684\u503c\u4e3a\uff1a\" << MIN(i, j) << endl;\n\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#353","title":"3.5.3 \u6761\u4ef6\u7f16\u8bd1","text":"C++
#ifdef NULL\n #define NULL 0\n#endif\n\n#ifdef DEBUG\n cerr <<\"Variable x = \" << x << endl;\n#endif\n\n#if 0\n \u4e0d\u8fdb\u884c\u7f16\u8bd1\u7684\u4ee3\u7801\n#endif\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#354","title":"3.5.4 # \u548c ## \u8fd0\u7b97\u7b26","text":"C++
#include <iostream>\nusing namespace std;\n\n#define MKSTR( x ) #x\n\nint main ()\n{\n cout << MKSTR(HELLO C++) << endl;\n\n return 0;\n}\n
C++
#include <iostream>\nusing namespace std;\n\n#define concat(a, b) a ## b\nint main()\n{\n int xy = 100;\n\n cout << concat(x, y);\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#355","title":"3.5.5 \u9884\u5b9a\u4e49\u5b8f","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#36","title":"3.6 \u4fe1\u53f7\u5904\u7406","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#361-signal","title":"3.6.1 signal () \u51fd\u6570","text":"C++
void (*signal (int sig, void (*func)(int)))(int); \n\nsignal(registered signal, signal handler)\n
C++
#include <iostream>\n#include <csignal>\n#include <unistd.h>\n\nusing namespace std;\n\nvoid signalHandler( int signum )\n{\n cout << \"Interrupt signal (\" << signum << \") received.\\n\";\n\n // \u6e05\u7406\u5e76\u5173\u95ed\n // \u7ec8\u6b62\u7a0b\u5e8f \n\n exit(signum); \n\n}\n\nint main ()\n{\n // \u6ce8\u518c\u4fe1\u53f7 SIGINT \u548c\u4fe1\u53f7\u5904\u7406\u7a0b\u5e8f\n signal(SIGINT, signalHandler); \n\n while(1){\n cout << \"Going to sleep....\" << endl;\n sleep(1);\n }\n\n return 0;\n}\n
\u6309 Ctrl + C \u4e2d\u65ad\u7a0b\u5e8f:
Text Only
Going to sleep....\nGoing to sleep....\nGoing to sleep....\nInterrupt signal (2) received.\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#362-raise","title":"3.6.2 raise () \u51fd\u6570","text":"C++
int raise (signal sig);\n
C++
#include <iostream>\n#include <csignal>\n#include <unistd.h>\n\nusing namespace std;\n\nvoid signalHandler( int signum )\n{\n cout << \"Interrupt signal (\" << signum << \") received.\\n\";\n\n // \u6e05\u7406\u5e76\u5173\u95ed\n // \u7ec8\u6b62\u7a0b\u5e8f \n\n exit(signum); \n\n}\n\nint main ()\n{\n int i = 0;\n // \u6ce8\u518c\u4fe1\u53f7 SIGINT \u548c\u4fe1\u53f7\u5904\u7406\u7a0b\u5e8f\n signal(SIGINT, signalHandler); \n\n while(++i){\n cout << \"Going to sleep....\" << endl;\n if( i == 3 ){\n raise(SIGINT);\n }\n sleep(1);\n }\n\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#37","title":"3.7 \u591a\u7ebf\u7a0b","text":"
- \u4e24\u79cd\u7c7b\u578b\u7684\u591a\u4efb\u52a1\u5904\u7406
- \u57fa\u4e8e\u8fdb\u7a0b\u662f\u7a0b\u5e8f\u7684\u5e76\u53d1\u6267\u884c
- \u57fa\u4e8e\u7ebf\u7a0b\u662f\u540c\u4e00\u7a0b\u5e8f\u7684\u7247\u6bb5\u7684\u5e76\u53d1\u6267\u884c
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#371","title":"3.7.1 \u6982\u5ff5\u8bf4\u660e","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3711-thread","title":"3.7.1.1 \u7ebf\u7a0b\uff08Thread\uff09","text":"
- \u7ebf\u7a0b\u662f\u7a0b\u5e8f\u6267\u884c\u4e2d\u7684\u5355\u4e00\u987a\u5e8f\u63a7\u5236\u6d41\uff0c\u591a\u4e2a\u7ebf\u7a0b\u53ef\u4ee5\u5728\u540c\u4e00\u4e2a\u8fdb\u7a0b\u4e2d\u72ec\u7acb\u8fd0\u884c\u3002
- \u7ebf\u7a0b\u5171\u4eab\u8fdb\u7a0b\u7684\u5730\u5740\u7a7a\u95f4\u3001\u6587\u4ef6\u63cf\u8ff0\u7b26\u3001\u5806\u548c\u5168\u5c40\u53d8\u91cf\u7b49\u8d44\u6e90\uff0c\u4f46\u6bcf\u4e2a\u7ebf\u7a0b\u6709\u81ea\u5df1\u7684\u6808\u3001\u5bc4\u5b58\u5668\u548c\u7a0b\u5e8f\u8ba1\u6570\u5668\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3712-concurrency-parallelism","title":"3.7.1.2 \u5e76\u53d1\uff08Concurrency\uff09\u4e0e\u5e76\u884c \uff08Parallelism\uff09","text":"
- \u5e76\u53d1\uff1a\u591a\u4e2a\u4efb\u52a1\u5728\u65f6\u95f4\u7247\u6bb5\u5185\u4ea4\u66ff\u6267\u884c\uff0c\u8868\u73b0\u51fa\u540c\u65f6\u8fdb\u884c\u7684\u6548\u679c\u3002
- \u5e76\u884c\uff1a\u591a\u4e2a\u4efb\u52a1\u5728\u591a\u4e2a\u5904\u7406\u5668\u6216\u5904\u7406\u5668\u6838\u4e0a\u540c\u65f6\u6267\u884c\u3002 C++11 \u4ee5\u540e\u6709\u591a\u7ebf\u7a0b\u652f\u6301:
- std::thread\uff1a\u7528\u4e8e\u521b\u5efa\u548c\u7ba1\u7406\u7ebf\u7a0b\u3002
- std::mutex\uff1a\u7528\u4e8e\u7ebf\u7a0b\u4e4b\u95f4\u7684\u4e92\u65a5\uff0c\u9632\u6b62\u591a\u4e2a\u7ebf\u7a0b\u540c\u65f6\u8bbf\u95ee\u5171\u4eab\u8d44\u6e90\u3002
- std::lock_guard\u00a0\u548c\u00a0std::unique_lock\uff1a\u7528\u4e8e\u7ba1\u7406\u9501\u7684\u83b7\u53d6\u548c\u91ca\u653e\u3002
- std::condition_variable\uff1a\u7528\u4e8e\u7ebf\u7a0b\u95f4\u7684\u6761\u4ef6\u53d8\u91cf\uff0c\u534f\u8c03\u7ebf\u7a0b\u95f4\u7684\u7b49\u5f85\u548c\u901a\u77e5\u3002
- std::future\u00a0\u548c\u00a0std::promise\uff1a\u7528\u4e8e\u5b9e\u73b0\u7ebf\u7a0b\u95f4\u7684\u503c\u4f20\u9012\u548c\u4efb\u52a1\u540c\u6b65\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#372","title":"3.7.2 \u521b\u5efa\u7ebf\u7a0b","text":"C++
#include<thread>\nstd::thread thread_object(callable, args...);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3721","title":"3.7.2.1 \u4f7f\u7528\u51fd\u6570\u6307\u9488","text":"C++
#include <iostream>\n#include <thread>\n\nvoid printMessage(int count) {\n for (int i = 0; i < count; ++i) {\n std::cout << \"Hello from thread (function pointer)!\\n\";\n }\n}\n\nint main() {\n std::thread t1(printMessage, 5); // \u521b\u5efa\u7ebf\u7a0b\uff0c\u4f20\u9012\u51fd\u6570\u6307\u9488\u548c\u53c2\u6570\n t1.join(); // \u7b49\u5f85\u7ebf\u7a0b\u5b8c\u6210\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3722","title":"3.7.2.2 \u4f7f\u7528\u51fd\u6570\u5bf9\u8c61","text":"C++
#include <iostream>\n#include <thread>\n\nclass PrintTask {\npublic:\n void operator()(int count) const {\n for (int i = 0; i < count; ++i) {\n std::cout << \"Hello from thread (function object)!\\n\";\n }\n }\n};\n\nint main() {\n std::thread t2(PrintTask(), 5); // \u521b\u5efa\u7ebf\u7a0b\uff0c\u4f20\u9012\u51fd\u6570\u5bf9\u8c61\u548c\u53c2\u6570\n t2.join(); // \u7b49\u5f85\u7ebf\u7a0b\u5b8c\u6210\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3723-lambda","title":"3.7.2.3 \u4f7f\u7528 Lambda \u8868\u8fbe\u5f0f","text":"C++
#include <iostream>\n#include <thread>\n\nint main() {\n std::thread t3([](int count) {\n for (int i = 0; i < count; ++i) {\n std::cout << \"Hello from thread (lambda)!\\n\";\n }\n }, 5); // \u521b\u5efa\u7ebf\u7a0b\uff0c\u4f20\u9012 Lambda \u8868\u8fbe\u5f0f\u548c\u53c2\u6570\n t3.join(); // \u7b49\u5f85\u7ebf\u7a0b\u5b8c\u6210\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3724","title":"3.7.2.4 \u7ebf\u7a0b\u7ba1\u7406","text":"C++
t.join();\nt.detach();\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3725","title":"3.7.2.5 \u7ebf\u7a0b\u7684\u4f20\u53c2","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3726","title":"3.7.2.6 \u503c\u4f20\u9012","text":"C++
std::thread t(funx, arg1, arg2);\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3727","title":"3.7.2.7 \u5f15\u7528\u4f20\u9012","text":"C++
#include <iostream>\n#include <thread>\n\nvoid increment(int& x) {\n ++x;\n}\n\nint main() {\n int num = 0;\n std::thread t(increment, std::ref(num)); // \u4f7f\u7528 std::ref \u4f20\u9012\u5f15\u7528\n t.join();\n std::cout << \"Value after increment: \" << num << std::endl;\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#373","title":"3.7.3 \u7ebf\u7a0b\u540c\u6b65\u4e0e\u4e92\u65a5","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3731-mutex","title":"3.7.3.1 \u4e92\u65a5\u91cf\uff08Mutex\uff09","text":"C++
std::mutex mtx;\nmtx.lock(); // \u9501\u5b9a\u4e92\u65a5\u9501\n// \u8bbf\u95ee\u5171\u4eab\u8d44\u6e90\nmtx.unlock();// \u91ca\u653e\u4e92\u65a5\u9501\n\nstd::lock_guard<std::mutex> lock(mtx); // \u81ea\u52a8\u9501\u5b9a\u548c\u89e3\u9501\n// \u8bbf\u95ee\u5171\u4eab\u8d44\u6e90\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3732-locks","title":"3.7.3.2 \u9501\uff08Locks\uff09","text":"
std::lock_guard
\uff1a\u4f5c\u7528\u57df\u9501\uff0c\u5f53\u6784\u9020\u65f6\u81ea\u52a8\u9501\u5b9a\u4e92\u65a5\u91cf\uff0c\u5f53\u6790\u6784\u65f6\u81ea\u52a8\u89e3\u9501\u3002 std::unique_lock
\uff1a\u4e0e std::lock_guard
\u7c7b\u4f3c\uff0c\u4f46\u63d0\u4f9b\u4e86\u66f4\u591a\u7684\u7075\u6d3b\u6027\uff0c\u4f8b\u5982\u53ef\u4ee5\u8f6c\u79fb\u6240\u6709\u6743\u548c\u624b\u52a8\u89e3\u9501\u3002
C++
#include <mutex>\n\nstd::mutex mtx;\n\nvoid safeFunctionWithLockGuard() {\n std::lock_guard<std::mutex> lk(mtx);\n // \u8bbf\u95ee\u6216\u4fee\u6539\u5171\u4eab\u8d44\u6e90\n}\n\nvoid safeFunctionWithUniqueLock() {\n std::unique_lock<std::mutex> ul(mtx);\n // \u8bbf\u95ee\u6216\u4fee\u6539\u5171\u4eab\u8d44\u6e90\n // ul.unlock(); // \u53ef\u9009\uff1a\u624b\u52a8\u89e3\u9501\n // ...\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3733-condition-variable","title":"3.7.3.3 \u6761\u4ef6\u53d8\u91cf\uff08Condition Variable\uff09","text":"C++
std::condition_variable cv;\nstd::mutex mtx;\nbool ready = false;\n\nstd::unique_lock<std::mutex> lock(mtx);\ncv.wait(lock, []{ return ready; }); // \u7b49\u5f85\u6761\u4ef6\u6ee1\u8db3\n// \u6761\u4ef6\u6ee1\u8db3\u540e\u6267\u884c\n
C++
#include <mutex>\n#include <condition_variable>\n\nstd::mutex mtx;\nstd::condition_variable cv;\nbool ready = false;\n\nvoid workerThread() {\n std::unique_lock<std::mutex> lk(mtx);\n cv.wait(lk, []{ return ready; }); // \u7b49\u5f85\u6761\u4ef6\n // \u5f53\u6761\u4ef6\u6ee1\u8db3\u65f6\u6267\u884c\u5de5\u4f5c\n}\n\nvoid mainThread() {\n {\n std::lock_guard<std::mutex> lk(mtx);\n // \u51c6\u5907\u6570\u636e\n ready = true;\n } // \u79bb\u5f00\u4f5c\u7528\u57df\u65f6\u89e3\u9501\n cv.notify_one(); // \u901a\u77e5\u4e00\u4e2a\u7b49\u5f85\u7684\u7ebf\u7a0b\n}\n
TODO
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3734-atomic-operations","title":"3.7.3.4 \u539f\u5b50\u64cd\u4f5c\uff08Atomic Operations\uff09","text":"
- \u5bf9\u5171\u4eab\u6570\u636e\u7684\u8bbf\u95ee\u4e0d\u53ef\u5206\u5272
C++
#include <atomic>\n#include <thread>\n\nstd::atomic<int> count(0);\n\nvoid increment() {\n count.fetch_add(1, std::memory_order_relaxed);\n}\n\nint main() {\n std::thread t1(increment);\n std::thread t2(increment);\n t1.join();\n t2.join();\n return count; // \u5e94\u8fd4\u56de2\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3735-thread-local-storagetls","title":"3.7.3.5 \u7ebf\u7a0b\u5c40\u90e8\u5b58\u50a8\uff08Thread Local Storage\uff0cTLS\uff09","text":"
- \u5141\u8bb8\u6bcf\u4e2a\u7ebf\u7a0b\u6709\u81ea\u5df1\u7684\u6570\u636e\u526f\u672c
C++
#include <iostream>\n#include <thread>\n\nthread_local int threadData = 0;\n\nvoid threadFunction() {\n threadData = 42; // \u6bcf\u4e2a\u7ebf\u7a0b\u90fd\u6709\u81ea\u5df1\u7684threadData\u526f\u672c\n std::cout << \"Thread data: \" << threadData << std::endl;\n}\n\nint main() {\n std::thread t1(threadFunction);\n std::thread t2(threadFunction);\n t1.join();\n t2.join();\n return 0;\n}\n
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#3736-deadlock","title":"3.7.3.6 \u6b7b\u9501\uff08Deadlock\uff09\u548c\u907f\u514d\u7b56\u7565","text":"
- \u6b7b\u9501\u5373\u591a\u4e2a\u7ebf\u7a0b\u4e92\u76f8\u7b49\u5f85\u5bf9\u65b9\u91ca\u653e\u8d44\u6e90
- \u603b\u662f\u4ee5\u76f8\u540c\u7684\u987a\u5e8f\u8bf7\u6c42\u8d44\u6e90\u3002
- \u4f7f\u7528\u8d85\u65f6\u6765\u5c1d\u8bd5\u83b7\u53d6\u8d44\u6e90\u3002
- \u4f7f\u7528\u6b7b\u9501\u68c0\u6d4b\u7b97\u6cd5\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#374","title":"3.7.4 \u7ebf\u7a0b\u95f4\u901a\u4fe1","text":"C++
std::promise<int> p;\nstd::future<int> f = p.get_future();\n\nstd::thread t([&p] {\n p.set_value(10); // \u8bbe\u7f6e\u503c\uff0c\u89e6\u53d1 future\n});\n\nint result = f.get(); // \u83b7\u53d6\u503c\n
C++17 \u5f15\u5165\u4e86\u5e76\u884c\u7b97\u6cd5\u5e93
C++
#include <algorithm>\n#include <vector>\n#include <execution>\n\nstd::vector<int> vec = {1, 2, 3, 4, 5};\nstd::for_each(std::execution::par, vec.begin(), vec.end(), [](int &n) {\n n *= 2;\n});\n
TODO \u591a\u7ebf\u7a0b\u5b9e\u4f8b
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#38-web","title":"3.8 Web \u7f16\u7a0b","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#381-cgi","title":"3.8.1 \u4ec0\u4e48\u662f CGI\uff1f","text":"
- \u516c\u5171\u7f51\u5173\u63a5\u53e3\uff08CGI\uff09\uff0c\u662f\u4e00\u5957\u6807\u51c6\uff0c\u5b9a\u4e49\u4e86\u4fe1\u606f\u662f\u5982\u4f55\u5728 Web \u670d\u52a1\u5668\u548c\u5ba2\u6237\u7aef\u811a\u672c\u4e4b\u95f4\u8fdb\u884c\u4ea4\u6362\u7684\u3002
- CGI \u89c4\u8303\u76ee\u524d\u662f\u7531 NCSA \u7ef4\u62a4\u7684\uff0cNCSA \u5b9a\u4e49 CGI \u5982\u4e0b\uff1a
- \u516c\u5171\u7f51\u5173\u63a5\u53e3\uff08CGI\uff09\uff0c\u662f\u4e00\u79cd\u7528\u4e8e\u5916\u90e8\u7f51\u5173\u7a0b\u5e8f\u4e0e\u4fe1\u606f\u670d\u52a1\u5668\uff08\u5982 HTTP \u670d\u52a1\u5668\uff09\u5bf9\u63a5\u7684\u63a5\u53e3\u6807\u51c6\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#382-web","title":"3.8.2 Web \u6d4f\u89c8","text":"
- \u60a8\u7684\u6d4f\u89c8\u5668\u8054\u7cfb\u4e0a HTTP Web \u670d\u52a1\u5668\uff0c\u5e76\u8bf7\u6c42 URL\uff0c\u5373\u6587\u4ef6\u540d\u3002
- Web \u670d\u52a1\u5668\u5c06\u89e3\u6790 URL\uff0c\u5e76\u67e5\u627e\u6587\u4ef6\u540d\u3002\u5982\u679c\u627e\u5230\u8bf7\u6c42\u7684\u6587\u4ef6\uff0cWeb \u670d\u52a1\u5668\u4f1a\u628a\u6587\u4ef6\u53d1\u9001\u56de\u6d4f\u89c8\u5668\uff0c\u5426\u5219\u53d1\u9001\u4e00\u6761\u9519\u8bef\u6d88\u606f\uff0c\u8868\u660e\u60a8\u8bf7\u6c42\u4e86\u4e00\u4e2a\u9519\u8bef\u7684\u6587\u4ef6\u3002
- Web \u6d4f\u89c8\u5668\u4ece Web \u670d\u52a1\u5668\u83b7\u53d6\u54cd\u5e94\uff0c\u5e76\u6839\u636e\u63a5\u6536\u5230\u7684\u54cd\u5e94\u6765\u663e\u793a\u6587\u4ef6\u6216\u9519\u8bef\u6d88\u606f\u3002
"},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#383-cgi","title":"3.8.3 CGI \u67b6\u6784\u56fe","text":""},{"location":"CS%20basic/C%2B%2B/C%2B%2B%E8%AF%AD%E6%B3%95/#384-web","title":"3.8.4 Web \u670d\u52a1\u5668\u914d\u7f6e","text":"
TODO
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/","title":"COMPOSING PROGRAMS","text":"
\u7ea6 2713 \u4e2a\u5b57 651 \u884c\u4ee3\u7801 2 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 17 \u5206\u949f
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#1","title":"1 \u4f7f\u7528\u51fd\u6570\u6784\u5efa\u62bd\u8c61","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#11","title":"1.1 \u5f00\u59cb","text":"
\u7a0b\u5e8f\u7531\u4e24\u90e8\u5206\u7ec4\u6210:
- \u8ba1\u7b97\u4e00\u4e9b\u503c
- \u6267\u884c\u4e00\u4e9b\u64cd\u4f5c
- \u51fd\u6570
- \u5bf9\u8c61
- \u89e3\u91ca\u5668:
- \u7528\u4e8e\u8ba1\u7b97\u590d\u6742\u8868\u8fbe\u5f0f\u7684\u7a0b\u5e8f
- \u589e\u91cf\u6d4b\u8bd5\u3001\u6a21\u5757\u5316\u8bbe\u8ba1\u3001\u660e\u786e\u7684\u5047\u8bbe\u548c\u56e2\u961f\u5408\u4f5c
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#12","title":"1.2 \u7f16\u7a0b\u8981\u7d20","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#121","title":"1.2.1 \u8868\u8fbe\u5f0f","text":"
- \u8bed\u8a00\u8981\u6709\u7684\u673a\u5236:
- \u539f\u59cb\u8868\u8fbe\u5f0f\u548c\u8bed\u53e5\uff1a\u8bed\u8a00\u6240\u5173\u5fc3\u7684\u6700\u7b80\u5355\u7684\u4e2a\u4f53
- \u7ec4\u5408\u65b9\u6cd5\uff1a\u7531\u7b80\u5355\u5143\u7d20\u7ec4\u5408\u6784\u5efa\u590d\u5408\u5143\u7d20
- \u62bd\u8c61\u65b9\u6cd5\uff1a\u547d\u540d\u590d\u5408\u5143\u7d20\uff0c\u5e76\u5c06\u5176\u4f5c\u4e3a\u5355\u5143\u8fdb\u884c\u64cd\u4f5c
- infix notation
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#122","title":"1.2.2 \u8c03\u7528\u8868\u8fbe\u5f0f","text":"
- subexpressions
- \u7528\u53c2\u6570\u6765\u8c03\u7528\u51fd\u6570
- nested\uff08\u5d4c\u5957\uff09
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#123","title":"1.2.3 \u5bfc\u5165\u5e93\u51fd\u6570","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#124","title":"1.2.4 \u540d\u79f0\u4e0e\u73af\u5883","text":"
- = is assignment operator
- \u6700\u7b80\u5355\u7684\u62bd\u8c61\u65b9\u6cd5
- environment
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#125","title":"1.2.5 \u6c42\u89e3\u5d4c\u5957\u8868\u8fbe\u5f0f","text":"
\u6c42\u503c\u7a0b\u5e8f\u672c\u8d28\u4e0a\u662f\u9012\u5f52\u7684
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#126-print","title":"1.2.6 \u975e\u7eaf\u51fd\u6570 print","text":"
Pure functions None-pure functions which has a side effect
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#13","title":"1.3 \u5b9a\u4e49\u65b0\u7684\u51fd\u6570","text":"Python
def <name>(<formal parameters>):\n return <return expression> \n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#131","title":"1.3.1 \u73af\u5883","text":"
environment has some frames frames have some bindings
- intrinsic name
- bound name \u4e0d\u540c\u7684\u540d\u79f0\u53ef\u80fd\u6307\u7684\u662f\u540c\u4e00\u4e2a\u51fd\u6570\uff0c\u4f46\u8be5\u51fd\u6570\u672c\u8eab\u53ea\u6709\u4e00\u4e2a\u5185\u5728\u540d\u79f0 \u5bf9\u51fd\u6570\u5f62\u5f0f\u53c2\u6570\u7684\u63cf\u8ff0\u88ab\u79f0\u4e3a\u51fd\u6570\u7684\u7b7e\u540d
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#132","title":"1.3.2 \u8c03\u7528\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570","text":"
- \u5728\u65b0\u7684\u5c40\u90e8\u5e27\u4e2d\uff0c\u5c06\u5b9e\u53c2\u7ed1\u5b9a\u5230\u51fd\u6570\u7684\u5f62\u53c2\u4e0a\u3002
- \u5728\u4ee5\u6b64\u5e27\u5f00\u59cb\u7684\u73af\u5883\u4e2d\u6267\u884c\u51fd\u6570\u4f53\u3002 name evaluation
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#133","title":"1.3.3 \u793a\u4f8b\uff1a\u8c03\u7528\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#134","title":"1.3.4 \u5c40\u90e8\u540d\u79f0","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#135","title":"1.3.5 \u9009\u62e9\u540d\u79f0","text":"
PEP 8 \u2013 Style Guide for Python Code | peps.python.org
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#136","title":"1.3.6 \u62bd\u8c61\u51fd\u6570","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#137","title":"1.3.7 \u8fd0\u7b97\u7b26","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#14","title":"1.4 \u8bbe\u8ba1\u51fd\u6570","text":"
- \u4e00\u4e2a\u51fd\u6570\u4e00\u4e2a\u4efb\u52a1
- Don't repeat yourself (DRY)
- \u5b9a\u4e49\u901a\u7528\u7684\u51fd\u6570
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#141","title":"1.4.1 \u6587\u6863","text":"
docstring
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#142","title":"1.4.2 \u53c2\u6570\u9ed8\u8ba4\u503c","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#15","title":"1.5 \u63a7\u5236","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#151","title":"1.5.1 \u8bed\u53e5","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#152","title":"1.5.2 \u590d\u5408\u8bed\u53e5","text":"
header suite
Python
<header>:\n <statement>\n <statement>\n ...\n<separating header>:\n <statement>\n <statement>\n ...\n...\n
def \u662f\u590d\u5408\u8bed\u53e5 the header controls its suite \u8fd9\u4e2a\u5b9a\u4e49\u63ed\u793a\u4e86\u9012\u5f52\u5b9a\u4e49\u5e8f\u5217\uff08sequence\uff09\u7684\u57fa\u672c\u7ed3\u6784\uff1a\u4e00\u4e2a\u5e8f\u5217\u53ef\u4ee5\u5206\u89e3\u6210\u5b83\u7684\u7b2c\u4e00\u4e2a\u5143\u7d20\u548c\u5176\u4f59\u5143\u7d20 redirected control
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#153-ii","title":"1.5.3 \u00a0\u5b9a\u4e49\u51fd\u6570 II\uff1a\u5c40\u90e8\u8d4b\u503c","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#154","title":"1.5.4 \u6761\u4ef6\u8bed\u53e5","text":"Python
if <expression>:\n <suite>\nelif <expression>:\n <suite>\nelse:\n <suite>\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#155","title":"1.5.5 \u8fed\u4ee3","text":"
iteractive control
Python
while <expression>:\n <suite>\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#156","title":"1.5.6 \u6d4b\u8bd5","text":"
assertions
Python
>>> assert fib(8) == 13, '\u7b2c\u516b\u4e2a\u6590\u6ce2\u90a3\u5951\u6570\u5e94\u8be5\u662f 13'\n
Doctests
Python
>>> def sum_naturals(n):\n \"\"\"\u8fd4\u56de\u524d n \u4e2a\u81ea\u7136\u6570\u7684\u548c\u3002\n\n >>> sum_naturals(10)\n 55\n >>> sum_naturals(100)\n 5050\n \"\"\"\n total, k = 0, 1\n while k <= n:\n total, k = total + k, k + 1\n return total\n
Python
>>> from doctest import testmod\n>>> testmod()\nTestResults(failed=0, attempted=2)\n
\u5355\u4e2a\u51fd\u6570\u7684\u4ea4\u4e92
Python
>>> from doctest import run_docstring_examples\n>>> run_docstring_examples(sum_naturals, globals(), True)\nFinding tests in NoName\nTrying:\n\u00a0\u00a0\u00a0 sum_naturals(10)\nExpecting:\n\u00a0\u00a0\u00a0 55\nok\nTrying:\n\u00a0\u00a0\u00a0 sum_naturals(100)\nExpecting:\n\u00a0\u00a0\u00a0 5050\nok\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#16","title":"1.6 \u9ad8\u9636\u51fd\u6570","text":"
- general patterns
- named concepts
- higher-order functions
- \u53ef\u4ee5\u628a\u51fd\u6570\u5f53\u4f5c\u53c2\u6570\u6216\u8005\u8fd4\u56de\u503c
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#161","title":"1.6.1 \u4f5c\u4e3a\u53c2\u6570\u7684\u51fd\u6570","text":"
- slots
- step through \uff08\u5355\u6b65\u8c03\u8bd5\uff09
- \u4e00\u4e2a\u51e0\u4e4e\u6ca1\u5fc5\u8981\u770b\u7684\u4f8b\u5b50:
Python
>>> def summation(n, term):\n total, k = 0, 1\n while k <= n:\n total, k = total + term(k), k + 1\n return total\n>>> def identity(x):\n return x\n>>> def sum_naturals(n):\n return summation(n, identity)\n>>> sum_naturals(10)\n55\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#162","title":"1.6.2 \u4f5c\u4e3a\u901a\u7528\u65b9\u6cd5\u7684\u51fd\u6570","text":"
- user-defined functions
- general methods
- iterative improvement
- repetitive refinement
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#163-iii","title":"1.6.3 \u5b9a\u4e49\u51fd\u6570 III\uff1a\u5d4c\u5957\u5b9a\u4e49","text":"
\u4e24\u4e2a\u540e\u679c:
- \u5168\u5c40\u5e27\u53d8\u6df7\u4e71
- \u51fd\u6570\u7b7e\u540d\u9650\u5236
- Nested function definition
- Lexical scope
- \u8fd9\u79cd\u5728\u5d4c\u5957\u5b9a\u4e49\u4e4b\u95f4\u5171\u4eab\u540d\u79f0\u7684\u89c4\u5219\u79f0\u4e3a\u8bcd\u6cd5\u4f5c\u7528\u57df
- \u6bcf\u4e2a\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570\u90fd\u6709\u4e00\u4e2a\u7236\u73af\u5883\uff1a\u5b9a\u4e49\u5b83\u7684\u73af\u5883\u3002
- \u8c03\u7528\u7528\u6237\u5b9a\u4e49\u7684\u51fd\u6570\u65f6\uff0c\u5176\u5c40\u90e8\u5e27\u4f1a\u7ee7\u627f\u5176\u7236\u73af\u5883\u3002
- \u5173\u952e\u4f18\u52bf:
- \u5c40\u90e8\u51fd\u6570\u7684\u540d\u79f0\u4e0d\u4f1a\u5f71\u54cd\u5b9a\u4e49\u5b83\u7684\u51fd\u6570\u7684\u5916\u90e8\u540d\u79f0\uff0c\u56e0\u4e3a\u5c40\u90e8\u51fd\u6570\u7684\u540d\u79f0\u5c06\u7ed1\u5b9a\u5728\u5b9a\u4e49\u5b83\u7684\u5f53\u524d\u5c40\u90e8\u73af\u5883\u4e2d\uff0c\u800c\u4e0d\u662f\u5168\u5c40\u73af\u5883\u4e2d\u3002
- \u5c40\u90e8\u51fd\u6570\u53ef\u4ee5\u8bbf\u95ee\u5916\u5c42\u51fd\u6570\u7684\u73af\u5883\uff0c\u8fd9\u662f\u56e0\u4e3a\u5c40\u90e8\u51fd\u6570\u7684\u51fd\u6570\u4f53\u7684\u6c42\u503c\u73af\u5883\u4f1a\u7ee7\u627f\u5b9a\u4e49\u5b83\u7684\u6c42\u503c\u73af\u5883\u3002
- Extended Environments
- \u5c40\u90e8\u5b9a\u4e49\u7684\u51fd\u6570\u901a\u5e38\u88ab\u79f0\u4e3a\u95ed\u5305\uff08closures\uff09
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#164","title":"1.6.4 \u4f5c\u4e3a\u8fd4\u56de\u503c\u7684\u51fd\u6570","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#165","title":"1.6.5 \u793a\u4f8b\uff1a\u725b\u987f\u6cd5","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#166-currying","title":"1.6.6 Currying","text":"
- uncurrying transformation
Python
>>> def curry2(f):\n \"\"\"\u8fd4\u56de\u7ed9\u5b9a\u7684\u53cc\u53c2\u6570\u51fd\u6570\u7684\u67ef\u91cc\u5316\u7248\u672c\"\"\"\n def g(x):\n def h(y):\n return f(x, y)\n return h\n return g\n>>> def uncurry2(g):\n \"\"\"\u8fd4\u56de\u7ed9\u5b9a\u7684\u67ef\u91cc\u5316\u51fd\u6570\u7684\u53cc\u53c2\u6570\u7248\u672c\"\"\"\n def f(x, y):\n return g(x)(y)\n return f\n>>> pow_curried = curry2(pow)\n>>> pow_curried(2)(5)\n32\n>>> map_to_range(0, 10, pow_curried(2))\n1\n2\n4\n8\n16\n32\n64\n128\n256\n512\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#167-lambda","title":"1.6.7 Lambda \u8868\u8fbe\u5f0f","text":"Python
lambda x : f(g(x))\n\"A function that takes x and returns f(g(x))\"\n
\\(\\displaystyle \\lambda\\)
Python
>>> s = lambda x: x * x\n>>> s\n<function <lambda> at 0xf3f490>\n>>> s(12)\n144\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#168","title":"1.6.8 \u62bd\u8c61\u548c\u4e00\u7b49\u51fd\u6570","text":"
- \u53ef\u4ee5\u4e0e\u540d\u79f0\u7ed1\u5b9a
- \u53ef\u4ee5\u4f5c\u4e3a\u53c2\u6570\u4f20\u9012\u7ed9\u51fd\u6570
- \u53ef\u4ee5\u4f5c\u4e3a\u51fd\u6570\u7684\u7ed3\u679c\u8fd4\u56de
- \u53ef\u4ee5\u5305\u542b\u5728\u6570\u636e\u7ed3\u6784\u4e2d
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#169","title":"1.6.9 \u51fd\u6570\u88c5\u9970\u5668","text":"
Python
>>> def trace(fn):\n def wrapped(x):\n print('-> ', fn, '(', x, ')')\n return fn(x)\n return wrapped\n\n>>> @trace\n def triple(x):\n return 3 * x\n\n>>> triple(12)\n-> <function triple at 0x102a39848> ( 12 )\n36\n
- annotation
- \u7b49\u4ef7\u4e8e:
Python
>>> def triple(x):\n return 3 * x\n>>> triple = trace(triple)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#17","title":"1.7 \u9012\u5f52\u51fd\u6570","text":"
- rucursive
- circular nature
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#171","title":"1.7.1 \u9012\u5f52\u51fd\u6570\u5256\u6790","text":"
- base case
- unwinds
- recursive calls
- induction
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#172-mutually-recursive","title":"1.7.2 mutually recursive","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#173","title":"1.7.3 \u9012\u5f52\u51fd\u6570\u4e2d\u7684\u6253\u5370","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#174-tree-recursive","title":"1.7.4 tree recursive","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#175","title":"1.7.5 \u793a\u4f8b\uff1a\u5206\u5272\u6570","text":"Python
>>> def count_partitions(n, m):\n\u00a0\u00a0\u00a0 \"\"\"\u8ba1\u7b97\u4f7f\u7528\u6700\u5927\u6570 m \u7684\u6574\u6570\u5206\u5272 n \u7684\u65b9\u5f0f\u7684\u6570\u91cf\"\"\"\n\u00a0\u00a0\u00a0 if n == 0:\n\u00a0\u00a0\u00a0 return 1\n\u00a0\u00a0\u00a0 elif n < 0:\n\u00a0\u00a0\u00a0 return 0\n\u00a0\u00a0\u00a0 elif m == 0:\n\u00a0\u00a0\u00a0 return 0\n\u00a0\u00a0\u00a0 else:\n\u00a0\u00a0\u00a0 return count_partitions(n-m, m) + count_partitions(n, m-1)\n\n>>> count_partitions(6, 4)\n9\n>>> count_partitions(5, 5)\n7\n>>> count_partitions(10, 10)\n42\n>>> count_partitions(15, 15)\n176\n>>> count_partitions(20, 20)\n627\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#2","title":"2 \u4f7f\u7528\u6570\u636e\u6784\u5efa\u62bd\u8c61","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#21","title":"2.1 \u5f15\u8a00","text":"
- \u9ad8\u9636\u51fd\u6570\u4f7f\u6211\u4eec\u80fd\u591f\u6839\u636e\u901a\u7528\u7684\u8ba1\u7b97\u65b9\u6cd5\u8fdb\u884c\u64cd\u4f5c\u548c\u63a8\u7406\uff0c\u4ece\u800c\u589e\u5f3a\u4e86\u8bed\u8a00\u7684\u529f\u80fd\u3002\u8fd9\u5c31\u662f\u7f16\u7a0b\u7684\u672c\u8d28
- \u6709\u6548\u4f7f\u7528\u5185\u7f6e\u6570\u636e\u7c7b\u578b\u548c\u7528\u6237\u5b9a\u4e49\u7684\u6570\u636e\u7c7b\u578b\u662f\u6570\u636e\u5904\u7406\u578b\u5e94\u7528\uff08data processing applications\uff09\u7684\u57fa\u7840
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#211","title":"2.1.1 \u539f\u59cb\u6570\u636e\u7c7b\u578b","text":"
\u539f\u59cb\u6570\u636e\u7c7b\u578b\u5177\u6709\u5c5e\u6027:
- \u6709\u4e00\u4e9b\u53ef\u4ee5\u6c42\u89e3\u4e3a\u539f\u59cb\u6570\u636e\u7c7b\u578b\u7684\u8868\u8fbe\u5f0f\uff0c\u88ab\u79f0\u4e3a\u5b57\u9762\u91cf\uff08literals\uff09\u3002
- \u6709\u7528\u4e8e\u64cd\u4f5c\u539f\u59cb\u7c7b\u578b\u503c\u7684\u5185\u7f6e\u51fd\u6570\u548c\u64cd\u4f5c\u7b26\u3002 - \u539f\u59cb\u6570\u5b57\u7c7b\u578b
- int
- float
- complex
- Non-numeric types
- bool
- more on \u539f\u59cb\u6570\u636e\u7c7b\u578b
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#22","title":"2.2 \u6570\u636e\u62bd\u8c61","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#221","title":"2.2.1 \u793a\u4f8b\uff1a\u6709\u7406\u6570","text":"
wishful thinking
Python
>>> def add_rationals(x, y):\n nx, dx = numer(x), denom(x)\n ny, dy = numer(y), denom(y)\n return rational(nx * dy + ny * dx, dx * dy)\n\n>>> def mul_rationals(x, y):\n return rational(numer(x) * numer(y), denom(x) * denom(y))\n\n>>> def print_rational(x):\n print(numer(x), '/', denom(x))\n\n>>> def rationals_are_equal(x, y):\n return numer(x) * denom(y) == numer(y) * denom(x)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#222-pair","title":"2.2.2 pair","text":"
from operator import getitem
Python
>>> def rational(n, d):\n return [n, d]\n\n>>> def numer(x):\n return x[0]\n\n>>> def denom(x):\n return x[1]\n
\u7b80\u5316\u6709\u7406\u6570:
Python
>>> from fractions import gcd\n>>> def rational(n, d):\n g = gcd(n, d)\n return (n//g, d//g)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#223","title":"2.2.3 \u62bd\u8c61\u5c4f\u969c","text":"
- \u6570\u636e\u62bd\u8c61: \u7528\u4e00\u7ec4\u57fa\u672c\u64cd\u4f5c\u6765\u64cd\u4f5c\u6570\u636e\u3002
- avbstraction barrier
- the best:
Python
>>> def square_rational(x):\n return mul_rational(x, x)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#224","title":"2.2.4 \u6570\u636e\u7684\u5c5e\u6027","text":"
\u76f8\u5f53\u4e8e\u81ea\u5df1\u5199\u4e00\u4e2a\u6570\u636e\u7ed3\u6784:
Python
>>> def pair(x, y):\n \"\"\"Return a function that represents a pair.\"\"\"\n def get(index):\n if index == 0:\n return x\n elif index == 1:\n return y\n return get\n\n>>> def select(p, i):\n \"\"\"Return the element at index i of pair p.\"\"\"\n return p(i)\n\n>>> p = pair(20, 14)\n>>> select(p, 0)\n20\n>>> select(p, 1)\n14\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#23","title":"2.3 \u5e8f\u5217","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#231-list","title":"2.3.1 list","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#232","title":"2.3.2 \u5e8f\u5217\u904d\u5386","text":"Python
for <name> in <expression>:\n <suite>\n
the expression must produce an iterable object sequence unpacking
Python
>>> pairs = [[1, 2], [2, 2], [2, 3], [4, 4]]\n>>> same_count = 0\n>>> for x, y in pairs:\n if x == y:\n same_count = same_count + 1\n>>> same_count\n2\n
range
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#233","title":"2.3.3 \u5e8f\u5217\u5904\u7406","text":"
list comprehensions
Python
>>> odds = [1, 3, 5, 7, 9]\n>>> [x+1 for x in odds]\n[2, 4, 6, 8, 10]\n[<map expression> for <name> in <sequence expression> if <filter expression>]\n
- Aggregation \u5c31\u662f\u7f29\u5e76\u5566
Python
>>> def apply_to_all(map_fn, s):\n return [map_fn(x) for x in s]\n>>> def keep_if(filter_fn, s):\n return [x for x in s if filter_fn(x)]\n# conventional names\n>>> apply_to_all = lambda map_fn, s: list(map(map_fn, s))\n>>> keep_if = lambda filter_fn, s: list(filter(filter_fn, s))\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#234","title":"2.3.4 \u5e8f\u5217\u62bd\u8c61","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#235","title":"2.3.5 \u5b57\u7b26\u4e32","text":"
string \u6ca1\u6709\u5b57\u7b26\u7c7b\u578b
- Membership
- Multiline Literals
- String Coercion more on Dive Into Python 3\u00a0\u7684\u00a0\u5b57\u7b26\u4e32\u7ae0\u8282\u00a0\u63d0\u4f9b\u4e86\u5b57\u7b26\u7f16\u7801\u548c Unicode \u7684\u63cf\u8ff0
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#236","title":"2.3.6 \u6811","text":"
closure property bax-and-pointer notation
- root label
- branch
- leaf: the tree without branch
- node tree-recursive \u4e24\u4e2a\u4f8b\u5b50:
Python
>>> def fib_tree(n):\n if n == 0 or n == 1:\n return tree(n)\n else:\n left, right = fib_tree(n-2), fib_tree(n-1)\n fib_n = label(left) + label(right)\n return tree(fib_n, [left, right])\n>>> fib_tree(5)\n[5, [2, [1], [1, [0], [1]]], [3, [1, [0], [1]], [2, [1], [1, [0], [1]]]]]\n
Python
>>> def count_leaves(tree):\n if is_leaf(tree):\n return 1\n else:\n branch_counts = [count_leaves(b) for b in branches(tree)]\n return sum(branch_counts)\n>>> count_leaves(fib_tree(5))\n8\n
Partition trees
Python
>>> def print_parts(tree, partition=[]):\n if is_leaf(tree):\n if label(tree):\n print(' + '.join(partition))\n else:\n left, right = branches(tree)\n m = str(label(tree))\n print_parts(left, partition + [m])\n print_parts(right, partition)\n\n>>> print_parts(partition_tree(6, 4))\n4 + 2\n4 + 1 + 1\n3 + 3\n3 + 2 + 1\n3 + 1 + 1 + 1\n2 + 2 + 2\n2 + 2 + 1 + 1\n2 + 1 + 1 + 1 + 1\n1 + 1 + 1 + 1 + 1 + 1\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#237","title":"2.3.7 \u94fe\u8868","text":"
linked list abstract data representation
Python
>>> def partitions(n, m):\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u5305\u542b n \u7684\u5206\u5272\u65b9\u6848\u7684\u94fe\u8868\uff0c\u5176\u4e2d\u6bcf\u4e2a\u6b63\u6574\u6570\u4e0d\u8d85\u8fc7 m\"\"\"\nif n == 0:\n return link(empty, empty) # \u5305\u542b\u7a7a\u5206\u5272\u7684\u94fe\u8868\nelif n < 0 or m == 0:\n return empty\nelse:\n using_m = partitions(n-m, m)\n with_m = apply_to_all_link(lambda s: link(m, s), using_m)\n without_m = partitions(n, m-1)\n return extend_link(with_m, without_m)\n\n>>> def print_partitions(n, m):\n lists = partitions(n, m)\n strings = apply_to_all_link(lambda s: join_link(s, \" + \"), lists)\n print(join_link(strings, \"\\n\"))\n\n>>> print_partitions(6, 4)\n4 + 2\n4 + 1 + 1\n3 + 3\n3 + 2 + 1\n3 + 1 + 1 + 1\n2 + 2 + 2\n2 + 2 + 1 + 1\n2 + 1 + 1 + 1 + 1\n1 + 1 + 1 + 1 + 1 + 1\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#24","title":"2.4 \u53ef\u53d8\u6570\u636e","text":"
object-oriented programming
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#241","title":"2.4.1 \u5bf9\u8c61\u9690\u55bb","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#242","title":"2.4.2 \u5e8f\u5217\u5bf9\u8c61","text":"
mutable Sharing and Identity \u5217\u8868\u63a8\u5bfc\u5f0f:
Python
>>> from unicodedata import lookup\n>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]\n['\u2661', '\u2662', '\u2664', '\u2667']\n
tuple
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#243","title":"2.4.3 \u5b57\u5178","text":"
key-value pairs
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#244","title":"2.4.4 \u5c40\u90e8\u72b6\u6001","text":"
local state
Python
>>> def make_withdraw(balance):\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u6bcf\u6b21\u8c03\u7528\u90fd\u4f1a\u51cf\u5c11 balance \u7684 withdraw \u51fd\u6570\"\"\"\ndef withdraw(amount):\n nonlocal balance # \u58f0\u660e balance \u662f\u975e\u5c40\u90e8\u7684\n if amount > balance:\n return '\u4f59\u989d\u4e0d\u8db3'\n balance = balance - amount # \u91cd\u65b0\u7ed1\u5b9a\n return balance\nreturn withdraw\n
Python Particulars
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#245-non-local","title":"2.4.5 \u975e\u5c40\u90e8 Non-local \u8d4b\u503c\u7684\u597d\u5904","text":"
\u8fd9\u6837\uff0c\u6bcf\u4e2a withdraw \u5b9e\u4f8b\u90fd\u4fdd\u6301\u81ea\u5df1\u7684 balance \u72b6\u6001\uff0c\u4f46\u7a0b\u5e8f\u4e2d\u7684\u4efb\u4f55\u5176\u4ed6\u51fd\u6570\u90fd\u65e0\u6cd5\u8bbf\u95ee\u8be5\u72b6\u6001\u3002\u4ece\u66f4\u9ad8\u7684\u5c42\u9762\u6765\u770b\u8fd9\u79cd\u60c5\u51b5\uff0c\u6211\u4eec\u62bd\u8c61\u4e86\u4e00\u4e2a\u94f6\u884c\u8d26\u6237\uff0c\u5b83\u81ea\u5df1\u7ba1\u7406\u81ea\u5df1\u7684\u72b6\u6001\uff0c\u5176\u884c\u4e3a\u65b9\u5f0f\u4e0e\u4e16\u754c\u4e0a\u6240\u6709\u5176\u5b83\u8d26\u6237\u4e00\u6837\uff1a\u968f\u7740\u65f6\u95f4\u63a8\u79fb\uff0c\u8d26\u6237\u7684\u72b6\u6001\u4f1a\u6839\u636e\u8d26\u6237\u7684\u53d6\u6b3e\u8bb0\u5f55\u800c\u53d1\u751f\u53d8\u5316\u3002
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#246-non-local","title":"2.4.6 \u975e\u5c40\u90e8 Non-local \u8d4b\u503c\u7684\u4ee3\u4ef7","text":"
- \u6b63\u786e\u7406\u89e3\u5305\u542b nonlocal \u58f0\u660e\u7684\u4ee3\u7801\u7684\u5173\u952e\u662f\u8bb0\u4f4f\uff1a\u53ea\u6709\u51fd\u6570\u8c03\u7528\u624d\u80fd\u5f15\u5165\u65b0\u5e27\u3002\u8d4b\u503c\u8bed\u53e5\u53ea\u80fd\u66f4\u6539\u73b0\u6709\u5e27\u4e2d\u7684\u7ed1\u5b9a\u5173\u7cfb\u3002\u5728\u8fd9\u79cd\u60c5\u51b5\u4e0b\uff0c\u9664\u975e make_withdraw \u88ab\u8c03\u7528\u4e24\u6b21\uff0c\u5426\u5219\u53ea\u80fd\u6709\u4e00\u4e2a balance \u7ed1\u5b9a\u3002
- Sameness and change
- referentially transparent
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#247","title":"2.4.7 \u5217\u8868\u548c\u5b57\u5178\u5b9e\u73b0","text":"
\u51fd\u6570\u662f\u4e00\u4e2a dispatch \uff08\u8c03\u5ea6\uff09\u51fd\u6570\uff0c\u5176\u53c2\u6570\u9996\u5148\u662f\u4e00\u4e2a\u671f\u671b\u7684\u6307\u4ee4\uff0c\u4ee3\u8868\u671f\u671b\u8fd9\u4e2a\u51fd\u6570\u505a\u4ec0\u4e48\uff1b\u7136\u540e\u662f\u8be5\u65b9\u6cd5\u7684\u9700\u8981\u7528\u5230\u7684\u53c2\u6570\u3002\u6b64\u6307\u4ee4\u662f\u4e00\u4e2a\u5b57\u7b26\u4e32\uff0c\u7528\u4e8e\u547d\u540d\u51fd\u6570\u5e94\u6267\u884c\u7684\u64cd\u4f5c\u3002\u53ef\u4ee5\u5c06\u8fd9\u4e2a dispatch \u51fd\u6570\u7406\u89e3\u4e3a\u591a\u4e2a\u4e0d\u540c\u51fd\u6570\u7684\u62bd\u8c61\uff1a\u7b2c\u4e00\u4e2a\u53c2\u6570\u786e\u5b9a\u76ee\u6807\u51fd\u6570\u7684\u884c\u4e3a\uff0c\u5e76\u4e3a\u8be5\u884c\u4e3a\u5165\u53c2\u5176\u4ed6\u53c2\u6570\u3002 \u7528\u5b57\u7b26\u4e32\u4e5f\u592a\u9006\u5929\u4e86\u3002
Python
>>> def mutable_link():\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u53ef\u53d8\u94fe\u8868\u7684\u51fd\u6570\"\"\"\ncontents = empty\ndef dispatch(message, value=None):\n nonlocal contents\n if message == 'len':\n return len_link(contents)\n elif message == 'getitem':\n return getitem_link(contents, value)\n elif message == 'push_first':\n contents = link(value, contents)\n elif message == 'pop_first':\n f = first(contents)\n contents = rest(contents)\n return f\n elif message == 'str':\n return join_link(contents, \", \")\nreturn dispatch\n\n>>> def to_mutable_link(source):\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u4e0e\u539f\u5217\u8868\u76f8\u540c\u5185\u5bb9\u7684\u51fd\u6570\u5217\u8868\"\"\"\ns = mutable_link()\nfor element in reversed(source):\n s('push_first', element)\nreturn s\n\n>>> s = to_mutable_link(suits)\n>>> type(s)\n<class 'function'>\n>>> print(s('str'))\nheart, diamond, spade, club\n
\u5b57\u5178\u5b9e\u73b0:
Python
>>> def dictionary():\n\"\"\"\u8fd4\u56de\u4e00\u4e2a\u5b57\u5178\u7684\u51fd\u6570\u5b9e\u73b0\"\"\"\nrecords = []\ndef getitem(key):\n matches = [r for r in records if r[0] == key]\n if len(matches) == 1:\n key, value = matches[0]\n return value\ndef setitem(key, value):\n nonlocal records\n non_matches = [r for r in records if r[0] != key]\n records = non_matches + [[key, value]]\ndef dispatch(message, key=None, value=None):\n if message == 'getitem':\n return getitem(key)\n elif message == 'setitem':\n setitem(key, value)\nreturn dispatch\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#248-dispatch-dictionaries","title":"2.4.8 \u8c03\u5ea6\u5b57\u5178\uff08Dispatch Dictionaries\uff09","text":"
\u7528\u5b57\u5178\u5b58\u50a8\u6d88\u606f\u3002
Python
def account(initial_balance):\n def deposit(amount):\n dispatch['balance'] += amount\n return dispatch['balance']\n def withdraw(amount):\n if amount > dispatch['balance']:\n return 'Insufficient funds'\n dispatch['balance'] -= amount\n return dispatch['balance']\n dispatch = {'deposit': deposit,\n 'withdraw': withdraw,\n 'balance': initial_balance}\n return dispatch\n\ndef withdraw(account, amount):\n return account['withdraw'](amount)\ndef deposit(account, amount):\n return account['deposit'](amount)\ndef check_balance(account):\n return account['balance']\n\na = account(20)\ndeposit(a, 5)\nwithdraw(a, 17)\ncheck_balance(a)\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#249-propagating-constraints","title":"2.4.9 \u7ea6\u675f\u4f20\u9012 (Propagating\u00a0Constraints)","text":"
connector Using the Constraint System
Python
>>> celsius = connector('Celsius')\n>>> fahrenheit = connector('Fahrenheit')\n>>> def converter(c, f):\n \"\"\"\u7528\u7ea6\u675f\u6761\u4ef6\u8fde\u63a5 c \u5230 f\uff0c\u5c06\u6444\u6c0f\u5ea6\u8f6c\u6362\u4e3a\u534e\u6c0f\u5ea6.\"\"\"\n u, v, w, x, y = [connector() for _ in range(5)]\n multiplier(c, w, u)\n multiplier(v, x, u)\n adder(v, y, f)\n constant(w, 9)\n constant(x, 5)\n constant(y, 32)\n>>> converter(celsius, fahrenheit)\n\n>>> celsius['set_val']('user', 25)\nCelsius = 25\nFahrenheit = 77.0\n\n>>> fahrenheit['set_val']('user', 212)\nContradiction detected: 77.0 vs 212\n\n>>> celsius['forget']('user')\nCelsius is forgotten\nFahrenheit is forgotten\n\n>>> fahrenheit['set_val']('user', 212)\nFahrenheit = 212\nCelsius = 100.0\n\n# Implementing the Constraint System\n>>> connector ['set_val'](source, value) \"\"\"\u8868\u793a\u00a0source\u00a0\u5728\u8bf7\u6c42\u8fde\u63a5\u5668\u5c06\u5f53\u524d\u503c\u8bbe\u4e3a value\"\"\"\n>>> connector ['has_val']()\u00a0 \"\"\"\u8fd4\u56de\u8fde\u63a5\u5668\u662f\u5426\u5df2\u7ecf\u5177\u6709\u503c\"\"\"\n>>> connector ['val'] \"\"\"\u662f\u8fde\u63a5\u5668\u7684\u5f53\u524d\u503c\"\"\"\n>>> connector ['forget'](source)\u00a0 \"\"\"\u544a\u8bc9\u8fde\u63a5\u5668 source \u8bf7\u6c42\u9057\u5fd8\u5b83\u7684\u503c\"\"\"\n>>> connector ['connect'](source)\u00a0 \"\"\"\u544a\u8bc9\u8fde\u63a5\u5668\u53c2\u4e0e\u65b0\u7684\u7ea6\u675f\uff0c\u5373 source\"\"\"\n>>> constraint['new_val']() \"\"\"\u8868\u793a\u4e0e\u7ea6\u675f\u76f8\u8fde\u7684\u67d0\u4e2a\u8fde\u63a5\u5668\u5177\u6709\u65b0\u7684\u503c\u3002\"\"\"\n>>> constraint['forget']()\u00a0 \"\"\"\u8868\u793a\u4e0e\u7ea6\u675f\u76f8\u8fde\u7684\u67d0\u4e2a\u8fde\u63a5\u5668\u9057\u5fd8\u4e86\u503c\u3002\"\"\"\n\n>>> from operator import add, sub\n>>> def adder(a, b, c):\n \"\"\"\u7ea6\u675f a+b=c\"\"\"\n return make_ternary_constraint(a, b, c, add, sub, sub)\n\n>>> def make_ternary_constraint(a, b, c, ab, ca, cb):\n \"\"\"\u7ea6\u675f ab(a,b)=c\uff0cca(c,a)=b\uff0ccb(c,b)=a\"\"\"\n def new_value():\n av, bv, cv = [connector['has_val']() for connector in (a, b, c)]\n if av and bv:\n c['set_val'](constraint, ab(a['val'], b['val']))\n elif av and cv:\n b['set_val'](constraint, ca(c['val'], a['val']))\n elif bv and cv:\n a['set_val'](constraint, cb(c['val'], b['val']))\n def forget_value():\n for connector in (a, b, c):\n connector['forget'](constraint)\n constraint = {'new_val': new_value, 'forget': forget_value}\n for connector in (a, b, c):\n connector['connect'](constraint)\n return constraint\n\n>>> from operator import mul, truediv\n>>> def multiplier(a, b, c):\n \"\"\"\u7ea6\u675f a*b=c\"\"\"\n return make_ternary_constraint(a, b, c, mul, truediv, truediv)\n\n>>> def constant(connector, value):\n \"\"\"\u5e38\u91cf\u8d4b\u503c\"\"\"\n constraint = {}\n connector['set_val'](constraint, value)\n return constraint\n\n# Representing connectors\n>>> def connector(name=None):\n \"\"\"\u9650\u5236\u6761\u4ef6\u4e4b\u95f4\u7684\u8fde\u63a5\u5668\"\"\"\n informant = None\n constraints = []\n def set_value(source, value):\n nonlocal informant\n val = connector['val']\n if val is None:\n informant, connector['val'] = source, value\n if name is not None:\n print(name, '=', value)\n inform_all_except(source, 'new_val', constraints)\n else:\n if val != value:\n print('Contradiction detected:', val, 'vs', value)\n def forget_value(source):\n nonlocal informant\n if informant == source:\n informant, connector['val'] = None, None\n if name is not None:\n print(name, 'is forgotten')\n inform_all_except(source, 'forget', constraints)\n connector = {'val': None,\n 'set_val': set_value,\n 'forget': forget_value,\n 'has_val': lambda: connector['val'] is not None,\n 'connect': lambda source: constraints.append(source)}\n return connector\n\n>>> def inform_all_except(source, message, constraints):\n \"\"\"\u544a\u77e5\u4fe1\u606f\u9664\u4e86 source \u5916\u7684\u6240\u6709\u7ea6\u675f\u6761\u4ef6\"\"\"\n for c in constraints:\n if c != source:\n c[message]()\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#25","title":"2.5 \u9762\u5411\u5bf9\u8c61\u7f16\u7a0b","text":"
- object
- dot notation
- class
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#251","title":"2.5.1 \u5bf9\u8c61\u548c\u7c7b","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#252","title":"2.5.2 \u7c7b\u7684\u5b9a\u4e49","text":"
__init__\u7c7b\u7684\u6784\u9020\u51fd\u6570\uff08constructor\uff09
Python
>>> class Account:\n def __init__(self, account_holder):\n self.balance = 0\n self.holder = account_holder\n def deposit(self, amount):\n self.balance = self.balance + amount\n return self.balance\n def withdraw(self, amount):\n if amount > self.balance:\n return 'Insufficient funds'\n self.balance = self.balance - amount\n return self.balance\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#253","title":"2.5.3 \u6d88\u606f\u4f20\u9012\u548c\u70b9\u8868\u8fbe\u5f0f","text":"Python
>>> getattr(spock_account, 'balance')\n10\n>>> hasattr(spock_account, 'deposit')\nTrue\n\n\n>>> type(Account.deposit)\n<class 'Function'>\n>>> type(spock_account.deposit)\n<class 'method'>\n# \u4e3a\u7c7b\u7684\u5c5e\u6027\uff0c\u65b9\u6cd5\u53ea\u662f\u4e00\u4e2a\u51fd\u6570\uff0c\u4f46\u4f5c\u4e3a\u5b9e\u4f8b\u7684\u5c5e\u6027\uff0c\u5b83\u662f\u4e00\u4e2a\u7ed1\u5b9a\u65b9\u6cd5\n\n>>> Account.deposit(spock_account, 1001) # \u51fd\u6570 deposit \u63a5\u53d7\u4e24\u4e2a\u53c2\u6570\n1011\n>>> spock_account.deposit(1000) # \u65b9\u6cd5 deposit \u63a5\u53d7\u4e00\u4e2a\u53c2\u6570\n2011\n
\u547d\u540d\u7ea6\u5b9a\uff1a\u7c7b\u540d\u901a\u5e38\u4f7f\u7528 CapWords \u7ea6\u5b9a\uff08\u4e5f\u79f0\u4e3a CamelCase\uff0c\u56e0\u4e3a\u540d\u79f0\u4e2d\u95f4\u7684\u5927\u5199\u5b57\u6bcd\u770b\u8d77\u6765\u50cf\u9a7c\u5cf0\uff09\u7f16\u5199\u3002\u65b9\u6cd5\u540d\u79f0\u9075\u5faa\u4f7f\u7528\u4e0b\u5212\u7ebf\u5206\u9694\u7684\u5c0f\u5199\u5355\u8bcd\u547d\u540d\u51fd\u6570\u7684\u6807\u51c6\u7ea6\u5b9a\u3002
\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6709\u4e00\u4e9b\u5b9e\u4f8b\u53d8\u91cf\u548c\u65b9\u6cd5\u4e0e\u5bf9\u8c61\u7684\u7ef4\u62a4\u548c\u4e00\u81f4\u6027\u76f8\u5173\uff0c\u6211\u4eec\u4e0d\u5e0c\u671b\u5bf9\u8c61\u7684\u7528\u6237\u770b\u5230\u6216\u4f7f\u7528\u3002\u5b83\u4eec\u4e0d\u662f\u7c7b\u5b9a\u4e49\u7684\u62bd\u8c61\u7684\u4e00\u90e8\u5206\uff0c\u800c\u662f\u5b9e\u73b0\u7684\u4e00\u90e8\u5206\u3002Python \u7684\u7ea6\u5b9a\u89c4\u5b9a\uff0c\u5982\u679c\u5c5e\u6027\u540d\u79f0\u4ee5\u4e0b\u5212\u7ebf\u5f00\u5934\uff0c\u5219\u53ea\u80fd\u5728\u7c7b\u672c\u8eab\u7684\u65b9\u6cd5\u4e2d\u8bbf\u95ee\u5b83\uff0c\u800c\u4e0d\u662f\u7528\u6237\u8bbf\u95ee\u3002
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#254","title":"2.5.4 \u7c7b\u5c5e\u6027","text":"
\u611f\u89c9\u6ca1\u4ec0\u4e48\u7528:
Python
>>> Account.interest = 0.05 # \u6539\u53d8\u7c7b\u5c5e\u6027\n>>> spock_account.interest # \u5b9e\u4f8b\u5c5e\u6027\u53d1\u751f\u53d8\u5316\uff08\u8be5\u5b9e\u4f8b\u4e2d\u6ca1\u6709\u548c\u7c7b\u5c5e\u6027\u540c\u540d\u79f0\u7684\u5b9e\u4f8b\u5c5e\u6027\uff09\n0.05\n>>> kirk_account.interest # \u5982\u679c\u5b9e\u4f8b\u4e2d\u5b58\u5728\u548c\u7c7b\u5c5e\u6027\u540c\u540d\u7684\u5b9e\u4f8b\u5c5e\u6027\uff0c\u5219\u6539\u53d8\u7c7b\u5c5e\u6027\uff0c\u4e0d\u4f1a\u5f71\u54cd\u5b9e\u4f8b\u5c5e\u6027\n0.08\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#255","title":"2.5.5 \u7ee7\u627f","text":"
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#256","title":"2.5.6 \u4f7f\u7528\u7ee7\u627f","text":"Python
>>> class Account:\n \"\"\"\u4e00\u4e2a\u4f59\u989d\u975e\u96f6\u7684\u8d26\u6237\u3002\"\"\"\n interest = 0.02\n def __init__(self, account_holder):\n self.balance = 0\n self.holder = account_holder\n def deposit(self, amount):\n \"\"\"\u5b58\u5165\u8d26\u6237 amount\uff0c\u5e76\u8fd4\u56de\u53d8\u5316\u540e\u7684\u4f59\u989d\"\"\"\n self.balance = self.balance + amount\n return self.balance\n def withdraw(self, amount):\n \"\"\"\u4ece\u8d26\u53f7\u4e2d\u53d6\u51fa amount\uff0c\u5e76\u8fd4\u56de\u53d8\u5316\u540e\u7684\u4f59\u989d\"\"\"\n if amount > self.balance:\n return 'Insufficient funds'\n self.balance = self.balance - amount\n return self.balance\n\n>>> class CheckingAccount(Account):\n \"\"\"\u4ece\u8d26\u53f7\u53d6\u94b1\u4f1a\u6263\u51fa\u624b\u7eed\u8d39\u7684\u8d26\u53f7\"\"\"\n withdraw_charge = 1\n interest = 0.01\n def withdraw(self, amount):\n return Account.withdraw(self, amount + self.withdraw_charge)\n
\u63a5\u53e3
Python
>>> def deposit_all(winners, amount=5):\n for account in winners:\n account.deposit(amount) # \u8fd9\u91cc\u8c03\u7528\u7684\u662f\u5b9e\u4f8b account \u7684 deposit \u65b9\u6cd5\n # \u5bf9\u4e8e\u4e0d\u540c\u5b9e\u4f8b\u6765\u8bf4\uff0c\u5b83\u4eec\u7684 deposit \u65b9\u6cd5\u53ef\u80fd\u4e0d\u540c\u3002\u8fd9\u4e2a\u4f8b\u5b50\u76f8\u5bf9\u4e8e\u4e0b\u9762\u6765\u8bb2\uff0c\u66f4\u52a0\u5177\u6709\u5065\u58ee\u6027\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#257","title":"2.5.7 \u591a\u7ee7\u627f","text":"
\u7ee7\u627f\u6392\u5e8f\u95ee\u9898\u6ca1\u6709\u6b63\u786e\u7684\u89e3\u51b3\u65b9\u6848\uff0c\u56e0\u4e3a\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u6211\u4eec\u53ef\u80fd\u66f4\u613f\u610f\u5c06\u67d0\u4e9b\u7ee7\u627f\u7c7b\u7f6e\u4e8e\u5176\u4ed6\u7c7b\u4e4b\u4e0a\u3002\u4f46\u662f\uff0c\u4efb\u4f55\u652f\u6301\u591a\u91cd\u7ee7\u627f\u7684\u7f16\u7a0b\u8bed\u8a00\u90fd\u5fc5\u987b\u4ee5\u4e00\u81f4\u7684\u65b9\u5f0f\u9009\u62e9\u67d0\u4e9b\u6392\u5e8f\uff0c\u4ee5\u4fbf\u8be5\u8bed\u8a00\u7684\u7528\u6237\u53ef\u4ee5\u9884\u6d4b\u5176\u7a0b\u5e8f\u7684\u884c\u4e3a\u3002
\u8fdb\u4e00\u6b65\u9605\u8bfb\u3002Python \u4f7f\u7528\u79f0\u4e3a C3 \u65b9\u6cd5\u89e3\u6790\u6392\u5e8f\u7684\u9012\u5f52\u7b97\u6cd5\u89e3\u6790\u6b64\u540d\u79f0\u3002\u53ef\u4ee5\u5728\u6240\u6709\u7c7b\u4e0a\u4f7f\u7528\u00a0mro
\u00a0\u65b9\u6cd5\u67e5\u8be2\u4efb\u4f55\u7c7b\u7684\u65b9\u6cd5\u89e3\u6790\u987a\u5e8f\u3002
Python
>>> [c.__name__ for c in AsSeenOnTVAccount.mro()]\n['AsSeenOnTVAccount', 'CheckingAccount', 'SavingsAccount', 'Account', 'object']\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#258","title":"2.5.8 \u5bf9\u8c61\u7684\u4f5c\u7528","text":"
\u53e6\u4e00\u65b9\u9762\uff0c\u7c7b\u53ef\u80fd\u4e0d\u662f\u5b9e\u73b0\u67d0\u4e9b\u62bd\u8c61\u7684\u6700\u4f73\u673a\u5236\u3002\u51fd\u6570\u5f0f\u62bd\u8c61\u63d0\u4f9b\u4e86\u4e00\u4e2a\u66f4\u81ea\u7136\u7684\u9690\u55bb\u6765\u8868\u793a\u8f93\u5165\u548c\u8f93\u51fa\u4e4b\u95f4\u7684\u5173\u7cfb\u3002\u6211\u4eec\u4e0d\u5e94\u8be5\u89c9\u5f97\u5fc5\u987b\u5c06\u7a0b\u5e8f\u4e2d\u7684\u6bcf\u4e00\u70b9\u903b\u8f91\u90fd\u585e\u8fdb\u4e00\u4e2a\u7c7b\u4e2d\uff0c\u5c24\u5176\u662f\u5728\u5b9a\u4e49\u72ec\u7acb\u51fd\u6570\u6765\u64cd\u4f5c\u6570\u636e\u66f4\u81ea\u7136\u7684\u60c5\u51b5\u4e0b\u3002\u51fd\u6570\u8fd8\u53ef\u4ee5\u5f3a\u5236\u5b9e\u73b0\u5173\u6ce8\u70b9\u7684\u5206\u79bb\u3002\u6362\u53e5\u8bdd\u8bf4\uff0c\u51fd\u6570\u5f0f\u7f16\u7a0b\u63d0\u4f9b\u4e86\u53e6\u4e00\u79cd\u6709\u6548\u5730\u7ec4\u7ec7\u7a0b\u5e8f\u903b\u8f91\u7684\u65b9\u6cd5\uff0c\u4f7f\u5f97\u7a0b\u5e8f\u5458\u80fd\u591f\u66f4\u597d\u5730\u5904\u7406\u548c\u7ef4\u62a4\u7a0b\u5e8f\u3002\u5728\u67d0\u4e9b\u60c5\u51b5\u4e0b\uff0c\u4f7f\u7528\u51fd\u6570\u5f0f\u7f16\u7a0b\u65b9\u6cd5\u53ef\u80fd\u6bd4\u4f7f\u7528\u9762\u5411\u5bf9\u8c61\u7f16\u7a0b\u66f4\u81ea\u7136\u548c\u6709\u6548\u3002
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#26","title":"2.6 \u5b9e\u73b0\u7c7b\u548c\u5bf9\u8c61","text":"
object-oriented programming paradigm \u5373\u4f7f\u5728\u6ca1\u6709\u5185\u7f6e\u5bf9\u8c61\u7cfb\u7edf\u7684\u7f16\u7a0b\u8bed\u8a00\u4e2d\uff0c\u7a0b\u5e8f\u4e5f\u53ef\u4ee5\u662f\u9762\u5411\u5bf9\u8c61\u7684\u3002 \u653e\u5f03\u70b9\u8868\u793a\u6cd5->\u8c03\u5ea6\u5b57\u5178\u5b9e\u73b0\u6d88\u606f\u4f20\u9012
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#261","title":"2.6.1 \u5b9e\u4f8b","text":"Python
>>> def make_instance(cls):\n \"\"\"Return a new object instance, which is a dispatch dictionary.\"\"\"\n def get_value(name):\n if name in attributes:\n return attributes[name]\n else:\n value = cls['get'](name)\n return bind_method(value, instance)\n def set_value(name, value):\n attributes[name] = value\n attributes = {}\n instance = {'get': get_value, 'set': set_value}\n return instance\n\n>>> def bind_method(value, instance):\n \"\"\"Return a bound method if value is callable, or value otherwise.\"\"\"\n if callable(value):\n def method(*args):\n return value(instance, *args)\n return method\n else:\n return value\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#262","title":"2.6.2 \u7c7b","text":"Python
>>> def make_class(attributes, base_class=None):\n \"\"\"Return a new class, which is a dispatch dictionary.\"\"\"\n def get_value(name):\n if name in attributes:\n return attributes[name]\n elif base_class is not None:\n return base_class['get'](name)\n def set_value(name, value):\n attributes[name] = value\n def new(*args):\n return init_instance(cls, *args)\n cls = {'get': get_value, 'set': set_value, 'new': new}\n return cls\n\n>>> def init_instance(cls, *args):\n \"\"\"Return a new object with type cls, initialized with args.\"\"\"\n instance = make_instance(cls)\n init = cls['get']('__init__')\n if init:\n init(instance, *args)\n return instance\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#3","title":"3 \u8ba1\u7b97\u673a\u7a0b\u5e8f\u7684\u89e3\u91ca","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#31","title":"3.1 \u5f15\u8a00","text":"
\u8bb8\u591a\u89e3\u91ca\u5668\u90fd\u6709\u4e00\u4e2a\u4f18\u96c5\u7684\u7ed3\u6784\uff0c\u5373\u4e24\u4e2a\u4e92\u9012\u5f52\u51fd\u6570\uff1a
- \u7b2c\u4e00\u4e2a\u51fd\u6570\u6c42\u89e3\u73af\u5883\u4e2d\u7684\u8868\u8fbe\u5f0f
- \u7b2c\u4e8c\u4e2a\u51fd\u6570\u5c06\u51fd\u6570\u5e94\u7528\u4e8e\u53c2\u6570
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#32","title":"3.2 \u51fd\u6570\u5f0f\u7f16\u7a0b","text":"
- \u53ea\u4f7f\u7528\u8868\u8fbe\u5f0f\u800c\u4e0d\u4f7f\u7528\u8bed\u53e5\uff0c\u7279\u522b\u9002\u5408\u7b26\u53f7\u8ba1\u7b97
- \u5904\u7406\u7684\u6570\u636e\u90fd\u662f\u4e0d\u53ef\u53d8\u7684\uff08immutable\uff09
Python
(if <predicate> <consequent> <alternative>)\n\n(define pi 3.14)\n(* pi 3.14)\n\n(define (<name> <formal parameters>) <body>)\neg1:\n (define (average x y)\n (/ (+ x y) 2))\neg2:\n (define (abs x)\n (if (< x 0)\n (- x)\n x))\neg3:\n (define (sqrt x)\n (define (good-enough? guess)\n (< (abs (- (square guess) x)) 0.001))\n (define (improve guess)\n (average guess (/ x guess)))\n (define (sqrt-iter guess)\n (if (good-enough? guess)\n guess\n (sqrt-iter (improve guess))))\n (sqrt-iter 1.0))\n (sqrt 9)\n\n(lambda (<formal-parameters>) <body>)\neg1:\n (define (plus4 x) (+ x 4))\n (define plus4 (lambda (x) (+ x 4))) # both are OK\n\n# \u7279\u6b8a\u7684\u503c\u00a0nil\u00a0\u6216\u00a0'()\u00a0\u8868\u793a\u7a7a\u5217\u8868\n\n# null? \u8c13\u8bcd\u7684\u4f7f\u7528:\n (define (length items)\n (if (null? items)\n 0\n (+ 1 (length (cdr items)))))\n (define (getitem items n)\n (if (= n 0)\n (car items)\n (getitem (cdr items) (- n 1))))\n (define squares (list 1 4 9 16 25))\n\n (length squares)\n\n (getitem squares 3)\n\n# \u4efb\u4f55\u4e0d\u88ab\u6c42\u503c\u7684\u8868\u8fbe\u5f0f\u90fd\u88ab\u79f0\u4e3a\u88ab\u5f15\u7528\n (list 'define 'list)\n\n# turtle\u4f7f\u7528+\u9012\u5f52\u753b\u56fe\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#33","title":"3.3 \u5f02\u5e38","text":"
Python
>>> raise Exception(' An error occurred')\nTraceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\nException: an error occurred\n
- raising an exception
- read-eval-print-loop \u5373 REPL
- stack backtrace
- handling exceptions
Python
try\n <try suite>\nexcept <exception class> as <name>:\n <except suite>\n
\u5f02\u5e38\u662f\u4e2a\u7c7b\uff0c\u53ef\u4ee5\u6709\u989d\u5916\u7684\u5c5e\u6027\uff0c\u53ef\u4ee5\u907f\u514d\u62a5\u9519\uff0c\u8ba9\u7a0b\u5e8f\u7ed9\u51fa\u4e00\u4e2a\u8f83\u4e3a\u7c97\u7cd9\u7684\u503c\uff1a
Python
>>> class IterImproveError(Exception):\n\u00a0\u00a0\u00a0 def __init__(self, last_guess):\n\u00a0\u00a0\u00a0 self.last_guess = last_guess\n>>> def improve(update, done, guess=1, max_updates=1000):\n\u00a0\u00a0\u00a0 k = 0\n\u00a0\u00a0\u00a0 try:\n\u00a0\u00a0\u00a0 while not done(guess) and k < max_updates:\n\u00a0\u00a0\u00a0 guess = update(guess)\n\u00a0\u00a0\u00a0 k = k + 1\n\u00a0\u00a0\u00a0 return guess\n\u00a0\u00a0\u00a0 except ValueError:\n\u00a0\u00a0\u00a0 raise IterImproveError(guess)\n>>> def find_zero(f, guess=1):\n\u00a0\u00a0\u00a0 def done(x):\n\u00a0\u00a0\u00a0 return f(x) == 0\n\u00a0\u00a0\u00a0 try:\n\u00a0\u00a0\u00a0 return improve(newton_update(f), done, guess)\n\u00a0\u00a0\u00a0 except IterImproveError as e:\n\u00a0\u00a0\u00a0 return e.last_guess\n>>> from math import sqrt\n>>> find_zero(lambda x: 2*x*x + sqrt(x))\n-0.030211203830201594\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#34","title":"3.4 \u7ec4\u5408\u8bed\u8a00\u7684\u89e3\u91ca\u5668","text":"
- \u8ba1\u7b97\u5668\u8bed\u8a00 -> \u7b80\u7565\u89e3\u91ca\u5668
- scheme \u5bf9
- \u8868\u8fbe\u5f0f\u6811
- \u89e3\u6790\u8868\u8fbe\u5f0f\u6811
- \u8bcd\u6cd5\u5206\u6790\u5668\uff08lexical analyzer\uff09/ \u5206\u8bcd\u5668\uff08tokenizer\uff09
- \u6807\u8bb0\uff08token\uff09
- \u8bed\u6cd5\u5206\u6790\u5668\uff08syntactic analyzer\uff09
- \u6570\u5b57\u548c\u8c03\u7528\u8868\u8fbe\u5f0f \u8bb2\u4e86\u4e00\u4e0b\u8ba1\u7b97\u5668\u89e3\u91ca\u5668\u4ea4\u4e92\u5f0f\u9875\u9762\u7684\u8868\u8fbe\u5f0f\u5982\u4f55\u8ba1\u7b97\u548c\u5f02\u5e38\u5904\u7406
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#35","title":"3.5 \u62bd\u8c61\u8bed\u8a00\u7684\u89e3\u91ca\u5668","text":"
- \u6269\u5c55 scheme_reader \u89e3\u6790\u70b9\u5217\u8868\u548c\u5f15\u53f7
- \u6c42\u503c\uff08Evaluation\uff09
- \u51fd\u6570\u5e94\u7528\uff08Procedure application\uff09
- \u6c42\u503c/\u5e94\u7528\u9012\u5f52
- \u6570\u636e\u5373\u7a0b\u5e8f
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#4","title":"4 \u6570\u636e\u5904\u7406","text":""},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#41","title":"4.1 \u5f15\u8a00","text":"
- pipelines
- sequence interface
- unbounded
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#42","title":"4.2 \u9690\u5f0f\u5e8f\u5217","text":"
- \u6211\u4eec\u53ea\u5728\u6709\u9700\u8981\u7684\u65f6\u5019\u624d\u8ba1\u7b97\u5143\u7d20
- Lazy computation
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#421","title":"4.2.1 \u8fed\u4ee3\u5668","text":"
\u4e24\u4e2a\u7ec4\u4ef6:
- \u68c0\u7d22\u4e0b\u4e00\u4e2a\u5143\u7d20\u7684\u673a\u5236
- \u5230\u8fbe\u5e8f\u5217\u672b\u5c3e\u5e76\u4e14\u6ca1\u6709\u5269\u4f59\u5143\u7d20\uff0c\u53d1\u51fa\u4fe1\u53f7\u7684\u673a\u5236
Python
>>> next(iterator)\n7\n>>> next(iterator)\nTraceback (most recent call las):\n File \"<stdin>\", line 1, in <module>\nStopIteration\n\n>>> try:\n next(iterator)\n except StopIteration:\n print('No more values')\nNo more values\n
"},{"location":"CS%20basic/cs61a/COMPOSING%20PROGRAMS/#422","title":"4.2.2 \u53ef\u8fed\u4ee3\u6027","text":"
iterable value \u53ef\u8fed\u4ee3\u5bf9\u8c61:
- \u5e8f\u5217\u503c: string & tuples
- \u5bb9\u5668: sets & Dictionaries
"},{"location":"CS%20basic/cs61a/cs61a/","title":"Cs61a","text":"
\u7ea6 23 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- \u4ed6\u4eba\u603b\u7ed3
- https://github.com/HobbitQia/CS61A-Fall-2020/tree/main
- \u6559\u6750\u7ffb\u8bd1\u7248
- \u539f\u6559\u6750
- \u8bfe\u7a0b\u7f51\u7ad9\u5b58\u6863
- https://github.com/shuo-liu16/CS61A
"},{"location":"CS%20basic/cs61c/cs61c/","title":"Cs61c","text":"
\u7ea6 21 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- https://github.com/Yan-J-lee/cs61c-projects/blob/master
- https://github.com/FeiNiaoBF/Fa22-Cs61c-proj3
- https://github.com/PKUFlyingPig/CS61C-summer20
- https://github.com/Ch-EnShen/cs61c-all-materials
- https://www.learncs.site/docs/curriculum-resource/cs61c
- note1
- CS61C\u81ea\u5b66\u5c0f\u7ed3
- \u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u7b14\u8bb0
"},{"location":"CS%20basic/cs61c/cs61c_lec06/","title":"Cs61c lec06","text":"
\u7ea6 1228 \u4e2a\u5b57 18 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
lec06.pdf
\u6587\u4ef6\u662f\u5173\u4e8e RISC-V \u6c47\u7f16\u8bed\u8a00\u548c\u6307\u4ee4\u96c6\u67b6\u6784\u7684\u5165\u95e8\u8bfe\u7a0b\uff0c\u4ee5\u4e0b\u662f\u8be5\u8bfe\u7a0b\u7684\u8be6\u7ec6\u5185\u5bb9:
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#1","title":"1. \u6c47\u7f16\u8bed\u8a00\u7b80\u4ecb","text":"
- \u6c47\u7f16\u8bed\u8a00\u662f\u4e00\u79cd\u4f4e\u7ea7\u7f16\u7a0b\u8bed\u8a00\uff0c\u5b83\u4e0e\u7279\u5b9a\u7684\u786c\u4ef6\u67b6\u6784\u7d27\u5bc6\u76f8\u5173\u3002
- \u6c47\u7f16\u8bed\u8a00\u7a0b\u5e8f\u9700\u8981\u901a\u8fc7\u6c47\u7f16\u5668\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u7a0b\u5e8f\uff0c\u4ee5\u4fbf CPU \u6267\u884c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#2","title":"2. \u9ad8\u7ea7\u8bed\u8a00\u4e0e\u6c47\u7f16\u8bed\u8a00","text":"
- \u9ad8\u7ea7\u8bed\u8a00\uff08\u5982 C\u3001Java\uff09\u7f16\u5199\u7684\u7a0b\u5e8f\u9700\u8981\u7f16\u8bd1\u5668\u8f6c\u6362\u6210\u6c47\u7f16\u8bed\u8a00\uff0c\u518d\u7531\u6c47\u7f16\u5668\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u3002
- \u6c47\u7f16\u8bed\u8a00\u4e0e\u786c\u4ef6\u67b6\u6784\uff08\u5982 RISC-V\uff09\u76f4\u63a5\u76f8\u5173\uff0c\u63d0\u4f9b\u4e86\u5bf9\u786c\u4ef6\u7684\u76f4\u63a5\u63a7\u5236\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#3","title":"3. \u62bd\u8c61\u7684\u6982\u5ff5","text":"
- \u62bd\u8c61\u662f\u8ba1\u7b97\u673a\u79d1\u5b66\u4e2d\u7684\u4e00\u4e2a\u57fa\u672c\u6982\u5ff5\uff0c\u5141\u8bb8\u6211\u4eec\u5728\u4e0d\u540c\u7684\u5c42\u6b21\u4e0a\u7406\u89e3\u548c\u5b9e\u73b0\u7a0b\u5e8f\u3002
- \u4f8b\u5982\uff0c\u4ece\u9ad8\u7ea7\u8bed\u8a00\u5230\u6c47\u7f16\u8bed\u8a00\u518d\u5230\u673a\u5668\u8bed\u8a00\uff0c\u6bcf\u4e2a\u5c42\u6b21\u90fd\u662f\u5bf9\u4e0b\u4e00\u5c42\u7684\u62bd\u8c61\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#4-risc-v","title":"4. RISC-V \u67b6\u6784","text":"
- RISC-V \u662f\u4e00\u79cd\u5f00\u6e90\u3001\u65e0\u8bb8\u53ef\u8d39\u7528\u7684\u6307\u4ee4\u96c6\u67b6\u6784\uff08ISA\uff09\u3002
- \u5b83\u652f\u6301 32 \u4f4d\u300164 \u4f4d\u548c 128 \u4f4d\u53d8\u4f53\u3002
- RISC-V \u65e8\u5728\u652f\u6301\u5f00\u653e\u7684\u7814\u7a76\u548c\u6559\u5b66\uff0c\u7531\u52a0\u5dde\u5927\u5b66\u4f2f\u514b\u5229\u5206\u6821\u5728 2010 \u5e74\u53d1\u8d77\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#5-risc-v","title":"5. \u4e3a\u4ec0\u4e48\u9009\u62e9 RISC-V","text":"
- RISC-V \u7b80\u5355\u6613\u5b66\uff0c\u9002\u5408\u4f5c\u4e3a\u5b66\u4e60\u5176\u4ed6\u6c47\u7f16\u8bed\u8a00\u7684\u57fa\u7840\u3002
- \u5b66\u4e60 RISC-V \u53ef\u4ee5\u5e2e\u52a9\u7406\u89e3\u5176\u4ed6 CPU \u67b6\u6784\u548c\u6c47\u7f16\u8bed\u8a00\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#6","title":"6. \u5bc4\u5b58\u5668","text":"
- \u5bc4\u5b58\u5668\u662f CPU \u5185\u90e8\u7684\u5c0f\u578b\u5b58\u50a8\u5355\u5143\uff0c\u7528\u4e8e\u5b58\u50a8\u6307\u4ee4\u6267\u884c\u8fc7\u7a0b\u4e2d\u7684\u4e34\u65f6\u6570\u636e\u3002
- RISC-V \u6709 32 \u4e2a\u5bc4\u5b58\u5668\uff08x0 \u5230 x31\uff09\uff0c\u6bcf\u4e2a\u5bc4\u5b58\u5668\u90fd\u662f 32 \u4f4d\u5bbd\u3002
- \u5bc4\u5b58\u5668\u7684\u8bbf\u95ee\u901f\u5ea6\u6bd4\u5185\u5b58\u5feb\u5f97\u591a\uff0c\u56e0\u4e3a\u5b83\u4eec\u4f4d\u4e8e CPU \u5185\u90e8\u3002\\
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#7","title":"7. \u5bc4\u5b58\u5668\u7684\u4f7f\u7528","text":"
- \u5bc4\u5b58\u5668\u7528\u4e8e\u5b58\u50a8\u6307\u4ee4\u6267\u884c\u6240\u9700\u7684\u6570\u636e\uff0c\u5982\u53d8\u91cf\u548c\u4e2d\u95f4\u7ed3\u679c\u3002
- \u4e0e\u9ad8\u7ea7\u8bed\u8a00\u4e2d\u7684\u53d8\u91cf\u4e0d\u540c\uff0c\u5bc4\u5b58\u5668\u6ca1\u6709\u7c7b\u578b\uff0c\u53ef\u4ee5\u5b58\u50a8\u4efb\u4f55\u7c7b\u578b\u7684\u6570\u636e\u3002
- x0 \u5bc4\u5b58\u5668\u662f\u4e00\u4e2a\u7279\u6b8a\u7684\u5bc4\u5b58\u5668\uff0c\u5b83\u603b\u662f\u5305\u542b\u503c 0\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#8","title":"8. \u5bc4\u5b58\u5668\u4e0e\u5185\u5b58\u7684\u901f\u5ea6\u6bd4\u8f83","text":"
- \u5bc4\u5b58\u5668\u6bd4\u5185\u5b58\u5feb\u7ea6 50-500 \u500d\uff0c\u56e0\u4e3a\u5b83\u4eec\u7684\u7269\u7406\u4f4d\u7f6e\u548c\u5927\u5c0f\u3002
- \u5185\u5b58\u867d\u7136\u5bb9\u91cf\u5927\uff0c\u4f46\u8bbf\u95ee\u901f\u5ea6\u6162\u4e8e\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#9","title":"9. \u6c47\u7f16\u8bed\u8a00\u4e2d\u7684\u6ce8\u91ca","text":"
- \u6ce8\u91ca\u5bf9\u4e8e\u7406\u89e3\u6c47\u7f16\u4ee3\u7801\u81f3\u5173\u91cd\u8981\uff0c\u5c24\u5176\u662f\u5728\u590d\u6742\u7684\u64cd\u4f5c\u4e2d\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#10","title":"10. \u6c47\u7f16\u6307\u4ee4\u793a\u4f8b","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528\u6c47\u7f16\u6307\u4ee4\u6267\u884c\u57fa\u672c\u7684\u7b97\u672f\u64cd\u4f5c\uff0c\u5982\u52a0\u6cd5\u548c\u51cf\u6cd5\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#11-immediates","title":"11. \u7acb\u5373\u6570\uff08Immediates\uff09","text":"
- \u7acb\u5373\u6570\u7528\u4e8e\u5728\u6c47\u7f16\u6307\u4ee4\u4e2d\u63d0\u4f9b\u6570\u503c\u5e38\u91cf\u3002
- RISC-V \u4e2d\u7684\u7acb\u5373\u6570\u64cd\u4f5c\u9650\u5236\u5728 12 \u4f4d\uff0c\u5e76\u4e14\u4f1a\u8fdb\u884c\u7b26\u53f7\u6269\u5c55\u5230 32 \u4f4d\u3002
- extension \u4fdd\u8bc1\u503c\u4e0d\u53d8
- add is for registers
- addi is for immediates
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#12","title":"12. \u5185\u5b58","text":"
- \u5185\u5b58\u662f CPU \u5916\u90e8\u7684\u5b58\u50a8\u8bbe\u5907\uff0c\u5bb9\u91cf\u5927\u4f46\u901f\u5ea6\u6162\u3002
- \u5185\u5b58\u7528\u4e8e\u5b58\u50a8\u7a0b\u5e8f\u548c\u6570\u636e\uff0c\u4f46\u8bbf\u95ee\u901f\u5ea6\u6bd4\u5bc4\u5b58\u5668\u6162\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#13","title":"13. \u5185\u5b58\u5730\u5740","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u901a\u8fc7\u5730\u5740\u8bbf\u95ee\u5185\u5b58\u4e2d\u7684\u6570\u636e\u3002
- \u89e3\u91ca\u4e86\u5b57\u8282\u3001\u5b57\u548c\u4f4d\u7684\u5730\u5740\u8ba1\u7b97\u3002
- goldilocks principle
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#14","title":"14. \u8bbf\u95ee\u6570\u7ec4","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u5728\u6c47\u7f16\u8bed\u8a00\u4e2d\u8bbf\u95ee\u6570\u7ec4\u5143\u7d20\uff0c\u5305\u62ec\u6307\u9488\u7b97\u672f\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#15","title":"15. \u4ece\u5185\u5b58\u52a0\u8f7d\u6570\u636e","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528
lw
\uff08\u52a0\u8f7d\u5b57 load word\uff09\u6307\u4ee4\u5c06\u6570\u636e\u4ece\u5185\u5b58\u52a0\u8f7d\u5230\u5bc4\u5b58\u5668\u3002 - \u7c7b\u4f3c\u7684\uff0cx15\u76f8\u5f53\u4e8e\u6bb5\u5730\u5740\uff0c12(3 * sizeof(int))\u76f8\u5f53\u4e8e\u504f\u79fb\u5730\u5740
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#16","title":"16. \u5b58\u50a8\u6570\u636e\u5230\u5185\u5b58","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528
sw
\uff08\u5b58\u50a8\u5b57\uff09\u6307\u4ee4\u5c06\u6570\u636e\u4ece\u5bc4\u5b58\u5668\u5b58\u50a8\u5230\u5185\u5b58\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#17","title":"17. \u52a0\u8f7d\u548c\u5b58\u50a8\u5b57\u8282","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528
lb
\uff08\u52a0\u8f7d\u5b57\u8282\uff09\u548c sb
\uff08\u5b58\u50a8\u5b57\u8282\uff09\u6307\u4ee4\u5728\u5b57\u8282\u7ea7\u522b\u4e0a\u8fdb\u884c\u6570\u636e\u4f20\u8f93\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#18","title":"18. \u7b26\u53f7\u6269\u5c55","text":"
- \u89e3\u91ca\u4e86\u5728\u52a0\u8f7d\u6570\u636e\u65f6\u5982\u4f55\u8fdb\u884c\u7b26\u53f7\u6269\u5c55\uff0c\u4ee5\u53ca\u5b83\u4e0e\u5b58\u50a8\u64cd\u4f5c\u7684\u533a\u522b\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#19","title":"19. \u903b\u8f91\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86 RISC-V \u4e2d\u7684\u903b\u8f91\u6307\u4ee4\uff0c\u5305\u62ec\u4f4d\u4e0e\uff08AND\uff09\u3001\u4f4d\u6216\uff08OR\uff09\u3001\u4f4d\u5f02\u6216\uff08XOR\uff09\u3001\u903b\u8f91\u5de6\u79fb\uff08SLL\uff09\u7b49\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#20","title":"20. \u79fb\u4f4d\u64cd\u4f5c","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528\u79fb\u4f4d\u6307\u4ee4\u6267\u884c\u7b97\u672f\u548c\u903b\u8f91\u79fb\u4f4d\u3002
- \u5c31\u662f\u5148\u628a\u6240\u6709\u8fd0\u7b97\u7b97\u597d\uff0c\u653e\u5230\u57fa\u7840\u5730\u5740\u91cc\uff0c\u8fd9\u6837\u504f\u79fb\u5730\u5740\u5c31\u4e0d\u4f1a\u5305\u542bregister\u4e86
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#21","title":"21. \u51b3\u7b56\u5236\u5b9a\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86\u5982\u4f55\u4f7f\u7528\u5206\u652f\u6307\u4ee4\u5728 RISC-V \u4e2d\u5b9e\u73b0\u6761\u4ef6\u5224\u65ad\uff0c\u4f8b\u5982
beq
\uff08\u5982\u679c\u76f8\u7b49\u5219\u8df3\u8f6c\uff09\u548c bne
\uff08\u5982\u679c\u4e0d\u76f8\u7b49\u5219\u8df3\u8f6c\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#22","title":"22. \u6807\u7b7e\u548c\u8df3\u8f6c","text":"
- \u6807\u7b7e\u7528\u4e8e\u6807\u8bb0\u4ee3\u7801\u4e2d\u7684\u4f4d\u7f6e\uff0c\u5206\u652f\u548c\u8df3\u8f6c\u6307\u4ee4\u53ef\u4ee5\u4f7f\u7528\u6807\u7b7e\u6765\u5b9e\u73b0\u975e\u987a\u5e8f\u6267\u884c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#23","title":"23. \u5faa\u73af\u793a\u4f8b","text":"
- \u5c55\u793a\u4e86\u5982\u4f55\u5728\u6c47\u7f16\u8bed\u8a00\u4e2d\u5b9e\u73b0\u5faa\u73af\uff0c\u4f7f\u7528
for
\u5faa\u73af\u7684\u4f8b\u5b50\u8fdb\u884c\u4e86\u8bf4\u660e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec06/#24","title":"24. \u66f4\u591a\u6307\u4ee4","text":"
- \u63d0\u4f9b\u4e86 RISC-V \u53c2\u8003\u5361\u7247\u7684\u94fe\u63a5\uff0c\u4f9b\u8fdb\u4e00\u6b65\u5b66\u4e60\u548c\u53c2\u8003\u3002
\u8fd9\u4efd\u8bb2\u4e49\u4e3a\u5b66\u751f\u63d0\u4f9b\u4e86 RISC-V \u6c47\u7f16\u8bed\u8a00\u7f16\u7a0b\u7684\u57fa\u7840\u77e5\u8bc6\uff0c\u6db5\u76d6\u4e86\u4ece\u57fa\u672c\u7684\u7b97\u672f\u64cd\u4f5c\u5230\u66f4\u590d\u6742\u7684\u5185\u5b58\u8bbf\u95ee\u548c\u63a7\u5236\u6d41\u6307\u4ee4\u3002\u901a\u8fc7\u8fd9\u4e9b\u77e5\u8bc6\uff0c\u5b66\u751f\u80fd\u591f\u7406\u89e3\u5e76\u5f00\u59cb\u7f16\u5199\u7b80\u5355\u7684\u6c47\u7f16\u7a0b\u5e8f\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/","title":"Cs61c lec07","text":"
\u7ea6 1071 \u4e2a\u5b57 9 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
lec07.pdf
\u6587\u4ef6\u662f\u5173\u4e8e RISC-V \u6307\u4ee4\u96c6\u548c\u5982\u4f55\u5b9e\u73b0\u51fd\u6570\u7684\u8ba1\u7b97\u673a\u79d1\u5b66\u8bfe\u7a0b\u5185\u5bb9\u3002\u4ee5\u4e0b\u662f\u8be5\u8bfe\u7a0b\u5185\u5bb9\u7684\u8be6\u7ec6\u8bb2\u89e3:
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#1","title":"1. \u5bc4\u5b58\u5668\u548c\u5b83\u4eec\u80fd\u5b58\u50a8\u7684\u5185\u5bb9","text":"
- \u5bc4\u5b58\u5668:32\u4f4d\u5bbd\uff0c\u7528\u4e8e\u5b58\u50a8\u5404\u79cd\u503c\u3002
- \u53ef\u4ee5\u5b58\u50a8\u6570\u7ec4\u7684\u5f00\u59cb\u4f4d\u7f6e\u3001\u5b57\u7b26\u4e32\u3001\u6574\u6570\u503c\u7b49\u3002
- \u5bc4\u5b58\u5668\u7528\u4e8e\u5feb\u901f\u8bbf\u95ee\u548c\u5904\u7406\u6570\u636e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#2","title":"2. \u5df2\u5b66\u4e60\u7684\u6307\u4ee4","text":"
- \u52a0\u6cd5/\u51cf\u6cd5:
add
, sub
\uff0c\u7528\u4e8e\u6267\u884c\u57fa\u672c\u7684\u7b97\u672f\u8fd0\u7b97\u3002 - \u52a0\u5e38\u6570:
addi
\uff0c\u7528\u4e8e\u5c06\u5bc4\u5b58\u5668\u7684\u503c\u4e0e\u7acb\u5373\u6570\u76f8\u52a0\u3002 - \u5185\u5b58\u8bbf\u95ee:
lw
(load word), lb
(load byte), sw
(store word), sb
(store byte)\uff0c\u7528\u4e8e\u5728\u5bc4\u5b58\u5668\u548c\u5185\u5b58\u4e4b\u95f4\u4f20\u8f93\u6570\u636e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#3","title":"3. \u903b\u8f91\u6307\u4ee4","text":"
- \u5305\u62ec\u903b\u8f91\u4e0e\uff08
and
\uff09\u3001\u6216\uff08or
\uff09\u3001\u5f02\u6216\uff08xor
\uff09\u3002 - \u4f4d\u79fb\u6307\u4ee4:
sll
(shift left logical), slli
(shift left logical immediate), sra
(shift right arithmetic), srai
(shift right arithmetic immediate)\uff0c\u7528\u4e8e\u6267\u884c\u4f4d\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#4","title":"4. \u6761\u4ef6\u5206\u652f","text":"
- \u7528\u4e8e\u5b9e\u73b0
if
\u3001loops
\u7b49\u63a7\u5236\u6d41\u7ed3\u6784\u3002 - \u683c\u5f0f:
{comparison} {reg1} {reg2} {label}
\uff0c\u4f8b\u5982 beq
(branch if equal), bne
(branch if not equal), blt
(branch if less than), bge
(branch if greater than or equal)\u3002 - \u6ca1\u6709\u76f4\u63a5\u7684 \u201cbranch-less-than-or-equals\u201d \u548c \u201cbranch-greater-than\u201d \u6307\u4ee4\uff0c\u4f46\u53ef\u4ee5\u901a\u8fc7\u4ea4\u6362\u53c2\u6570\u6765\u5b9e\u73b0\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#5","title":"5. \u65e0\u6761\u4ef6\u5206\u652f","text":"
Jump
\u6307\u4ee4:j label
\uff0c\u603b\u662f\u8df3\u8f6c\u5230\u6807\u7b7e\u6307\u5b9a\u7684\u4ee3\u7801\u4f4d\u7f6e\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#6-if-else","title":"6. If-Else \u8bed\u53e5\u7684\u5b9e\u73b0","text":"
- \u4f7f\u7528\u5206\u652f\u6307\u4ee4\u6765\u5b9e\u73b0\u6761\u4ef6\u6267\u884c\u3002
- \u793a\u4f8b:\u6839\u636e\u4e24\u4e2a\u5bc4\u5b58\u5668\u7684\u503c\u662f\u5426\u76f8\u7b49\uff0c\u6267\u884c\u4e0d\u540c\u7684\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#7","title":"7. \u5faa\u73af\u793a\u4f8b","text":"
- \u4f7f\u7528\u5faa\u73af\u6765\u7d2f\u52a0\u6570\u7ec4\u5143\u7d20\u7684\u548c\u3002
- \u793a\u4f8b\u4ee3\u7801\u5c55\u793a\u4e86\u5982\u4f55\u521d\u59cb\u5316\u5faa\u73af\u53d8\u91cf\u3001\u5faa\u73af\u6761\u4ef6\u4ee5\u53ca\u5faa\u73af\u4f53\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#8-pc","title":"8. \u7a0b\u5e8f\u8ba1\u6570\u5668\uff08PC\uff09","text":"
- PC \u662f\u4e00\u4e2a\u5bc4\u5b58\u5668\uff0c\u5b58\u50a8\u5f53\u524d\u6b63\u5728\u6267\u884c\u7684\u6307\u4ee4\u7684\u5185\u5b58\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#9-pc","title":"9. \u589e\u52a0 PC \u7684\u503c","text":"
- RV32 \u6307\u4ee4\u662f 32 \u4f4d\u5bbd\uff0c\u5373 4 \u5b57\u8282\u3002
- \u5f53\u79fb\u52a8\u5230\u4e0b\u4e00\u6761\u6307\u4ee4\u65f6\uff0c\u5904\u7406\u5668\u4f1a\u589e\u52a0 PC \u7684\u503c 4 \u5b57\u8282\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#10","title":"10. \u51fd\u6570\u6267\u884c\u4f4d\u7f6e\u7684\u6539\u53d8","text":"
- \u4f7f\u7528\u8df3\u8f6c\u6307\u4ee4\u6539\u53d8 PC \u7684\u503c\uff0c\u4ee5\u6267\u884c\u4e0d\u540c\u4f4d\u7f6e\u7684\u51fd\u6570\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#11-jal","title":"11. JAL \u6307\u4ee4","text":"
jal
\u6307\u4ee4\u7528\u4e8e\u8df3\u8f6c\u5230\u6807\u7b7e\uff0c\u5e76\u5b58\u50a8\u8fd4\u56de\u5730\u5740\u3002 - \u5c06\u6807\u7b7e\u901a\u8fc7\u6c47\u7f16\u5668\u8f6c\u6362\u4e3a 20 \u4f4d\u504f\u79fb\u91cf\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#12","title":"12. \u8fd4\u56de\u5730\u5740\u5bc4\u5b58\u5668","text":"
- \u53ef\u4ee5\u9009\u62e9\u4efb\u610f\u5bc4\u5b58\u5668\u6765\u5b58\u50a8\u8fd4\u56de\u5730\u5740\uff0c\u4f46\u6309\u7167\u6807\u51c6\u7ea6\u5b9a\uff0c\u4f7f\u7528\u5bc4\u5b58\u5668 x1\uff0c\u4e5f\u79f0\u4e3a
ra
\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#13","title":"13. \u8df3\u8f6c\u793a\u4f8b","text":"
- \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u8c03\u7528\u4e2d\u4f7f\u7528
jal
\u548c jr
\u6307\u4ee4\u8fdb\u884c\u8df3\u8f6c\u548c\u8fd4\u56de\u3002 - \u7528x0\u53ef\u4ee5\u4e0d\u7528\u5b58\u8fd4\u56de\u5730\u5740
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#14","title":"14. \u4f2a\u6307\u4ee4","text":"
- \u4f2a\u6307\u4ee4\u5bf9\u7a0b\u5e8f\u5458\u53ef\u7528\uff0c\u4f46\u4e0d\u662f ISA \u7684\u4e00\u90e8\u5206\u3002
- \u7531\u6c47\u7f16\u5668\u8f6c\u6362\u4e3a\u5b9e\u9645\u7684 RISC-V \u6307\u4ee4\u3002
- [[cs61c_lec06]]\u91cc\u5c31\u8bb2\u8fc7\u4e86
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#15-jalr","title":"15. JALR \u6307\u4ee4","text":"
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#16","title":"16. \u8df3\u8f6c\u603b\u7ed3","text":"
- \u603b\u7ed3\u4e86\u4e0d\u540c\u7c7b\u578b\u7684\u8df3\u8f6c\u6307\u4ee4\uff0c\u5305\u62ec
jal
, jalr
, jr
, \u548c ret
\u3002 - [[\u8df3\u8f6c\u548c\u8fd4\u56de\u7684\u51fd\u6570]]
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#17","title":"17. \u4fdd\u5b58\u5bc4\u5b58\u5668","text":"
- \u5f53\u8c03\u7528\u53e6\u4e00\u4e2a\u51fd\u6570\u65f6\uff0c\u9700\u8981\u4fdd\u5b58\u5f53\u524d\u51fd\u6570\u4f7f\u7528\u7684\u5bc4\u5b58\u5668\u503c\uff0c\u4ee5\u9632\u6b62\u88ab\u8986\u76d6\u3002
- save in the stack
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#18","title":"18. \u4e3a\u6808\u5206\u914d\u7a7a\u95f4","text":"
- \u6808\u7528\u4e8e\u5b58\u50a8\u81ea\u52a8\uff08\u5c40\u90e8\uff09\u53d8\u91cf\uff0c\u8fd9\u4e9b\u53d8\u91cf\u5728\u51fd\u6570\u9000\u51fa\u65f6\u88ab\u4e22\u5f03\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#19-sp","title":"19. \u6808\u6307\u9488\uff08SP\uff09","text":"
- SP \u662f\u4e00\u4e2a\u5bc4\u5b58\u5668\uff0c\u5b58\u50a8\u6808\u4e0a\u6700\u540e\u4e00\u9879\u7684\u5185\u5b58\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#20","title":"20. \u6808\u5e27","text":"
- \u6808\u5e27\u662f\u6808\u4e0a\u7684\u4e00\u5757\u533a\u57df\uff0c\u7528\u4e8e\u5b58\u50a8\u51fd\u6570\u7684\u5c40\u90e8\u53d8\u91cf\u548c\u5bc4\u5b58\u5668\u72b6\u6001\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#21","title":"21. \u79fb\u52a8\u6808\u6307\u9488","text":"
- \u901a\u8fc7\u589e\u52a0\u6216\u51cf\u5c11 SP \u7684\u503c\u6765\u5728\u6808\u4e0a\u5206\u914d\u6216\u91ca\u653e\u7a7a\u95f4\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#22","title":"22. \u8c03\u7528\u7ea6\u5b9a","text":"
- \u8c03\u7528\u7ea6\u5b9a\u5b9a\u4e49\u4e86\u54ea\u4e9b\u5bc4\u5b58\u5668\u7531\u8c03\u7528\u8005\u4fdd\u5b58\uff0c\u54ea\u4e9b\u7531\u88ab\u8c03\u7528\u8005\u4fdd\u5b58\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#23","title":"23. \u5bc4\u5b58\u5668\u4f7f\u7528\u8bf4\u660e","text":"
- \u8868\u683c\u5217\u51fa\u4e86\u6bcf\u4e2a\u5bc4\u5b58\u5668\u7684\u7528\u9014\u548c\u8c01\u8d1f\u8d23\u4fdd\u5b58\u5b83\u4eec\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#24","title":"24. \u53c2\u6570\u5bc4\u5b58\u5668","text":"
- \u51fd\u6570\u7684\u53c2\u6570\u548c\u8fd4\u56de\u503c\u901a\u8fc7\u7279\u5b9a\u7684\u5bc4\u5b58\u5668\u4f20\u9012\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#25","title":"25. \u8c03\u7528\u7ea6\u5b9a\u793a\u4f8b","text":"
- \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u8c03\u7528\u4e2d\u4f7f\u7528\u53c2\u6570\u5bc4\u5b58\u5668\u548c\u8fd4\u56de\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec07/#26","title":"26. \u51fd\u6570\u8c03\u7528\u7684\u516d\u4e2a\u57fa\u672c\u6b65\u9aa4","text":"
- \u4ece\u53c2\u6570\u8bbe\u7f6e\u5230\u63a7\u5236\u6743\u8fd4\u56de\u7684\u8be6\u7ec6\u8fc7\u7a0b\u3002
\u8fd9\u4efd\u8bb2\u4e49\u6db5\u76d6\u4e86 RISC-V \u6c47\u7f16\u8bed\u8a00\u4e2d\u63a7\u5236\u6d41\u3001\u51fd\u6570\u8c03\u7528\u3001\u5bc4\u5b58\u5668\u4f7f\u7528\u548c\u5185\u5b58\u7ba1\u7406\u7684\u5173\u952e\u6982\u5ff5\u548c\u6280\u672f\u3002\u901a\u8fc7\u8fd9\u4e9b\u5185\u5bb9\uff0c\u5b66\u751f\u53ef\u4ee5\u5b66\u4e60\u5982\u4f55\u5728 RISC-V \u67b6\u6784\u4e0a\u5b9e\u73b0\u590d\u6742\u7684\u7a0b\u5e8f\u903b\u8f91\u548c\u51fd\u6570\u4ea4\u4e92\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/","title":"Cs61c lec08","text":"
\u7ea6 1440 \u4e2a\u5b57 17 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
lec08.pdf
\u6587\u4ef6\u8be6\u7ec6\u4ecb\u7ecd\u4e86 RISC-V \u6307\u4ee4\u96c6\u67b6\u6784\u4e2d\u7684\u6307\u4ee4\u683c\u5f0f\u548c\u5176\u4ed6\u76f8\u5173\u6982\u5ff5\u3002\u4ee5\u4e0b\u662f\u8be5\u8bfe\u7a0b\u5185\u5bb9\u7684\u8be6\u7ec6\u8bb2\u89e3:
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#1","title":"1. \u62bd\u8c61\u7684\u6982\u5ff5","text":"
- \u4ecb\u7ecd\u4e86\u4e0d\u540c\u7ea7\u522b\u7684\u62bd\u8c61\uff0c\u5305\u62ec\u9ad8\u7ea7\u8bed\u8a00\u3001\u6c47\u7f16\u8bed\u8a00\u3001\u673a\u5668\u8bed\u8a00\u548c\u786c\u4ef6\u67b6\u6784\u63cf\u8ff0\u3002
- \u89e3\u91ca\u4e86\u7f16\u8bd1\u5668\u3001\u6c47\u7f16\u5668\u548c\u673a\u5668\u89e3\u91ca\u7684\u4f5c\u7528\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#2","title":"2. \u6307\u4ee4\u683c\u5f0f","text":"
- \u6307\u51fa\u6bcf\u6761\u6307\u4ee4\u90fd\u662f 32 \u4f4d\u5bbd\uff0c\u5e76\u5206\u4e3a\u4e0d\u540c\u7684\u5b57\u6bb5\u3002
- \u4ecb\u7ecd\u4e86 RISC-V \u6307\u4ee4\u96c6\u7684\u51e0\u79cd\u683c\u5f0f:R \u683c\u5f0f\u3001I \u683c\u5f0f\u3001S \u683c\u5f0f\u548c U \u683c\u5f0f\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#3-r","title":"3. R \u683c\u5f0f","text":"
- R \u683c\u5f0f\u662f\u4e00\u79cd\u5bc4\u5b58\u5668-\u5bc4\u5b58\u5668\u7c7b\u578b\u7684\u6307\u4ee4\uff0c\u6d89\u53ca\u4e09\u4e2a\u5bc4\u5b58\u5668:\u4e24\u4e2a\u6e90\u5bc4\u5b58\u5668\u548c\u4e00\u4e2a\u76ee\u6807\u5bc4\u5b58\u5668\u3002
- \u4ecb\u7ecd\u4e86 R \u683c\u5f0f\u7684\u5b57\u6bb5\u5e03\u5c40\uff0c\u5305\u62ec
funct7
\u3001rs2
\u3001rs1
\u3001funct3
\u3001rd
\u548c opcode
\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#4-r","title":"4. R \u683c\u5f0f\u6307\u4ee4\u7684\u64cd\u4f5c","text":"
- \u901a\u8fc7
funct7
\u548c funct3
\u5b57\u6bb5\u4e0e opcode
\u7ed3\u5408\u6765\u786e\u5b9a\u8981\u6267\u884c\u7684\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#5-r","title":"5. R \u683c\u5f0f\u6307\u4ee4\u7684\u5bc4\u5b58\u5668","text":"
- \u89e3\u91ca\u4e86\u5bc4\u5b58\u5668\u5b57\u6bb5
rs1
\u3001rs2
\u548c rd
\u7684\u4f5c\u7528\uff0c\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u5b58\u50a8 5 \u4f4d\u65e0\u7b26\u53f7\u6574\u6570\u6765\u8868\u793a\u5bc4\u5b58\u5668\u53f7\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#6-r","title":"6. R \u683c\u5f0f\u793a\u4f8b","text":"
- \u901a\u8fc7\u793a\u4f8b
add x18, x19, x10
\u5c55\u793a\u4e86 R \u683c\u5f0f\u6307\u4ee4\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u3002
\u5728RISC-V\u6307\u4ee4\u96c6\u4e2d\uff0copcode
\u3001funct3
\u548cfunct7
\u5b57\u6bb5\u662f\u6784\u6210\u4e00\u6761\u6307\u4ee4\u7684\u57fa\u672c\u7ec4\u6210\u90e8\u5206\uff0c\u5b83\u4eec\u5171\u540c\u5b9a\u4e49\u4e86\u6307\u4ee4\u7684\u7c7b\u578b\u548c\u884c\u4e3a\u3002\u4e0b\u9762\u662f\u5bf9\u8fd9\u4e9b\u5b57\u6bb5\u7684\u7406\u89e3:
-
Opcode:\u64cd\u4f5c\u7801\u662f\u4e00\u4e2a\u56fa\u5b9a\u7684\u4f4d\u6a21\u5f0f\uff0c\u7528\u4e8e\u6807\u8bc6\u6307\u4ee4\u7684\u7c7b\u522b\u3002\u4f8b\u5982\uff0c\u6240\u6709R\u578b\uff08\u5bc4\u5b58\u5668-\u5bc4\u5b58\u5668\uff09\u7c7b\u578b\u7684\u6307\u4ee4\u90fd\u6709\u4e00\u4e2a\u7279\u5b9a\u7684\u64cd\u4f5c\u7801\u6765\u533a\u5206\u5b83\u4eec\u4e0eI\u578b\uff08\u5bc4\u5b58\u5668-\u7acb\u5373\u6570\uff09\u6216S\u578b\uff08\u5b58\u50a8\uff09\u6307\u4ee4\u7b49\u3002
-
Funct3:\u529f\u80fd\u7801\u7684\u4f4e\u4e09\u4f4d\uff08funct3\uff09\u63d0\u4f9b\u4e86\u989d\u5916\u7684\u4fe1\u606f\uff0c\u7528\u4e8e\u5728\u5177\u6709\u591a\u79cd\u53d8\u4f53\u7684\u6307\u4ee4\u4e2d\u9009\u62e9\u7279\u5b9a\u7684\u64cd\u4f5c\u3002\u4f8b\u5982\uff0c\u5728RISC-V\u4e2d\uff0cadd
\u548csub
\u64cd\u4f5c\u90fd\u4f7f\u7528\u76f8\u540c\u7684\u64cd\u4f5c\u7801\uff0c\u4f46\u662f\u901a\u8fc7funct3
\u5b57\u6bb5\u6765\u533a\u5206\u662f\u6267\u884c\u52a0\u6cd5\u8fd8\u662f\u51cf\u6cd5\u3002
-
Funct7:\u529f\u80fd\u7801\u7684\u9ad8\u4e03\u4f4d\uff08funct7\uff09\u4e3a\u67d0\u4e9b\u6307\u4ee4\u63d0\u4f9b\u4e86\u66f4\u591a\u7684\u7f16\u7801\u7a7a\u95f4\uff0c\u5141\u8bb8\u540c\u4e00\u64cd\u4f5c\u7801\u4e0b\u6709\u66f4\u591a\u7684\u64cd\u4f5c\u53d8\u4f53\u3002\u4f8b\u5982\uff0c\u5728\u6d6e\u70b9\u6307\u4ee4\u4e2d\uff0cfunct7
\u5b57\u6bb5\u53ef\u4ee5\u7528\u4e8e\u9009\u62e9\u4e0d\u540c\u7684\u6d6e\u70b9\u8fd0\u7b97\u3002
\u5728RISC-V\u768432\u4f4d\u6307\u4ee4\u7f16\u7801\u4e2d\uff0c\u8fd9\u4e9b\u5b57\u6bb5\u901a\u5e38\u6309\u5982\u4e0b\u65b9\u5f0f\u7ec4\u7ec7:
- \u524d7\u4f4d\u662f
opcode
\u3002 - \u63a5\u4e0b\u6765\u76843\u4f4d\u662f
funct3
\u3002 - \u7136\u540e\u662f5\u4f4d\u64cd\u4f5c\u6570\u7f16\u7801\uff0c\u5bf9\u4e8eR\u578b\u6307\u4ee4\u662f
rs1
\u548crs2
\uff0c\u5bf9\u4e8eI\u578b\u6307\u4ee4\u662frs1
\u548c\u7acb\u5373\u6570
\u3002 - \u5bf9\u4e8eR\u578b\u6307\u4ee4\uff0c\u540e\u9762\u662f3\u4f4d
rd
\u7f16\u7801\u3002 - \u5bf9\u4e8eI\u578b\u548cS\u578b\u6307\u4ee4\uff0c\u63a5\u4e0b\u6765\u768412\u4f4d\u662f\u7acb\u5373\u6570\u7f16\u7801\u3002
\u4f8b\u5982\uff0c\u5728R\u578b\u6307\u4ee4\u4e2d\uff0c\u683c\u5f0f\u5982\u4e0b:
Text Only
|---7---|---3---|---5---|---3---|---5---|\n| opcode| 000 | rs2 | funct3| rd |\n
\u5728I\u578b\u6307\u4ee4\u4e2d\uff0c\u683c\u5f0f\u5982\u4e0b:
Text Only
|---7---|---3---|---5---|---13--|\n| opcode| 000 | rs1 | immed |\n
\u5728\u7406\u89e3RISC-V\u6307\u4ee4\u65f6\uff0c\u91cd\u8981\u7684\u662f\u8981\u53c2\u8003\u5b98\u65b9\u7684\u6307\u4ee4\u96c6\u6587\u6863\uff0c\u56e0\u4e3a\u4e0d\u540c\u7684\u6307\u4ee4\u548c\u6307\u4ee4\u7c7b\u522b\u53ef\u80fd\u6709\u4e0d\u540c\u7684funct3
\u548cfunct7
\u7f16\u7801\u3002\u8fd9\u4e9b\u7f16\u7801\u5b9a\u4e49\u4e86\u6307\u4ee4\u7684\u5177\u4f53\u884c\u4e3a\uff0c\u4f8b\u5982\u7b97\u672f\u8fd0\u7b97\u3001\u903b\u8f91\u8fd0\u7b97\u3001\u4f4d\u79fb\u8fd0\u7b97\u7b49\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#7-i","title":"7. I \u683c\u5f0f","text":"
- I \u683c\u5f0f\u662f\u5bc4\u5b58\u5668-\u7acb\u5373\u6570\u7c7b\u578b\u7684\u6307\u4ee4\uff0c\u6d89\u53ca\u4e00\u4e2a\u5bc4\u5b58\u5668\u548c\u4e00\u4e2a\u7acb\u5373\u6570\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#8-i","title":"8. I \u683c\u5f0f\u5e03\u5c40","text":"
- \u4ecb\u7ecd\u4e86 I \u683c\u5f0f\u7684\u5b57\u6bb5\u5e03\u5c40\uff0c\u5305\u62ec
imm[11:0]
\u3001rs1
\u3001funct3
\u3001rd
\u548c opcode
\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#9-i","title":"9. I \u683c\u5f0f\u6307\u4ee4","text":"
- \u8ba8\u8bba\u4e86\u7acb\u5373\u6570\u7684\u8868\u793a\u8303\u56f4\u548c\u5982\u4f55\u8fdb\u884c\u7b26\u53f7\u6269\u5c55\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#10-i","title":"10. I \u683c\u5f0f\u793a\u4f8b","text":"
- \u901a\u8fc7\u793a\u4f8b
addi x15, x18, -50
\u5c55\u793a\u4e86 I \u683c\u5f0f\u6307\u4ee4\u7684\u4e8c\u8fdb\u5236\u8868\u793a\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#11","title":"11. \u52a0\u8f7d\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86\u52a0\u8f7d\u6307\u4ee4\u7684\u4e0d\u540c\u7c7b\u578b\uff0c\u5305\u62ec\u52a0\u8f7d\u5b57\uff08
lw
\uff09\u3001\u52a0\u8f7d\u5b57\u8282\uff08lb
\uff09\u3001\u52a0\u8f7d\u65e0\u7b26\u53f7\u5b57\u8282\uff08lbu
\uff09\u548c\u52a0\u8f7d\u534a\u5b57\uff08lh
\u3001lhu
\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#12","title":"12. \u52a0\u8f7d\u6307\u4ee4\u7684\u5185\u5b58\u8868\u793a","text":"
- \u89e3\u91ca\u4e86\u52a0\u8f7d\u6307\u4ee4\u5982\u4f55\u4ece\u5185\u5b58\u4e2d\u52a0\u8f7d\u4e0d\u540c\u5927\u5c0f\u7684\u6570\u636e\u5230\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#13-s","title":"13. S \u683c\u5f0f","text":"
- S \u683c\u5f0f\u662f\u5b58\u50a8\u6307\u4ee4\u7684\u683c\u5f0f\uff0c\u6d89\u53ca\u4e24\u4e2a\u6e90\u5bc4\u5b58\u5668\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#14","title":"14. \u5b58\u50a8\u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86\u5b58\u50a8\u6307\u4ee4\u7684\u4e0d\u540c\u7c7b\u578b\uff0c\u5305\u62ec\u5b58\u50a8\u5b57\uff08
sw
\uff09\u3001\u5b58\u50a8\u5b57\u8282\uff08sb
\uff09\u548c\u5b58\u50a8\u534a\u5b57\uff08sh
\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#15","title":"15. \u5b58\u50a8\u6307\u4ee4\u7684\u5185\u5b58\u8868\u793a","text":"
- \u89e3\u91ca\u4e86\u5b58\u50a8\u6307\u4ee4\u5982\u4f55\u5c06\u6570\u636e\u4ece\u5bc4\u5b58\u5668\u5b58\u50a8\u5230\u5185\u5b58\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#16","title":"16. \u5206\u652f\u6307\u4ee4","text":"
- \u8ba8\u8bba\u4e86\u6761\u4ef6\u5206\u652f\u6307\u4ee4\u7684\u7528\u6cd5\uff0c\u5305\u62ec
beq
\uff08\u5982\u679c\u76f8\u7b49\u5219\u5206\u652f\uff09\u3001bne
\uff08\u5982\u679c\u4e0d\u76f8\u7b49\u5219\u5206\u652f\uff09\u7b49\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#17","title":"17. \u5206\u652f\u6307\u4ee4\u7684\u5730\u5740\u8303\u56f4","text":"
- \u4ecb\u7ecd\u4e86\u5206\u652f\u6307\u4ee4\u53ef\u4ee5\u8df3\u8f6c\u7684\u8303\u56f4\uff0c\u57fa\u4e8e PC \u76f8\u5bf9\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#18","title":"18. \u5206\u652f\u6307\u4ee4\u7684\u7f16\u7801","text":"
- \u8be6\u7ec6\u89e3\u91ca\u4e86\u5206\u652f\u6307\u4ee4\u7684\u7acb\u5373\u6570\u5b57\u6bb5\u5982\u4f55\u7f16\u7801\uff0c\u4ee5\u53ca\u5982\u4f55\u8ba1\u7b97\u8df3\u8f6c\u504f\u79fb\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#19-risc-v-16","title":"19. RISC-V \u7684 16 \u4f4d\u6307\u4ee4\u6269\u5c55","text":"
- \u4ecb\u7ecd\u4e86 RISC-V \u652f\u6301\u7684 16 \u4f4d\u538b\u7f29\u6307\u4ee4\uff0c\u4ee5\u53ca\u5b83\u4eec\u5982\u4f55\u589e\u52a0\u6307\u4ee4\u7684\u5bc6\u5ea6\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#20-j","title":"20. J \u683c\u5f0f","text":"
- J \u683c\u5f0f\u662f\u8df3\u8f6c\u6307\u4ee4\u7684\u683c\u5f0f\uff0c\u5141\u8bb8\u8df3\u8f6c\u5230\u66f4\u8fdc\u7684\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#21-jalr","title":"21. JALR \u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86
jalr
\u6307\u4ee4\uff0c\u5b83\u7528\u4e8e\u76f8\u5bf9\u5730\u5740\u7684\u8df3\u8f6c\uff0c\u5e76\u53ef\u4ee5\u4f5c\u4e3a\u8fd4\u56de\u6307\u4ee4\u4f7f\u7528\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#22-pc","title":"22. PC \u76f8\u5bf9\u5730\u5740\u4e0e\u7edd\u5bf9\u5730\u5740","text":"
- \u5bf9\u6bd4\u4e86 PC \u76f8\u5bf9\u5730\u5740\u8df3\u8f6c\u548c\u7edd\u5bf9\u5730\u5740\u8df3\u8f6c\u7684\u6982\u5ff5\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#23-u","title":"23. U \u683c\u5f0f","text":"
- U \u683c\u5f0f\u662f\u7528\u4e8e\u52a0\u8f7d\u7acb\u5373\u6570\u5230\u5bc4\u5b58\u5668\u7684\u6307\u4ee4\u683c\u5f0f\uff0c\u5982
lui
\uff08\u52a0\u8f7d\u4e0a\u7acb\u5373\u6570\uff09\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#24-lui-auipc","title":"24. LUI \u548c AUIPC \u6307\u4ee4","text":"
- \u4ecb\u7ecd\u4e86
lui
\u6307\u4ee4\u5982\u4f55\u52a0\u8f7d\u7acb\u5373\u6570\u7684\u4e0a 20 \u4f4d\u5230\u5bc4\u5b58\u5668\uff0c\u4ee5\u53ca auipc
\uff08\u52a0\u7acb\u5373\u6570\u5230 PC\uff09\u5982\u4f55\u7528\u4e8e\u8ba1\u7b97 PC \u76f8\u5bf9\u7684\u5730\u5740\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec08/#25","title":"25. \u603b\u7ed3","text":"
- \u5bf9 RISC-V \u6307\u4ee4\u683c\u5f0f\u8fdb\u884c\u4e86\u603b\u7ed3\uff0c\u5f3a\u8c03\u4e86\u5b83\u4eec\u5728\u4e0d\u540c\u573a\u666f\u4e0b\u7684\u5e94\u7528\u3002
\u8fd9\u4efd\u8bb2\u4e49\u6df1\u5165\u63a2\u8ba8\u4e86 RISC-V \u6307\u4ee4\u96c6\u7684\u4e0d\u540c\u683c\u5f0f\uff0c\u5305\u62ec\u5b83\u4eec\u7684\u5b57\u6bb5\u5e03\u5c40\u3001\u64cd\u4f5c\u548c\u5e94\u7528\u573a\u666f\u3002\u901a\u8fc7\u8fd9\u4e9b\u5185\u5bb9\uff0c\u5b66\u751f\u53ef\u4ee5\u66f4\u6df1\u5165\u5730\u7406\u89e3 RISC-V \u6307\u4ee4\u96c6\u7684\u5de5\u4f5c\u539f\u7406\u548c\u5982\u4f55\u6709\u6548\u5730\u4f7f\u7528\u5404\u79cd\u6307\u4ee4\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec09/","title":"Cs61c lec09","text":"
\u7ea6 1004 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec09.pdf
\u6587\u4ef6\u662f\u5173\u4e8e\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531McMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u8ba8\u8bba\u4e86\u7f16\u8bd1\u3001\u6c47\u7f16\u3001\u94fe\u63a5\u548c\u52a0\u8f7d\uff08CALL\uff09\u7684\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u5982\u4f55\u5c06\u9ad8\u7ea7\u8bed\u8a00\u7ffb\u8bd1\u6210RISC-V\u6c47\u7f16\u8bed\u8a00\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
CALL\u94fe\u4ecb\u7ecd: - CALL\u94fe\u662f\u6307\u5c06\u9ad8\u7ea7\u8bed\u8a00\u4ee3\u7801\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u6240\u7ecf\u5386\u7684\u4e00\u7cfb\u5217\u6b65\u9aa4\uff0c\u5305\u62ec\u7f16\u8bd1\uff08Compiler\uff09\u3001\u6c47\u7f16\uff08Assembler\uff09\u3001\u94fe\u63a5\uff08Linker\uff09\u548c\u52a0\u8f7d\uff08Loader\uff09\u3002
-
\u7ffb\u8bd1\u590d\u6742\u793a\u4f8b: - \u901a\u8fc7\u4e00\u4e2aC\u8bed\u8a00\u7684map
\u51fd\u6570\u793a\u4f8b\uff0c\u5c55\u793a\u4e86\u5982\u4f55\u5c06\u5176\u7ffb\u8bd1\u6210RISC-V\u6c47\u7f16\u8bed\u8a00\u3002\u8fd9\u4e2a\u51fd\u6570\u901a\u8fc7\u9012\u5f52\u65b9\u5f0f\uff0c\u5bf9\u94fe\u8868\u4e2d\u7684\u6bcf\u4e2a\u5143\u7d20\u5e94\u7528\u4e00\u4e2a\u51fd\u6570\u3002
-
\u89e3\u91ca\u4e0e\u7f16\u8bd1: - \u89e3\u91ca\u4e86\u89e3\u91ca\u578b\u8bed\u8a00\u548c\u7f16\u8bd1\u578b\u8bed\u8a00\u7684\u533a\u522b\u3002\u89e3\u91ca\u578b\u8bed\u8a00\u76f4\u63a5\u6267\u884c\u6e90\u4ee3\u7801\uff0c\u800c\u7f16\u8bd1\u578b\u8bed\u8a00\u5148\u5c06\u6e90\u4ee3\u7801\u8f6c\u6362\u6210\u53e6\u4e00\u79cd\u8bed\u8a00\u7684\u7b49\u4ef7\u7a0b\u5e8f\u3002
-
\u5b58\u50a8\u65b9\u6848\u51b3\u7b56: - \u786e\u5b9a\u4e86\u54ea\u4e9b\u53d8\u91cf\u5e94\u8be5\u653e\u5728\u5bc4\u5b58\u5668\u4e2d\u3002\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\uff0clst
\u3001f
\u548cnewcell
\u662f\u5c40\u90e8\u53d8\u91cf\uff0c\u9700\u8981\u5728\u51fd\u6570\u8c03\u7528\u4e4b\u95f4\u4fdd\u6301\u5b58\u6d3b\uff0c\u56e0\u6b64\u5b83\u4eec\u88ab\u653e\u5728\u4e86callee-saved\u5bc4\u5b58\u5668\u4e2d\u3002
-
\u51fd\u6570\u5e8f\u8a00\uff08Preamble\uff09: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u5f00\u59cb\u65f6\u8c03\u6574\u6808\u6307\u9488\u3001\u4fdd\u5b58ra
\u548c\u5176\u5b83\u9700\u8981\u7684\u5bc4\u5b58\u5668\u3002
-
\u9012\u5f52\u8c03\u7528map: - \u8be6\u7ec6\u89e3\u91ca\u4e86\u5982\u4f55\u8fdb\u884c\u65e9\u671f\u9000\u51fa\uff08\u5982\u679clst
\u4e3aNULL\uff09\u3001\u5982\u4f55\u8c03\u7528malloc
\u5206\u914d\u5185\u5b58\u3001\u5982\u4f55\u8c03\u7528\u51fd\u6570f
\u4ee5\u53ca\u5982\u4f55\u9012\u5f52\u8c03\u7528map
\u51fd\u6570\u3002
-
\u6e05\u7406\u4e0e\u8fd4\u56de: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u51fd\u6570\u7ed3\u675f\u524d\u6062\u590d\u5bc4\u5b58\u5668\u72b6\u6001\u3001\u8c03\u6574\u6808\u6307\u9488\uff0c\u5e76\u4f7f\u7528jr
\u6307\u4ee4\u8fd4\u56de\u3002
-
\u5b8c\u6574\u4ee3\u7801\u793a\u4f8b: - \u63d0\u4f9b\u4e86\u4e0a\u8ff0map
\u51fd\u6570\u7684\u5b8c\u6574RISC-V\u6c47\u7f16\u8bed\u8a00\u5b9e\u73b0\u3002
-
\u4e0d\u540c\u7ea7\u522b\u7684\u8868\u793a/\u89e3\u91ca: - \u8ba8\u8bba\u4e86\u4ece\u9ad8\u7ea7\u8bed\u8a00\u5230\u6c47\u7f16\u8bed\u8a00\uff0c\u518d\u5230\u673a\u5668\u8bed\u8a00\u7684\u4e0d\u540c\u8868\u793a\u7ea7\u522b\uff0c\u4ee5\u53ca\u7f16\u8bd1\u5668\u3001\u6c47\u7f16\u5668\u548c\u673a\u5668\u89e3\u91ca\u5668\u7684\u89d2\u8272\u3002
-
\u8bed\u8a00\u6267\u884c\u8fde\u7eed\u4f53:
- \u63cf\u8ff0\u4e86\u4ece\u6613\u7f16\u7a0b\u4f46\u6548\u7387\u8f83\u4f4e\u7684\u89e3\u91ca\u578b\u8bed\u8a00\u5230\u96be\u7f16\u7a0b\u4f46\u6548\u7387\u8f83\u9ad8\u7684\u7f16\u8bd1\u578b\u8bed\u8a00\u7684\u8fde\u7eed\u4f53\u3002
-
\u89e3\u91ca\u4e0e\u7ffb\u8bd1:
- \u5bf9\u6bd4\u4e86\u89e3\u91ca\u5668\u548c\u7ffb\u8bd1\u5668\u7684\u4f18\u7f3a\u70b9\uff0c\u89e3\u91ca\u5668\u63d0\u4f9b\u66f4\u597d\u7684\u9519\u8bef\u6d88\u606f\u548c\u8de8\u5e73\u53f0\u517c\u5bb9\u6027\uff0c\u800c\u7ffb\u8bd1\u5668\u901a\u5e38\u63d0\u4f9b\u66f4\u9ad8\u7684\u6027\u80fd\u3002
-
\u7f16\u8bd1C\u7a0b\u5e8f\u7684\u6b65\u9aa4:
- \u63cf\u8ff0\u4e86\u4eceC\u8bed\u8a00\u4ee3\u7801\u5230\u6c47\u7f16\u8bed\u8a00\u4ee3\u7801\u7684\u7f16\u8bd1\u8fc7\u7a0b\uff0c\u5305\u62ec\u8bcd\u6cd5\u5206\u6790\u3001\u8bed\u6cd5\u5206\u6790\u3001\u8bed\u4e49\u5206\u6790\u548c\u4f18\u5316\u3001\u4ee3\u7801\u751f\u6210\u7b49\u6b65\u9aa4\u3002
-
\u6c47\u7f16\u5668:
- \u6c47\u7f16\u5668\u5c06\u6c47\u7f16\u8bed\u8a00\u4ee3\u7801\u8f6c\u6362\u6210\u673a\u5668\u8bed\u8a00\u4ee3\u7801\uff0c\u5e76\u521b\u5efa\u5bf9\u8c61\u6587\u4ef6\u3002
-
\u4f2a\u6307\u4ee4\u66ff\u6362:
- \u6c47\u7f16\u5668\u5982\u4f55\u5904\u7406\u4f2a\u6307\u4ee4\uff0c\u4f8b\u5982
j
\u6807\u7b7e\u8f6c\u6362\u4e3ajal x0 \u6807\u7b7e
\u3002
-
\u4ea7\u751f\u673a\u5668\u8bed\u8a00:
- \u8ba8\u8bba\u4e86\u5982\u4f55\u5c06\u6c47\u7f16\u6307\u4ee4\u8f6c\u6362\u4e3a\u673a\u5668\u8bed\u8a00\uff0c\u5305\u62ec\u5904\u7406\u5206\u652f\u3001\u8df3\u8f6c\u548c\u7edd\u5bf9\u5730\u5740\u5f15\u7528\u3002
-
\u7b26\u53f7\u8868\u548c\u91cd\u5b9a\u4f4d\u8868:
- \u7b26\u53f7\u8868\u5217\u51fa\u4e86\u5f53\u524d\u6587\u4ef6\u4e2d\u53ef\u80fd\u88ab\u5176\u4ed6\u6587\u4ef6\u4f7f\u7528\u7684\u9879\uff0c\u800c\u91cd\u5b9a\u4f4d\u8868\u5217\u51fa\u4e86\u5f53\u524d\u6587\u4ef6\u7a0d\u540e\u9700\u8981\u5730\u5740\u7684\u9879\u3002
-
\u5bf9\u8c61\u6587\u4ef6\u683c\u5f0f:
- \u63cf\u8ff0\u4e86\u5bf9\u8c61\u6587\u4ef6\u7684\u683c\u5f0f\uff0c\u5305\u62ec\u5bf9\u8c61\u6587\u4ef6\u5934\u3001\u6587\u672c\u6bb5\u3001\u6570\u636e\u6bb5\u3001\u91cd\u5b9a\u4f4d\u4fe1\u606f\u3001\u7b26\u53f7\u8868\u548c\u8c03\u8bd5\u4fe1\u606f\u3002
-
\u94fe\u63a5\u5668:
- \u94fe\u63a5\u5668\u5982\u4f55\u5c06\u591a\u4e2a\u5bf9\u8c61\u6587\u4ef6\u7ec4\u5408\u6210\u4e00\u4e2a\u53ef\u6267\u884c\u6587\u4ef6\uff0c\u5e76\u89e3\u51b3\u7edd\u5bf9\u5730\u5740\u3002
-
\u52a0\u8f7d\u5668:
- \u52a0\u8f7d\u5668\u8d1f\u8d23\u5c06\u53ef\u6267\u884c\u6587\u4ef6\u52a0\u8f7d\u5230\u5185\u5b58\u4e2d\u5e76\u5f00\u59cb\u6267\u884c\u3002
-
\u6574\u6570\u4e58\u6cd5\u548c\u9664\u6cd5:
- \u8ba8\u8bba\u4e86RISC-V\u4e2d\u6574\u6570\u4e58\u6cd5\u548c\u9664\u6cd5\u7684\u5b9e\u73b0\uff0c\u5305\u62ec\u4f7f\u7528
mul
\u3001mulh
\u3001div
\u548crem
\u6307\u4ee4\u3002
-
\u53ef\u9009\u7684RISC-V 16\u4f4d\u538b\u7f29ISA:
- \u63d0\u4f9b\u4e86\u5173\u4e8eRISC-V 16\u4f4d\u538b\u7f29\u6307\u4ee4\u96c6\u7684\u989d\u5916\u4fe1\u606f\uff0c\u8fd9\u662f\u4e00\u79cd\u4f18\u5316\uff0c\u7528\u4e8e\u6700\u5e38\u89c1\u7684\u6307\u4ee4\u6a21\u5f0f\u3002
\u8fd9\u4e2a\u8bb2\u5ea7\u6db5\u76d6\u4e86\u8ba1\u7b97\u673a\u7cfb\u7edf\u5e95\u5c42\u7684\u8bb8\u591a\u5173\u952e\u6982\u5ff5\uff0c\u5bf9\u4e8e\u7406\u89e3\u7a0b\u5e8f\u662f\u5982\u4f55\u88ab\u7f16\u8bd1\u3001\u94fe\u63a5\u548c\u6267\u884c\u7684\u975e\u5e38\u6709\u5e2e\u52a9\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec10/","title":"Cs61c lec10","text":"
\u7ea6 632 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u8fd9\u4efd\u6587\u4ef6\u662f\u5173\u4e8e\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u5e74McMahon\u548cWeaver\u8bfe\u7a0b\u7684\u4e00\u7cfb\u5217\u8bb2\u4e49\uff0c\u4e3b\u8981\u4ecb\u7ecd\u4e86\u6570\u5b57\u7cfb\u7edf\u7684\u57fa\u7840\u77e5\u8bc6\u548c\u5e03\u5c14\u4ee3\u6570\u53ca\u5176\u5728\u7535\u8def\u8bbe\u8ba1\u4e2d\u7684\u5e94\u7528\u3002\u4ee5\u4e0b\u662f\u6838\u5fc3\u5185\u5bb9\u7684\u6982\u8ff0:
-
\u6570\u5b57\u7cfb\u7edf\u4ecb\u7ecd: - \u6570\u5b57\u7cfb\u7edf\u4f7f\u7528\u79bb\u6563\u503c\uff0c\u53ef\u4ee5\u662f\u5f00\uff081\uff09\u6216\u5173\uff080\uff09\uff0c\u4e0e\u6a21\u62df\u7cfb\u7edf\u76f8\u5bf9\uff0c\u540e\u8005\u5177\u6709\u8fde\u7eed\u7684\u503c\u8303\u56f4\u3002
-
\u903b\u8f91\u95e8: - \u903b\u8f91\u95e8\u662f\u6570\u5b57\u7535\u8def\u7684\u6784\u5efa\u5757\uff0c\u5305\u62ecAND\u3001OR\u3001XOR\u3001NOT\u3001NAND\u3001NOR\u548cXNOR\u7b49\u3002
-
\u5e03\u5c14\u4ee3\u6570: - \u5e03\u5c14\u4ee3\u6570\u662f\u6570\u5b66\u7684\u4e00\u4e2a\u5206\u652f\uff0c\u4e13\u95e8\u5904\u74060\u548c1\u7684\u8fd0\u7b97\uff0c\u57fa\u672c\u64cd\u4f5c\u5305\u62ecAND\uff08&\uff09\u3001OR\uff08|\uff09\u548cNOT\uff08~\uff09\u3002
-
\u5e03\u5c14\u4ee3\u6570\u7684\u89c4\u5219: - \u5305\u62ec\u4e92\u8865\u5f8b\u3001\u96f6\u5f8b\u3001\u6052\u7b49\u5f8b\u3001\u5e42\u7b49\u5f8b\u3001\u4ea4\u6362\u5f8b\u3001\u7ed3\u5408\u5f8b\u548c\u5206\u914d\u5f8b\u7b49\u3002
-
\u5fb7\u6469\u6839\u5b9a\u5f8b: - \u63cf\u8ff0\u4e86AND\u548cOR\u64cd\u4f5c\u7684\u5bf9\u5076\u6027\uff0c\u5982A(B + C)
\u7b49\u540c\u4e8eAB + AC
\u3002
-
\u5e03\u5c14\u4ee3\u6570\u7684\u5e94\u7528: - \u4f7f\u7528\u5e03\u5c14\u4ee3\u6570\u7b80\u5316\u7535\u8def\uff0c\u5982\u901a\u8fc7\u5e03\u5c14\u4ee3\u6570\u89c4\u5219\u7b80\u5316\u8868\u8fbe\u5f0fout = AB + B + C
\u4e3aout = B + C
\u3002
-
\u771f\u503c\u8868: - \u7528\u4e8e\u8868\u793a\u5e03\u5c14\u65b9\u7a0b\u7684\u6240\u6709\u53ef\u80fd\u8f93\u5165\u548c\u8f93\u51fa\uff0c\u662f\u8bbe\u8ba1\u548c\u9a8c\u8bc1\u903b\u8f91\u7535\u8def\u7684\u91cd\u8981\u5de5\u5177\u3002
-
\u903b\u8f91\u7535\u8def\u56fe: - \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u903b\u8f91\u95e8\u5b9e\u73b0\u5e03\u5c14\u65b9\u7a0b\uff0c\u5982out = AB + CD
\u3002
-
\u5f02\u6216\uff08XOR\uff09\u548c\u540c\u6216\uff08XNOR\uff09\u7684\u5b9e\u73b0: - \u63cf\u8ff0\u4e86\u5982\u4f55\u4ec5\u4f7f\u7528AND\u548cOR\u95e8\u6765\u6784\u5efaXOR\u548cXNOR\u903b\u8f91\u3002
-
\u52a0\u6cd5\u5668\u7684\u6784\u5efa:
- \u5305\u62ec\u534a\u52a0\u5668\uff08Half Adder\uff09\u548c\u5168\u52a0\u5668\uff08Full Adder\uff09\u7684\u8bbe\u8ba1\uff0c\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u5b83\u4eec\u6784\u5efa\u591a\u4f4d\u52a0\u6cd5\u5668\u3002
-
\u7b97\u672f\u903b\u8f91\u5355\u5143\uff08ALU\uff09:
- \u4ecb\u7ecdALU\u7684\u4f5c\u7528\uff0c\u5b83\u53ef\u4ee5\u6267\u884c\u6574\u6570\u4e8c\u8fdb\u5236\u6570\u7684\u7b97\u672f\u548c\u903b\u8f91\u64cd\u4f5c\u3002
-
\u7ec4\u5408\u903b\u8f91:
- \u63cf\u8ff0\u4e86\u7ec4\u5408\u903b\u8f91\u7684\u7279\u6027\uff0c\u5373\u8f93\u51fa\u4ec5\u4f9d\u8d56\u4e8e\u5f53\u524d\u8f93\u5165\uff0c\u5e76\u4e14\u4e00\u65e6\u8f93\u5165\u53ef\u7528\uff0c\u8f93\u51fa\u5c31\u5f00\u59cb\u88ab\u8ba1\u7b97\u3002
-
\u591a\u8def\u590d\u7528\u5668\uff08Multiplexer\uff09:
- 2:1\u591a\u8def\u590d\u7528\u5668\u7684\u9009\u62e9\u903b\u8f91\uff0c\u53ef\u4ee5\u6839\u636e\u9009\u62e9\u4fe1\u53f7\u4ece\u4e24\u4e2a\u8f93\u5165\u4e2d\u9009\u62e9\u4e00\u4e2a\u8f93\u51fa\u3002
-
\u5b58\u50a8\u683c\u5f0f\u793a\u4f8b:
- \u5c55\u793a\u4e86\u5982\u4f55\u5728RISC-V\u6c47\u7f16\u8bed\u8a00\u4e2d\u5b58\u50a8\u6307\u4ee4\uff0c\u4f8b\u5982
sw x14, 36(x5)
\u7684\u4e8c\u8fdb\u5236\u683c\u5f0f\u3002
-
\u4e0d\u540c\u8868\u793a/\u89e3\u91ca\u5c42\u6b21:
- \u4ece\u9ad8\u7ea7\u8bed\u8a00\u7a0b\u5e8f\u5230\u6c47\u7f16\u8bed\u8a00\u7a0b\u5e8f\uff0c\u518d\u5230\u673a\u5668\u8bed\u8a00\u7a0b\u5e8f\uff0c\u4ee5\u53ca\u786c\u4ef6\u67b6\u6784\u63cf\u8ff0\u3002
\u8fd9\u4e9b\u8bb2\u4e49\u63d0\u4f9b\u4e86\u5bf9\u6570\u5b57\u7cfb\u7edf\u8bbe\u8ba1\u7684\u6df1\u5165\u7406\u89e3\uff0c\u5305\u62ec\u5e03\u5c14\u4ee3\u6570\u7684\u539f\u7406\u3001\u903b\u8f91\u95e8\u7684\u5de5\u4f5c\u539f\u7406\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u8fd9\u4e9b\u5de5\u5177\u6765\u6784\u5efa\u548c\u7b80\u5316\u6570\u5b57\u7535\u8def\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec11/","title":"Cs61c lec11","text":"
\u7ea6 640 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u6587\u4ef6\u662f\u5173\u4e8e\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u5e74McMahon\u548cWeaver\u8bfe\u7a0b\u7684\u4e00\u7cfb\u5217\u8bb2\u4e49\uff0c\u6db5\u76d6\u4e86\u6570\u5b57\u7cfb\u7edf\u7684\u540c\u6b65\u7279\u6027\u3001\u89e6\u53d1\u5668\u3001\u65f6\u949f\u4fe1\u53f7\u3001\u7ec4\u5408\u903b\u8f91\u4e0e\u65f6\u5e8f\u903b\u8f91\u3001\u4ee5\u53ca\u6676\u4f53\u7ba1\u7684\u57fa\u7840\u77e5\u8bc6\u3002\u4ee5\u4e0b\u662f\u6838\u5fc3\u5185\u5bb9\u7684\u6982\u8ff0:
-
\u540c\u6b65\u6570\u5b57\u7cfb\u7edf: - \u6240\u6709\u64cd\u4f5c\u90fd\u7531\u65f6\u949f\u4fe1\u53f7\u534f\u8c03\u3002
-
\u7d2f\u52a0\u5668\uff08Accumulator\uff09\u793a\u4f8b: - \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u7d2f\u52a0\u5668\u9010\u6b65\u7d2f\u52a0\u8f93\u5165\u503c\u3002
-
\u65f6\u949f\u4fe1\u53f7\uff08Clock Signal\uff09: - \u65f6\u949f\u4fe1\u53f7\u5728\u9ad8\u4f4e\u72b6\u6001\u4e4b\u95f4\u632f\u8361\uff0c\u5b9a\u4e49\u4e86\u5468\u671f\uff08Period\uff09\u548c\u9891\u7387\uff08Frequency\uff09\u3002
-
D\u89e6\u53d1\u5668\uff08D Flip-Flops\uff09: - \u7528\u4e8e\u5b58\u50a8\u6570\u636e\uff0c\u4f9d\u8d56\u4e8e\u65f6\u949f\u4fe1\u53f7\u7684\u4e0a\u5347\u6cbf\u6216\u4e0b\u964d\u6cbf\u6765\u66f4\u65b0\u8f93\u51fa\u3002
-
\u89e6\u53d1\u5668\u7c7b\u578b: - \u540c\u6b65\u89e6\u53d1\u5668:\u4f9d\u8d56\u4e8e\u65f6\u949f\u4fe1\u53f7\u3002 - \u5f02\u6b65\u89e6\u53d1\u5668:\u72ec\u7acb\u4e8e\u65f6\u949f\u4fe1\u53f7\u3002
-
\u89e6\u53d1\u5668\u7684\u65f6\u5e8f: - \u5305\u62ecClock-to-Q\u5ef6\u8fdf\u3001\u5efa\u7acb\u65f6\u95f4\uff08Set-up Time\uff09\u3001\u4fdd\u6301\u65f6\u95f4\uff08Hold Time\uff09\u3002
-
\u5bc4\u5b58\u5668\uff08Registers\uff09: - \u7531\u591a\u4e2a\u89e6\u53d1\u5668\u7ec4\u6210\uff0c\u7528\u4e8e\u5b58\u50a832\u4f4d\u6570\u503c\u3002
-
\u7ec4\u5408\u903b\u8f91\uff08Combinational Logic\uff09: - \u63cf\u8ff0\u4e86\u7ec4\u5408\u903b\u8f91\u7684\u5ef6\u8fdf\u548c\u5982\u4f55\u901a\u8fc7\u7ec4\u5408\u903b\u8f91\u4f20\u64ad\u503c\u3002
-
\u65f6\u949f\u5468\u671f\u65f6\u95f4\uff08Clock Cycle Time\uff09: - \u5b9a\u4e49\u4e86\u6700\u5c0f\u65f6\u949f\u5468\u671f\u65f6\u95f4\uff0c\u5373\u4ece\u4e00\u4e2a\u72b6\u6001\u5143\u7d20\u7684\u8f93\u5165\u5230\u8fbe\u4e0b\u4e00\u4e2a\u72b6\u6001\u5143\u7d20\u7684\u8f93\u5165\u6240\u9700\u7684\u65f6\u95f4\u3002
-
\u7535\u8def\u65f6\u5e8f\u5206\u6790:
- \u8ba8\u8bba\u4e86\u5982\u4f55\u5206\u6790\u7535\u8def\u7684\u65f6\u5e8f\uff0c\u4f46\u6ca1\u6709\u6db5\u76d6\u66f4\u590d\u6742\u7684\u4f8b\u5b50\u3002
-
\u7ec4\u5408\u903b\u8f91\u4e0e\u65f6\u5e8f\u903b\u8f91\uff08Combinational vs Sequential Logic\uff09:
- \u7ec4\u5408\u903b\u8f91:\u8f93\u51fa\u4ec5\u4f9d\u8d56\u4e8e\u5f53\u524d\u8f93\u5165\u3002
- \u65f6\u5e8f\u903b\u8f91:\u4e0e\u65f6\u949f\u4fe1\u53f7\u540c\u6b65\uff0c\u8f93\u51fa\u4f9d\u8d56\u4e8e\u8f93\u5165\u548c\u5148\u524d\u72b6\u6001\u7684\u7ec4\u5408\u3002
-
\u6676\u4f53\u7ba1\uff08Transistors\uff09:
- \u8ba8\u8bba\u4e86\u91d1\u5c5e\u6c27\u5316\u7269\u534a\u5bfc\u4f53\u573a\u6548\u5e94\u6676\u4f53\u7ba1\uff08MOSFET\uff09\u7684\u5de5\u4f5c\u539f\u7406\u3002
-
CMOS\uff08\u4e92\u8865\u91d1\u5c5e\u6c27\u5316\u7269\u534a\u5bfc\u4f53\uff09:
- \u4f7f\u7528p\u578b\u548cn\u578bMOSFET\u7684\u4e92\u8865\u548c\u5bf9\u79f0\u5bf9\u6765\u6784\u5efa\u903b\u8f91\u529f\u80fd\u3002
-
\u903b\u8f91\u95e8\u7684\u6676\u4f53\u7ba1\u5b9e\u73b0:
- \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528\u6676\u4f53\u7ba1\u6784\u5efa\u975e\u95e8\uff08Inverter\uff09\u3001\u4e0e\u95e8\uff08AND Gate\uff09\u3001\u6216\u95e8\uff08OR Gate\uff09\u3001\u4e0e\u975e\u95e8\uff08NAND Gate\uff09\u548c\u6216\u975e\u95e8\uff08NOR Gate\uff09\u3002
-
\u5fb7\u6469\u6839\u5b9a\u5f8b\uff08DeMorgan\u2019s Law\uff09:
- \u63cf\u8ff0\u4e86\u5982\u4f55\u4f7f\u7528\u975e\u95e8\u3001\u4e0e\u95e8\u548c\u6216\u95e8\u6765\u5b9e\u73b0\u903b\u8f91\u529f\u80fd\u3002
-
\u6676\u4f53\u7ba1\u6570\u91cf\u7684\u4f18\u5316:
- \u8ba8\u8bba\u4e86\u5982\u4f55\u901a\u8fc7\u5fb7\u6469\u6839\u5b9a\u5f8b\u5c06\u4e0e\u95e8\u548c\u6216\u95e8\u8f6c\u6362\u4e3a\u4e0e\u975e\u95e8\u548c\u6216\u975e\u95e8\u6765\u51cf\u5c11\u6676\u4f53\u7ba1\u6570\u91cf\u3002
\u8fd9\u4e9b\u8bb2\u4e49\u63d0\u4f9b\u4e86\u5bf9\u6570\u5b57\u7cfb\u7edf\u8bbe\u8ba1\u7684\u6df1\u5165\u7406\u89e3\uff0c\u5305\u62ec\u540c\u6b65\u64cd\u4f5c\u3001\u89e6\u53d1\u5668\u7684\u5de5\u4f5c\u539f\u7406\u3001\u65f6\u949f\u4fe1\u53f7\u7684\u91cd\u8981\u6027\u3001\u4ee5\u53ca\u5982\u4f55\u4f7f\u7528\u6676\u4f53\u7ba1\u6784\u5efa\u57fa\u672c\u7684\u903b\u8f91\u95e8\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec12/","title":"Cs61c lec12","text":"
\u7ea6 911 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec12.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531McMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u805a\u7126\u4e8eRISC-V\u5904\u7406\u5668\u8bbe\u8ba1\uff0c\u7279\u522b\u662f\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u548c\u5b9e\u73b0\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
CMOS\u7535\u8def\u7684\u73b0\u5b9e\u95ee\u9898: - \u8ba8\u8bba\u4e86CMOS\uff08\u4e92\u8865\u91d1\u5c5e\u6c27\u5316\u7269\u534a\u5bfc\u4f53\uff09\u7535\u8def\u5728\u5b9e\u9645\u5e94\u7528\u4e2d\u9762\u4e34\u7684\u4e00\u4e9b\u6311\u6218\uff0c\u4f8b\u5982\u6676\u4f53\u7ba1\u4e0d\u662f\u5b8c\u7f8e\u7684\u5f00\u5173\uff0c\u5b58\u5728\u6f0f\u7535\u6d41\u548c\u6709\u9650\u7684\u5bfc\u901a\u7535\u963b\uff1b\u7535\u8def\u8282\u70b9\u5177\u6709\u7535\u5bb9\uff0c\u6539\u53d8\u7535\u538b\u9700\u8981\u5145\u653e\u7535\u3002
-
\u6676\u4f53\u7ba1\u4f5c\u4e3a\u6c34\u9600\u7684\u7c7b\u6bd4: - \u4f7f\u7528\u6c34\u9600\u548c\u6c34\u7ba1\u7684\u7c7b\u6bd4\u6765\u89e3\u91ca\u6676\u4f53\u7ba1\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u5176\u4e2d\u7535\u5b50\u50cf\u6c34\u5206\u5b50\uff0c\u6676\u4f53\u7ba1\u7684\u7535\u963b\u7c7b\u4f3c\u4e8e\u6c34\u7ba1\u76f4\u5f84\uff0c\u7535\u5bb9\u50cf\u6c34\u6876\u3002
-
\u903b\u8f91\u95e8\u7684\u5ef6\u8fdf: - \u63cf\u8ff0\u4e86\u903b\u8f91\u95e8\uff08\u5982\u4e0e\u95e8\u3001\u6216\u95e8\u3001\u975e\u95e8\u7b49\uff09\u5728\u8f93\u5165\u53d8\u5316\u5230\u8f93\u51fa\u53d8\u5316\u4e4b\u95f4\u7684\u5ef6\u8fdf\uff0c\u8fd9\u79cd\u5ef6\u8fdf\u53d6\u51b3\u4e8e\u95e8\u7684\u7c7b\u578b\u3001\u8fde\u63a5\u5230\u7684\u5176\u5b83\u95e8\u7684\u6570\u91cf\u4ee5\u53ca\u96c6\u6210\u7535\u8def\u5de5\u827a\u7ec6\u8282\u3002
-
CMOS\u7535\u8def\u7684\u80fd\u8017: - \u8ba8\u8bba\u4e86CMOS\u7535\u8def\u5728\u8fd0\u884c\u65f6\u6d88\u8017\u7535\u80fd\u7684\u95ee\u9898\uff0c\u7279\u522b\u662f\u5bf9\u4e8e\u624b\u6301\u8bbe\u5907\u548c\u670d\u52a1\u5668\u7b49\u4e0d\u540c\u5e94\u7528\u573a\u666f\u4e0b\u7684\u80fd\u6548\u548c\u6563\u70ed\u95ee\u9898\u3002
-
\u5f00\u5173\u80fd\u91cf: - \u57fa\u4e8e\u57fa\u672c\u7269\u7406\u539f\u7406\uff0c\u89e3\u91ca\u4e86\u6bcf\u6b21\u903b\u8f91\u72b6\u6001\u8f6c\u6362\u90fd\u4f1a\u6d88\u8017\u80fd\u91cf\uff0c\u4ee5\u53ca\u5982\u4f55\u8ba1\u7b97\u95e8\u7684\u5f00\u5173\u80fd\u8017\u3002
-
\u964d\u4f4e\u80fd\u8017\u7684\u65b9\u6cd5: - \u63d0\u51fa\u4e86\u964d\u4f4e\u7535\u6e90\u7535\u538b\u548c\u4f7f\u7528\u5e76\u884c\u6027\u6765\u63d0\u9ad8\u80fd\u6548\u7684\u65b9\u6cd5\uff0c\u89e3\u91ca\u4e86\u4e3a\u4ec0\u4e48\u964d\u4f4e\u9891\u7387\u5e76\u4e0d\u63d0\u9ad8\u80fd\u6548\u3002
-
\u62bd\u8c61\u7684\u6982\u5ff5: - \u8ba8\u8bba\u4e86\u5728\u5904\u7406\u5668\u8bbe\u8ba1\u4e2d\u4f7f\u7528\u62bd\u8c61\u7684\u6982\u5ff5\uff0c\u4ece\u9ad8\u7ea7\u8bed\u8a00\u5230\u6c47\u7f16\u8bed\u8a00\uff0c\u518d\u5230\u673a\u5668\u8bed\u8a00\u548c\u786c\u4ef6\u67b6\u6784\u63cf\u8ff0\u3002
-
RV32I\u6307\u4ee4\u96c6\u67b6\u6784\uff08ISA\uff09\u7684\u72b6\u6001\u9700\u6c42: - \u63cf\u8ff0\u4e86RV32I ISA\u5728\u6267\u884c\u6307\u4ee4\u65f6\u9700\u8981\u8bfb\u53d6\u548c\u66f4\u65b0\u7684\u72b6\u6001\uff0c\u5305\u62ec\u5bc4\u5b58\u5668\u3001\u7a0b\u5e8f\u8ba1\u6570\u5668\uff08PC\uff09\u548c\u5185\u5b58\u3002
-
\u5355\u6307\u4ee4\u5468\u671fRISC-V\u673a\u5668: - \u89e3\u91ca\u4e86\u5728\u5355\u6307\u4ee4\u5468\u671fRISC-V\u673a\u5668\u4e2d\uff0c\u5982\u4f55\u901a\u8fc7\u7ec4\u5408\u903b\u8f91\u548c\u65f6\u949f\u4fe1\u53f7\u5728\u6bcf\u4e2a\u65f6\u949f\u5468\u671f\u6267\u884c\u4e00\u6761\u6307\u4ee4\u3002
-
\u6307\u4ee4\u6267\u884c\u7684\u57fa\u672c\u9636\u6bb5:
- \u63cf\u8ff0\u4e86\u6307\u4ee4\u6267\u884c\u7684\u4e94\u4e2a\u57fa\u672c\u9636\u6bb5:\u6307\u4ee4\u83b7\u53d6\uff08IF\uff09\u3001\u6307\u4ee4\u89e3\u7801/\u5bc4\u5b58\u5668\u8bfb\u53d6\uff08ID\uff09\u3001\u6267\u884c\uff08EX\uff09\u3001\u5185\u5b58\u8bbf\u95ee\uff08MEM\uff09\u548c\u5bc4\u5b58\u5668\u5199\u56de\uff08WB\uff09\u3002
-
\u5b9e\u73b0\u7279\u5b9aRISC-V\u6307\u4ee4:
- \u901a\u8fc7
add
\u3001sub
\u3001addi
\u3001lw
\u3001sw
\u7b49\u6307\u4ee4\u7684\u4f8b\u5b50\uff0c\u5c55\u793a\u4e86\u5982\u4f55\u5728\u6570\u636e\u8def\u5f84\u4e2d\u5b9e\u73b0\u8fd9\u4e9b\u6307\u4ee4\u3002
-
\u6570\u636e\u8def\u5f84\u7684\u6269\u5c55:
- \u5c55\u793a\u4e86\u5982\u4f55\u5c06\u6570\u636e\u8def\u5f84\u6269\u5c55\u4ee5\u652f\u6301\u4e0d\u540c\u7c7b\u578b\u7684\u6307\u4ee4\uff0c\u4f8b\u5982\u7acb\u5373\u6570\u751f\u6210\u3001\u5206\u652f\u6307\u4ee4\u548c\u8df3\u8f6c\u6307\u4ee4\u3002
-
\u63a7\u5236\u903b\u8f91:
- \u8ba8\u8bba\u4e86\u63a7\u5236\u903b\u8f91\u5982\u4f55\u6839\u636e\u6307\u4ee4\u6765\u6307\u5bfc\u6570\u636e\u8def\u5f84\u7684\u64cd\u4f5c\uff0c\u5305\u62ecALU\u9009\u62e9\u3001\u5185\u5b58\u8bfb\u5199\u9009\u62e9\u548c\u5bc4\u5b58\u5668\u5199\u56de\u9009\u62e9\u3002
-
\u901a\u7528\u6570\u636e\u8def\u5f84:
- \u5f3a\u8c03\u4e86\u6570\u636e\u8def\u5f84\u662f\u6240\u6709\u6307\u4ee4\u6240\u9700\u5355\u5143\u7684\u201c\u8054\u5408\u201d\uff0c\u901a\u8fc7\u591a\u8def\u9009\u62e9\u5668\u63d0\u4f9b\u9009\u9879\uff0c\u4f46\u5e76\u975e\u6240\u6709\u786c\u4ef6\u5355\u5143\u5728\u6240\u6709\u6307\u4ee4\u4e2d\u90fd\u88ab\u4f7f\u7528\u3002
-
\u6267\u884c\u9636\u6bb5:
- \u63cf\u8ff0\u4e86\u6307\u4ee4\u6267\u884c\u7684\u4e94\u4e2a\u9636\u6bb5\uff0c\u4ee5\u53ca\u4e0d\u662f\u6240\u6709\u6307\u4ee4\u5728\u6240\u6709\u9636\u6bb5\u90fd\u6d3b\u8dc3\u3002
-
\u63a7\u5236\u903b\u8f91\u7684\u5b9e\u73b0:
- \u8ba8\u8bba\u4e86\u63a7\u5236\u903b\u8f91\u53ef\u4ee5\u901a\u8fc7\u67e5\u627e\u8868\uff08\u4f8b\u5982ROM\uff09\u6216\u7ec4\u5408\u903b\u8f91\u6765\u5b9e\u73b0\uff0c\u5e76\u5c55\u793a\u4e86\u63a7\u5236\u4fe1\u53f7\u7684\u771f\u503c\u8868\u3002
\u901a\u8fc7\u8fd9\u4e9b\u5185\u5bb9\uff0clec12.pdf
\u63d0\u4f9b\u4e86\u5bf9RISC-V\u5904\u7406\u5668\u6570\u636e\u8def\u5f84\u8bbe\u8ba1\u7684\u6df1\u5165\u7406\u89e3\uff0c\u5305\u62ec\u5982\u4f55\u5904\u7406\u4e0d\u540c\u7c7b\u578b\u7684\u6307\u4ee4\u4ee5\u53ca\u5982\u4f55\u8bbe\u8ba1\u63a7\u5236\u903b\u8f91\u4ee5\u9a71\u52a8\u6570\u636e\u8def\u5f84\u7684\u64cd\u4f5c\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec13/","title":"Cs61c lec13","text":"
\u7ea6 891 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec13.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632020\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531Kolb\u548cWeaver\u4ee5\u53caMcMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u8bb2\u89e3\u4e86RISC-V\u6307\u4ee4\u96c6\u67b6\u6784\u4e2d\u5355\u5468\u671f(Single-Cycle)\u548c\u6d41\u6c34\u7ebf(Pipelined)\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u548c\u63a7\u5236\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
\u5355\u5468\u671fRISC-V\u6570\u636e\u8def\u5f84\u5b8c\u6210: - \u4ecb\u7ecd\u4e86\u5982\u4f55\u5b8c\u6210\u5355\u5468\u671fRISC-V\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\uff0c\u786e\u4fdd\u6bcf\u4e2aRISC-V\u6307\u4ee4\u53ef\u4ee5\u5728\u4e00\u4e2a\u65f6\u949f\u5468\u671f\u5185\u6267\u884c\u3002
-
\u63a7\u5236\u5668(Controller): - \u63a7\u5236\u5668\u662f\u544a\u8bc9\u901a\u7528\u6570\u636e\u8def\u5f84\u5982\u4f55\u6267\u884c\u6bcf\u6761\u6307\u4ee4\u7684\u90e8\u5206\u3002\u5b83\u6839\u636e\u6307\u4ee4\u7684\u7c7b\u578b\u751f\u6210\u76f8\u5e94\u7684\u63a7\u5236\u4fe1\u53f7\u3002
-
\u6307\u4ee4\u5b9a\u65f6(Instruction Timing): - \u8ba8\u8bba\u4e86\u4e0d\u540c\u7c7b\u578b\u7684\u6307\u4ee4\u5728\u6267\u884c\u65f6\u6240\u9700\u7684\u65f6\u95f4\uff0c\u5305\u62ec\u53d6\u6307(IF)\u3001\u8bd1\u7801(ID)\u3001\u6267\u884c(EX)\u3001\u8bbf\u5b58(MEM)\u548c\u5199\u56de(WB)\u9636\u6bb5\u3002
-
\u6027\u80fd\u5ea6\u91cf(Performance Measures): - \u4ecb\u7ecd\u4e86\u8bc4\u4f30\u5904\u7406\u5668\u6027\u80fd\u7684\u4e0d\u540c\u6307\u6807\uff0c\u5982\u65f6\u949f\u9891\u7387\u3001\u6307\u4ee4\u6267\u884c\u65f6\u95f4\u3001\u541e\u5410\u91cf\u7b49\u3002
-
\u6d41\u6c34\u7ebf\u4ecb\u7ecd(Introduction to Pipelining): - \u8bb2\u89e3\u4e86\u6d41\u6c34\u7ebf\u7684\u6982\u5ff5\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u6d41\u6c34\u7ebf\u63d0\u9ad8\u5904\u7406\u5668\u7684\u6307\u4ee4\u541e\u5410\u91cf\u3002
-
\u6d41\u6c34\u7ebfRISC-V\u6570\u636e\u8def\u5f84(Pipelined RISC-V Datapath): - \u8be6\u7ec6\u4ecb\u7ecd\u4e86\u6d41\u6c34\u7ebfRISC-V\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\uff0c\u5305\u62ec\u6d41\u6c34\u7ebf\u7684\u5404\u4e2a\u9636\u6bb5\u548c\u5b83\u4eec\u5982\u4f55\u534f\u540c\u5de5\u4f5c\u3002
-
\u5b9e\u73b0jal\u6307\u4ee4: - \u7279\u522b\u4ecb\u7ecd\u4e86jal\uff08\u8df3\u8f6c\u5e76\u94fe\u63a5\uff09\u6307\u4ee4\u7684\u5b9e\u73b0\uff0c\u5305\u62ec\u5982\u4f55\u5728\u5bc4\u5b58\u5668\u4e2d\u4fdd\u5b58\u8fd4\u56de\u5730\u5740\uff0c\u4ee5\u53ca\u5982\u4f55\u8bbe\u7f6e\u7a0b\u5e8f\u8ba1\u6570\u5668\u4ee5\u5b9e\u73b0\u8df3\u8f6c\u3002
-
\u6570\u636e\u8def\u5f84\u6dfb\u52a0jal: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u6570\u636e\u8def\u5f84\u4e2d\u6dfb\u52a0\u5bf9jal\u6307\u4ee4\u7684\u652f\u6301\uff0c\u5305\u62ec\u6240\u9700\u7684\u63a7\u5236\u4fe1\u53f7\u548c\u6570\u636e\u8def\u5f84\u7684\u53d8\u5316\u3002
-
\u5355\u5468\u671fRV32I\u6570\u636e\u8def\u5f84\u56de\u987e: - \u56de\u987e\u4e86\u5355\u5468\u671fRV32I\u6307\u4ee4\u96c6\u67b6\u6784\u7684\u6570\u636e\u8def\u5f84\u8bbe\u8ba1\uff0c\u5305\u62ecALU\u3001\u5bc4\u5b58\u5668\u3001\u5185\u5b58\u7b49\u7ec4\u4ef6\u3002
-
\u901a\u7528\u6570\u636e\u8def\u5f84: - \u8ba8\u8bba\u4e86\u901a\u7528\u6570\u636e\u8def\u5f84\u7684\u6982\u5ff5\uff0c\u5373\u6570\u636e\u8def\u5f84\u80fd\u591f\u6267\u884c\u6240\u6709RISC-V\u6307\u4ee4\uff0c\u4ee5\u53ca\u5b83\u662f\u5982\u4f55\u901a\u8fc7\u591a\u8def\u9009\u62e9\u5668\u5b9e\u73b0\u4e0d\u540c\u6307\u4ee4\u7684\u6267\u884c\u3002
-
\u63a7\u5236\u903b\u8f91: - \u4ecb\u7ecd\u4e86\u63a7\u5236\u903b\u8f91\u7684\u8bbe\u8ba1\uff0c\u5305\u62ec\u5982\u4f55\u4f7f\u7528\u771f\u503c\u8868\u6765\u786e\u5b9a\u6bcf\u6761\u6307\u4ee4\u6240\u9700\u7684\u63a7\u5236\u4fe1\u53f7\u3002
-
\u63a7\u5236\u5668\u5b9e\u73b0\u9009\u9879:
- \u8ba8\u8bba\u4e86\u63a7\u5236\u5668\u7684\u4e24\u79cd\u5b9e\u73b0\u65b9\u5f0f:\u53ea\u8bfb\u5b58\u50a8\u5668(ROM)\u548c\u7ec4\u5408\u903b\u8f91(Combinatorial Logic)\u3002
-
ROM\u63a7\u5236\u5668\u5b9e\u73b0:
- \u5c55\u793a\u4e86\u5982\u4f55\u4f7f\u7528ROM\u6765\u5b9e\u73b0\u63a7\u5236\u5668\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u5730\u5740\u89e3\u7801\u6765\u751f\u6210\u63a7\u5236\u4fe1\u53f7\u3002
-
\u6307\u4ee4\u5b9a\u65f6:
- \u5206\u6790\u4e86\u4e0d\u540c\u6307\u4ee4\u5728\u6267\u884c\u65f6\u7684\u5178\u578b\u6700\u574f\u60c5\u51b5\u65f6\u95f4\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u6d41\u6c34\u7ebf\u6765\u63d0\u9ad8\u65f6\u949f\u9891\u7387\u3002
-
\u6027\u80fd\u5ea6\u91cf:
- \u8fdb\u4e00\u6b65\u8ba8\u8bba\u4e86\u6027\u80fd\u5ea6\u91cf\u7684\u6982\u5ff5\uff0c\u5305\u62ec\u5982\u4f55\u7406\u89e3\u6307\u4ee4\u6267\u884c\u65f6\u95f4\u3001\u541e\u5410\u91cf\u548c\u80fd\u6548\u3002
-
\u8fd0\u8f93\u7c7b\u6bd4:
- \u4f7f\u7528\u8d5b\u8f66\u548c\u516c\u4ea4\u8f66\u7684\u7c7b\u6bd4\u6765\u89e3\u91ca\u6307\u4ee4\u6267\u884c\u65f6\u95f4\uff08\u5ef6\u8fdf\uff09\u3001\u6307\u4ee4\u6267\u884c\u603b\u91cf\uff08\u541e\u5410\u91cf\uff09\u548c\u6bcf\u6761\u6307\u4ee4\u7684\u80fd\u8017\uff08\u80fd\u6548\uff09\u3002
-
\u5904\u7406\u5668\u6027\u80fd\u7684\u201c\u94c1\u5f8b\u201d:
- \u8ba8\u8bba\u4e86\u7a0b\u5e8f\u6267\u884c\u65f6\u95f4\u7531\u6307\u4ee4\u6570\u3001\u6bcf\u6761\u6307\u4ee4\u7684\u65f6\u949f\u5468\u671f\u6570\u548c\u6bcf\u4e2a\u65f6\u949f\u5468\u671f\u7684\u65f6\u95f4\u5171\u540c\u51b3\u5b9a\u7684\u539f\u7406\u3002
-
\u7ed3\u675f\u8bed:
- \u603b\u7ed3\u4e86\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u3001\u63a7\u5236\u5668\u7684\u4f5c\u7528\u3001\u6307\u4ee4\u5b9a\u65f6\u7684\u91cd\u8981\u6027\u4ee5\u53ca\u6d41\u6c34\u7ebf\u5982\u4f55\u63d0\u9ad8\u6027\u80fd\u3002
\u8fd9\u4efd\u8bb2\u5ea7\u5e7b\u706f\u7247\u4e3a\u7406\u89e3RISC-V\u67b6\u6784\u4e2d\u5355\u5468\u671f\u548c\u6d41\u6c34\u7ebf\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\u63d0\u4f9b\u4e86\u6df1\u5165\u7684\u5206\u6790\uff0c\u6db5\u76d6\u4e86\u4ece\u6307\u4ee4\u6267\u884c\u7684\u57fa\u7840\u77e5\u8bc6\u5230\u9ad8\u7ea7\u6027\u80fd\u4f18\u5316\u7684\u591a\u4e2a\u65b9\u9762\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec14/","title":"Cs61c lec14","text":"
\u7ea6 916 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec14.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u8bfe\u7a0b\u7684\u7b2c14\u8bb2\uff0c\u7531Wawrzynek\u548cWeaver\u57282021\u5e74\u79cb\u5b63\u5b66\u671f\u8bb2\u6388\uff0c\u4e3b\u8981\u5185\u5bb9\u5305\u62ecRISC-V\u6d41\u6c34\u7ebf\u5904\u7406\u7684\u6df1\u5165\u63a2\u8ba8\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
\u8bfe\u7a0b\u56de\u987e: - \u56de\u987e\u4e86\u63a7\u5236\u5668\u7684\u4f5c\u7528\uff0c\u6307\u4ee4\u5b9a\u65f6\uff0c\u4ee5\u53ca\u6d41\u6c34\u7ebf\u5982\u4f55\u63d0\u9ad8\u6307\u4ee4\u7684\u541e\u5410\u91cf\uff0c\u4f46\u5e76\u4e0d\u51cf\u5c11\u5b8c\u6210\u5355\u6761\u6307\u4ee4\u6240\u9700\u7684\u65f6\u95f4\u3002 - \u8ba8\u8bba\u4e86\u4e0d\u540c\u7684\u6027\u80fd\u5ea6\u91cf\u6307\u6807\uff0c\u5982\u54cd\u5e94\u65f6\u95f4\u3001\u4efb\u52a1/\u79d2\u548c\u80fd\u6548\u3002
-
\u5904\u7406\u5668\u7ec4\u6210: - \u4ecb\u7ecd\u4e86\u5904\u7406\u5668\u7684\u57fa\u672c\u7ec4\u6210\u90e8\u5206\uff0c\u5305\u62ec\u63a7\u5236\u5355\u5143\u3001\u6570\u636e\u8def\u5f84\u3001\u7a0b\u5e8f\u8ba1\u6570\u5668(PC)\u3001\u5bc4\u5b58\u5668\u3001\u7b97\u672f\u903b\u8f91\u5355\u5143(ALU)\u3001\u5185\u5b58\u4ee5\u53ca\u5904\u7406\u5668-\u5185\u5b58\u63a5\u53e3\u3002
-
\u6d41\u6c34\u7ebf\u6982\u8ff0: - \u89e3\u91ca\u4e86\u6d41\u6c34\u7ebf\u5982\u4f55\u5e2e\u52a9\u63d0\u9ad8\u6574\u4e2a\u5de5\u4f5c\u8d1f\u8f7d\u7684\u541e\u5410\u91cf\uff0c\u800c\u4e0d\u662f\u5355\u4e2a\u4efb\u52a1\u7684\u5ef6\u8fdf\u3002 - \u8ba8\u8bba\u4e86\u6f5c\u5728\u7684\u52a0\u901f\u6bd4\uff0c\u4ee5\u53ca\u586b\u6ee1\u6d41\u6c34\u7ebf\u548c\u6392\u7a7a\u5b83\u6240\u9700\u7684\u65f6\u95f4\u5982\u4f55\u5f71\u54cd\u52a0\u901f\u6bd4\u3002
-
RISC-V\u6d41\u6c34\u7ebf: - \u901a\u8fc7\u793a\u4f8b\u4ee3\u7801\uff0c\u5c55\u793a\u4e86RISC-V\u6307\u4ee4\u5728\u6d41\u6c34\u7ebf\u4e2d\u7684\u6267\u884c\u8fc7\u7a0b\uff0c\u5305\u62ec\u6307\u4ee4\u83b7\u53d6\u3001\u89e3\u7801/\u5bc4\u5b58\u5668\u8bfb\u53d6\u3001ALU\u6267\u884c\u3001\u5185\u5b58\u8bbf\u95ee\u548c\u5199\u56de\u9636\u6bb5\u3002
-
\u5355\u5468\u671fRISC-V RV32I \u6570\u636e\u8def\u5f84: - \u63cf\u8ff0\u4e86\u5355\u5468\u671f\u6570\u636e\u8def\u5f84\u7684\u7ec4\u6210\uff0c\u5305\u62ec\u6307\u4ee4\u5185\u5b58(IMEM)\u3001ALU\u3001\u7acb\u5373\u6570\u751f\u6210\u5668(Imm. Gen)\u3001\u6570\u636e\u5185\u5b58(DMEM)\u3001\u5206\u652f\u6bd4\u8f83\u5668\u7b49\u3002
-
\u6d41\u6c34\u7ebfRISC-V RV32I \u6570\u636e\u8def\u5f84: - \u8be6\u7ec6\u89e3\u91ca\u4e86\u6d41\u6c34\u7ebf\u6570\u636e\u8def\u5f84\u7684\u8bbe\u8ba1\uff0c\u5305\u62ec\u6d41\u6c34\u7ebf\u5bc4\u5b58\u5668\u5982\u4f55\u5206\u9694\u4e0d\u540c\u7684\u9636\u6bb5\uff0c\u5e76\u4fdd\u6301\u6bcf\u6761\u6307\u4ee4\u7684\u6570\u636e\u3002
-
\u6d41\u6c34\u7ebf\u63a7\u5236: - \u8ba8\u8bba\u4e86\u63a7\u5236\u4fe1\u53f7\u662f\u5982\u4f55\u4ece\u6307\u4ee4\u4e2d\u6d3e\u751f\u51fa\u6765\u7684\uff0c\u4ee5\u53ca\u5982\u4f55\u5728\u6d41\u6c34\u7ebf\u7684\u5404\u4e2a\u9636\u6bb5\u4e2d\u4f7f\u7528\u6d41\u6c34\u7ebf\u5bc4\u5b58\u5668\u5b58\u50a8\u4fe1\u606f\u3002
-
\u6d41\u6c34\u7ebf\u6027\u80fd\u63d0\u5347: - \u901a\u8fc7\u516c\u5f0f\u89e3\u91ca\u4e86\u6d41\u6c34\u7ebf\u5982\u4f55\u901a\u8fc7\u51cf\u5c11\u6bcf\u4e2a\u5468\u671f\u7684\u65f6\u95f4\u6765\u63d0\u9ad8\u5904\u7406\u5668\u6027\u80fd\u3002
-
\u98ce\u9669(Hazards): - \u4ecb\u7ecd\u4e86\u6d41\u6c34\u7ebf\u4e2d\u53ef\u80fd\u51fa\u73b0\u7684\u98ce\u9669\uff0c\u5305\u62ec\u7ed3\u6784\u6027\u98ce\u9669\u3001\u6570\u636e\u98ce\u9669\u548c\u63a7\u5236\u98ce\u9669\uff0c\u5e76\u8ba8\u8bba\u4e86\u5982\u4f55\u5904\u7406\u8fd9\u4e9b\u98ce\u9669\u3002
-
\u7ed3\u6784\u6027\u98ce\u9669:
- \u89e3\u91ca\u4e86\u5f53\u6d41\u6c34\u7ebf\u4e2d\u7684\u591a\u6761\u6307\u4ee4\u7ade\u4e89\u5355\u4e00\u7269\u7406\u8d44\u6e90\u65f6\u51fa\u73b0\u7684\u95ee\u9898\uff0c\u4ee5\u53ca\u5982\u4f55\u89e3\u51b3\u8fd9\u4e9b\u95ee\u9898\u3002
-
\u6570\u636e\u98ce\u9669:
- \u8ba8\u8bba\u4e86\u5f53\u6307\u4ee4\u4f9d\u8d56\u4e8e\u524d\u4e00\u6761\u6307\u4ee4\u7684\u7ed3\u679c\u65f6\u5982\u4f55\u5904\u7406\uff0c\u5305\u62ec\u6682\u505c(Stalling)\u548c\u8f6c\u53d1(Forwarding)\u6280\u672f\u3002
-
\u63a7\u5236\u98ce\u9669:
- \u63cf\u8ff0\u4e86\u5206\u652f\u6307\u4ee4\u5982\u4f55\u5904\u7406\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u5206\u652f\u9884\u6d4b\u6765\u51cf\u5c11\u5206\u652f\u6307\u4ee4\u5e26\u6765\u7684\u6027\u80fd\u635f\u5931\u3002
-
\u8d85\u6807\u91cf\u5904\u7406\u5668(Superscalar processors):
- \u4ecb\u7ecd\u4e86\u8d85\u6807\u91cf\u5904\u7406\u5668\u7684\u6982\u5ff5\uff0c\u5305\u62ec\u590d\u5236\u6d41\u6c34\u7ebf\u9636\u6bb5\u4ee5\u542f\u52a8\u591a\u4e2a\u6307\u4ee4\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u6307\u4ee4\u7ea7\u5e76\u884c\u6027\u6765\u63d0\u9ad8\u6027\u80fd\u3002
-
\u6027\u80fd\u63d0\u5347\u7b56\u7565:
- \u8ba8\u8bba\u4e86\u63d0\u9ad8\u5355\u5904\u7406\u5668\u6838\u5fc3\u6027\u80fd\u7684\u7b56\u7565\uff0c\u5305\u62ec\u63d0\u9ad8\u65f6\u949f\u9891\u7387\u3001\u6d41\u6c34\u7ebf\u6df1\u5ea6\u548c\u8d85\u6807\u91cf\u6267\u884c\u3002
-
\u591a\u6838\u5904\u7406\u5668:
- \u8ba8\u8bba\u4e86\u591a\u6838\u5904\u7406\u5668\u7684\u6982\u5ff5\uff0c\u4ee5\u53ca\u5982\u4f55\u5728\u4e0d\u9700\u8981\u7edd\u5bf9\u6027\u80fd\u65f6\uff0c\u5728\u80fd\u6548\u4f18\u5316\u7684\u6838\u5fc3\u4e0a\u8fd0\u884c\u4efb\u52a1\u3002
-
\u6d41\u6c34\u7ebf\u4e0eISA\u8bbe\u8ba1:
- \u8ba8\u8bba\u4e86RISC-V ISA\u5982\u4f55\u4e3a\u6d41\u6c34\u7ebf\u8bbe\u8ba1\uff0c\u4ee5\u53ca\u5b83\u4e0ex86\u67b6\u6784\u7684\u5bf9\u6bd4\u3002
-
\u7ed3\u8bba:
- \u603b\u7ed3\u4e86\u6d41\u6c34\u7ebf\u901a\u8fc7\u91cd\u53e0\u591a\u6761\u6307\u4ee4\u7684\u6267\u884c\u6765\u63d0\u9ad8\u541e\u5410\u91cf\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u7a0b\u5e8f\u5458/\u7f16\u8bd1\u5668\u7684\u5e2e\u52a9\u6765\u6700\u5927\u5316\u6027\u80fd\u3002
\u8fd9\u4efd\u8bb2\u5ea7\u5e7b\u706f\u7247\u4e3a\u7406\u89e3RISC-V\u6d41\u6c34\u7ebf\u5904\u7406\u5668\u7684\u8bbe\u8ba1\u548c\u6027\u80fd\u4f18\u5316\u63d0\u4f9b\u4e86\u6df1\u5165\u7684\u5206\u6790\uff0c\u6db5\u76d6\u4e86\u4ece\u57fa\u672c\u6982\u5ff5\u5230\u9ad8\u7ea7\u6280\u672f\u591a\u4e2a\u65b9\u9762\u3002
"},{"location":"CS%20basic/cs61c/cs61c_lec15/","title":"Cs61c lec15","text":"
\u7ea6 918 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
lec15.pdf
\u6587\u4ef6\u662f\u8ba1\u7b97\u673a\u79d1\u5b6661C\u6625\u5b632022\u8bfe\u7a0b\u7684\u4e00\u90e8\u5206\uff0c\u7531McMahon\u548cWeaver\u6559\u6388\uff0c\u4e3b\u8981\u8ba8\u8bba\u4e86\u8ba1\u7b97\u673a\u7f13\u5b58\uff08Caches\uff09\u7684\u6982\u5ff5\u3001\u5de5\u4f5c\u539f\u7406\u4ee5\u53ca\u5b83\u4eec\u5728\u73b0\u4ee3\u8ba1\u7b97\u673a\u67b6\u6784\u4e2d\u7684\u91cd\u8981\u6027\u3002\u4ee5\u4e0b\u662f\u8be5\u8bb2\u5ea7\u7684\u8be6\u7ec6\u5185\u5bb9:
-
\u8ba1\u7b97\u673a\u7ec4\u6210\u90e8\u5206: - \u4ecb\u7ecd\u4e86\u8ba1\u7b97\u673a\u7684\u57fa\u672c\u7ec4\u6210\u90e8\u5206\uff0c\u5305\u62ec\u5904\u7406\u5668\u3001\u63a7\u5236\u5355\u5143\u3001\u6570\u636e\u8def\u5f84\u3001\u7a0b\u5e8f\u8ba1\u6570\u5668\uff08PC\uff09\u3001\u5bc4\u5b58\u5668\u3001\u7b97\u672f\u903b\u8f91\u5355\u5143\uff08ALU\uff09\u3001\u5185\u5b58\u4ee5\u53ca\u8f93\u5165/\u8f93\u51fa\u63a5\u53e3\u3002
-
\u5904\u7406\u5668\u4e0eDRAM\u5ef6\u8fdf\u5dee\u8ddd: - \u8ba8\u8bba\u4e86\u5904\u7406\u5668\u4e0e\u52a8\u6001\u968f\u673a\u5b58\u53d6\u5b58\u50a8\u5668\uff08DRAM\uff09\u4e4b\u95f4\u7684\u8bbf\u95ee\u901f\u5ea6\u5dee\u5f02\uff0c\u4ee5\u53ca\u8fd9\u79cd\u5dee\u5f02\u5bf9CPU\u6027\u80fd\u7684\u6f5c\u5728\u5f71\u54cd\u3002
-
\u56fe\u4e66\u9986\u7c7b\u6bd4: - \u4f7f\u7528\u56fe\u4e66\u9986\u627e\u4e66\u7684\u7c7b\u6bd4\u6765\u89e3\u91ca\u7f13\u5b58\u7684\u6982\u5ff5\uff0c\u8bf4\u660e\u4e86\u5728\u5927\u56fe\u4e66\u9986\u4e2d\u67e5\u627e\u4e66\u7c4d\u7684\u65f6\u95f4\u5ef6\u8fdf\u95ee\u9898\uff0c\u4ee5\u53ca\u5982\u4f55\u901a\u8fc7\u5728\u684c\u9762\u4e0a\u4fdd\u7559\u4e00\u4e9b\u4e66\u7c4d\u6765\u51cf\u5c11\u67e5\u627e\u65f6\u95f4\u3002
-
\u5185\u5b58\u7f13\u5b58: - \u4ecb\u7ecd\u4e86\u5185\u5b58\u7f13\u5b58\u7684\u6982\u5ff5\uff0c\u5305\u62ec\u5b83\u7684\u529f\u80fd\u3001\u901a\u5e38\u4f4d\u4e8eCPU\u540c\u4e00\u82af\u7247\u4e0a\u7684\u7279\u70b9\uff0c\u4ee5\u53ca\u5b83\u6bd4DRAM\u66f4\u5feb\u4f46\u66f4\u6602\u8d35\u7684\u539f\u56e0\u3002
-
\u5185\u5b58\u5c42\u6b21\u7ed3\u6784: - \u63cf\u8ff0\u4e86\u4ece\u5bc4\u5b58\u5668\u5230\u7f13\u5b58\u3001\u4e3b\u5185\u5b58\u3001\u78c1\u76d8\u7684\u5185\u5b58\u5c42\u6b21\u7ed3\u6784\uff0c\u4ee5\u53ca\u6bcf\u4e2a\u5c42\u6b21\u7684\u7279\u70b9\uff0c\u5982\u5927\u5c0f\u3001\u901f\u5ea6\u548c\u6210\u672c\u3002
-
\u7f13\u5b58\u539f\u7406: - \u89e3\u91ca\u4e86\u7f13\u5b58\u5de5\u4f5c\u7684\u4e24\u4e2a\u57fa\u672c\u539f\u5219:\u65f6\u95f4\u5c40\u90e8\u6027\uff08Temporal Locality\uff09\u548c\u7a7a\u95f4\u5c40\u90e8\u6027\uff08Spatial Locality\uff09\u3002
-
\u5229\u7528\u5c40\u90e8\u6027: - \u8fdb\u4e00\u6b65\u8ba8\u8bba\u4e86\u5982\u4f55\u901a\u8fc7\u65f6\u95f4\u5c40\u90e8\u6027\u548c\u7a7a\u95f4\u5c40\u90e8\u6027\u6765\u4f18\u5316\u7f13\u5b58\u6027\u80fd\u3002
-
\u6dfb\u52a0\u7f13\u5b58\u5230\u8ba1\u7b97\u673a: - \u5c55\u793a\u4e86\u5982\u4f55\u5728\u8ba1\u7b97\u673a\u67b6\u6784\u4e2d\u6dfb\u52a0\u7f13\u5b58\uff0c\u5e76\u8ba8\u8bba\u4e86\u5b83\u5982\u4f55\u4e0e\u5904\u7406\u5668\u548c\u5185\u5b58\u4ea4\u4e92\u3002
-
\u5185\u5b58\u5f15\u7528\u6a21\u5f0f: - \u901a\u8fc7\u56fe\u5f62\u5c55\u793a\u4e86\u826f\u597d\u7684\u5185\u5b58\u5f15\u7528\u6a21\u5f0f\uff0c\u5305\u62ec\u6307\u4ee4\u83b7\u53d6\u3001\u6808\u8bbf\u95ee\u3001\u6570\u636e\u8bbf\u95ee\u7b49\u3002
-
\u6ca1\u6709\u7f13\u5b58\u7684\u5185\u5b58\u8bbf\u95ee:
- \u63cf\u8ff0\u4e86\u5728\u6ca1\u6709\u7f13\u5b58\u7684\u60c5\u51b5\u4e0b\uff0c\u5904\u7406\u5668\u5982\u4f55\u901a\u8fc7\u5185\u5b58\u5730\u5740\u6765\u52a0\u8f7d\u6570\u636e\u3002
-
\u6709\u7f13\u5b58\u7684\u5185\u5b58\u8bbf\u95ee:
- \u8be6\u7ec6\u89e3\u91ca\u4e86\u5f53\u7f13\u5b58\u4ecb\u5165\u65f6\uff0c\u5185\u5b58\u8bbf\u95ee\u7684\u8fc7\u7a0b\uff0c\u5305\u62ec\u7f13\u5b58\u547d\u4e2d\u548c\u7f13\u5b58\u672a\u547d\u4e2d\u7684\u60c5\u51b5\u3002
-
\u7f13\u5b58\u547d\u4e2d\u4e0e\u7f13\u5b58\u672a\u547d\u4e2d:
- \u5bf9\u6bd4\u4e86\u7f13\u5b58\u547d\u4e2d\u548c\u672a\u547d\u4e2d\u65f6\u7684\u5904\u7406\u8fc7\u7a0b\uff0c\u4ee5\u53ca\u5b83\u4eec\u5bf9\u6027\u80fd\u7684\u5f71\u54cd\u3002
-
\u7f13\u5b58\u5b58\u50a8\u65b9\u5f0f:
- \u4ecb\u7ecd\u4e86\u7f13\u5b58\u4e2d\u7684\u4e09\u79cd\u6570\u636e\u5b58\u50a8\u65b9\u5f0f:\u5168\u5173\u8054\uff08Fully Associative\uff09\u3001\u76f4\u63a5\u6620\u5c04\uff08Direct Mapped\uff09\u548c\u96c6\u5408\u5173\u8054\uff08Set-Associative\uff09\u3002
-
\u5168\u5173\u8054\u7f13\u5b58:
- \u8be6\u7ec6\u8ba8\u8bba\u4e86\u5168\u5173\u8054\u7f13\u5b58\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u5305\u62ec\u6807\u7b7e\uff08Tag\uff09\u3001\u6570\u636e\uff08Data\uff09\u3001\u6709\u6548\u4f4d\uff08Valid Bit\uff09\u548c\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\uff08LRU\uff09\u66ff\u6362\u7b56\u7565\u3002
-
\u76f4\u63a5\u6620\u5c04\u7f13\u5b58:
- \u89e3\u91ca\u4e86\u76f4\u63a5\u6620\u5c04\u7f13\u5b58\u7684\u5de5\u4f5c\u539f\u7406\uff0c\u5305\u62ec\u5b83\u7684\u5730\u5740\u5206\u89e3\u548c\u786c\u4ef6\u5b9e\u73b0\u3002
-
\u96c6\u5408\u5173\u8054\u7f13\u5b58:
- \u8ba8\u8bba\u4e86\u96c6\u5408\u5173\u8054\u7f13\u5b58\u4f5c\u4e3a\u5168\u5173\u8054\u548c\u76f4\u63a5\u6620\u5c04\u7f13\u5b58\u4e4b\u95f4\u7684\u6298\u8877\u65b9\u6848\uff0c\u4ee5\u53ca\u5b83\u7684\u5de5\u4f5c\u539f\u7406\u3002
-
\u7f13\u5b58\u66ff\u6362\u7b56\u7565:
- \u4ecb\u7ecd\u4e86\u4e0d\u540c\u7684\u7f13\u5b58\u66ff\u6362\u7b56\u7565\uff0c\u5982\u6700\u8fd1\u6700\u5c11\u4f7f\u7528\uff08LRU\uff09\u548c\u6700\u4e0d\u5e38\u7528\uff08LFU\uff09\u3002
-
\u7f13\u5b58\u4e00\u81f4\u6027:
- \u8ba8\u8bba\u4e86\u5728\u5b58\u50a8\u6307\u4ee4\u6539\u53d8\u5185\u5b58\u503c\u65f6\uff0c\u5982\u4f55\u786e\u4fdd\u7f13\u5b58\u548c\u5185\u5b58\u4e4b\u95f4\u7684\u4fe1\u606f\u4e00\u81f4\u6027\u3002
-
\u5199\u5165\u7b56\u7565:
- \u5bf9\u6bd4\u4e86\u5199\u901a\u8fc7\uff08Write-through\uff09\u548c\u5199\u56de\uff08Write-back\uff09\u4e24\u79cd\u7f13\u5b58\u5199\u5165\u7b56\u7565\u3002
-
\u4e0b\u8282\u8bfe\u9884\u544a:
- \u9884\u544a\u4e86\u4e0b\u4e00\u8282\u8bfe\u7684\u5185\u5bb9\uff0c\u5305\u62ec\u7f13\u5b58\u6027\u80fd\u3001\u591a\u7ea7\u7f13\u5b58\u7b49\u4e3b\u9898\u3002
\u8fd9\u4e2a\u8bb2\u5ea7\u63d0\u4f9b\u4e86\u5bf9\u8ba1\u7b97\u673a\u7f13\u5b58\u7cfb\u7edf\u7684\u5168\u9762\u7406\u89e3\uff0c\u5305\u62ec\u5b83\u4eec\u7684\u8bbe\u8ba1\u3001\u5de5\u4f5c\u539f\u7406\u4ee5\u53ca\u5728\u63d0\u5347\u8ba1\u7b97\u673a\u6027\u80fd\u65b9\u9762\u7684\u4f5c\u7528\u3002
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/","title":"\u8df3\u8f6c\u548c\u8fd4\u56de\u7684\u51fd\u6570","text":"
\u5728\u6c47\u7f16\u8bed\u8a00\u4e2d\uff0c\u8df3\u8f6c\u548c\u8fd4\u56de\u662f\u63a7\u5236\u7a0b\u5e8f\u6d41\u7a0b\u7684\u57fa\u672c\u673a\u5236\uff0c\u5c24\u5176\u662f\u5728\u51fd\u6570\u8c03\u7528\u548c\u5b50\u7a0b\u5e8f\u6267\u884c\u4e2d\u3002\u4ee5\u4e0b\u662f\u4e00\u4e9b\u8be6\u7ec6\u7684\u89e3\u91ca\u548c\u4f8b\u5b50\uff1a
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/#jal-jalr","title":"\u8df3\u8f6c\u6307\u4ee4\uff08
jal
\u548c
jalr
\uff09","text":"
-
jal
- Jump-and-link: - \u8fd9\u4e2a\u6307\u4ee4\u7528\u4e8e\u65e0\u6761\u4ef6\u8df3\u8f6c\u5230\u7a0b\u5e8f\u7684\u53e6\u4e00\u4e2a\u4f4d\u7f6e\uff0c\u5e76\u4e14\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230\u5bc4\u5b58\u5668\u4e2d\u3002\u901a\u5e38\uff0c\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5728ra
\uff08\u8fd4\u56de\u5730\u5740\u5bc4\u5b58\u5668\uff09\u4e2d\u3002 - \u683c\u5f0f\uff1ajal rd, label
- \u4f8b\u5b50\uff1a Text Only
jal ra, func # \u8c03\u7528func\u51fd\u6570\uff0c\u5e76\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230ra\n
-
jalr
- Jump-and-link-register: - \u8fd9\u4e2a\u6307\u4ee4\u7528\u4e8e\u6839\u636e\u5bc4\u5b58\u5668\u7684\u503c\u8df3\u8f6c\u5230\u4e00\u4e2a\u5730\u5740\uff0c\u5e76\u5c06\u8df3\u8f6c\u524d\u7684\u5bc4\u5b58\u5668\u503c\u4fdd\u5b58\u5230\u53e6\u4e00\u4e2a\u5bc4\u5b58\u5668\u3002\u5f53imm
\uff08\u7acb\u5373\u6570\uff09\u4e3a0\u65f6\uff0c\u5b83\u53ef\u4ee5\u7528\u4e8e\u5b9e\u73b0\u51fd\u6570\u8fd4\u56de\u3002 - \u683c\u5f0f\uff1ajalr rd, rs, imm
- \u4f8b\u5b50\uff1a Text Only
jalr x0, ra, 0 # \u4ecera\u5bc4\u5b58\u5668\u8df3\u8f6c\uff0c\u5e76\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230x0\uff08\u901a\u5e38x0\u59cb\u7ec8\u4e3a0\uff09\n
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/#jr-ret","title":"\u8fd4\u56de\u6307\u4ee4\uff08
jr
\u548c
ret
\uff09","text":"
-
jr
- Jump-register: - \u8fd9\u4e2a\u6307\u4ee4\u7528\u4e8e\u6839\u636e\u5bc4\u5b58\u5668\u7684\u503c\u8df3\u8f6c\u5230\u7a0b\u5e8f\u7684\u53e6\u4e00\u4e2a\u4f4d\u7f6e\u3002\u5b83\u4e0d\u4fdd\u5b58\u8fd4\u56de\u5730\u5740\uff0c\u56e0\u6b64\u4e0d\u80fd\u76f4\u63a5\u7528\u4e8e\u51fd\u6570\u8fd4\u56de\u3002 - \u683c\u5f0f\uff1ajr rs
- \u4f8b\u5b50\uff1a Text Only
jr ra # \u8df3\u8f6c\u5230ra\u5bc4\u5b58\u5668\u6307\u5411\u7684\u5730\u5740\n
-
ret
: - ret
\u4e0d\u662f\u4e00\u4e2a\u72ec\u7acb\u7684\u6c47\u7f16\u6307\u4ee4\uff0c\u800c\u662fjalr
\u7684\u4e00\u79cd\u7279\u6b8a\u7528\u6cd5\uff0c\u7528\u4e8e\u4ece\u51fd\u6570\u8c03\u7528\u8fd4\u56de\u3002\u5b83\u901a\u8fc7\u5c06jalr
\u7684rd
\u8bbe\u7f6e\u4e3a\u76ee\u6807\u5bc4\u5b58\u5668\uff08\u901a\u5e38\u662fzero
\u6216x0
\uff09\uff0crs
\u8bbe\u7f6e\u4e3a\u5305\u542b\u8fd4\u56de\u5730\u5740\u7684\u5bc4\u5b58\u5668\uff08\u901a\u5e38\u662fra
\uff09\uff0cimm
\u8bbe\u7f6e\u4e3a0\u6765\u5b9e\u73b0\u3002 - \u4f8b\u5b50\uff1a Text Only
jalr x0, ra, 0 # \u7b49\u540c\u4e8eret\u6307\u4ee4\uff0c\u4ecera\u8fd4\u56de\uff0c\u4e0d\u4fdd\u5b58\u8fd4\u56de\u5730\u5740\u5230\u4efb\u4f55\u5730\u65b9\n
"},{"location":"CS%20basic/cs61c/%E8%B7%B3%E8%BD%AC%E5%92%8C%E8%BF%94%E5%9B%9E%E7%9A%84%E5%87%BD%E6%95%B0/#_1","title":"\u51fd\u6570\u8c03\u7528\u548c\u8fd4\u56de\u7684\u4f8b\u5b50","text":"
\u5047\u8bbe\u6211\u4eec\u6709\u4e00\u4e2a\u7b80\u5355\u7684\u51fd\u6570\u8c03\u7528\u548c\u8fd4\u56de\u6d41\u7a0b\uff1a
Text Only
# \u51fd\u6570\u5b9a\u4e49\n<div markdown=\"1\" style=\"margin-top: -30px; font-size: 0.75em; opacity: 0.7;\">\n:material-circle-edit-outline: \u7ea6 466 \u4e2a\u5b57 :fontawesome-solid-code: 27 \u884c\u4ee3\u7801 :material-clock-time-two-outline: \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f\n</div>\nfunc:\n # \u51fd\u6570\u4f53\u7684\u4ee3\u7801\n # ...\n\n # \u8fd4\u56de\u8bed\u53e5\n ret\n\n# \u4e3b\u7a0b\u5e8f\nmain:\n # \u4fdd\u5b58\u8fd4\u56de\u5730\u5740\u5230ra\n addi sp, sp, -4 # \u4e3a\u8fd4\u56de\u5730\u5740\u5206\u914d\u6808\u7a7a\u95f4\n sw ra, 0(sp) # \u5c06ra\u5b58\u50a8\u5230\u6808\u4e0a\n\n # \u8c03\u7528\u51fd\u6570\n jal ra, func\n\n # \u6062\u590d\u8fd4\u56de\u5730\u5740\n lw ra, 0(sp) # \u4ece\u6808\u4e0a\u52a0\u8f7d\u8fd4\u56de\u5730\u5740\u5230ra\n addi sp, sp, 4 # \u6062\u590d\u6808\u6307\u9488\n\n # \u4e3b\u7a0b\u5e8f\u7ee7\u7eed\u6267\u884c\n # ...\n
\u5728\u8fd9\u4e2a\u4f8b\u5b50\u4e2d\uff0cfunc
\u662f\u4e00\u4e2a\u51fd\u6570\uff0c\u5b83\u4f7f\u7528ret
\u6307\u4ee4\u6765\u8fd4\u56de\u5230\u8c03\u7528\u5b83\u7684\u4ee3\u7801\u3002\u5728\u4e3b\u7a0b\u5e8f\u4e2d\uff0c\u6211\u4eec\u9996\u5148\u5c06\u8fd4\u56de\u5730\u5740\u4fdd\u5b58\u5230\u6808\u4e0a\uff0c\u7136\u540e\u8c03\u7528func
\u51fd\u6570\u3002\u8c03\u7528\u5b8c\u6210\u540e\uff0c\u6211\u4eec\u4ece\u6808\u4e0a\u6062\u590d\u8fd4\u56de\u5730\u5740\uff0c\u5e76\u7ee7\u7eed\u6267\u884c\u4e3b\u7a0b\u5e8f\u3002
\u8bf7\u6ce8\u610f\uff0c\u5177\u4f53\u7684\u6c47\u7f16\u8bed\u6cd5\u53ef\u80fd\u56e0\u4e0d\u540c\u7684\u67b6\u6784\u548c\u6c47\u7f16\u5668\u800c\u5f02\uff0c\u4e0a\u8ff0\u4f8b\u5b50\u4ec5\u4f9b\u53c2\u8003\u3002
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/","title":"\u8ba1\u7b97\u673a\u7f51\u7edc\u5b89\u5168\u57fa\u7840","text":"
\u7ea6 368 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/#_1","title":"\u5e38\u89c1\u7684\u5bc6\u7801\u7b97\u6cd5","text":"
- \u54c8\u5e0c\u7b97\u6cd5\uff08\u5982MD5,SHA256\uff09
- \u5bf9\u79f0\u52a0\u5bc6\u7b97\u6cd5 \uff08\u5982AES,DES\uff09
- \u975e\u5bf9\u79f0\u52a0\u5bc6\u7b97\u6cd5 \uff08\u5982RSA\uff09
[[\u52a0\u5bc6\u539f\u7406]]
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/#_2","title":"\u5f31\u53e3\u4ee4","text":"
- \u8f83\u77ed\u7684\u5bc6\u7801
- \u6613\u88ab\u731c\u6d4b\u6216\u4fe1\u9053\u653b\u51fb\u7684\u5bc6\u7801 - \u98ce\u9669
- ssh\u4e2d\u5982\u679c\u8bbe\u7f6e\u4e86password\u8ba4\u8bc1\u4e14\u8bbe\u7f6e\u5f31\u53e3\u4ee4\uff0c\u5c06\u4f1a\u5bfc\u81f4\u670d\u52a1\u5668\u88ab\u672a\u7ecf\u6388\u6743\u767b\u5f55\uff0c\u4e14\u653b\u51fb\u8005\u53ef\u4ee5\u8fdb\u884c\u4e0e\u4f60\u540c\u6743\u9650\u7684\u4efb\u610f\u64cd\u4f5c
- \u65e0\u7ebf\u5c40\u57df\u7f51\u4e2d\u5982\u679c\u8bbe\u7f6e\u4e86\u5f31\u53e3\u4ee4\u88ab\u731c\u6d4b\u6210\u529f\u540e\uff0c\u653b\u51fb\u8005\u5c06\u53ef\u4ee5\u8fdb\u5165\u5c40\u57df\u7f51\u4e2d\u5bf9\u5c40\u57df\u7f51\u5176\u4ed6\u8bbe\u5907\u8fdb\u884c\u653b\u51fb
- \u9632\u8303\u65b9\u5f0f
- \u91c7\u7528\u5176\u4ed6\u66f4\u4e3a\u5b89\u5168\u7684\u8eab\u4efd\u8ba4\u8bc1\u65b9\u6cd5\uff08\u5982ssh\u4e2d\u91c7\u7528publickey\u8ba4\u8bc1\uff09
- \u8bbe\u7f6e\u968f\u673a\u5b57\u7b26\u4e32\u4f5c\u4e3a\u5bc6\u7801\uff0c\u5e76\u4e14\u957f\u5ea6\u8d85\u8fc78\u4f4d
"},{"location":"CS%20basic/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C/%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%BD%91%E7%BB%9C%E5%AE%89%E5%85%A8%E5%9F%BA%E7%A1%80/#ip","title":"\u516c\u7f51 IP","text":"
- \u6211\u4eec\u5e0c\u671b\u4ece\u4efb\u610f\u63a5\u5165\u4e92\u8054\u7f51\u7684\u5730\u65b9\u4f7f\u7528ssh\u8fde\u63a5\u5230\u670d\u52a1\u5668\uff0c\u4e00\u4e2a\u7b80\u5355\u7684\u65b9\u6cd5\u662f\u8ba9\u670d\u52a1\u5668\u62e5\u6709\u4e00\u4e2a\u516c\u7f51IP\u5e76\u8fd0\u884csshd\u670d\u52a1\u3002
- \u5e38\u89c1\u7684\u653b\u51fb\u65b9\u5f0f
- \u626b\u63cf\u5f00\u653e\u7aef\u53e3\u4fe1\u606f\uff0c\u5e76\u786e\u5b9a\u7aef\u53e3\u4e0a\u8fd0\u884c\u7684\u670d\u52a1
- \u5bf9\u53ef\u80fd\u5b58\u5728\u7684\u670d\u52a1\u8fdb\u884c\u653b\u51fb\uff0c\u5c1d\u8bd5\u5229\u7528\u670d\u52a1\u7684\u6f0f\u6d1e\uff08\u5982\u5f31\u53e3\u4ee4\uff09\u83b7\u53d6\u670d\u52a1\u5668\u7684\u8bbf\u95ee\u6743\u9650
- \u5e38\u89c1\u7684\u9632\u8303\u65b9\u5f0f
- \u4f7f\u7528\u9632\u706b\u5899\u3002\u914d\u7f6e\u9632\u706b\u5899\u89c4\u5219\uff0c\u4ec5\u5141\u8bb8\u5fc5\u8981\u7684\u670d\u52a1\u548c\u7aef\u53e3\u5bf9\u5916\u5f00\u653e\u3002
- \u5ba1\u67e5\u5f00\u653e\u7684\u670d\u52a1\u7684\u5b89\u5168\u6027\u3002\u786e\u4fdd\u5f53\u524d\u4e3b\u673a\u5f00\u653e\u7684\u6240\u6709\u670d\u52a1\u5747\u662f\u5b89\u5168\u7684\u3002
"},{"location":"Environment/Ubuntu_setup/","title":"Ubuntu \u914d\u7f6e","text":"
\u7ea6 77 \u4e2a\u5b57 14 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
- \u5728 Ubuntu \u5b89\u88c5\u914d\u7f6e Fcitx 5 \u4e2d\u6587\u8f93\u5165\u6cd5 - muzing\u7684\u6742\u8d27\u94fa
- fcitx5-rime \u6302\u63a5\u5c0f\u9e64\u97f3\u5f62 | rovo98's Blog
- zhuanlan.zhihu.com/p/660191327#:~:text=Tabby\uff08\u4ee5\u524d\u79f0\u4e3a
- Zsh \u5b89\u88c5\u4e0e\u914d\u7f6e\uff0c\u4f7f\u7528 Oh-My-Zsh \u7f8e\u5316\u7ec8\u7aef | Leehow\u7684\u5c0f\u7ad9
- zhuanlan.zhihu.com/p/658811059
- PKMer_TiddyWiki \u7b80\u6613\u6307\u5357
- Site Unreachable
- Jedsek | Blog
Bash
visudo /etc/sudoers \n%sudo ALL=(ALL:ALL) NOPASSWD: ALL\n
Bash
git clone https://github.com/zsh-users/zsh-syntax-highlighting.git ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-syntax-highlighting\n\ngit clone https://github.com/zsh-users/zsh-autosuggestions ${ZSH_CUSTOM:-~/.oh-my-zsh/custom}/plugins/zsh-autosuggestions\n\ngit clone git://github.com/joelthelion/autojump.git\ncd autojump\n./install.py\n\n[[ -s ~/.autojump/etc/profile.d/autojump.sh ]] && . ~/.autojump/etc/profile.d/autojump.sh\n
Bash
sudo apt-get install flameshot\nflameshot gui\n
- \u5728 Ubuntu 22.04|20.04|18.04 \u4e0a\u5b89\u88c5 Node.js 20
"},{"location":"Environment/obsidian_setup/","title":"obsidian \u914d\u7f6e","text":"
\u7ea6 301 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
Note
\u5982\u679c\u61d2\u5f97\u641e\uff0c\u53ef\u4ee5\u76f4\u63a5 clone \u6211\u7684\u914d\u7f6e\uff0c\u653e\u5230 .obsidian \u6587\u4ef6\u91cc\u3002 \u8fd9\u662f\u914d\u7f6e\u6587\u4ef6\u3002
"},{"location":"Environment/obsidian_setup/#1","title":"1 \u4f7f\u7528\u8bed\u8a00","text":"
- \u4e3b\u8981\u662f Markdown
- \u914d\u7f6e\u63d2\u4ef6\u4e5f\u4f1a\u6d89\u53ca\u4e00\u4e9b javascript
"},{"location":"Environment/obsidian_setup/#2","title":"2 \u63d2\u4ef6","text":""},{"location":"Environment/obsidian_setup/#21-displaystyle-latex","title":"2.1 \\(\\displaystyle \\LaTeX\\)","text":"
- Latex Suite
- LaTex-like Theorem & Equation Referencer
- MathLinks
\u642d\u914d simpleTex \u4f7f\u7528
"},{"location":"Environment/obsidian_setup/#22","title":"2.2 \u7f16\u8f91\u589e\u5f3a","text":"
- Easy Typing
- Linter
- Remember cursor position
- PDF++
- Code Styler
- Number Headings
- Outliner
- Completr
- Mind map
- Excalidraw
"},{"location":"Environment/obsidian_setup/#23","title":"2.3 \u56fe\u7247","text":"
- Paste image rename
- Auto Link Title
- Image auto upload Plugin
\u642d\u914d Picgo + GitHub \u4f7f\u7528
"},{"location":"Environment/obsidian_setup/#24","title":"2.4 \u540c\u6b65\u5907\u4efd","text":"
"},{"location":"Environment/obsidian_setup/#25","title":"2.5 \u65e5\u7a0b","text":"
- Calendar
- Periodic Notes
- Tasks Progress Bar
- Tasks
- Tasks Calendar Wrapper
"},{"location":"Environment/obsidian_setup/#26","title":"2.6 \u4ecd\u5728\u63a2\u7d22","text":"
- Local REST API + \u7b80\u7ea6
- RSS Reader
"},{"location":"Environment/obsidian_setup/#_1","title":"\u6211\u7684\u6a21\u677f","text":"
\u9700\u8981\u5b89\u88c5 dataview + periodic notes \u63d2\u4ef6\u3002
Note
\u7531\u4e8e markdown \u4ee3\u7801\u5757\u5d4c\u5957\u4e0d\u592a\u884c\uff0c\u6240\u4ee5\u8981\u624b\u52a8\u4fee\u590d\u3002\u6ce8\u610f\u4fee\u590d '' \u5e26\u6765\u7684\u4ee3\u7801\u5757\u95ee\u9898
dailyweekly Note Text Only
# {{date:YYYY}}-{{date:WW}}-{{date:DD}}-{{date:HH}}-{{date:d}}\n\n## 1. \u8ba1\u5212\n\n### \ud83c\udf05 \u65e9\u6668\n\n#### \u8ba1\u5212 \n\n#### \u590d\u76d8 \n\n---\n\n### \u2600\ufe0f \u4e2d\u5348\n\n#### \u8ba1\u5212 \n\n#### \u590d\u76d8 \n\n---\n\n### \ud83c\udf07 \u665a\u4e0a\n\n#### \u8ba1\u5212\n\n#### \u590d\u76d8 \n\n---\n\n## 2. \u7b14\u8bb0\u7d22\u5f15\n\n``dataview\nLIST FROM \"\"\nWHERE file.cday = date(\"{{date:YYYY}}-{{date:MM}}-{{date:DD}}\")\n``\n\n---\n\n## 3. \u8d44\u6e90\u4e0e\u94fe\u63a5\n\n---\n\n## 4. \u672a\u5b8c\u6210\u7684\u4efb\u52a1\n\n``dataview\nTASK FROM \"dairy\"\nWHERE !completed\nAND file.cday >= (this.file.cday - dur(7 days))\nAND file.cday <= this.file.cday\nSORT file.cday DESC\n``\n\n---\n\n## 5. \u53cd\u601d\n
Note Text Only
# {{date:YYYY}}-W{{date:WW}}-{{date:DD}}\n\n## 1. \u672c\u5468\u590d\u76d8\n\n---\n\n## 2. \u4e0b\u5468\u8ba1\u5212\n
"},{"location":"Environment/obsidian_setup/#3","title":"3 \u76f8\u5173\u94fe\u63a5","text":"
- PKMer_PKMer
- Obsidian \u4e2d\u6587\u8bba\u575b - Obsidian \u77e5\u8bc6\u7ba1\u7406 \u7b14\u8bb0
- Obsidian\u6587\u6863\u5496\u5561\u8c46\u7248 | Obsidian Docs by CoffeeBean
- zhuanlan.zhihu.com/p/619960525
"},{"location":"Environment/%E5%BC%80%E5%8F%91%E7%8E%AF%E5%A2%83%E9%85%8D%E7%BD%AE/","title":"\u5f00\u53d1\u73af\u5883\u914d\u7f6e","text":"
\u7ea6 227 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
- \u5f00\u53d1\u73af\u5883\u6784\u5efa\u6307\u5357
- \u4ece\u96f6\u5f00\u59cb\u914d\u7f6e Windows \u2022 Arthals' ink
- \u4ece\u96f6\u5f00\u59cb\u914d\u7f6e Linux \u2022 Arthals' ink
- \u670d\u52a1\u5668\u73af\u5883\u914d\u7f6e Cheat Sheet | Yi Pan (Conless)
- clash
- powertoy
- gsudo
- git
- GitHub - Wybxc/git-remake-guide: Git \u91cd\u5f00/\u91cd\u5b66\u6307\u5357
- picgo
- picgo + github + obsidian
- vscode
- \u7cfb\u7edf + \u4ee3\u7801\u5b57\u4f53\u8bbe\u7f6e
- zhuanlan.zhihu.com/p/603687041#:~:text=clangd\u5b98\u65b9vs
- zhuanlan.zhihu.com/p/398790625#:~:text=\u5176\u4e2d VS Code
- tools
- GitHub - jenius-apps/ambie: An app that uses white noise, nature sounds, and focus features to boost your productivity.
- clash
- GitHub - Loyalsoldier/clash-rules: \ud83e\udd84\ufe0f\ud83c\udf83\ud83d\udc7b Clash Premium \u89c4\u5219\u96c6(RULE-SET)\uff0c\u517c\u5bb9 ClashX Pro\u3001Clash for Windows \u7b49\u57fa\u4e8e Clash Premium \u5185\u6838\u7684\u5ba2\u6237\u7aef\u3002
- Site Unreachable
- \u7ffb\u5899 | Blog
- GitHub - vpncn/vpncn.github.io: 2024\u4e2d\u56fd\u7ffb\u5899\u8f6f\u4ef6VPN\u63a8\u8350\u4ee5\u53ca\u79d1\u5b66\u4e0a\u7f51\u907f\u5751\uff0c\u7a33\u5b9a\u597d\u7528\u3002\u5bf9\u6bd4SSR\u673a\u573a\u3001\u84dd\u706f\u3001V2ray\u3001\u8001\u738bVPN\u3001VPS\u642d\u5efa\u68af\u5b50\u7b49\u79d1\u5b66\u4e0a\u7f51\u4e0e\u7ffb\u5899\u8f6f\u4ef6\uff0c\u4e2d\u56fd\u6700\u65b0\u79d1\u5b66\u4e0a\u7f51\u7ffb\u5899\u68af\u5b50VPN\u4e0b\u8f7d\u63a8\u8350\uff0c\u8bbf\u95eeChatgpt\u3002
- Typora
- GitHub - sylviaxgj/typora-forest-theme: another typora theme
- GitHub - HappySimple/Typora-theme-Happysimple: \u4e00\u6b3e\u81ea\u5236\u7684Markdown\u4e3b\u9898\uff01
- github profiles
- GitHub - anuraghazra/github-readme-stats: Dynamically generated stats for your github readmes
- github action
- gsudo
- openArk
"},{"location":"Robot/pnp/","title":"pnp","text":"
\u7ea6 79 \u4e2a\u5b57 55 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
- \u5df2\u77e5
- \u76ee\u6807\u7269\u4f53\u7279\u5b9a\u70b9\u7684\u50cf\u7d20\u5750\u6807
- \u76ee\u6807\u7269\u4f53\u7279\u5b9a\u70b9\u7684\u771f\u5b9e\u5c3a\u5bf8
- \u76f8\u673a\u5185\u53c2
- \u6c42
- \u76ee\u6807\u7269\u4f53\u5728\u76f8\u673a\u5750\u6807\u7cfb\u4e0b\u7684 6d pose
\u50cf\u7d20\u5750\u6807\u548c\u7269\u4f53\u5750\u6807\u7684\u5bf9\u70b9 \u4f46\u662f\u4e00\u822c\u53ea\u7528 t, \u56e0\u4e3a R \u7684\u7cbe\u5ea6\u4e0d\u591f\u9ad8 Fetching Title#g70i
![[Pasted image 20241008201602.png]]
C++
#include <iostream>\n#include <opencv2/opencv.hpp>\n#include <opencv2/imgproc/imgproc.hpp>\n#include <opencv2/calib3d/calib3d.hpp>\n#include <opencv2/core/core.hpp>\nusing namespace cv;\n\nbool findCorners(const cv::Mat &src, std::vector<cv::Point2f> &corners) {\n std::vector<cv::Point2f> pts;\n corners.clear();\n bool flag = cv::findChessboardCorners(src, {9, 6}, pts);\n if (!flag)\n return false;\n corners.push_back(pts[0]);\n corners.push_back(pts[9 - 1]);\n corners.push_back(pts[pts.size() - 9]);\n corners.push_back(pts[pts.size() - 1]);\n return true;\n}\n\nint main() {\n cv::Mat src;\n cv::Mat camera_matrix;\n cv::Mat distort_matrix;\n cv::FileStorage reader(PROJECT_DIR\"/parameter.txt\", cv::FileStorage::READ);\n reader[\"C\"] >> camera_matrix;\n reader[\"D\"] >> distort_matrix;\n\n for (int i = 0; i <= 40; i++) {\n src = imread(std::__cxx11::to_string(i).append(\".jpg\"));\n std::vector<cv::Point2f> corners;\n bool flag = findCorners(src, corners);\n imshow(\"Opencv Demo\", src);\n cv::waitKey(100);\n if (flag == false) {\n std::cout << \"failed to find all corners\\n\";\n continue;\n }\n std::vector<cv::Point3f> dst;\n dst.push_back({0, 0, 0});\n dst.push_back({8 * 1, 0, 0});\n dst.push_back({0, 5 * 1, 0});\n dst.push_back({8 * 1, 5 * 1, 0});\n cv::Mat rvec, tvec;\n cv::solvePnP(dst, corners, camera_matrix, distort_matrix, rvec, tvec);\n std::cout << \"t:\" << std::endl << -tvec << std::endl << std::endl;\n cv::Mat drawer;\n drawer = src.clone();\n for (int j = 0; j < 4; j++)\n cv::circle(drawer, corners[j], 2, {0, 255, 0}, 2);\n cv::imshow(\"corners\", drawer);\n cv::waitKey(5);\n }\n return 0;\n}\n
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/","title":"\u5361\u5c14\u66fc\u6ee4\u6ce2","text":"
\u7ea6 193 \u4e2a\u5b57 115 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#1-why","title":"1 Why","text":"
- \u5dee\u5206
- \u53d7\u566a\u58f0\u5e72\u6270\u5927
- \u6709\u5ef6\u8fdf
- \u901f\u5ea6\u4e0d\u8fde\u7eed\uff08\u4e0d\u80fd\u5f97\u5230\u77ac\u65f6\u901f\u5ea6\uff09
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#2-how","title":"2 How","text":""},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#21","title":"2.1 \u5361\u5c14\u66fc\u6ee4\u6ce2","text":"
- \u5408\u7406\u5730\u6839\u636e\u8bef\u5dee\u6765\u63a8\u5bfc\uff0c\u800c\u4e0d\u662f\u76f4\u63a5\u5ffd\u89c6\u5f71\u54cd\u6700\u7ec8\u91cf
- \u65e0\u4eba\u9a7e\u9a76\u6280\u672f\u5165\u95e8\uff08\u5341\u4e09\uff09| \u624b\u628a\u624b\u6559\u4f60\u5199\u5361\u5c14\u66fc\u6ee4\u6ce2\u5668 - \u77e5\u4e4e
\\[ \\begin{array}{|c|}\\hline\\textbf{Prediction}\\\\\\hline x^{'}=Ax+u\\\\P^{'}=APA^{T}+R\\\\\\hline\\textbf{Measurement update}\\\\\\hline y=z-Cx^{'}\\\\S=CPC^{T}+Q\\\\K=PC^{T}S^{-1}\\\\x=x^{'}+Ky\\\\P=(I-KC)P\\\\\\hline\\end{array} \\] C++
#include <iostream>\n#include <cstdio>\n#include <string>\n#include <vector>\n#include <ctime>\n#include <opencv2/core/core.hpp>\n#include <opencv2/highgui/highgui.hpp>\n#include <opencv2/imgproc/imgproc.hpp>\n#include <Eigen/Dense>\n#include <opencv2/core/eigen.hpp>\nusing namespace std;\nusing namespace cv;\nusing namespace Eigen;\n\nint main() {\nsrand((unsigned int) time(NULL));\n// generate data with noise\nconst int N = 20;\nconst double k = 2.5;\nMatrix<double, 1, N> noise = Matrix<double, 1, N>::Random();\nMatrix<double, 1, N> data = Matrix<double, 1, N>::LinSpaced(0, k * (N - 1));\ndata += noise;\nstd::cout << data << std::endl;\n// calculate speed\nconst int Z_N = 1, X_N = 2;\nMatrix<double, X_N, 1> X;\nMatrix<double, X_N, X_N> A;\nMatrix<double, X_N, X_N> P;\nMatrix<double, X_N, X_N> R;\nMatrix<double, X_N, Z_N> K;\nMatrix<double, Z_N, X_N> C;\nMatrix<double, Z_N, Z_N> Q;\n\nX << data[0], 0;\nA << 1, 1, 0, 1;\nC << 1, 0;\nR << 2, 0, 0, 2;\nQ << 10;\nfor (int i = 1; i < N; i++) {\n // \u66f4\u65b0\u9884\u6d4b\n Matrix<double, X_N, 1> X_k = A * X;\n P = A * P * A.transpose() + R;\n // \u66f4\u65b0\u89c2\u6d4b\n K = P * C.transpose() * (C * P * C.transpose() + Q).inverse();\n Matrix<double, Z_N, 1> Z{data[i]};\n X = X_k + K * (Z - C * X_k);\n P = (Matrix<double, X_N, X_N>::Identity() - K * C) * P;\n std::cout << \"step \" << i << \": \" << X[1] << std::endl;\n}\nstd:cout << \"final speed: \" << X[1] << std::endl;\nreturn 0;\n}\n
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#22-ekf","title":"2.2 EKF \u7b97\u6cd5\u7684\u5b9e\u73b0","text":"C++
#include <ceres/jet.h>\n#include <Eigen/Dense>\n\ntemplate<int N_X, int N_Y>\nclass AdaptiveEKF {\n using MatrixXX = Eigen::Matrix<double, N_X, N_X>;\n using MatrixYX = Eigen::Matrix<double, N_Y, N_X>;\n using MatrixXY = Eigen::Matrix<double, N_X, N_Y>;\n using MatrixYY = Eigen::Matrix<double, N_Y, N_Y>;\n using VectorX = Eigen::Matrix<double, N_X, 1>;\n using VectorY = Eigen::Matrix<double, N_Y, 1>;\n\npublic:\n explicit AdaptiveEKF(const VectorX &X0 = VectorX::Zero())\n : Xe(X0), P(MatrixXX::Identity()), Q(MatrixXX::Identity()), R(MatrixYY::Identity()) {}\n\n // \u9884\u6d4b\u51fd\u6570\n template<class Func>\n VectorX predict(Func &&func) {\n calculateJacobian(Xe, func, Xp, F);\n P = F * P * F.transpose() + Q;\n return Xp;\n }\n\n // \u66f4\u65b0\u51fd\u6570\n template<class Func>\n VectorX update(Func &&func, const VectorY &Y) {\n calculateJacobian(Xp, func, Yp, H);\n MatrixYY S = H * P * H.transpose() + R; // \u521b\u65b0\u534f\u65b9\u5dee\n K = P * H.transpose() * S.inverse(); // \u5361\u5c14\u66fc\u589e\u76ca\n Xe = Xp + K * (Y - Yp); // \u66f4\u65b0\u72b6\u6001\u4f30\u8ba1\n P = (MatrixXX::Identity() - K * H) * P; // \u66f4\u65b0\u72b6\u6001\u534f\u65b9\u5dee\n return Xe;\n }\n\nprivate:\n // \u8ba1\u7b97\u96c5\u514b\u6bd4\u77e9\u9635\u7684\u8f85\u52a9\u51fd\u6570\n template<class Func, int N_IN, int N_OUT>\n void calculateJacobian(const Eigen::Matrix<double, N_IN, 1> &input, Func &&func, Eigen::Matrix<double, N_OUT, 1> &output, Eigen::Matrix<double, N_OUT, N_IN> &jacobian) {\n ceres::Jet<double, N_IN> input_auto_jet[N_IN];\n for (int i = 0; i < N_IN; i++) {\n input_auto_jet[i].a = input[i];\n input_auto_jet[i].v[i] = 1;\n }\n ceres::Jet<double, N_OUT> output_auto_jet[N_OUT];\n func(input_auto_jet, output_auto_jet);\n for (int i = 0; i < N_OUT; i++) {\n output[i] = output_auto_jet[i].a;\n jacobian.block(i, 0, 1, N_IN) = output_auto_jet[i].v.transpose();\n }\n }\n\npublic:\n VectorX Xe; // \u4f30\u8ba1\u72b6\u6001\u53d8\u91cf\n VectorX Xp; // \u9884\u6d4b\u72b6\u6001\u53d8\u91cf\n MatrixXX F; // \u9884\u6d4b\u96c5\u514b\u6bd4\u77e9\u9635\n MatrixYX H; // \u89c2\u6d4b\u96c5\u514b\u6bd4\u77e9\u9635\n MatrixXX P; // \u72b6\u6001\u534f\u65b9\u5dee\n MatrixXX Q; // \u9884\u6d4b\u8fc7\u7a0b\u534f\u65b9\u5dee\n MatrixYY R; // \u89c2\u6d4b\u8fc7\u7a0b\u534f\u65b9\u5dee\n MatrixXY K; // \u5361\u5c14\u66fc\u589e\u76ca\n VectorY Yp; // \u9884\u6d4b\u89c2\u6d4b\u91cf\n};\n
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#23","title":"2.3 \u975e\u7ebf\u6027\u4f18\u5316","text":"
TODO
"},{"location":"Robot/%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2/#_2","title":"\u4e00\u4e9b\u8d44\u6599","text":"
- zhuanlan.zhihu.com/p/45238681
- \u5361\u5c14\u66fc\u6ee4\u6ce2(Kalman Filter)\u6982\u5ff5\u4ecb\u7ecd\u53ca\u8be6\u7ec6\u516c\u5f0f\u63a8\u5bfc-CSDN\u535a\u5ba2
- \u8c03\u8282\u8bef\u5dee\u77e9\u9635\u7684\u5b9e\u9645\u610f\u4e49
- \u975e\u7ebf\u6027\u62d3\u5c55
- \u81ea\u9002\u5e94\u4f18\u5316
- \u4f5c\u4e1a\u4e2d\u6709\u4e00\u4e2a\u5929\u4f53\u8fd0\u52a8\u7684\u4f8b\u5b50
"},{"location":"Robot/%E7%9B%B8%E6%9C%BA%E6%A0%87%E5%AE%9A/","title":"\u76f8\u673a\u6807\u5b9a","text":"
\u7ea6 73 \u4e2a\u5b57 1 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
Calibration
- GitHub - SHU-FLYMAN/CalibCamera: \u57fa\u4e8e\u5f20\u6b63\u53cb\u6807\u5b9a\u6cd5\u7684\u5355\u76ee\u76f8\u673a\u6807\u5b9a\u7406\u8bba\u5230\u5b9e\u8df5
- \u4e00\u6587\u5403\u900f\u76f8\u673a\u6807\u5b9a\uff08Camera calibration\uff09-CSDN\u535a\u5ba2
- \u6700\u8be6\u7ec6\u3001\u6700\u5b8c\u6574\u7684\u76f8\u673a\u6807\u5b9a\u8bb2\u89e3-CSDN\u535a\u5ba2
- \u76f8\u673a\u6807\u5b9a\uff08Camera calibration\uff09\u539f\u7406\u3001\u6b65\u9aa4_\u89c6\u89c9\u76f8\u673a \u793a\u6559\u76ee\u7684-CSDN\u535a\u5ba2
"},{"location":"Technology/AI%20usage/","title":"AI \u4f7f\u7528","text":"
\u7ea6 3315 \u4e2a\u5b57 157 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 13 \u5206\u949f
"},{"location":"Technology/AI%20usage/#1-prompt","title":"1 \u5982\u4f55\u5199\u4e00\u4e2a Prompt","text":""},{"location":"Technology/AI%20usage/#11-prompt","title":"1.1 Prompt \u7684\u57fa\u672c\u539f\u5219","text":""},{"location":"Technology/AI%20usage/#111","title":"1.1.1 \u660e\u786e\u9700\u6c42","text":""},{"location":"Technology/AI%20usage/#1111","title":"1.1.1.1 \u4ec0\u4e48\u662f\u6e05\u6670\u7684\u6307\u4ee4\uff1f","text":"
\u6e05\u6670\u7684\u6307\u4ee4\u662f\u6307\u80fd\u591f\u51c6\u786e\u4f20\u8fbe\u4efb\u52a1\u610f\u56fe\u7684\u63cf\u8ff0\uff0c\u907f\u514d\u6b67\u4e49\uff0c\u8ba9\u6a21\u578b\u7406\u89e3\u5e76\u751f\u6210\u671f\u671b\u7684\u7ed3\u679c\u3002 \u5b83\u7684\u6838\u5fc3\u5728\u4e8e\u5177\u4f53\u5316\u9700\u6c42\uff0c\u901a\u8fc7\u660e\u786e\u7684\u8bed\u8a00\u548c\u7ed3\u6784\u5316\u7684\u63cf\u8ff0\uff0c\u8ba9\u4efb\u52a1\u76ee\u6807\u6613\u4e8e\u88ab\u6a21\u578b\u89e3\u6790\u3002
"},{"location":"Technology/AI%20usage/#1112","title":"1.1.1.2 \u5982\u4f55\u8868\u8fbe\u9700\u6c42\u65e0\u6b67\u4e49\uff1f","text":"
- \u4f7f\u7528\u5177\u4f53\u7684\u8bed\u8a00 \u4f8b\u5982\uff0c\u4e0d\u8981\u7b80\u5355\u8bf4\u201c\u751f\u6210\u6458\u8981\u201d\uff0c\u800c\u662f\u660e\u786e\u5185\u5bb9\u5f62\u5f0f\u548c\u8981\u6c42\uff1a
- \u274c \u4e0d\u6e05\u6670\uff1a\u603b\u7ed3\u4e00\u4e0b\u8fd9\u7bc7\u6587\u7ae0\u3002
- \u2705 \u6e05\u6670\uff1a\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\u5c06\u4ee5\u4e0b\u6587\u7ae0\u603b\u7ed3\u4e3a 3 \u70b9\uff0c\u5e76\u4ee5 Markdown \u5217\u8868\u7684\u5f62\u5f0f\u8f93\u51fa\u3002
- \u8bbe\u5b9a\u6e05\u6670\u7684\u8fb9\u754c\u548c\u9650\u5236 \u7ed9\u51fa\u660e\u786e\u7684\u8303\u56f4\uff0c\u907f\u514d\u6a21\u578b\u8f93\u51fa\u65e0\u5173\u4fe1\u606f\u3002
- \u274c \u4e0d\u6e05\u6670\uff1a\u89e3\u91ca AI\u3002
- \u2705 \u6e05\u6670\uff1a\u8bf7\u7528 2-3 \u53e5\u8bdd\u5411\u9ad8\u4e2d\u751f\u89e3\u91ca\u4ec0\u4e48\u662f AI\uff0c\u907f\u514d\u4f7f\u7528\u8fc7\u4e8e\u4e13\u4e1a\u7684\u672f\u8bed\u3002
- \u4f7f\u7528\u4efb\u52a1\u6307\u5411\u6027\u5f3a\u7684\u8bcd\u8bed \u5f3a\u8c03\u4efb\u52a1\u7684\u6838\u5fc3\uff0c\u4f8b\u5982\u201c\u8be6\u7ec6\u8bf4\u660e\u201d\u201c\u4ee5\u7b80\u6d01\u8bed\u8a00\u603b\u7ed3\u201d\u201c\u5217\u51fa\u5177\u4f53\u6b65\u9aa4\u201d\u7b49\u3002
"},{"location":"Technology/AI%20usage/#1113","title":"1.1.1.3 \u793a\u4f8b\uff1a\u6e05\u6670\u4e0e\u6a21\u7cca\u6307\u4ee4\u7684\u5bf9\u6bd4","text":"\u6a21\u7cca\u6307\u4ee4 \u6e05\u6670\u6307\u4ee4 \u603b\u7ed3\u4f1a\u8bae\u8bb0\u5f55\u3002 \u7528\u4e00\u4e2a\u6bb5\u843d\u603b\u7ed3\u4f1a\u8bae\u8bb0\u5f55\uff0c\u5e76\u5217\u51fa\u53d1\u8a00\u4eba\u53ca\u5176\u5efa\u8bae\u7684\u884c\u52a8\u9879\u76ee\uff0c\u4ee5 Markdown \u5217\u8868\u683c\u5f0f\u8f93\u51fa\u3002 \u89e3\u91ca\u5927\u6570\u636e\u3002 \u7528\u4e09\u53e5\u8bdd\u5411\u4e2d\u5b66\u751f\u89e3\u91ca\u5927\u6570\u636e\u7684\u5b9a\u4e49\u53ca\u4f5c\u7528\uff0c\u5e76\u63d0\u4f9b\u4e00\u4e2a\u4e0e\u65e5\u5e38\u751f\u6d3b\u76f8\u5173\u7684\u4f8b\u5b50\u3002 \u751f\u6210\u4e00\u4efd\u65c5\u884c\u8ba1\u5212\u3002 \u8bf7\u4e3a\u5317\u4eac\u4e09\u65e5\u6e38\u751f\u6210\u4e00\u4efd\u8be6\u7ec6\u7684\u65c5\u884c\u8ba1\u5212\uff0c\u5305\u542b\u6bcf\u5929\u7684\u884c\u7a0b\u3001\u666f\u70b9\u4ecb\u7ecd\u3001\u9884\u7b97\u8303\u56f4\u548c\u63a8\u8350\u7f8e\u98df\u3002"},{"location":"Technology/AI%20usage/#112","title":"1.1.2 \u7b80\u6d01\u4e0e\u7cbe\u70bc","text":""},{"location":"Technology/AI%20usage/#1121","title":"1.1.2.1 \u907f\u514d\u5197\u957f\u4e0e\u65e0\u6548\u4fe1\u606f\u7684\u65b9\u6cd5","text":"
\u5728 Prompt \u4e2d\uff0c\u5197\u957f\u7684\u63cf\u8ff0\u4f1a\u589e\u52a0\u6a21\u578b\u7684\u7406\u89e3\u96be\u5ea6\uff0c\u540c\u65f6\u53ef\u80fd\u5f15\u5165\u65e0\u5173\u5185\u5bb9\u3002\u4ee5\u4e0b\u6280\u5de7\u53ef\u4ee5\u5e2e\u52a9\u4f18\u5316\u8868\u8fbe\uff1a
- \u5220\u51cf\u65e0\u7528\u4fe1\u606f\uff1a\u53bb\u6389\u4e0d\u5fc5\u8981\u7684\u4fee\u9970\u8bcd\u6216\u91cd\u590d\u5185\u5bb9\u3002
-
- \u274c \u5197\u957f\uff1a\u5728\u7528\u6765\u5199\u8fd9\u7bc7\u6587\u7ae0\u7684\u6458\u8981\u65f6\uff0c\u4f60\u53ef\u4ee5\u53c2\u8003\u4ee5\u4e0b\u8fd9\u4e9b\u6587\u7ae0\u7684\u5185\u5bb9\u2026\u2026
- \u2705 \u7cbe\u70bc\uff1a\u4e3a\u4ee5\u4e0b\u6587\u7ae0\u5199\u6458\u8981\u3002
- \u76f4\u63a5\u5207\u5165\u91cd\u70b9\uff1a\u4f18\u5148\u63cf\u8ff0\u4efb\u52a1\u7684\u6838\u5fc3\u9700\u6c42\uff0c\u907f\u514d\u80cc\u666f\u4fe1\u606f\u8fc7\u591a\u5e72\u6270\u4efb\u52a1\u3002
- \u5c42\u7ea7\u5206\u660e\uff1a\u4f7f\u7528\u7ed3\u6784\u5316\u683c\u5f0f\uff0c\u907f\u514d\u5c06\u591a\u6761\u6307\u4ee4\u6df7\u4e3a\u4e00\u8c08\u3002
"},{"location":"Technology/AI%20usage/#1122","title":"1.1.2.2 \u201c\u5965\u5361\u59c6\u5243\u5200\u201d\u539f\u5219\u7684\u5b9e\u9645\u5e94\u7528","text":"
\u5965\u5361\u59c6\u5243\u5200\u539f\u5219\u5f3a\u8c03\u201c\u5982\u65e0\u5fc5\u8981\uff0c\u52ff\u589e\u5b9e\u4f53\u201d\uff0c\u5728 Prompt \u4e2d\uff0c\u8868\u73b0\u4e3a\u5c3d\u91cf\u51cf\u5c11\u4e0d\u5fc5\u8981\u7684\u7ea6\u675f\u548c\u9644\u52a0\u8981\u6c42\u3002
- \u793a\u4f8b\uff1a
- \u4e0d\u5fc5\u8981\u7684\u7ea6\u675f\uff1a \u8bf7\u7528 500 \u5b57\u5de6\u53f3\u603b\u7ed3\u4ee5\u4e0b\u6587\u672c\uff0c\u4e0d\u8981\u63d0\u5230\u4e0e\u6587\u672c\u65e0\u5173\u7684\u5185\u5bb9\uff0c\u4e5f\u4e0d\u8981\u52a0\u5165\u4e2a\u4eba\u89c2\u70b9\uff0c\u53ea\u9700\u7b80\u6d01\u6982\u62ec\u4e3b\u8981\u89c2\u70b9\u2026\u2026
- \u4f18\u5316\u540e\uff1a \u8bf7\u7528 500 \u5b57\u603b\u7ed3\u4ee5\u4e0b\u6587\u672c\u7684\u4e3b\u8981\u89c2\u70b9\uff0c\u8bed\u8a00\u7b80\u6d01\u660e\u4e86\u3002
"},{"location":"Technology/AI%20usage/#113","title":"1.1.3 \u8bed\u6c14\u4e0e\u98ce\u683c","text":""},{"location":"Technology/AI%20usage/#1131","title":"1.1.3.1 \u4f7f\u7528\u6b63\u5f0f\u3001\u793c\u8c8c\u7684\u8bed\u8a00\u63d0\u9ad8\u751f\u6210\u51c6\u786e\u6027","text":"
\u5728 Prompt \u4e2d\uff0c\u8bed\u6c14\u548c\u8bed\u8a00\u98ce\u683c\u4f1a\u5f71\u54cd\u6a21\u578b\u7684\u751f\u6210\u8d28\u91cf\u3002
- \u6b63\u5f0f\u8bed\u8a00\u901a\u5e38\u66f4\u7b26\u5408\u5927\u6a21\u578b\u7684\u8bad\u7ec3\u6570\u636e\u5206\u5e03\uff0c\u6709\u52a9\u4e8e\u751f\u6210\u66f4\u4e25\u8c28\u7684\u5185\u5bb9\u3002
- \u793a\u4f8b\uff1a
- \u6b63\u5f0f\uff1a\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\u89e3\u91ca\u4ee5\u4e0b\u6280\u672f\u6982\u5ff5\u3002
- \u975e\u6b63\u5f0f\uff1a\u5e2e\u6211\u628a\u8fd9\u6bb5\u8bdd\u7b80\u5355\u8bf4\u4e00\u4e0b\u3002
"},{"location":"Technology/AI%20usage/#1132","title":"1.1.3.2 \u9488\u5bf9\u4e0d\u540c\u4efb\u52a1\u8c03\u6574\u8bed\u6c14\u7684\u6848\u4f8b","text":"
- \u521b\u610f\u4efb\u52a1\uff1a \u6307\u4ee4\u5e94\u66f4\u5177\u611f\u67d3\u529b\uff0c\u4ee5\u6fc0\u53d1\u6a21\u578b\u751f\u6210\u66f4\u5177\u60f3\u8c61\u529b\u7684\u5185\u5bb9\u3002
- \u793a\u4f8b\uff1a
- \u4f60\u662f\u4e00\u4f4d\u5c0f\u7ea2\u4e66\u7206\u6b3e\u6587\u6848\u4e13\u5bb6\uff0c\u8bf7\u4e3a\u5e74\u8f7b\u4eba\u8bbe\u8ba1\u4e00\u4e2a\u5177\u6709\u5438\u5f15\u529b\u7684\u9752\u5c9b\u65c5\u6e38\u653b\u7565\u3002
- \u6559\u80b2\u4efb\u52a1\uff1a \u8bed\u6c14\u9700\u8981\u5faa\u5faa\u5584\u8bf1\uff0c\u5185\u5bb9\u7ed3\u6784\u6e05\u6670\u660e\u4e86\u3002
- \u793a\u4f8b\uff1a
- \u4f60\u662f\u4e00\u540d\u9ad8\u4e2d\u6570\u5b66\u8001\u5e08\uff0c\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u65b9\u5f0f\u8bb2\u89e3\u4e8c\u6b21\u51fd\u6570\u7684\u6982\u5ff5\u3002
- \u4e13\u4e1a\u4efb\u52a1\uff1a \u8bed\u6c14\u5e94\u4e25\u8c28\uff0c\u4fe1\u606f\u9700\u7cbe\u786e\uff0c\u907f\u514d\u4e3b\u89c2\u6027\u8868\u8fbe\u3002
- \u793a\u4f8b\uff1a
- \u8bf7\u4ece\u5b9a\u4e49\u3001\u7279\u6027\u548c\u5e94\u7528\u4e09\u4e2a\u65b9\u9762\u8be6\u7ec6\u8bf4\u660e\u533a\u5757\u94fe\u6280\u672f\uff0c\u5e76\u63d0\u4f9b\u76f8\u5173\u7684\u884c\u4e1a\u5b9e\u4f8b\u3002
"},{"location":"Technology/AI%20usage/#12","title":"1.2 \u9ad8\u7ea7\u6280\u5de7","text":""},{"location":"Technology/AI%20usage/#121","title":"1.2.1 \u63d0\u4f9b\u4e0a\u4e0b\u6587\u4e0e\u793a\u4f8b","text":""},{"location":"Technology/AI%20usage/#1211-few-shot-prompt","title":"1.2.1.1 \u4f7f\u7528 Few-shot Prompt \u63d0\u4f9b\u6709\u6548\u793a\u4f8b","text":"
Few-shot Prompt \u662f\u6307\u5728\u63d0\u793a\u8bed\u4e2d\u63d0\u4f9b\u793a\u4f8b\u4ee5\u5f15\u5bfc\u6a21\u578b\u751f\u6210\u7c7b\u4f3c\u7684\u5185\u5bb9\u3002\u8fd9\u79cd\u65b9\u6cd5\u7279\u522b\u9002\u5408\u590d\u6742\u4efb\u52a1\u6216\u9700\u6c42\u4e0d\u660e\u786e\u7684\u573a\u666f\u3002
- \u4e3a\u4f55\u4f7f\u7528 Few-shot Prompt\uff1f
- \u964d\u4f4e\u6a21\u578b\u7684\u81ea\u7531\u53d1\u6325\u5ea6\uff1a\u901a\u8fc7\u63d0\u4f9b\u793a\u4f8b\uff0c\u9650\u5236\u6a21\u578b\u7684\u8f93\u51fa\u98ce\u683c\u548c\u7ed3\u6784\u3002
- \u63d0\u5347\u4efb\u52a1\u51c6\u786e\u6027\uff1a\u901a\u8fc7\u793a\u4f8b\u4f20\u9012\u660e\u786e\u7684\u6807\u51c6\uff0c\u51cf\u5c11\u504f\u5dee\u3002
- \u6269\u5c55\u6a21\u578b\u7684\u9002\u5e94\u80fd\u529b\uff1a\u5e2e\u52a9\u6a21\u578b\u9002\u5e94\u4e00\u4e9b\u8bad\u7ec3\u6570\u636e\u4e2d\u53ef\u80fd\u672a\u89c1\u8fc7\u7684\u573a\u666f\u3002
- \u8bbe\u8ba1 Few-shot Prompt \u7684\u5173\u952e\u70b9
- \u793a\u4f8b\u6570\u91cf\uff1a\u901a\u5e38 2-5 \u4e2a\u793a\u4f8b\u5373\u53ef\uff0c\u8fc7\u591a\u53ef\u80fd\u5bfc\u81f4\u63d0\u793a\u8fc7\u957f\uff0c\u589e\u52a0\u566a\u58f0\u3002
- \u8986\u76d6\u4e0d\u540c\u96be\u5ea6\u7684\u6848\u4f8b\uff1a\u5305\u62ec\u7b80\u5355\u573a\u666f\uff08easy case\uff09\u3001\u590d\u6742\u573a\u666f\uff08hard case\uff09\u4ee5\u53ca\u8fb9\u7f18\u60c5\u51b5\uff08corner case\uff09\u3002
- \u793a\u4f8b\u8d28\u91cf\uff1a\u786e\u4fdd\u63d0\u4f9b\u7684\u793a\u4f8b\u4e0e\u9884\u671f\u4efb\u52a1\u9ad8\u5ea6\u76f8\u5173\u3002
- \u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u5224\u65ad\u8f93\u5165\u662f\u5426\u5c5e\u4e8e\u77e5\u8bc6\u95ee\u7b54\u7c7b\u95ee\u9898\u3002
Few-shot Prompt\uff1a
Text Only
\u8bf7\u5224\u65ad\u4ee5\u4e0b\u95ee\u9898\u662f\u5426\u5c5e\u4e8e\u77e5\u8bc6\u95ee\u7b54\u7c7b\u95ee\u9898\u3002\n\n\u95ee\u9898\uff1a\u4e16\u754c\u4e0a\u6700\u9ad8\u7684\u5c71\u662f\u4ec0\u4e48\uff1f # easy case\uff0c\u5c5e\u4e8e\u5ba2\u89c2\u77e5\u8bc6\u95ee\u7b54\n\u7b54\u6848\uff1a\u662f\n\n\u95ee\u9898\uff1a\u4e3a\u4ec0\u4e48\u6c34\u80fd\u4f20\u5bfc\u7535\uff1f # hard case\uff0c\u5c5e\u4e8e\u79d1\u5b66\u539f\u7406\u95ee\u7b54\n\u7b54\u6848\uff1a\u662f\n\n\u95ee\u9898\uff1a\u5e2e\u6211\u5199\u4e00\u7bc7\u65c5\u884c\u65e5\u8bb0\u3002 # easy case\uff0c\u5c5e\u4e8e\u521b\u4f5c\u7c7b\u4efb\u52a1\n\u7b54\u6848\uff1a\u5426\n\n\u95ee\u9898\uff1a\u4ec0\u4e48\u662f\u5d4c\u5957\u5b57\u5178\uff1f # hard case\uff0c\u5c5e\u4e8e\u6280\u672f\u77e5\u8bc6\u95ee\u7b54\n\u7b54\u6848\uff1a\u662f\n\n\u95ee\u9898\uff1a{\u8f93\u5165}\n\u7b54\u6848\uff1a\n
"},{"location":"Technology/AI%20usage/#1212","title":"1.2.1.2 \u53c2\u8003\u6587\u672c\u7684\u4f7f\u7528\u4e0e\u5f15\u7528\u6280\u5de7","text":"
\u53c2\u8003\u6587\u672c\u80fd\u4e3a\u6a21\u578b\u63d0\u4f9b\u660e\u786e\u7684\u77e5\u8bc6\u57fa\u7840\uff0c\u5c24\u5176\u5728\u9700\u8981\u53ef\u9760\u6027\u548c\u51c6\u786e\u6027\u7684\u4efb\u52a1\u4e2d\u6548\u679c\u663e\u8457\u3002
- \u8ba9\u6a21\u578b\u4f7f\u7528\u53c2\u8003\u6587\u672c\u4f5c\u7b54
- \u5f15\u7528\u53c2\u8003\u6587\u672c\u4e2d\u7684\u6bb5\u843d
"},{"location":"Technology/AI%20usage/#122","title":"1.2.2 \u4efb\u52a1\u5206\u89e3","text":""},{"location":"Technology/AI%20usage/#1221","title":"1.2.2.1 \u5c06\u590d\u6742\u4efb\u52a1\u62c6\u89e3\u4e3a\u5b50\u4efb\u52a1\u7684\u6700\u4f73\u5b9e\u8df5","text":"
\u590d\u6742\u4efb\u52a1\u53ef\u80fd\u6d89\u53ca\u591a\u4e2a\u5b50\u76ee\u6807\uff0c\u5c06\u5176\u5206\u89e3\u4e3a\u6e05\u6670\u7684\u6b65\u9aa4\u53ef\u4ee5\u63d0\u9ad8\u6a21\u578b\u7684\u8868\u73b0\u3002
- \u4e3a\u4f55\u5206\u89e3\u4efb\u52a1\uff1f
- \u964d\u4f4e\u6a21\u578b\u7406\u89e3\u96be\u5ea6\u3002
- \u66f4\u5bb9\u6613\u5bf9\u751f\u6210\u7ed3\u679c\u8fdb\u884c\u9a8c\u8bc1\u3002
- \u589e\u5f3a Prompt \u7684\u590d\u7528\u6027\u3002
- \u4efb\u52a1\u5206\u89e3\u65b9\u6cd5
- \u660e\u786e\u6bcf\u4e00\u6b65\u7684\u76ee\u6807\uff1a\u9010\u5c42\u5256\u6790\u95ee\u9898\uff0c\u5c06\u590d\u6742\u4efb\u52a1\u5206\u89e3\u4e3a\u7b80\u5355\u5b50\u4efb\u52a1\u3002
- \u4efb\u52a1\u4f9d\u8d56\u7ba1\u7406\uff1a\u786e\u4fdd\u6bcf\u4e00\u6b65\u4e3a\u4e0b\u4e00\u6b65\u63d0\u4f9b\u5fc5\u8981\u7684\u8f93\u5165\u3002
- \u793a\u4f8b\uff1a
\u4efb\u52a1\uff1a\u751f\u6210\u4f1a\u8bae\u7eaa\u8981\u3002
\u4efb\u52a1\u5206\u89e3 Prompt\uff1a
Text Only
\u8bf7\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u5b8c\u6210\u4efb\u52a1\uff1a\n1. \u9605\u8bfb\u4ee5\u4e0b\u4f1a\u8bae\u8bb0\u5f55\u6587\u672c\u3002\n2. \u63d0\u53d6\u53d1\u8a00\u4eba\u53ca\u5176\u89c2\u70b9\u3002\n3. \u7528 Markdown \u5217\u8868\u683c\u5f0f\u603b\u7ed3\u4f1a\u8bae\u7684\u4e3b\u8981\u7ed3\u8bba\u3002\n\u6587\u672c\uff1a{\u4f1a\u8bae\u8bb0\u5f55}\n
"},{"location":"Technology/AI%20usage/#1222-chain-of-thought-cot","title":"1.2.2.2 \u8fde\u7eed\u751f\u6210\u4efb\u52a1\u7684\u94fe\u5f0f\u601d\u8003\uff08Chain of Thought, CoT\uff09","text":"
CoT \u662f\u4e00\u79cd\u9010\u6b65\u601d\u8003\u7684\u63d0\u793a\u7b56\u7565\uff0c\u9002\u7528\u4e8e\u9700\u8981\u903b\u8f91\u63a8\u7406\u7684\u4efb\u52a1\u3002
- \u4e3a\u4f55\u4f7f\u7528 CoT\uff1f
- \u5e2e\u52a9\u6a21\u578b\u5c06\u590d\u6742\u4efb\u52a1\u5206\u89e3\u4e3a\u4e00\u7cfb\u5217\u6613\u4e8e\u89e3\u51b3\u7684\u5c0f\u4efb\u52a1\u3002
- \u63d0\u5347\u903b\u8f91\u63a8\u7406\u80fd\u529b\uff0c\u5c24\u5176\u9002\u7528\u4e8e\u6570\u5b66\u3001\u63a8\u7406\u6216\u590d\u6742\u95ee\u9898\u3002
- \u8bbe\u8ba1 CoT Prompt \u7684\u5173\u952e
- \u6307\u5bfc\u6a21\u578b\u9010\u6b65\u5b8c\u6210\u4efb\u52a1\u3002
- \u5f3a\u8c03\u201c\u601d\u8003\u8fc7\u7a0b\u201d\u5e76\u8f93\u51fa\u6b65\u9aa4\u3002
- \u793a\u4f8b\uff1a
\u4efb\u52a1\uff1a\u8ba1\u7b97 \\((1362+5145)*145-(1517*42+24)\\) \u7684\u7ed3\u679c\u3002
CoT Prompt\uff1a
Text Only
\u8bf7\u5e2e\u6211\u8ba1\u7b97\u4ee5\u4e0b\u95ee\u9898\u7684\u7ed3\u679c\uff1a$(1362+5145)*145-(1517*42+24)$\u3002\n\u5c55\u793a\u4f60\u7684\u6bcf\u4e00\u6b65\u8ba1\u7b97\u8fc7\u7a0b\uff0c\u5e76\u786e\u4fdd\u8ba1\u7b97\u6b63\u786e\u3002\n
\u6a21\u578b\u751f\u6210\u793a\u4f8b\uff1a
Text Only
\u7b2c\u4e00\u6b65\uff1a\u8ba1\u7b97 (1362+5145)\uff0c\u7ed3\u679c\u4e3a 6507\u3002\n\u7b2c\u4e8c\u6b65\uff1a\u8ba1\u7b97 6507*145\uff0c\u7ed3\u679c\u4e3a 943515\u3002\n\u7b2c\u4e09\u6b65\uff1a\u8ba1\u7b97 1517*42\uff0c\u7ed3\u679c\u4e3a 63654\u3002\n\u7b2c\u56db\u6b65\uff1a\u8ba1\u7b97 63654+24\uff0c\u7ed3\u679c\u4e3a 63678\u3002\n\u7b2c\u4e94\u6b65\uff1a\u8ba1\u7b97 943515-63678\uff0c\u7ed3\u679c\u4e3a 879837\u3002\n\u7b54\u6848\uff1a879837\u3002\n
"},{"location":"Technology/AI%20usage/#1223","title":"1.2.2.3 \u793a\u4f8b\uff1a\u591a\u6b65\u9aa4\u4efb\u52a1\u7684\u5206\u89e3\u4e0e\u4f18\u5316","text":"
\u4efb\u52a1\uff1a\u64b0\u5199\u4e00\u4efd\u4ea7\u54c1\u8bbe\u8ba1\u6587\u6863\uff0c\u5305\u62ec\u9700\u6c42\u3001\u529f\u80fd\u5217\u8868\u3001\u8bbe\u8ba1\u65b9\u6848\u3002
\u591a\u6b65\u9aa4 Prompt\uff1a
Text Only
\u8bf7\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u64b0\u5199\u4e00\u4efd\u4ea7\u54c1\u8bbe\u8ba1\u6587\u6863\uff1a\n1. \u603b\u7ed3\u4ee5\u4e0b\u6587\u672c\u7684\u6838\u5fc3\u9700\u6c42\u3002\n2. \u6839\u636e\u9700\u6c42\u751f\u6210\u529f\u80fd\u5217\u8868\u3002\n3. \u4e3a\u6bcf\u4e2a\u529f\u80fd\u8bbe\u8ba1\u4e00\u4e2a\u8be6\u7ec6\u7684\u65b9\u6848\u3002\n\u6587\u672c\uff1a{\u8f93\u5165}\n
\u6a21\u578b\u8f93\u51fa\u793a\u4f8b\uff1a
Text Only
\u6838\u5fc3\u9700\u6c42\uff1a\u7528\u6237\u5e0c\u671b\u901a\u8fc7\u5e94\u7528\u5feb\u901f\u83b7\u53d6\u9644\u8fd1\u7684\u9910\u996e\u63a8\u8350\u3002\n\u529f\u80fd\u5217\u8868\uff1a\n- \u9910\u996e\u63a8\u8350\u7cfb\u7edf\n- \u7528\u6237\u504f\u597d\u8bbe\u7f6e\n- \u5730\u56fe\u5bfc\u822a\n\n\u8bbe\u8ba1\u65b9\u6848\uff1a\n- \u9910\u996e\u63a8\u8350\u7cfb\u7edf\uff1a\u6839\u636e\u7528\u6237\u4f4d\u7f6e\u548c\u504f\u597d\u5b9e\u65f6\u63a8\u8350\u9644\u8fd1\u7684\u9910\u9986\u3002\n- \u7528\u6237\u504f\u597d\u8bbe\u7f6e\uff1a\u5141\u8bb8\u7528\u6237\u81ea\u5b9a\u4e49\u53e3\u5473\u3001\u9884\u7b97\u548c\u83dc\u7cfb\u3002\n- \u5730\u56fe\u5bfc\u822a\uff1a\u63d0\u4f9b\u9910\u9986\u7684\u5b9e\u65f6\u4f4d\u7f6e\u548c\u6700\u4f73\u8def\u7ebf\u3002\n
"},{"location":"Technology/AI%20usage/#123","title":"1.2.3 \u89d2\u8272\u626e\u6f14","text":""},{"location":"Technology/AI%20usage/#1231","title":"1.2.3.1 \u6307\u5b9a\u6a21\u578b\u8eab\u4efd\u7684\u4f18\u52bf","text":"
\u901a\u8fc7\u4e3a\u6a21\u578b\u8bbe\u7f6e\u89d2\u8272\uff0c\u53ef\u4ee5\u5e2e\u52a9\u5176\u4ee5\u66f4\u9002\u5408\u4efb\u52a1\u7684\u65b9\u5f0f\u751f\u6210\u5185\u5bb9\u3002\u6a21\u578b\u89d2\u8272\u7684\u6307\u5b9a\u7c7b\u4f3c\u4e8e\u8bbe\u5b9a\u8bed\u5883\uff0c\u80fd\u591f\u66f4\u7cbe\u51c6\u5730\u63a7\u5236\u751f\u6210\u5185\u5bb9\u7684\u8bed\u8a00\u98ce\u683c\u3001\u7ec6\u8282\u548c\u4e13\u4e1a\u6027\u3002
- \u4e3a\u4ec0\u4e48\u9700\u8981\u89d2\u8272\u626e\u6f14\uff1f
- \u63d0\u9ad8\u751f\u6210\u51c6\u786e\u6027\uff1a\u6307\u5b9a\u89d2\u8272\u540e\uff0c\u6a21\u578b\u7684\u56de\u7b54\u4f1a\u66f4\u805a\u7126\u4e8e\u8be5\u89d2\u8272\u7684\u77e5\u8bc6\u9886\u57df\u3002
- \u589e\u5f3a\u8f93\u51fa\u98ce\u683c\u7684\u4e00\u81f4\u6027\uff1a\u6839\u636e\u89d2\u8272\u7684\u8bbe\u5b9a\uff0c\u8f93\u51fa\u4f1a\u7b26\u5408\u9884\u671f\u7684\u4e13\u4e1a\u6027\u6216\u521b\u610f\u6027\u3002
- \u793a\u4f8b
-
\u4efb\u52a1\uff1a\u64b0\u5199\u65c5\u6e38\u653b\u7565\u3002
Prompt\uff1a
Text Only\u4f60\u662f\u4e00\u4f4d\u64c5\u957f\u64b0\u5199\u65c5\u6e38\u6587\u6848\u7684\u5c0f\u7ea2\u4e66\u5185\u5bb9\u521b\u4f5c\u8005\uff0c\u8bf7\u64b0\u5199\u4e00\u4efd\u5173\u4e8e\u9752\u5c9b\u4e09\u65e5\u6e38\u7684\u653b\u7565\uff0c\u5f3a\u8c03\u666f\u70b9\u63a8\u8350\u3001\u7f8e\u98df\u5206\u4eab\u548c\u6444\u5f71\u6280\u5de7\u3002\n
-
\u4efb\u52a1\uff1a\u89e3\u91ca\u7f16\u7a0b\u6982\u5ff5\u3002
Prompt\uff1a
Text Only\u4f60\u662f\u4e00\u540d\u7ecf\u9a8c\u4e30\u5bcc\u7684 Python \u5f00\u53d1\u8005\uff0c\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\u89e3\u91ca\u4ee5\u4e0b\u4ee3\u7801\u7684\u529f\u80fd\uff0c\u5e76\u63d0\u4f9b\u6539\u8fdb\u5efa\u8bae\uff1a\n
\u4ee3\u7801\u793a\u4f8b\uff1a
Pythonnested_dict = lambda: defaultdict(nested_dict)\n
- \u591a\u89d2\u8272\u7ed3\u5408
"},{"location":"Technology/AI%20usage/#124","title":"1.2.4 \u683c\u5f0f\u5316\u4e0e\u7ed3\u6784\u5316\u8f93\u51fa","text":""},{"location":"Technology/AI%20usage/#1241-json","title":"1.2.4.1 JSON\u3001\u8868\u683c\u3001\u6e05\u5355\u7b49\u8f93\u51fa\u683c\u5f0f\u7684\u5e94\u7528\u573a\u666f","text":"
\u4e3a\u4fdd\u8bc1\u8f93\u51fa\u7684\u6613\u8bfb\u6027\u548c\u4fbf\u4e8e\u540e\u7eed\u5904\u7406\uff0c\u53ef\u4ee5\u660e\u786e\u8981\u6c42\u6a21\u578b\u8fd4\u56de\u7ed3\u679c\u7684\u683c\u5f0f\u5316\u8f93\u51fa\u3002\u4f8b\u5982\uff0cJSON \u683c\u5f0f\u9002\u5408\u6570\u636e\u5904\u7406\uff0c\u8868\u683c\u9002\u5408\u603b\u7ed3\u5206\u6790\uff0c\u6e05\u5355\u9002\u5408\u4efb\u52a1\u5206\u89e3\u3002
- \u4e3a\u4ec0\u4e48\u9700\u8981\u7ed3\u6784\u5316\u8f93\u51fa\uff1f
- \u63d0\u9ad8\u53ef\u8bfb\u6027\uff1a\u8f93\u51fa\u6613\u4e8e\u76f4\u63a5\u67e5\u770b\u548c\u7406\u89e3\u3002
- \u4fbf\u4e8e\u540e\u7eed\u5904\u7406\uff1a\u5c24\u5176\u5728\u6570\u636e\u5904\u7406\u6216\u7f16\u7a0b\u4efb\u52a1\u4e2d\uff0c\u7ed3\u6784\u5316\u6570\u636e\u53ef\u76f4\u63a5\u7528\u4e8e\u5176\u4ed6\u5de5\u5177\u6216\u4ee3\u7801\u3002
- \u793a\u4f8b
-
\u4efb\u52a1\uff1a\u63d0\u53d6\u6587\u672c\u4e2d\u7684\u5173\u952e\u4fe1\u606f\u5e76\u8fd4\u56de JSON \u683c\u5f0f\u3002
Prompt\uff1a
Text Only\u8bf7\u4ece\u4ee5\u4e0b\u6587\u672c\u4e2d\u63d0\u53d6\u5173\u952e\u4fe1\u606f\uff0c\u5305\u62ec\u4eba\u540d\u3001\u5730\u540d\u548c\u4e8b\u4ef6\uff0c\u4ee5 JSON \u683c\u5f0f\u8fd4\u56de\uff1a\n\u6587\u672c\uff1a{\u6587\u672c\u5185\u5bb9}\n\u8f93\u51fa\u683c\u5f0f\uff1a\n{\n \"\u4eba\u540d\": [\"\u4eba\u540d1\", \"\u4eba\u540d2\"],\n \"\u5730\u540d\": [\"\u5730\u540d1\", \"\u5730\u540d2\"],\n \"\u4e8b\u4ef6\": [\"\u4e8b\u4ef61\", \"\u4e8b\u4ef62\"]\n}\n
-
\u4efb\u52a1\uff1a\u603b\u7ed3\u4f1a\u8bae\u8bb0\u5f55\u5e76\u751f\u6210\u8868\u683c\u3002
Prompt\uff1a
Text Only\u8bf7\u603b\u7ed3\u4ee5\u4e0b\u4f1a\u8bae\u8bb0\u5f55\uff0c\u5e76\u5c06\u53d1\u8a00\u4eba\u53ca\u5176\u89c2\u70b9\u4ee5 Markdown \u8868\u683c\u7684\u5f62\u5f0f\u8f93\u51fa\u3002\n
\u6a21\u578b\u751f\u6210\u793a\u4f8b\uff1a
Markdown| \u53d1\u8a00\u4eba | \u89c2\u70b9 |\n|----------|-----------------------|\n| \u5f20\u4e09 | \u5f3a\u8c03\u5e02\u573a\u6269\u5f20\u7684\u91cd\u8981\u6027 |\n| \u674e\u56db | \u63d0\u8bae\u63d0\u9ad8\u7814\u53d1\u9884\u7b97 |\n
"},{"location":"Technology/AI%20usage/#1242","title":"1.2.4.2 \u4f7f\u7528\u5206\u9694\u7b26\uff08\u5982\u4e09\u5f15\u53f7\uff09\u660e\u786e\u4efb\u52a1\u7ed3\u6784","text":"
\u5206\u9694\u7b26\u53ef\u4ee5\u5e2e\u52a9\u533a\u5206\u4efb\u52a1\u63cf\u8ff0\u548c\u8f93\u5165\u5185\u5bb9\uff0c\u51cf\u8f7b\u6a21\u578b\u7684\u7406\u89e3\u8d1f\u62c5\u3002
- \u5178\u578b\u7528\u6cd5
-
\u660e\u786e\u8f93\u5165\u4e0e\u8f93\u51fa\u90e8\u5206\uff1a
Text Only\u4f7f\u7528\u4e09\u5f15\u53f7\u5206\u9694\u7684\u6587\u672c\u5b8c\u6210\u4efb\u52a1\uff1a\n\"\"\"\n{\u8f93\u5165\u5185\u5bb9}\n\"\"\"\n\u8bf7\u4e3a\u4e0a\u8ff0\u5185\u5bb9\u64b0\u5199\u6458\u8981\uff0c\u6458\u8981\u9700\u5305\u542b\u4e3b\u8981\u89c2\u70b9\uff0c\u5e76\u4ee5 Markdown \u5217\u8868\u5f62\u5f0f\u8f93\u51fa\u3002\n
- \u51cf\u5c11\u566a\u58f0\u5e72\u6270
-
\u5c06\u591a\u6bb5\u8f93\u5165\u5206\u5757\uff1a
Text Only\u7b2c1\u90e8\u5206\uff1a\n\"\"\"\n{\u7b2c\u4e00\u6bb5\u5185\u5bb9}\n\"\"\"\n\u7b2c2\u90e8\u5206\uff1a\n\"\"\"\n{\u7b2c\u4e8c\u6bb5\u5185\u5bb9}\n\"\"\"\n\u8bf7\u5206\u522b\u603b\u7ed3\u4ee5\u4e0a\u4e24\u90e8\u5206\u5185\u5bb9\uff0c\u5e76\u4ee5 Markdown \u5217\u8868\u5f62\u5f0f\u8f93\u51fa\u3002\n
"},{"location":"Technology/AI%20usage/#1243","title":"1.2.4.3 \u793a\u4f8b\uff1a\u4ece\u65e0\u683c\u5f0f\u5230\u6807\u51c6\u5316\u8f93\u51fa\u7684\u8f6c\u53d8","text":"
\u4efb\u52a1\uff1a\u4e3a\u4e00\u6bb5\u4ea7\u54c1\u8bc4\u8bba\u751f\u6210\u7ed3\u6784\u5316\u6458\u8981\u3002
\u65e0\u683c\u5f0f\u7684\u6307\u4ee4\uff1a
Text Only
\u8bf7\u603b\u7ed3\u4ee5\u4e0b\u4ea7\u54c1\u8bc4\u8bba\uff1a\n{\u8bc4\u8bba\u5185\u5bb9}\n
\u6807\u51c6\u5316\u7684\u6307\u4ee4\uff1a
Text Only
\u8bf7\u603b\u7ed3\u4ee5\u4e0b\u4ea7\u54c1\u8bc4\u8bba\uff0c\u5e76\u4ee5\u8868\u683c\u5f62\u5f0f\u8f93\u51fa\u3002\u8868\u683c\u5e94\u5305\u542b\u4ee5\u4e0b\u5b57\u6bb5\uff1a\u4f18\u70b9\u3001\u7f3a\u70b9\u3001\u5efa\u8bae\u3002\n\u8bc4\u8bba\uff1a\n\"\"\"\n{\u8bc4\u8bba\u5185\u5bb9}\n\"\"\"\n
\u8f93\u51fa\u793a\u4f8b\uff1a
Markdown
| \u4f18\u70b9 | \u7f3a\u70b9 | \u5efa\u8bae |\n|-----------------|---------------|--------------------|\n| \u4ef7\u683c\u4fbf\u5b9c | \u505a\u5de5\u4e00\u822c | \u6539\u5584\u4ea7\u54c1\u5916\u89c2\u8bbe\u8ba1 |\n| \u529f\u80fd\u9f50\u5168 | \u64cd\u4f5c\u590d\u6742 | \u7b80\u5316\u7528\u6237\u64cd\u4f5c\u6d41\u7a0b |\n
"},{"location":"Technology/AI%20usage/#13","title":"1.3 \u4f18\u5316\u4e0e\u8fed\u4ee3","text":""},{"location":"Technology/AI%20usage/#131-ai-prompt","title":"1.3.1 \u5982\u4f55\u901a\u8fc7 AI \u5e2e\u52a9\u6539\u5199\u6216\u4f18\u5316 Prompt\uff1f","text":""},{"location":"Technology/AI%20usage/#1311-ai-prompt","title":"1.3.1.1 \u4e3a\u4ec0\u4e48\u8ba9 AI \u4f18\u5316 Prompt\uff1f","text":"
AI \u64c5\u957f\u4ece\u5c11\u91cf\u8f93\u5165\u4e2d\u63d0\u53d6\u89c4\u5f8b\uff0c\u53ef\u4ee5\u5feb\u901f\u8c03\u6574\u8bed\u8a00\u98ce\u683c\u548c\u7ec6\u8282\uff0c\u5e2e\u52a9\u7528\u6237\u4f18\u5316 Prompt\uff0c\u5c24\u5176\u5728\u4efb\u52a1\u9700\u6c42\u6a21\u7cca\u6216\u7f3a\u4e4f\u6e05\u6670\u6307\u4ee4\u7684\u60c5\u51b5\u4e0b\u3002
"},{"location":"Technology/AI%20usage/#1312","title":"1.3.1.2 \u5177\u4f53\u65b9\u6cd5","text":"
- \u76f4\u63a5\u8bf7\u6c42 AI \u6539\u8fdb
- \u63d0\u4f9b\u521d\u59cb Prompt\uff0c\u8ba9 AI \u63d0\u51fa\u4f18\u5316\u5efa\u8bae\u3002
-
\u793a\u4f8b\uff1a \u539f\u59cb Prompt\uff1a
Text Only\u8bf7\u7528\u7b80\u5355\u7684\u8bed\u8a00\u89e3\u91ca\u4ee5\u4e0b\u6570\u5b66\u9898\u7684\u89e3\u6cd5\u3002\n
\u8bf7\u6c42\u4f18\u5316\uff1a
Text Only\u8bf7\u5e2e\u52a9\u4f18\u5316\u8fd9\u6bb5 Prompt\uff0c\u8ba9\u5b83\u66f4\u9002\u5408\u5c0f\u5b66\u516d\u5e74\u7ea7\u5b66\u751f\u3002\n
\u4f18\u5316\u7ed3\u679c\uff1a
Text Only\u4f60\u662f\u4e00\u4f4d\u5c0f\u5b66\u6570\u5b66\u8001\u5e08\uff0c\u8bf7\u7528\u901a\u4fd7\u6613\u61c2\u7684\u8bed\u8a00\uff0c\u7ed3\u5408\u751f\u6d3b\u4e2d\u7684\u4f8b\u5b50\uff0c\u89e3\u91ca\u4ee5\u4e0b\u6570\u5b66\u9898\u7684\u89e3\u6cd5\u3002\n
- \u901a\u8fc7\u51e0\u8f6e\u4ea4\u4e92\u5fae\u8c03 Prompt
-
\u793a\u4f8b\uff1a \u7b2c1\u8f6e\u4f18\u5316\uff1a
Text Only\u8fd9\u4e2a Prompt \u6bd4\u8f83\u9002\u5408\u521d\u5b66\u8005\uff0c\u4f46\u53ef\u4ee5\u589e\u52a0\u4e00\u4e9b\u751f\u6d3b\u5316\u7684\u4f8b\u5b50\u6765\u63d0\u5347\u5438\u5f15\u529b\u3002\n
-
\u7b2c2\u8f6e\u4f18\u5316\uff1a
Text Only\u7ed3\u5408\u751f\u6d3b\u4e2d\u7684\u5b9e\u4f8b\u8865\u5145\uff0c\u5982\u201c\u901a\u8fc7\u4e70\u82f9\u679c\u6765\u8ba1\u7b97\u603b\u4ef7\u201d\uff0c\u4f7f\u5f97\u8bb2\u89e3\u66f4\u52a0\u751f\u52a8\u3002\n
- \u81ea\u52a8\u5316\u4f18\u5316\u5de5\u5177
- \u4f7f\u7528\u5982 OpenAI \u63d0\u4f9b\u7684 API\uff0c\u901a\u8fc7\u52a8\u6001\u8c03\u6574\u6d4b\u8bd5\u591a\u4e2a\u7248\u672c\u7684 Prompt\uff0c\u627e\u5230\u6700\u4f73\u89e3\u51b3\u65b9\u6848\u3002
"},{"location":"Technology/AI%20usage/#132","title":"1.3.2 \u7ed3\u5408\u5916\u90e8\u5de5\u5177\u63d0\u5347\u6548\u7387","text":""},{"location":"Technology/AI%20usage/#1321-api","title":"1.3.2.1 \u8c03\u7528 API \u6216\u4ee3\u7801\u6267\u884c\u5b9e\u73b0\u590d\u6742\u529f\u80fd","text":"
\u5927\u6a21\u578b\u5bf9\u8ba1\u7b97\u548c\u5b9e\u65f6\u6570\u636e\u7684\u652f\u6301\u6709\u9650\uff0c\u56e0\u6b64\u7ed3\u5408\u5916\u90e8\u5de5\u5177\uff0c\u5982 API \u8c03\u7528\u6216\u4ee3\u7801\u6267\u884c\uff0c\u53ef\u4ee5\u63d0\u5347\u4efb\u52a1\u7684\u51c6\u786e\u6027\u3002
- \u8bf7\u6c42\u751f\u6210\u4ee3\u7801\u6765\u6267\u884c\u8ba1\u7b97
-
\u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u6c42\u89e3\u591a\u9879\u5f0f\u7684\u6240\u6709\u5b9e\u6839\u3002 Prompt\uff1a
Text Only\u8bf7\u7528 Python \u7f16\u5199\u4ee3\u7801\u6765\u8ba1\u7b97\u4ee5\u4e0b\u591a\u9879\u5f0f\u7684\u6240\u6709\u5b9e\u6839\uff1a\n\u591a\u9879\u5f0f\uff1a3x^3 - 5x^2 + 2x - 7\n\u8f93\u51fa Python \u4ee3\u7801\u5e76\u89e3\u91ca\u5176\u4f5c\u7528\u3002\n
\u8f93\u51fa\u7ed3\u679c\uff1a
Pythonimport numpy as np\ncoefficients = [3, -5, 2, -7]\nroots = np.roots(coefficients)\nprint(\"\u5b9e\u6839\u4e3a\uff1a\", [r for r in roots if np.isreal(r)])\n
\u89e3\u91ca\uff1a\u6b64\u4ee3\u7801\u4f7f\u7528 NumPy \u7684 roots
\u51fd\u6570\u8ba1\u7b97\u591a\u9879\u5f0f\u7684\u6240\u6709\u6839\uff0c\u5e76\u8fc7\u6ee4\u51fa\u5b9e\u6839\u3002
- \u7ed3\u5408\u5916\u90e8\u6570\u636e\u6216\u5de5\u5177
- \u793a\u4f8b\uff1a\u4f7f\u7528\u5411\u91cf\u6570\u636e\u5e93\u67e5\u8be2\u77e5\u8bc6\u5e93\u4e2d\u7684\u4fe1\u606f\uff0c\u4f5c\u4e3a\u751f\u6210\u7b54\u6848\u7684\u8865\u5145\u3002
"},{"location":"Technology/AI%20usage/#1322-markdown-latex","title":"1.3.2.2 \u8f93\u51fa\u6210 Markdown \u6216 LaTeX \u6587\u6863\u7684\u573a\u666f\u4e0e\u6280\u5de7","text":"
- Markdown \u683c\u5f0f\u5316
-
\u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u751f\u6210\u4f1a\u8bae\u7eaa\u8981\u3002 Prompt\uff1a
Text Only\u8bf7\u5c06\u4ee5\u4e0b\u4f1a\u8bae\u8bb0\u5f55\u603b\u7ed3\u4e3a Markdown \u683c\u5f0f\uff0c\u5305\u62ec\u53d1\u8a00\u4eba\u3001\u4e3b\u8981\u89c2\u70b9\u548c\u540e\u7eed\u4efb\u52a1\u3002\n
\u8f93\u51fa\uff1a
Markdown### \u4f1a\u8bae\u7eaa\u8981\n\n#### \u53d1\u8a00\u4eba\u53ca\u89c2\u70b9\n- **\u5f20\u4e09**\uff1a\u5efa\u8bae\u589e\u52a0\u5e02\u573a\u8425\u9500\u9884\u7b97\u3002\n- **\u674e\u56db**\uff1a\u5f3a\u8c03\u4f18\u5316\u4ea7\u54c1\u8d28\u91cf\u7684\u91cd\u8981\u6027\u3002\n\n#### \u540e\u7eed\u4efb\u52a1\n- \u5236\u5b9a\u65b0\u4e00\u5b63\u5ea6\u7684\u8425\u9500\u7b56\u7565\uff08\u8d1f\u8d23\u4eba\uff1a\u5f20\u4e09\uff09\u3002\n- \u8c03\u67e5\u7528\u6237\u5bf9\u5f53\u524d\u4ea7\u54c1\u7684\u6ee1\u610f\u5ea6\uff08\u8d1f\u8d23\u4eba\uff1a\u674e\u56db\uff09\u3002\n
- LaTeX \u683c\u5f0f\u5316
-
\u793a\u4f8b\uff1a \u4efb\u52a1\uff1a\u751f\u6210\u6570\u5b66\u516c\u5f0f\u3002 Prompt\uff1a
Text Only\u8bf7\u7528 LaTeX \u683c\u5f0f\u4e66\u5199\u4ee5\u4e0b\u516c\u5f0f\u5e76\u89e3\u91ca\uff1a$(a+b)^2 = a^2 + 2ab + b^2$\u3002\n
\u8f93\u51fa\uff1a
TeX\\[\n(a+b)^2 = a^2 + 2ab + b^2\n\\]\n\u8fd9\u662f\u4e00\u4e2a\u57fa\u672c\u7684\u5e73\u65b9\u5c55\u5f00\u516c\u5f0f\uff0c\u5e38\u7528\u4e8e\u591a\u9879\u5f0f\u7684\u8ba1\u7b97\u3002\n
"},{"location":"Technology/AI%20usage/#133-prompt","title":"1.3.3 \u589e\u5f3a Prompt \u7684\u7075\u6d3b\u6027","text":""},{"location":"Technology/AI%20usage/#1331","title":"1.3.3.1 \u4e3a\u5f00\u653e\u5f0f\u4efb\u52a1\u8bbe\u7f6e\u515c\u5e95\u7b56\u7565","text":"
\u5f00\u653e\u5f0f\u4efb\u52a1\uff08\u5982\u5199\u6545\u4e8b\u6216\u63a8\u8350\u65b9\u6848\uff09\u5bb9\u6613\u5bfc\u81f4\u6a21\u578b\u201c\u8dd1\u9898\u201d\uff0c\u901a\u8fc7\u515c\u5e95\u7b56\u7565\u53ef\u63d0\u9ad8\u7a33\u5b9a\u6027\u3002
- \u660e\u786e\u4e0d\u7b26\u5408\u6761\u4ef6\u65f6\u7684\u56de\u590d
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u73b0\u5728\u4f60\u662f\u4e00\u4e2a\u5411\u5ba2\u6237\u63a8\u8350\u7535\u5f71\u7684\u52a9\u624b\u3002\u5982\u679c\u5ba2\u6237\u7684\u4fe1\u606f\u4e0d\u8db3\u4ee5\u7ed9\u51fa\u63a8\u8350\uff0c\u8bf7\u56de\u7b54\uff1a\u201c\u62b1\u6b49\uff0c\u6211\u65e0\u6cd5\u6839\u636e\u60a8\u7684\u63cf\u8ff0\u63a8\u8350\u7535\u5f71\u3002\u201d\u3002\n
\u8f93\u5165\uff1a
Text Only\u5ba2\u6237\uff1a\u5e2e\u6211\u63a8\u8350\u4e00\u90e8\u7535\u5f71\u3002\n
\u8f93\u51fa\uff1a
Text Only\u62b1\u6b49\uff0c\u6211\u65e0\u6cd5\u6839\u636e\u60a8\u7684\u63cf\u8ff0\u63a8\u8350\u7535\u5f71\u3002\n
- \u5b9a\u4e49\u5bb9\u9519\u673a\u5236
-
\u793a\u4f8b\uff1a\u5f53\u751f\u6210\u7ed3\u679c\u4e0d\u7b26\u5408\u683c\u5f0f\u65f6\uff0c\u8981\u6c42\u91cd\u65b0\u751f\u6210\u3002
Text Only\u5982\u679c\u4ee5\u4e0b\u5185\u5bb9\u7684\u8f93\u51fa\u683c\u5f0f\u9519\u8bef\uff0c\u8bf7\u91cd\u65b0\u751f\u6210\u5e76\u786e\u4fdd\u7b26\u5408\u8981\u6c42\uff1a\n\u8f93\u51fa\u683c\u5f0f\uff1a\n- \u4efb\u52a1\u63cf\u8ff0\n- \u4efb\u52a1\u8981\u70b9\n- \u4efb\u52a1\u5efa\u8bae\n
"},{"location":"Technology/AI%20usage/#1332","title":"1.3.3.2 \u6dfb\u52a0\u5f3a\u8c03\u8bcd\u4e0e\u7b26\u53f7\u63d0\u5347\u6307\u4ee4\u6743\u91cd","text":"
\u4f7f\u7528\u7279\u6b8a\u7b26\u53f7\uff08\u5982\u52a0\u7c97\uff09\u6216\u5f3a\u8c03\u8bcd\uff08\u5982\u201c\u52a1\u5fc5\u201d\u3001\u201c\u4e25\u683c\u201d\uff09\u6807\u6ce8\u5173\u952e\u5185\u5bb9\u3002
- \u793a\u4f8b\uff1a
\u4efb\u52a1\uff1a\u603b\u7ed3\u6587\u7ae0\u5e76\u5f3a\u8c03\u5173\u952e\u6982\u5ff5\u3002 Prompt\uff1a
Text Only
```text\n \u8bf7\u603b\u7ed3\u4ee5\u4e0b\u6587\u7ae0\uff0c\u5e76**\u52a0\u7c97**\u6bcf\u4e2a\u8981\u70b9\u4e2d\u7684\u5173\u952e\u6982\u5ff5\uff0c\u4ee5 Markdown \u5217\u8868\u5f62\u5f0f\u8f93\u51fa\u3002\n ```\n\n **\u8f93\u51fa**\uff1a\n\n ```markdown\n - **\u8981\u70b9\u4e00**\uff1a\u673a\u5668\u5b66\u4e60\u662f\u901a\u8fc7\u6570\u636e\u8bad\u7ec3\u6a21\u578b\u7684**\u65b9\u6cd5**\u3002\n - **\u8981\u70b9\u4e8c**\uff1a\u6df1\u5ea6\u5b66\u4e60\u662f\u673a\u5668\u5b66\u4e60\u7684**\u5206\u652f**\uff0c\u4ee5\u591a\u5c42\u795e\u7ecf\u7f51\u7edc\u4e3a\u6838\u5fc3\u3002\n ```\n
"},{"location":"Technology/AI%20usage/#14","title":"1.4 \u5b9e\u7528\u6848\u4f8b","text":""},{"location":"Technology/AI%20usage/#141","title":"1.4.1 \u5e38\u89c1\u573a\u666f\u4e0e\u89e3\u51b3\u65b9\u6848","text":""},{"location":"Technology/AI%20usage/#1411","title":"1.4.1.1 \u751f\u6210\u957f\u7bc7\u7684\u6587\u7ae0","text":"
- \u9010\u6b65\u751f\u6210\u957f\u6587\u5185\u5bb9
- \u65b9\u6cd5\uff1a\u5148\u751f\u6210\u76ee\u5f55\uff0c\u518d\u9010\u90e8\u5206\u6269\u5c55\u5185\u5bb9\u3002
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u8bf7\u4e3a\u4ee5\u4e0b\u4e3b\u9898\u751f\u6210\u4e00\u4efd\u8be6\u7ec6\u7684\u6587\u7ae0\u76ee\u5f55\uff0c\u7136\u540e\u57fa\u4e8e\u76ee\u5f55\u9010\u6bb5\u6269\u5c55\u5185\u5bb9\uff1a\n\u4e3b\u9898\uff1a\u5982\u4f55\u4f18\u5316\u4e2a\u4eba\u65f6\u95f4\u7ba1\u7406\n
\u8f93\u51fa\u76ee\u5f55\u793a\u4f8b\uff1a
Markdown- \u7b2c\u4e00\u90e8\u5206\uff1a\u65f6\u95f4\u7ba1\u7406\u7684\u91cd\u8981\u6027\n- \u7b2c\u4e8c\u90e8\u5206\uff1a\u5e38\u89c1\u65f6\u95f4\u7ba1\u7406\u8bef\u533a\n- \u7b2c\u4e09\u90e8\u5206\uff1a\u9ad8\u6548\u65f6\u95f4\u7ba1\u7406\u7684\u65b9\u6cd5\n - 1. \u8bbe\u5b9a\u76ee\u6807\u4e0e\u4f18\u5148\u7ea7\n - 2. \u4f7f\u7528\u5de5\u5177\u4e0e\u6280\u672f\n - 3. \u57f9\u517b\u65f6\u95f4\u7ba1\u7406\u4e60\u60ef\n- \u7b2c\u56db\u90e8\u5206\uff1a\u6848\u4f8b\u5206\u6790\u4e0e\u5e94\u7528\n
\u6269\u5c55\u5185\u5bb9 Prompt\uff1a
Text Only\u8bf7\u8be6\u7ec6\u64b0\u5199\u7b2c\u4e00\u90e8\u5206\u201c\u65f6\u95f4\u7ba1\u7406\u7684\u91cd\u8981\u6027\u201d\u7684\u5185\u5bb9\uff0c\u63a7\u5236\u5728 300 \u5b57\u5de6\u53f3\u3002\n
- \u5728\u751f\u6210\u65f6\u6dfb\u52a0\u5f15\u7528\u6587\u732e
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u8bf7\u4e3a\u4ee5\u4e0b\u4e3b\u9898\u751f\u6210\u4e00\u7bc7 500 \u5b57\u7684\u6587\u7ae0\uff0c\u5e76\u5728\u6587\u7ae0\u672b\u5c3e\u9644\u4e0a\u76f8\u5173\u53c2\u8003\u6587\u732e\uff1a\n\u4e3b\u9898\uff1a\u4eba\u5de5\u667a\u80fd\u5982\u4f55\u6539\u53d8\u6559\u80b2\u884c\u4e1a\n
\u8f93\u51fa\uff1a
Markdown### \u4eba\u5de5\u667a\u80fd\u5982\u4f55\u6539\u53d8\u6559\u80b2\u884c\u4e1a\n\uff08\u6587\u7ae0\u5185\u5bb9\uff09\n#### \u53c2\u8003\u6587\u732e\n- \u674e\u56db\uff0c\u300a\u4eba\u5de5\u667a\u80fd\u4e0e\u6559\u80b2\u300b\uff0c2023\u5e74\u51fa\u7248\u3002\n- OpenAI\uff0c\u300aAI\u5728\u6559\u80b2\u9886\u57df\u7684\u5e94\u7528\u300b\uff0c2021\u5e74\u3002\n
"},{"location":"Technology/AI%20usage/#1412","title":"1.4.1.2 \u89e3\u91ca\u4ee3\u7801\u5e76\u751f\u6210\u8f85\u52a9\u56fe\u8868","text":"
- \u751f\u6210\u4ee3\u7801\u89e3\u91ca
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u4ee5\u4e0b\u662f Python \u4ee3\u7801\u7247\u6bb5\uff0c\u8bf7\u89e3\u91ca\u5176\u4f5c\u7528\uff1a\n```python\nnested_dict = lambda: defaultdict(nested_dict)\n
Text Only**\u8f93\u51fa**\uff1a\n```text\n\u6b64\u4ee3\u7801\u5b9a\u4e49\u4e86\u4e00\u4e2a\u5d4c\u5957\u5b57\u5178\u7684\u9012\u5f52\u7ed3\u6784\uff0c\u53ef\u4ee5\u52a8\u6001\u521b\u5efa\u4efb\u610f\u6df1\u5ea6\u7684\u5b57\u5178\u5c42\u7ea7\u3002\n\u793a\u4f8b\u7528\u6cd5\uff1a\ndata = nested_dict()\ndata['level1']['level2'] = \"value\"\n
- \u751f\u6210\u8f85\u52a9\u56fe\u8868
-
\u793a\u4f8b\uff1a Prompt\uff1a
Text Only\u8bf7\u6839\u636e\u4ee5\u4e0b\u63cf\u8ff0\u751f\u6210\u4e00\u6bb5 mermaid \u683c\u5f0f\u7684\u4ee3\u7801\uff0c\u7528\u4e8e\u5c55\u793a\u51fd\u6570\u8c03\u7528\u5173\u7cfb\uff1a\n\u63cf\u8ff0\uff1a\u51fd\u6570 A \u8c03\u7528\u51fd\u6570 B\uff0c\u51fd\u6570 B \u8c03\u7528\u51fd\u6570 C \u548c D\uff0c\u51fd\u6570 D \u8fd4\u56de\u7ed3\u679c\u3002\n
\u8f93\u51fa\uff1a
Text Onlygraph TD\nA --> B\nB --> C\nB --> D\nD --> Result\n
"},{"location":"Technology/AI%20usage/#142-prompt","title":"1.4.2 Prompt \u7684\u9650\u5236\u4e0e\u5e94\u5bf9\u7b56\u7565","text":""},{"location":"Technology/AI%20usage/#1421","title":"1.4.2.1 \u8bbe\u8ba1\u62d2\u7b54\u7b56\u7565\u63d0\u5347\u53ef\u9760\u6027","text":"
- \u907f\u514d\u5e7b\u89c9\u73b0\u8c61
-
\u63d0\u793a\u6a21\u578b\u4e0d\u8981\u56de\u7b54\u5176\u65e0\u6cd5\u786e\u5b9a\u7684\u5185\u5bb9\u3002 \u793a\u4f8b\uff1a
Text Only\u5982\u679c\u4f60\u4e0d\u77e5\u9053\u4ee5\u4e0b\u95ee\u9898\u7684\u7b54\u6848\uff0c\u8bf7\u56de\u590d\u201c\u4fe1\u606f\u4e0d\u8db3\u201d\u3002\n\u95ee\u9898\uff1a\u8c01\u662f\u7b2c\u4e00\u4e2a\u767b\u4e0a\u6708\u7403\u7684\u673a\u5668\u4eba\uff1f\n
\u8f93\u51fa\uff1a
Text Only\u4fe1\u606f\u4e0d\u8db3\u3002\n
- \u591a\u6b21\u751f\u6210\u4ee5\u786e\u8ba4\u7b54\u6848\u4e00\u81f4\u6027
"},{"location":"Technology/AI%20usage/#1422-ai","title":"1.4.2.2 \u591a\u4e2a AI \u534f\u4f5c","text":"
- \u6846\u67b6\u4e0e\u5185\u5bb9\u534f\u4f5c
-
\u901a\u8fc7\u4e0d\u540c\u6a21\u578b\u534f\u4f5c\u4f18\u5316\u5185\u5bb9\u751f\u6210\u3002 \u793a\u4f8b\u6d41\u7a0b\uff1a
- Prompt 1\uff1a\u8ba9 ChatGPT \u63d0\u4f9b\u6587\u7ae0\u6846\u67b6\u3002
Text Only\u8bf7\u4e3a\u4ee5\u4e0b\u4e3b\u9898\u751f\u6210\u8be6\u7ec6\u7684\u6587\u7ae0\u6846\u67b6\uff1a\n\u4e3b\u9898\uff1a\u5982\u4f55\u63d0\u5347\u56e2\u961f\u5408\u4f5c\u6548\u7387\n
- Prompt 2\uff1a\u5c06\u6846\u67b6\u5185\u5bb9\u4ea4\u7ed9\u53e6\u4e00\u4e2a\u6a21\u578b\u4f18\u5316\u8868\u8fbe\u3002
Text Only\u8bf7\u6839\u636e\u4ee5\u4e0b\u6846\u67b6\u64b0\u5199\u8be6\u7ec6\u5185\u5bb9\uff0c\u5e76\u8c03\u6574\u4e3a\u66f4\u4e13\u4e1a\u7684\u8bed\u8a00\u3002\n
- Prompt 3\uff1a\u4f7f\u7528\u53e6\u4e00\u4e2a\u5de5\u5177\uff08\u5982 Grammarly \u6216\u5176\u4ed6 AI\uff09\u6821\u5bf9\u548c\u4f18\u5316\u8bed\u8a00\u98ce\u683c\u3002
- \u4ee3\u7801\u4f18\u5316\u534f\u4f5c
Text Only
\u8bf7\u4f18\u5316\u4ee5\u4e0b\u4ee3\u7801\uff0c\u4f7f\u5176\u8fd0\u884c\u6548\u7387\u66f4\u9ad8\uff0c\u5e76\u63d0\u4f9b\u6ce8\u91ca\u8bf4\u660e\uff1a\n ```python\n def factorial(n):\n if n == 0:\n return 1\n else:\n return n * factorial(n-1)\n ```\n
"},{"location":"Technology/AI%20usage/#15","title":"1.5 \u6211\u66fe\u7ecf\u7528\u6cd5","text":"
- \u8f93\u51fa\u6587\u6863\uff1a\u901a\u8fc7 Markdown \u6216 LaTeX \u751f\u6210\u683c\u5f0f\u5316\u6587\u6863\u3002
- \u751f\u6210 README\uff1a\u8ba9 AI \u9605\u8bfb\u4ee3\u7801\u5e76\u64b0\u5199\u8bf4\u660e\u3002
- \u5f15\u7528\u6587\u732e\u5199\u8bba\u6587\uff1a\u5229\u7528 AI \u4e0a\u7f51\u67e5\u8be2\u8d44\u6599\uff0c\u63d0\u9ad8\u5b66\u672f\u5185\u5bb9\u8d28\u91cf\u3002
"},{"location":"Technology/AI%20usage/#2-prompt","title":"2 \u5e38\u7528\u7684 Prompt","text":"
\u8bf7\u53c2\u8003 \u5e38\u7528 prompt \u8bb0\u5f55 - wnc \u7684\u5496\u5561\u9986
"},{"location":"Technology/CMake/","title":"CMake \u76f8\u5173","text":"
\u7ea6 161 \u4e2a\u5b57 13 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
"},{"location":"Technology/CMake/#1","title":"1 \u6784\u5efa\u6700\u5c0f\u9879\u76ee","text":"
- CMake \u652f\u6301\u5927\u5199\u3001\u5c0f\u5199\u548c\u6df7\u5408\u5927\u5c0f\u5199\u547d\u4ee4\u3001
Text Only
mkdir build\ncd build\ncmake -G\"MinGW Makefiles\" ..\ncmake --build .\n
\u4e4b\u540e\u4f1a\u751f\u6210\u53ef\u6267\u884c\u6587\u4ef6
Text Only
step1/\n build/\n CMakeLists.txt\n tutorial.cpp\n
"},{"location":"Technology/CMake/#2-cmakelists-txt","title":"2 \u4f18\u5316 CMakeLists. txt \u6587\u4ef6","text":"CMake
cmake_minimum_required(VERSION 3.15)\n\n# set the project name\nproject(Tutorial)\n\nSET(SRC_LIST tutorial.cpp)\n\n# add the executable\nadd_executable(${PROJECT_NAME} ${SRC_LIST})\n
1.0.2 \u5206\u522b\u5bf9\u5e94 MAJOR MINOR PATCH
- set \u548c PROJECT_NAME
- \u6dfb\u52a0\u7248\u672c\u53f7\u548c\u914d\u7f6e\u5934\u6587\u4ef6
- \u6dfb\u52a0\u7f16\u8bd1\u65f6\u95f4\u6233
- \u6307\u5b9a C++\u6807\u51c6
- \u6dfb\u52a0\u5e93\uff08\u6dfb\u52a0\u5e93\u7684\u4f4d\u7f6e\uff0c\u5e93\u6587\u4ef6\u540d\uff0c\u5934\u6587\u4ef6\u540d\uff09
- \u5c06\u5e93\u8bbe\u7f6e\u4e3a\u53ef\u9009\u9879\uff08\u5206\u7ecf\u5178\u548c\u73b0\u4ee3\uff09
- \u6dfb\u52a0\u5e93\u7684\u4f7f\u7528\u8981\u6c42
- INTERFACE
- PRIVATE
- PUBLIC
- \u9759\u6001\u94fe\u63a5\u5e93/\u52a8\u6001\u94fe\u63a5\u5e93
- build \u76ee\u5f55\u4ecb\u7ecd
"},{"location":"Technology/CMake/#links","title":"links","text":"
- Site Unreachable
- IPADS\u65b0\u4eba\u57f9\u8bad\u7b2c\u4e8c\u8bb2\uff1aCMake_\u54d4\u54e9\u54d4\u54e9_bilibili
"},{"location":"Technology/Makeflie/","title":"Makeflie","text":"
\u7ea6 220 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
"},{"location":"Technology/Makeflie/#make","title":"Make \u57fa\u7840","text":""},{"location":"Technology/Makeflie/#make_1","title":"\u4ec0\u4e48\u662f Make","text":"
Make \u662f\u4e00\u4e2a\u81ea\u52a8\u5316\u6784\u5efa\u5de5\u5177\uff0c\u4f7f\u7528 Makefile \u6587\u4ef6\u6765\u5b9a\u4e49\u5982\u4f55\u7f16\u8bd1\u548c\u94fe\u63a5\u7a0b\u5e8f\u3002\u5b83\u901a\u8fc7\u68c0\u67e5\u6587\u4ef6\u7684\u65f6\u95f4\u6233\u6765\u51b3\u5b9a\u54ea\u4e9b\u6587\u4ef6\u9700\u8981\u91cd\u65b0\u7f16\u8bd1\u3002
"},{"location":"Technology/Makeflie/#makefile","title":"Makefile \u7684\u57fa\u672c\u7ed3\u6784","text":"
Makefile \u7684\u57fa\u672c\u7ed3\u6784\u7531\u76ee\u6807\u3001\u4f9d\u8d56\u548c\u547d\u4ee4\u7ec4\u6210\uff0c\u901a\u5e38\u5f62\u5f0f\u4e3a\uff1a
Text Only
target: dependencies \n command\n
"},{"location":"Technology/Makeflie/#makefile_1","title":"Makefile \u793a\u4f8b","text":"
\u8ba9\u6211\u4eec\u8003\u8651\u4e00\u4e2a\u7b80\u5355\u7684 C \u8bed\u8a00\u9879\u76ee\uff0c\u8be5\u793a\u4f8b\u5c06\u5c55\u793a\u5982\u4f55\u4f7f\u7528 Makefile \u6765\u7f16\u8bd1\u4e00\u4e2a\u5177\u6709\u591a\u4e2a\u6e90\u6587\u4ef6\u548c\u5934\u6587\u4ef6\u7684\u7a0b\u5e8f\uff0c\u5e76\u5c55\u793a Makefile \u76f8\u6bd4\u624b\u52a8\u547d\u4ee4\u884c\u7f16\u8bd1\u7684\u4f18\u52bf\u3002 \u7f16\u8bd1\u8fdb\u9636 - HPC\u5165\u95e8\u6307\u5357
"},{"location":"Technology/Makeflie/#make_2","title":"Make \u7684\u5e38\u7528\u547d\u4ee4","text":"
make
\uff1a\u6267\u884c\u9ed8\u8ba4\u76ee\u6807\uff0c\u4e0emake all
\u7b49\u6548\u3002 make <target>
\uff1a\u6267\u884c\u5b9a\u4e49\u7684<target>
\u76ee\u6807\uff0c\u5982\u679c\u6ca1\u6709\u8fd9\u4e2a\u76ee\u6807\u5c06\u8fd4\u56de\u9519\u8bef\u4fe1\u606f\u3002 make -j
\uff1a\u5e76\u884c\u6267\u884c\u6784\u5efa\uff0c\u4f7f\u7528\u672c\u673a\u7684\u5168\u90e8\u7ebf\u7a0b
"},{"location":"Technology/SSH/","title":"SSH\u914d\u7f6e\u6307\u5357","text":"
\u7ea6 641 \u4e2a\u5b57 195 \u884c\u4ee3\u7801 1 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
"},{"location":"Technology/SSH/#ssh_1","title":"\u4e00\u3001SSH\u57fa\u7840\u6982\u5ff5","text":""},{"location":"Technology/SSH/#1-ssh","title":"1. SSH\u5de5\u4f5c\u539f\u7406","text":"
SSH(Secure Shell)\u662f\u4e00\u79cd\u52a0\u5bc6\u7684\u7f51\u7edc\u534f\u8bae\uff0c\u901a\u8fc7\u5728\u4e0d\u5b89\u5168\u7684\u7f51\u7edc\u4e0a\u4e3a\u7f51\u7edc\u670d\u52a1\u63d0\u4f9b\u5b89\u5168\u7684\u4f20\u8f93\u73af\u5883\u3002SSH\u901a\u8fc7\u4f7f\u7528\u52a0\u5bc6\u6280\u672f\uff0c\u80fd\u591f\u6709\u6548\u9632\u6b62\u4e2d\u95f4\u4eba\u653b\u51fb\uff0c\u4fdd\u62a4\u6570\u636e\u4f20\u8f93\u7684\u5b89\u5168\u3002
SSH\u5de5\u4f5c\u6d41\u7a0b\uff1a 1. TCP\u8fde\u63a5\u5efa\u7acb\uff1a\u5ba2\u6237\u7aef\u548c\u670d\u52a1\u5668\u5efa\u7acbTCP\u8fde\u63a5\uff08\u9ed8\u8ba4\u7aef\u53e322\uff09 2. \u7248\u672c\u534f\u5546\uff1a\u53cc\u65b9\u4ea4\u6362\u7248\u672c\u4fe1\u606f\uff0c\u786e\u5b9a\u4f7f\u7528\u7684SSH\u534f\u8bae\u7248\u672c 3. \u5bc6\u94a5\u4ea4\u6362\uff1a\u4f7f\u7528Diffie-Hellman\u7b97\u6cd5\u4ea4\u6362\u4f1a\u8bdd\u5bc6\u94a5 4. \u8ba4\u8bc1\uff1a\u4f7f\u7528\u516c\u94a5\u6216\u5bc6\u7801\u8fdb\u884c\u8eab\u4efd\u9a8c\u8bc1 5. \u4f1a\u8bdd\uff1a\u5efa\u7acb\u52a0\u5bc6\u901a\u4fe1\u901a\u9053
"},{"location":"Technology/SSH/#2","title":"2. \u8ba4\u8bc1\u65b9\u5f0f\u8be6\u89e3","text":""},{"location":"Technology/SSH/#21","title":"2.1 \u5bc6\u7801\u8ba4\u8bc1","text":"
- \u6700\u7b80\u5355\u4f46\u6700\u4e0d\u5b89\u5168\u7684\u8ba4\u8bc1\u65b9\u5f0f
- \u5bb9\u6613\u53d7\u5230\u66b4\u529b\u7834\u89e3\u653b\u51fb
- \u4e0d\u63a8\u8350\u5728\u751f\u4ea7\u73af\u5883\u4e2d\u4f7f\u7528
"},{"location":"Technology/SSH/#22","title":"2.2 \u516c\u94a5\u8ba4\u8bc1","text":"
\u8ba4\u8bc1\u6d41\u7a0b 1. \u5ba2\u6237\u7aef\u53d1\u9001\u516c\u94a5\u4fe1\u606f\u7ed9\u670d\u52a1\u5668 2. \u670d\u52a1\u5668\u68c0\u67e5authorized_keys\u6587\u4ef6 3. \u670d\u52a1\u5668\u751f\u6210\u968f\u673a\u5b57\u7b26\u4e32\uff0c\u7528\u516c\u94a5\u52a0\u5bc6\u540e\u53d1\u9001\u7ed9\u5ba2\u6237\u7aef 4. \u5ba2\u6237\u7aef\u7528\u79c1\u94a5\u89e3\u5bc6\uff0c\u5c06\u7ed3\u679c\u8fd4\u56de\u670d\u52a1\u5668 5. \u670d\u52a1\u5668\u9a8c\u8bc1\u7ed3\u679c\uff0c\u5b8c\u6210\u8ba4\u8bc1
"},{"location":"Technology/SSH/#3","title":"3. \u5b89\u5168\u5efa\u8bae","text":""},{"location":"Technology/SSH/#31","title":"3.1 \u57fa\u672c\u5b89\u5168\u8bbe\u7f6e","text":"Bash
# /etc/ssh/sshd_config \u5b89\u5168\u914d\u7f6e\nPermitRootLogin no # \u7981\u6b62root\u76f4\u63a5\u767b\u5f55\nPasswordAuthentication no # \u7981\u7528\u5bc6\u7801\u8ba4\u8bc1\nPubkeyAuthentication yes # \u542f\u7528\u516c\u94a5\u8ba4\u8bc1\nPermitEmptyPasswords no # \u7981\u6b62\u7a7a\u5bc6\u7801\nProtocol 2 # \u53ea\u4f7f\u7528SSH2\u534f\u8bae\nMaxAuthTries 3 # \u6700\u5927\u8ba4\u8bc1\u5c1d\u8bd5\u6b21\u6570\nLoginGraceTime 30 # \u767b\u5f55\u8d85\u65f6\u65f6\u95f4\nX11Forwarding no # \u7981\u7528X11\u8f6c\u53d1\uff08\u9664\u975e\u9700\u8981\uff09\nAllowUsers user1 user2 # \u9650\u5236\u5141\u8bb8\u767b\u5f55\u7684\u7528\u6237\n
"},{"location":"Technology/SSH/#32","title":"3.2 \u5bc6\u94a5\u7ba1\u7406","text":"Bash
# \u751f\u6210\u5f3a\u5bc6\u94a5\nssh-keygen -t ed25519 -C \"your_email@example.com\" -a 100\n\n# \u5bc6\u94a5\u6743\u9650\u8bbe\u7f6e\nchmod 700 ~/.ssh\nchmod 600 ~/.ssh/id_ed25519\nchmod 644 ~/.ssh/id_ed25519.pub\nchmod 600 ~/.ssh/authorized_keys\nchmod 600 ~/.ssh/known_hosts\n
"},{"location":"Technology/SSH/#ssh_2","title":"\u5e38\u7528\u7684 SSH \u547d\u4ee4","text":"
SSH \u6559\u7a0b \u83dc\u9e1f\u6559\u7a0b
"},{"location":"Technology/SSH/#_1","title":"\u4e8c\u3001\u5b8c\u6574\u914d\u7f6e\u6307\u5357","text":""},{"location":"Technology/SSH/#1-linux","title":"1. Linux\u670d\u52a1\u5668\u914d\u7f6e","text":"Bash
# 1. \u5b89\u88c5SSH\u670d\u52a1\u5668\nsudo apt update\nsudo apt install openssh-server\n\n# 2. \u914d\u7f6eSSH\u670d\u52a1\nsudo nano /etc/ssh/sshd_config\n\n# 3. \u57fa\u672c\u5b89\u5168\u914d\u7f6e\nPort 22 # \u53ef\u4ee5\u4fee\u6539\u4e3a\u975e\u6807\u51c6\u7aef\u53e3\nListenAddress 0.0.0.0 # \u76d1\u542c\u5730\u5740\nProtocol 2\nPermitRootLogin no\nPasswordAuthentication no\nPubkeyAuthentication yes\nAuthorizedKeysFile .ssh/authorized_keys\nUsePAM yes\nX11Forwarding no\nPrintMotd no\nAcceptEnv LANG LC_*\nSubsystem sftp /usr/lib/openssh/sftp-server\n\n# 4. \u91cd\u542fSSH\u670d\u52a1\nsudo systemctl restart sshd\n\n# 5. \u68c0\u67e5\u670d\u52a1\u72b6\u6001\nsudo systemctl status sshd\n
"},{"location":"Technology/SSH/#2-windows-ssh","title":"2. Windows SSH\u914d\u7f6e","text":""},{"location":"Technology/SSH/#21-openssh","title":"2.1 \u5b89\u88c5OpenSSH","text":"
PowerShell
# \u4f7f\u7528PowerShell\u5b89\u88c5OpenSSH\n# \u68c0\u67e5OpenSSH\u72b6\u6001\nGet-WindowsCapability -Online | Where-Object Name -like 'OpenSSH*'\n\n# \u5b89\u88c5\u5ba2\u6237\u7aef\u548c\u670d\u52a1\u5668\nAdd-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0\nAdd-WindowsCapability -Online -Name OpenSSH.Server~~~~0.0.1.0\n\n# \u542f\u52a8SSH\u670d\u52a1\nStart-Service sshd\nSet-Service -Name sshd -StartupType 'Automatic'\n
\u5982\u679c\u6709\u7f51\u7edc\u95ee\u9898\u53ef\u4ee5\u4e0b\u8f7d\u5e76\u5b89\u88c5 OpenSSH \u7684\u79bb\u7ebf\u5b89\u88c5\u5305\uff1a
- \u60a8\u53ef\u4ee5\u5c1d\u8bd5\u4ece GitHub \u4e0a\u4e0b\u8f7d OpenSSH \u7684\u79bb\u7ebf\u5b89\u88c5\u5305\uff0c\u5e76\u6309\u7167\u4ee5\u4e0b\u6b65\u9aa4\u8fdb\u884c\u5b89\u88c5\uff1a
- \u8bbf\u95ee GitHub \u4e0a\u7684 Win32-OpenSSH \u53d1\u5e03\u9875\u9762\uff1aWin32-OpenSSH Releases
- \u4e0b\u8f7d\u9002\u7528\u4e8e\u60a8\u7684\u7cfb\u7edf\u7684\u5b89\u88c5\u5305\uff08Win32 \u6216 Win64\uff09\u3002
- \u89e3\u538b\u4e0b\u8f7d\u7684\u6587\u4ef6\u5230\u4e00\u4e2a\u76ee\u5f55\u3002
- \u4ee5\u7ba1\u7406\u5458\u6743\u9650\u6253\u5f00\u547d\u4ee4\u63d0\u793a\u7b26\uff08cmd\uff09\uff0c\u5e76\u5bfc\u822a\u5230\u89e3\u538b\u7684\u76ee\u5f55\u3002
- \u8fd0\u884c\u00a0
powershell.exe -ExecutionPolicy Bypass -File install-sshd.ps1
\u00a0\u6765\u5b89\u88c5 OpenSSH \u670d\u52a1\u3002
"},{"location":"Technology/SSH/#22-windows-ssh","title":"2.2 \u914d\u7f6eWindows SSH\u670d\u52a1","text":"PowerShell
# \u7f16\u8f91SSH\u914d\u7f6e\u6587\u4ef6\nnotepad \"$env:ProgramData\\ssh\\sshd_config\"\n\n# \u57fa\u672c\u914d\u7f6e\u5185\u5bb9\u4e0eLinux\u7c7b\u4f3c\uff0c\u4f46\u8def\u5f84\u9700\u8981\u8c03\u6574\nPubkeyAuthentication yes\nPasswordAuthentication no\nSubsystem sftp sftp-server.exe\n
"},{"location":"Technology/SSH/#3-ssh","title":"3. SSH\u5ba2\u6237\u7aef\u914d\u7f6e","text":""},{"location":"Technology/SSH/#31-ssh","title":"3.1 \u521b\u5efaSSH\u914d\u7f6e\u6587\u4ef6","text":"Bash
# ~/.ssh/config\n# \u5168\u5c40\u8bbe\u7f6e\nHost *\n ServerAliveInterval 60\n ServerAliveCountMax 3\n HashKnownHosts yes\n GSSAPIAuthentication no\n\n# GitHub\nHost github.com\n HostName github.com\n User git\n IdentityFile ~/.ssh/github_ed25519\n AddKeysToAgent yes\n\n# \u5f00\u53d1\u670d\u52a1\u5668\nHost dev\n HostName dev.example.com\n User developer\n Port 22\n IdentityFile ~/.ssh/dev_ed25519\n ForwardAgent yes\n\n# \u751f\u4ea7\u670d\u52a1\u5668\nHost prod\n HostName prod.example.com\n User deployer\n Port 22\n IdentityFile ~/.ssh/prod_ed25519\n ForwardAgent no\n
"},{"location":"Technology/SSH/#_2","title":"\u4e09\u3001\u5177\u4f53\u5b9e\u8df5\uff0c\u7528\u7b14\u8bb0\u672c\u8fde\u53f0\u5f0f\u673a","text":""},{"location":"Technology/SSH/#_3","title":"\u53f0\u5f0f\u7535\u8111\uff08\u670d\u52a1\u7aef\uff09\u914d\u7f6e\uff1a","text":"
- \u5b89\u88c5\u5e76\u542f\u52a8SSH\u670d\u52a1:
Bash
# Ubuntu/Debian\u7cfb\u7edf\nsudo apt install openssh-server\nsudo systemctl enable ssh\nsudo systemctl start ssh\n\n# \u68c0\u67e5SSH\u670d\u52a1\u72b6\u6001\nsudo systemctl status ssh\n
- \u914d\u7f6eSSH\u670d\u52a1:
Bash
# \u7f16\u8f91SSH\u670d\u52a1\u5668\u914d\u7f6e\nsudo nano /etc/ssh/sshd_config\n\n# \u6dfb\u52a0\u6216\u4fee\u6539\u4ee5\u4e0b\u914d\u7f6e\nPermitRootLogin no\nPasswordAuthentication no\nPubkeyAuthentication yes\nAllowUsers your_username # \u66ff\u6362\u4e3a\u60a8\u7684\u7528\u6237\u540d\n
- \u8bbe\u7f6e\u56fa\u5b9aIP\u6216\u52a8\u6001DNS:
Bash
# \u67e5\u770b\u5f53\u524dIP\nip addr show\n\n# \u5982\u679c\u662f\u52a8\u6001IP\uff0c\u5efa\u8bae\u8bbe\u7f6e\u9759\u6001IP\u6216\u4f7f\u7528\u52a8\u6001DNS\u670d\u52a1\n
"},{"location":"Technology/SSH/#_4","title":"\u7b14\u8bb0\u672c\uff08\u5ba2\u6237\u7aef\uff09\u914d\u7f6e\uff1a","text":"
- \u751f\u6210SSH\u5bc6\u94a5\u5bf9\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09:
Bash
ssh-keygen -t ed25519 -C \"your_laptop\"\n
- \u5c06\u516c\u94a5\u590d\u5236\u5230\u53f0\u5f0f\u673a:
Bash
# \u65b9\u6cd51\uff1a\u4f7f\u7528ssh-copy-id\nssh-copy-id -i ~/.ssh/id_ed25519.pub username@desktop_ip\n\n# \u65b9\u6cd52\uff1a\u624b\u52a8\u590d\u5236\ncat ~/.ssh/id_ed25519.pub | ssh username@desktop_ip \"mkdir -p ~/.ssh && cat >> ~/.ssh/authorized_keys\"\n
- \u914d\u7f6eSSH\u5ba2\u6237\u7aef:
Bash
# \u7f16\u8f91 ~/.ssh/config\nnano ~/.ssh/config\n\n# \u6dfb\u52a0\u4ee5\u4e0b\u914d\u7f6e\nHost desktop\n HostName 192.168.1.xxx # \u66ff\u6362\u4e3a\u53f0\u5f0f\u673a\u7684IP\n User your_username # \u66ff\u6362\u4e3a\u60a8\u7684\u7528\u6237\u540d\n Port 22\n IdentityFile ~/.ssh/id_ed25519\n ForwardX11 yes # \u5982\u679c\u9700\u8981\u56fe\u5f62\u754c\u9762\u8f6c\u53d1\n ForwardAgent yes\n Compression yes\n ServerAliveInterval 60\n
"},{"location":"Technology/SSH/#_5","title":"\u5e38\u7528\u8fde\u63a5\u547d\u4ee4\uff1a","text":"
- \u57fa\u672c\u8fde\u63a5:
Bash
# \u4ece\u7b14\u8bb0\u672c\u8fde\u63a5\u5230\u53f0\u5f0f\u673a\nssh desktop\n\n# \u4f7f\u7528\u56fe\u5f62\u754c\u9762\u8f6c\u53d1\nssh -X desktop\n
- \u6587\u4ef6\u4f20\u8f93:
Bash
# \u4ece\u7b14\u8bb0\u672c\u590d\u5236\u6587\u4ef6\u5230\u53f0\u5f0f\u673a\nscp /path/to/local/file desktop:/path/to/remote/\n\n# \u4ece\u53f0\u5f0f\u673a\u590d\u5236\u6587\u4ef6\u5230\u7b14\u8bb0\u672c\nscp desktop:/path/to/remote/file /path/to/local/\n
- \u7aef\u53e3\u8f6c\u53d1:
Bash
# \u672c\u5730\u7aef\u53e3\u8f6c\u53d1\nssh -L 8080:localhost:80 desktop\n\n# \u8fdc\u7a0b\u7aef\u53e3\u8f6c\u53d1\nssh -R 8080:localhost:80 desktop\n
"},{"location":"Technology/SSH/#_6","title":"\u56db\u3001\u9ad8\u7ea7\u64cd\u4f5c","text":""},{"location":"Technology/SSH/#1-ssh_1","title":"1. SSH\u7aef\u53e3\u8f6c\u53d1","text":""},{"location":"Technology/SSH/#11","title":"1.1 \u672c\u5730\u7aef\u53e3\u8f6c\u53d1","text":"Bash
# \u5c06\u672c\u57308080\u7aef\u53e3\u8f6c\u53d1\u5230\u8fdc\u7a0b80\u7aef\u53e3\nssh -L 8080:localhost:80 user@remote\n\n# \u4f7f\u7528\u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost tunnel\n HostName remote.example.com\n LocalForward 8080 localhost:80\n
"},{"location":"Technology/SSH/#12","title":"1.2 \u8fdc\u7a0b\u7aef\u53e3\u8f6c\u53d1","text":"Bash
# \u5c06\u8fdc\u7a0b3000\u7aef\u53e3\u8f6c\u53d1\u5230\u672c\u57303000\u7aef\u53e3\nssh -R 3000:localhost:3000 user@remote\n\n# \u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost remote-tunnel\n HostName remote.example.com\n RemoteForward 3000 localhost:3000\n
"},{"location":"Technology/SSH/#2-ssh","title":"2. SSH\u4ee3\u7406\u8f6c\u53d1","text":"Bash
# \u542f\u7528\u4ee3\u7406\u8f6c\u53d1\nssh -A user@remote\n\n# \u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost *\n ForwardAgent yes\n AddKeysToAgent yes\n
"},{"location":"Technology/SSH/#3_1","title":"3. \u8df3\u677f\u673a\u914d\u7f6e","text":"Bash
# \u901a\u8fc7\u8df3\u677f\u673a\u8fde\u63a5\nssh -J jumphost user@target\n\n# \u914d\u7f6e\u6587\u4ef6\u8bbe\u7f6e\nHost target\n HostName target.example.com\n ProxyJump jumphost\n
"},{"location":"Technology/SSH/#_7","title":"\u4e94\u3001\u6545\u969c\u6392\u67e5","text":""},{"location":"Technology/SSH/#1","title":"1. \u6700\u4f73\u5b9e\u8df5","text":"Bash
# 1. \u4f7f\u7528SSH\u914d\u7f6e\u6587\u4ef6\u7ba1\u7406\u8fde\u63a5\n# 2. \u4e3a\u4e0d\u540c\u7528\u9014\u4f7f\u7528\u4e0d\u540c\u7684\u5bc6\u94a5\n# 3. \u5b9a\u671f\u8f6e\u6362\u5bc6\u94a5\n# 4. \u4f7f\u7528ssh-agent\u7ba1\u7406\u5bc6\u94a5\n# 5. \u5907\u4efdSSH\u914d\u7f6e\u548c\u5bc6\u94a5\n
"},{"location":"Technology/SSH/#2_1","title":"2. \u5e38\u89c1\u95ee\u9898\u89e3\u51b3","text":"Bash
# \u8fde\u63a5\u88ab\u62d2\u7edd\nssh -v user@host # \u67e5\u770b\u8be6\u7ec6\u8fde\u63a5\u4fe1\u606f\n\n# \u6743\u9650\u95ee\u9898\nls -la ~/.ssh # \u68c0\u67e5\u6743\u9650\nchmod 600 ~/.ssh/id_ed25519\n\n# \u5bc6\u94a5\u95ee\u9898\nssh-add -l # \u67e5\u770b\u5df2\u52a0\u8f7d\u7684\u5bc6\u94a5\nssh-add ~/.ssh/id_ed25519 # \u6dfb\u52a0\u5bc6\u94a5\u5230agent\n
"},{"location":"Technology/SSH/#3_2","title":"3. \u65e5\u5fd7\u67e5\u770b","text":"Bash
# \u670d\u52a1\u5668\u7aef\nsudo tail -f /var/log/auth.log # Debian/Ubuntu\nsudo tail -f /var/log/secure # CentOS/RHEL\n\n# \u5ba2\u6237\u7aef\u8c03\u8bd5\nssh -vvv user@host # \u6700\u8be6\u7ec6\u7684\u8c03\u8bd5\u4fe1\u606f\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/","title":"Tabby + Zsh \u914d\u7f6e\u6307\u5357","text":"
\u7ea6 236 \u4e2a\u5b57 789 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 11 \u5206\u949f
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_1","title":"\u524d\u7f6e\u51c6\u5907","text":"
\u7cfb\u7edf\u8981\u6c42
Bash
# Ubuntu/Debian\nsudo apt update\nsudo apt install -y \\\n git \\\n curl \\\n wget \\\n build-essential \\\n cmake \\\n python3-pip \\\n pkg-config \\\n libssl-dev\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#zsh","title":"ZSH \u57fa\u7840\u914d\u7f6e","text":"
ZSH \u5b89\u88c5
Bash
# \u5b89\u88c5zsh\nsudo apt install zsh\n\n# \u8bbe\u7f6e\u4e3a\u9ed8\u8ba4shell\nchsh -s $(which zsh)\n\n# \u786e\u8ba4\u8bbe\u7f6e\necho $SHELL\n# \u5e94\u8be5\u8f93\u51fa: /usr/bin/zsh\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#1-oh-my-zsh","title":"1. Oh My Zsh \u5b89\u88c5","text":"Bash
# \u5b89\u88c5Oh My Zsh\nsh -c \"$(curl -fsSL https://raw.github.com/ohmyzsh/ohmyzsh/master/tools/install.sh)\"\n\n# \u5907\u4efd\u9ed8\u8ba4\u914d\u7f6e\ncp ~/.zshrc ~/.zshrc.backup\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2","title":"2. \u63d2\u4ef6\u7ba1\u7406\u5668\u5b89\u88c5","text":"Bash
# \u5b89\u88c5zinit\nbash -c \"$(curl --fail --show-error --silent --location https://raw.githubusercontent.com/zdharma-continuum/zinit/HEAD/scripts/install.sh)\"\n\n# \u7b49\u5f85\u5b89\u88c5\u5b8c\u6210\u540e\u91cd\u542f\u7ec8\u7aef\nexec zsh\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3","title":"3. \u57fa\u7840\u914d\u7f6e\u6587\u4ef6","text":"Bash
# \u521b\u5efa\u65b0\u7684\u914d\u7f6e\u6587\u4ef6\ncat << 'EOF' > ~/.zshrc\n# \u57fa\u7840\u8bbe\u7f6e\nexport ZSH=\"$HOME/.oh-my-zsh\"\nexport LANG=en_US.UTF-8\nexport EDITOR='nvim'\nexport VISUAL='nvim'\n\n# zinit\u914d\u7f6e\nsource \"$HOME/.local/share/zinit/zinit.git/zinit.zsh\"\nautoload -Uz _zinit\n(( ${+_comps} )) && _comps[zinit]=_zinit\n\n# \u52a0\u8f7d\u6838\u5fc3\u63d2\u4ef6\nzinit ice depth=1; zinit light romkatv/powerlevel10k # \u4e3b\u9898\nzinit light zsh-users/zsh-autosuggestions # \u547d\u4ee4\u5efa\u8bae\nzinit light zsh-users/zsh-syntax-highlighting # \u8bed\u6cd5\u9ad8\u4eae\nzinit light zsh-users/zsh-completions # \u8865\u5168\u589e\u5f3a\nzinit light agkozak/zsh-z # \u76ee\u5f55\u8df3\u8f6c\n\n# \u5386\u53f2\u8bb0\u5f55\u8bbe\u7f6e\nHISTFILE=\"$HOME/.zsh_history\"\nHISTSIZE=50000\nSAVEHIST=50000\nsetopt EXTENDED_HISTORY # \u8bb0\u5f55\u547d\u4ee4\u65f6\u95f4\u6233\nsetopt HIST_EXPIRE_DUPS_FIRST # \u4f18\u5148\u5220\u9664\u91cd\u590d\u547d\u4ee4\nsetopt HIST_IGNORE_DUPS # \u5ffd\u7565\u8fde\u7eed\u91cd\u590d\u547d\u4ee4\nsetopt HIST_IGNORE_SPACE # \u5ffd\u7565\u4ee5\u7a7a\u683c\u5f00\u5934\u7684\u547d\u4ee4\nsetopt HIST_VERIFY # \u6267\u884c\u5386\u53f2\u547d\u4ee4\u524d\u5c55\u793a\nsetopt INC_APPEND_HISTORY # \u5b9e\u65f6\u6dfb\u52a0\u5386\u53f2\u8bb0\u5f55\nsetopt SHARE_HISTORY # \u5171\u4eab\u5386\u53f2\u8bb0\u5f55\n\n# \u76ee\u5f55\u8bbe\u7f6e\nsetopt AUTO_CD \nsetopt AUTO_PUSHD \nsetopt PUSHD_IGNORE_DUPS \nsetopt PUSHD_MINUS \nDIRSTACKSIZE=20\n\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#4","title":"4. \u5b9e\u7528\u522b\u540d\u8bbe\u7f6e","text":"Bash
# \u6dfb\u52a0\u5230~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u57fa\u7840\u547d\u4ee4\u589e\u5f3a\nalias ls='ls --color=auto'\nalias ll='ls -lah'\nalias la='ls -A'\nalias l='ls -CF'\nalias grep='grep --color=auto'\nalias rm='rm -i'\nalias cp='cp -i'\nalias mv='mv -i'\nalias mkdir='mkdir -p'\nalias df='df -h'\nalias free='free -m'\nalias duf='du -sh *'\nalias ps='ps auxf'\nalias ping='ping -c 5'\nalias root='sudo -i'\nalias reboot='sudo reboot'\nalias poweroff='sudo poweroff'\n\n# Git\u5feb\u6377\u547d\u4ee4\nalias gs='git status'\nalias ga='git add'\nalias gaa='git add --all'\nalias gc='git commit -m'\nalias gp='git push'\nalias gl='git pull'\nalias gd='git diff'\nalias gco='git checkout'\nalias gb='git branch'\nalias gm='git merge'\nalias glog='git log --oneline --decorate --graph'\n\n# Docker\u5feb\u6377\u547d\u4ee4\nalias dk='docker'\nalias dkc='docker-compose'\nalias dkps='docker ps'\nalias dkst='docker stats'\nalias dktop='docker top'\nalias dkimg='docker images'\nalias dkpull='docker pull'\nalias dkex='docker exec -it'\n\n# \u5feb\u901f\u7f16\u8f91\nalias zshconfig=\"$EDITOR ~/.zshrc\"\nalias zshreload=\"source ~/.zshrc\"\nalias vimconfig=\"$EDITOR ~/.vimrc\"\nalias tmuxconfig=\"$EDITOR ~/.tmux.conf\"\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#5","title":"5. \u5b9e\u7528\u51fd\u6570","text":"Bash
# \u6dfb\u52a0\u5230~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u521b\u5efa\u5e76\u8fdb\u5165\u76ee\u5f55\nmkcd() {\n mkdir -p \"$1\" && cd \"$1\"\n}\n\n# \u63d0\u53d6\u538b\u7f29\u6587\u4ef6\nextract() {\n if [ -f $1 ]; then\n case $1 in\n *.tar.bz2) tar xjf $1 ;;\n *.tar.gz) tar xzf $1 ;;\n *.bz2) bunzip2 $1 ;;\n *.rar) unrar e $1 ;;\n *.gz) gunzip $1 ;;\n *.tar) tar xf $1 ;;\n *.tbz2) tar xjf $1 ;;\n *.tgz) tar xzf $1 ;;\n *.zip) unzip $1 ;;\n *.Z) uncompress $1 ;;\n *.7z) 7z x $1 ;;\n *) echo \"'$1' cannot be extracted\" ;;\n esac\n else\n echo \"'$1' is not a valid file\"\n fi\n}\n\n# \u5feb\u901f\u67e5\u627e\u6587\u4ef6\nff() { find . -type f -iname \"*$1*\" ; }\nfd() { find . -type d -iname \"*$1*\" ; }\n\n# \u5feb\u901f\u67e5\u770b\u8fdb\u7a0b\npsg() { ps aux | grep -v grep | grep -i -e VSZ -e \"$1\"; }\n\n# \u7f51\u7edc\u5de5\u5177\nmyip() {\n curl -s http://ipecho.net/plain\n echo\n}\n\n# \u5feb\u901fHTTP\u670d\u52a1\u5668\nserve() {\n local port=\"${1:-8000}\"\n python3 -m http.server \"$port\"\n}\n\n# Git\u65e5\u5fd7\u7f8e\u5316\ngll() {\n git log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset' --abbrev-commit\n}\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_2","title":"\u4e3b\u9898\u7f8e\u5316\u4e0e\u63d2\u4ef6\u589e\u5f3a","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#powerlevel10k","title":"\u4e00\u3001Powerlevel10k \u4e3b\u9898\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1","title":"1. \u5b89\u88c5\u5fc5\u8981\u5b57\u4f53","text":"Bash
# \u521b\u5efa\u5b57\u4f53\u76ee\u5f55\nmkdir -p ~/.local/share/fonts\n\n# \u4e0b\u8f7d\u63a8\u8350\u5b57\u4f53\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Regular.ttf\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Bold.ttf\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Italic.ttf\nwget -P /tmp https://github.com/romkatv/powerlevel10k-media/raw/master/MesloLGS%20NF%20Bold%20Italic.ttf\n\n# \u79fb\u52a8\u5b57\u4f53\u6587\u4ef6\nmv /tmp/MesloLGS*.ttf ~/.local/share/fonts/\n\n# \u66f4\u65b0\u5b57\u4f53\u7f13\u5b58\nfc-cache -f -v\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2_1","title":"2. \u4e3b\u9898\u914d\u7f6e","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# Powerlevel10k \u914d\u7f6e\n# \u542f\u7528 Powerlevel10k \u5373\u65f6\u63d0\u793a\nif [[ -r \"${XDG_CACHE_HOME:-$HOME/.cache}/p10k-instant-prompt-${(%):-%n}.zsh\" ]]; then\n source \"${XDG_CACHE_HOME:-$HOME/.cache}/p10k-instant-prompt-${(%):-%n}.zsh\"\nfi\n\n# \u52a0\u8f7d\u4e3b\u9898\nsource ~/.oh-my-zsh/custom/themes/powerlevel10k/powerlevel10k.zsh-theme\n\n# \u4e3b\u9898\u4e2a\u6027\u5316\u8bbe\u7f6e\nPOWERLEVEL9K_MODE='nerdfont-complete'\nPOWERLEVEL9K_LEFT_PROMPT_ELEMENTS=(\n os_icon # \u64cd\u4f5c\u7cfb\u7edf\u56fe\u6807\n dir # \u5f53\u524d\u76ee\u5f55\n vcs # git\u72b6\u6001\n newline # \u6362\u884c\n prompt_char # \u63d0\u793a\u7b26\n)\nPOWERLEVEL9K_RIGHT_PROMPT_ELEMENTS=(\n status # \u4e0a\u4e00\u4e2a\u547d\u4ee4\u7684\u72b6\u6001\n background_jobs # \u540e\u53f0\u4efb\u52a1\n load # \u7cfb\u7edf\u8d1f\u8f7d\n ram # \u5185\u5b58\u4f7f\u7528\n time # \u65f6\u95f4\n)\n\n# \u76ee\u5f55\u663e\u793a\u8bbe\u7f6e\nPOWERLEVEL9K_DIR_BACKGROUND='blue'\nPOWERLEVEL9K_DIR_FOREGROUND='black'\nPOWERLEVEL9K_SHORTEN_DIR_LENGTH=2\nPOWERLEVEL9K_SHORTEN_STRATEGY=\"truncate_middle\"\n\n# Git\u72b6\u6001\u8bbe\u7f6e\nPOWERLEVEL9K_VCS_CLEAN_BACKGROUND='green'\nPOWERLEVEL9K_VCS_UNTRACKED_BACKGROUND='yellow'\nPOWERLEVEL9K_VCS_MODIFIED_BACKGROUND='red'\nEOF\n\n# \u8fd0\u884c\u914d\u7f6e\u5411\u5bfc\uff08\u9996\u6b21\u4f7f\u7528\uff09\np10k configure\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_3","title":"\u4e8c\u3001\u9ad8\u7ea7\u63d2\u4ef6\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_1","title":"1. \u9ad8\u7ea7\u8865\u5168\u7cfb\u7edf","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u8865\u5168\u7cfb\u7edf\u914d\u7f6e\nautoload -Uz compinit\ncompinit\n\n# \u8865\u5168\u83dc\u5355\u8bbe\u7f6e\nzstyle ':completion:*' menu select\nzstyle ':completion:*' matcher-list 'm:{a-zA-Z}={A-Za-z}' # \u5ffd\u7565\u5927\u5c0f\u5199\nzstyle ':completion:*' list-colors ${(s.:.)LS_COLORS} # \u8865\u5168\u83dc\u5355\u7740\u8272\nzstyle ':completion:*' verbose yes # \u8be6\u7ec6\u8865\u5168\u83dc\u5355\nzstyle ':completion:*:descriptions' format '%U%B%d%b%u' # \u8865\u5168\u83dc\u5355\u683c\u5f0f\nzstyle ':completion:*:warnings' format '%BSorry, no matches for: %d%b'\nzstyle ':completion:*:*:kill:*:processes' list-colors '=(#b) #([0-9]#)*=0=01;31'\nzstyle ':completion:*:kill:*' command 'ps -u $USER -o pid,%cpu,tty,cputime,cmd'\n\n# \u4f7f\u7528\u7f13\u5b58\u52a0\u901f\u8865\u5168\nzstyle ':completion:*' use-cache on\nzstyle ':completion:*' cache-path ~/.zsh/cache\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-fzf","title":"2. FZF \u96c6\u6210\u914d\u7f6e","text":"Bash
# \u5b89\u88c5FZF\ngit clone --depth 1 https://github.com/junegunn/fzf.git ~/.fzf\n~/.fzf/install\n\n# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# FZF \u914d\u7f6e\nexport FZF_DEFAULT_COMMAND='fd --type f --hidden --follow --exclude .git'\nexport FZF_DEFAULT_OPTS='--height 40% --layout=reverse --border --preview \"bat --style=numbers --color=always --line-range :500 {}\"'\n\n# FZF \u5feb\u6377\u952e\nbindkey '^T' fzf-file-widget\nbindkey '^R' fzf-history-widget\nbindkey '^[c' fzf-cd-widget\n\n# FZF \u51fd\u6570\n# \u5feb\u901f\u6253\u5f00\u6587\u4ef6\nfe() {\n local file\n file=$(fzf --query=\"$1\" --select-1 --exit-0)\n [ -n \"$file\" ] && ${EDITOR:-vim} \"$file\"\n}\n\n# \u5feb\u901f\u5207\u6362\u76ee\u5f55\nfd() {\n local dir\n dir=$(find ${1:-.} -path '*/\\.*' -prune -o -type d -print 2> /dev/null | fzf +m)\n [ -n \"$dir\" ] && cd \"$dir\"\n}\n\n# \u641c\u7d22\u5386\u53f2\u547d\u4ee4\nfh() {\n print -z $( ([ -n \"$ZSH_NAME\" ] && fc -l 1 || history) | fzf +s --tac | sed -E 's/ *[0-9]*\\*? *//' | sed -E 's/\\\\/\\\\\\\\/g')\n}\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3_1","title":"3. \u589e\u5f3a\u76ee\u5f55\u5bfc\u822a","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u76ee\u5f55\u4e66\u7b7e\nhash -d proj=~/projects\nhash -d docs=~/Documents\nhash -d dl=~/Downloads\nhash -d pics=~/Pictures\n\n# z \u63d2\u4ef6\u914d\u7f6e\nZSHZ_DATA=~/.local/share/z/data\nZSHZ_MAX_SCORE=5000\nZSHZ_CASE=smart\n\n# \u76ee\u5f55\u5806\u6808\u5bfc\u822a\nsetopt AUTO_PUSHD # \u81ea\u52a8\u5c06\u76ee\u5f55\u52a0\u5165\u5806\u6808\nsetopt PUSHD_IGNORE_DUPS # \u5ffd\u7565\u91cd\u590d\u76ee\u5f55\nsetopt PUSHD_SILENT # \u9759\u9ed8\u6a21\u5f0f\nsetopt PUSHD_TO_HOME # pushd \u4e0d\u5e26\u53c2\u6570\u65f6\u7b49\u540c\u4e8e pushd $HOME\n\n# \u76ee\u5f55\u522b\u540d\nalias -g ...='../..'\nalias -g ....='../../..'\nalias -g .....='../../../..'\nalias d='dirs -v'\nfor index ({1..9}) alias \"$index\"=\"cd +${index}\"; unset index\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#4_1","title":"4. \u589e\u5f3a\u5386\u53f2\u8bb0\u5f55\u641c\u7d22","text":"Bash
# \u6dfb\u52a0\u5230 ~/.zshrc\ncat << 'EOF' >> ~/.zshrc\n# \u5386\u53f2\u8bb0\u5f55\u641c\u7d22\u914d\u7f6e\nbindkey '^[[A' history-substring-search-up\nbindkey '^[[B' history-substring-search-down\nbindkey '^P' history-substring-search-up\nbindkey '^N' history-substring-search-down\n\n# \u5386\u53f2\u8bb0\u5f55\u683c\u5f0f\u5316\nHIST_STAMPS=\"yyyy-mm-dd\"\nHISTORY_IGNORE=\"(ls|ls *|cd|cd *|pwd|exit|date|* --help)\"\n\n# \u547d\u4ee4\u6267\u884c\u65f6\u95f4\u663e\u793a\nREPORTTIME=10\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#tabby","title":"Tabby \u7ec8\u7aef\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#_4","title":"\u4e00\u3001\u5b89\u88c5\u548c\u521d\u59cb\u5316","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1-tabby","title":"1. \u5b89\u88c5 Tabby","text":"Bash
# Ubuntu/Debian\nwget https://github.com/Eugeny/tabby/releases/latest/download/tabby-1.0.0-linux-x64.deb\nsudo dpkg -i tabby-*.deb\nsudo apt-get install -f\n\n# \u786e\u4fdd\u5b57\u4f53\u652f\u6301\nfc-cache -fv\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2_2","title":"2. \u521d\u59cb\u914d\u7f6e","text":"YAML
# ~/.config/tabby/config.yaml\nconfig:\n version: 3\n\nterminal:\n shell: zsh # \u4f7f\u7528\u524d\u9762\u914d\u7f6e\u7684zsh\n fontSize: 14\n lineHeight: 1.2\n bell: 'off'\n copyOnSelect: true\n rightClick: menu\n\n # \u57fa\u7840\u73af\u5883\u53d8\u91cf\n environment:\n TERM: xterm-256color\n COLORTERM: truecolor\n\n # \u6027\u80fd\u8bbe\u7f6e\n performanceMode: true\n gpuAcceleration: true\n webGL: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_5","title":"\u4e8c\u3001\u5916\u89c2\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_2","title":"1. \u5b57\u4f53\u8bbe\u7f6e","text":"YAML
terminal:\n font: JetBrainsMono Nerd Font # \u786e\u4fdd\u5df2\u5b89\u88c5\n fontSize: 14\n lineHeight: 1.2\n ligatures: true # \u8fde\u5b57\u652f\u6301\n\n # \u5b57\u4f53\u56de\u9000\n fallbackFont: 'Sarasa Mono SC' # \u4e2d\u6587\u652f\u6301\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-dracula","title":"2. Dracula \u4e3b\u9898\u914d\u7f6e","text":"YAML
profiles:\n - name: Default\n theme:\n name: 'Dracula'\n\n colors:\n background: '#282a36'\n foreground: '#f8f8f2'\n cursor: '#f8f8f2'\n\n selection:\n background: '#44475a'\n foreground: '#f8f8f2'\n\n # ANSI Colors\n black: '#21222c'\n red: '#ff5555'\n green: '#50fa7b'\n yellow: '#f1fa8c'\n blue: '#bd93f9'\n magenta: '#ff79c6'\n cyan: '#8be9fd'\n white: '#f8f8f2'\n\n # Bright Colors\n brightBlack: '#6272a4'\n brightRed: '#ff6e6e'\n brightGreen: '#69ff94'\n brightYellow: '#ffffa5'\n brightBlue: '#d6acff'\n brightMagenta: '#ff92df'\n brightCyan: '#a4ffff'\n brightWhite: '#ffffff'\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3_2","title":"3. \u900f\u660e\u80cc\u666f\u914d\u7f6e","text":"YAML
terminal:\n background:\n type: 'image' # \u6216 'color'\n image: '~/.config/tabby/backgrounds/bg.jpg' # \u81ea\u5b9a\u4e49\u80cc\u666f\u56fe\u7247\n opacity: 0.85 # \u900f\u660e\u5ea6\n\n # \u4e9a\u514b\u529b\u6548\u679c\uff08Windows\uff09\n experimental:\n vibrancy: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_6","title":"\u4e09\u3001\u5feb\u6377\u952e\u914d\u7f6e","text":"YAML
hotkeys:\n # \u6807\u7b7e\u7ba1\u7406\n new-tab: ['Ctrl+T']\n close-tab: ['Ctrl+W']\n previous-tab: ['Ctrl+Shift+Tab']\n next-tab: ['Ctrl+Tab']\n\n # \u5206\u5c4f\u64cd\u4f5c\n split-right: ['Ctrl+Shift+E']\n split-bottom: ['Ctrl+Shift+O']\n split-nav-left: ['Alt+Left']\n split-nav-right: ['Alt+Right']\n split-nav-up: ['Alt+Up']\n split-nav-down: ['Alt+Down']\n\n # \u7ec8\u7aef\u64cd\u4f5c\n clear: ['Ctrl+L']\n copy: ['Ctrl+C']\n paste: ['Ctrl+V']\n search: ['Ctrl+Shift+F']\n\n # \u89c6\u56fe\u63a7\u5236\n zoom-in: ['Ctrl+Plus']\n zoom-out: ['Ctrl+Minus']\n reset-zoom: ['Ctrl+0']\n toggle-fullscreen: ['F11']\n\n # \u5feb\u901f\u547d\u4ee4\n command-palette: ['Ctrl+Shift+P']\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#ssh","title":"\u56db\u3001SSH \u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1-ssh","title":"1. \u57fa\u7840 SSH \u914d\u7f6e","text":"YAML
ssh:\n auth:\n agent: true\n privateKeys:\n - ~/.ssh/id_ed25519\n - ~/.ssh/id_rsa\n\n # \u8fde\u63a5\u4fdd\u6301\n keepaliveInterval: 30\n keepaliveCountMax: 3\n\n # \u8f6c\u53d1\u8bbe\u7f6e\n forwardAgent: true\n x11: false\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-ssh","title":"2. SSH \u8fde\u63a5\u914d\u7f6e","text":"YAML
ssh:\n profiles:\n - name: \"\u5f00\u53d1\u670d\u52a1\u5668\"\n group: \"\u5f00\u53d1\u73af\u5883\"\n host: dev.example.com\n port: 22\n user: username\n auth: publicKey\n privateKey: ~/.ssh/id_ed25519\n\n - name: \"\u751f\u4ea7\u670d\u52a1\u5668\"\n group: \"\u751f\u4ea7\u73af\u5883\"\n host: prod.example.com\n port: 22\n user: username\n auth: agent\n\n - name: \"\u8df3\u677f\u673a\"\n host: jump.example.com\n forwardAgent: true\n jumpHost: true # \u6807\u8bb0\u4e3a\u8df3\u677f\u673a\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_7","title":"\u4e94\u3001\u63d2\u4ef6\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_3","title":"1. \u6838\u5fc3\u63d2\u4ef6","text":"YAML
plugins:\n # SSH\u7ba1\u7406\n ssh:\n enabled: true\n\n # \u7ec8\u7aef\u5f55\u5236\n record:\n enabled: true\n directory: ~/terminal-records\n\n # \u547d\u4ee4\u9762\u677f\n commander:\n enabled: true\n\n # \u4e3b\u9898\u63d2\u4ef6\n community-color-schemes:\n enabled: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2_3","title":"2. \u6269\u5c55\u529f\u80fd","text":"YAML
# \u641c\u7d22\u589e\u5f3a\nsearch:\n enabled: true\n searchOptions:\n regex: true\n wholeWord: false\n caseSensitive: false\n\n# \u7ec8\u7aef\u5206\u5272\nsplit:\n autoRemove: true # \u81ea\u52a8\u5173\u95ed\u7a7a\u7ec8\u7aef\n copyOnSelect: true\n pasteOnMiddleClick: true\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_8","title":"\u516d\u3001\u6027\u80fd\u4f18\u5316","text":"YAML
# \u6027\u80fd\u76f8\u5173\u914d\u7f6e\nterminal:\n # \u57fa\u7840\u4f18\u5316\n performanceMode: true\n gpuAcceleration: true\n webGL: true\n\n # \u5386\u53f2\u8bb0\u5f55\n scrollback: 5000\n\n # \u8fdb\u7a0b\u7ba1\u7406\n autoClose: true\n closeOnExit: true\n\n # \u6e32\u67d3\u4f18\u5316\n smoothScroll: false\n experimentalFontRendering: false\n\n # \u8d44\u6e90\u9650\u5236\n environment:\n LIMIT_MEMORY: 512 # MB\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#_9","title":"\u5f00\u53d1\u5de5\u5177\u4e0e\u7ec8\u7aef\u5de5\u5177\u914d\u7f6e","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#_10","title":"\u4e00\u3001\u73b0\u4ee3\u547d\u4ee4\u884c\u5de5\u5177","text":""},{"location":"Technology/Tabby%20%2B%20Zsh/#1_4","title":"1. \u57fa\u7840\u5de5\u5177\u5b89\u88c5","text":"Bash
# \u5b89\u88c5\u57fa\u7840\u5de5\u5177\nsudo apt install -y \\\n exa `# \u73b0\u4ee3ls\u66ff\u4ee3\u54c1` \\\n bat `# \u73b0\u4ee3cat\u66ff\u4ee3\u54c1` \\\n ripgrep `# \u73b0\u4ee3grep\u66ff\u4ee3\u54c1` \\\n fd-find `# \u73b0\u4ee3find\u66ff\u4ee3\u54c1` \\\n duf `# \u73b0\u4ee3df\u66ff\u4ee3\u54c1` \\\n ncdu `# \u78c1\u76d8\u4f7f\u7528\u5206\u6790` \\\n tldr `# \u547d\u4ee4\u7b80\u5316\u8bf4\u660e` \\\n jq `# JSON\u5904\u7406` \\\n fzf `# \u6a21\u7cca\u641c\u7d22`\n\n# \u521b\u5efa\u522b\u540d\ncat << 'EOF' >> ~/.zshrc\n# \u73b0\u4ee3\u547d\u4ee4\u884c\u5de5\u5177\u522b\u540d\nalias ls='exa --icons'\nalias ll='exa -l --icons --git'\nalias la='exa -la --icons --git'\nalias lt='exa -T --icons --git-ignore'\nalias cat='batcat'\nalias find='fd'\nalias du='ncdu'\nalias df='duf'\nalias help='tldr'\n\n# fzf \u914d\u7f6e\nexport FZF_DEFAULT_OPTS=\"--height 40% --layout=reverse --border \\\n --preview 'batcat --style=numbers --color=always --line-range :500 {}'\"\nexport FZF_DEFAULT_COMMAND='fd --type f --hidden --follow --exclude .git'\nexport FZF_CTRL_T_COMMAND=\"$FZF_DEFAULT_COMMAND\"\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#2-ranger","title":"2. \u6587\u4ef6\u7ba1\u7406\u5668 - Ranger","text":"Bash
# \u5b89\u88c5ranger\u548c\u4f9d\u8d56\nsudo apt install ranger python3-pillow ueberzug\n\n# \u751f\u6210\u914d\u7f6e\u6587\u4ef6\nranger --copy-config=all\n\n# \u914d\u7f6eRanger\ncat << 'EOF' > ~/.config/ranger/rc.conf\n# \u57fa\u7840\u8bbe\u7f6e\nset preview_images true\nset preview_images_method ueberzug\nset show_hidden true\nset hostname_in_titlebar false\nset tilde_in_titlebar true\nset line_numbers relative\nset mouse_enabled true\n\n# \u914d\u8272\u65b9\u6848\nset colorscheme solarized\n\n# \u6587\u4ef6\u9884\u89c8\nset use_preview_script true\nset preview_files true\nset preview_directories true\nset collapse_preview true\n\n# \u5feb\u6377\u952e\nmap <C-f> fzf_select\nmap <C-p> shell -w echo %d/%f | xsel -b\nmap <C-g> shell lazygit\nEOF\n\n# \u6dfb\u52a0FZF\u96c6\u6210\ncat << 'EOF' > ~/.config/ranger/commands.py\nfrom ranger.api.commands import Command\nclass fzf_select(Command):\n def execute(self):\n import subprocess\n import os.path\n command=\"find -L . \\( -path '*/\\.*' -o -fstype 'dev' -o -fstype 'proc' \\) -prune \\\n -o -print 2> /dev/null | sed 1d | cut -b3- | fzf +m\"\n fzf = self.fm.execute_command(command, universal_newlines=True, stdout=subprocess.PIPE)\n stdout, stderr = fzf.communicate()\n if fzf.returncode == 0:\n fzf_file = os.path.abspath(stdout.rstrip('\\n'))\n if os.path.isdir(fzf_file):\n self.fm.cd(fzf_file)\n else:\n self.fm.select_file(fzf_file)\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#3-htopglances","title":"3. \u7cfb\u7edf\u76d1\u63a7 - htop/glances","text":"Bash
# \u5b89\u88c5\u5de5\u5177\nsudo apt install htop glances\n\n# htop\u914d\u7f6e\nmkdir -p ~/.config/htop\ncat << 'EOF' > ~/.config/htop/htoprc\n# \u57fa\u7840\u663e\u793a\u8bbe\u7f6e\nshow_cpu_frequency=1\nshow_cpu_temperature=1\nshow_program_path=0\nhighlight_base_name=1\nhighlight_megabytes=1\nhighlight_threads=1\n\n# \u663e\u793a\u8bbe\u7f6e\nfields=0 48 17 18 38 39 40 2 46 47 49 1\nsort_key=46\nsort_direction=-1\ntree_view=1\ntree_view_always_by_pid=0\n\n# \u989c\u8272\u8bbe\u7f6e\ncolor_scheme=0\nEOF\n\n# glances\u914d\u7f6e\nmkdir -p ~/.config/glances\ncat << 'EOF' > ~/.config/glances/glances.conf\n[global]\n# \u5237\u65b0\u95f4\u9694\nrefresh=2\n# \u5386\u53f2\u5927\u5c0f\nhistory_size=1200\n\n[cpu]\n# CPU \u8b66\u544a\u9608\u503c\ncareful=50\nwarning=70\ncritical=90\n\n[memory]\n# \u5185\u5b58\u8b66\u544a\u9608\u503c\ncareful=50\nwarning=70\ncritical=90\n\n[network]\n# \u7f51\u7edc\u5e26\u5bbd\u663e\u793a\u5355\u4f4d (bit/sec)\nunit=bit\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#4-git-lazygit","title":"4. Git \u5de5\u5177 - Lazygit","text":"Bash
# \u5b89\u88c5Lazygit\nLAZYGIT_VERSION=$(curl -s \"https://api.github.com/repos/jesseduffield/lazygit/releases/latest\" | grep -Po '\"tag_name\": \"v\\K[^\"]*')\ncurl -Lo lazygit.tar.gz \"https://github.com/jesseduffield/lazygit/releases/latest/download/lazygit_${LAZYGIT_VERSION}_Linux_x86_64.tar.gz\"\nsudo tar xf lazygit.tar.gz -C /usr/local/bin lazygit\n\n# \u914d\u7f6eLazygit\nmkdir -p ~/.config/lazygit\ncat << 'EOF' > ~/.config/lazygit/config.yml\ngui:\n # UI\u4e3b\u9898\n theme:\n lightTheme: false\n activeBorderColor:\n - green\n - bold\n inactiveBorderColor:\n - white\n selectedLineBgColor:\n - reverse\n # \u5e38\u7528\u8bbe\u7f6e \n showFileTree: true\n showRandomTip: false\n showCommandLog: false\n\ngit:\n # git\u8bbe\u7f6e\n paging:\n colorArg: always\n useConfig: true\n # commit\u8bbe\u7f6e\n commits:\n showGraph: always\n showWholeGraph: true\n # \u81ea\u52a8\u83b7\u53d6\n autoFetch: true\n # \u5206\u652f\u663e\u793a\n branchLogCmd: \"git log --graph --color=always --abbrev-commit --decorate --date=relative --pretty=medium {{branchName}} --\"\n\nkeybinding:\n # \u81ea\u5b9a\u4e49\u5feb\u6377\u952e\n universal:\n return: '<c-c>'\n quit: 'q'\n quit-alt1: '<esc>'\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#5_1","title":"5. \u4ee3\u7801\u641c\u7d22\u5de5\u5177","text":"Bash
# ripgrep\u914d\u7f6e\ncat << 'EOF' >> ~/.zshrc\n# ripgrep \u914d\u7f6e\nexport RIPGREP_CONFIG_PATH=\"$HOME/.ripgreprc\"\n\n# ripgrep \u522b\u540d\nalias rg='rg --smart-case'\nalias rgf='rg --files | rg'\nalias rgh='rg --hidden'\nalias rgc='rg --count'\n\n# fzf + ripgrep \u96c6\u6210\nfif() {\n if [ ! \"$#\" -gt 0 ]; then echo \"Need a string to search for!\"; return 1; fi\n rg --files-with-matches --no-messages \"$1\" | fzf --preview \"highlight -O ansi -l {} 2> /dev/null | rg --colors 'match:bg:yellow' --ignore-case --pretty --context 10 '$1' || rg --ignore-case --pretty --context 10 '$1' {}\"\n}\nEOF\n\n# \u521b\u5efaripgrep\u914d\u7f6e\u6587\u4ef6\ncat << 'EOF' > ~/.ripgreprc\n# \u9ed8\u8ba4\u914d\u7f6e\n--smart-case\n--hidden\n--follow\n--glob=!.git/*\n\n# \u641c\u7d22\u914d\u7f6e\n--max-columns=150\n--max-columns-preview\n\n# \u989c\u8272\u914d\u7f6e\n--colors=line:fg:yellow\n--colors=line:style:bold\n--colors=path:fg:green\n--colors=path:style:bold\n--colors=match:fg:black\n--colors=match:bg:yellow\n--colors=match:style:nobold\nEOF\n
"},{"location":"Technology/Tabby%20%2B%20Zsh/#6","title":"6. \u5b9e\u7528\u5f00\u53d1\u5de5\u5177","text":"Bash
# \u5b89\u88c5\u5f00\u53d1\u8f85\u52a9\u5de5\u5177\nsudo apt install -y \\\n shellcheck `# shell\u811a\u672c\u68c0\u67e5` \\\n python3-pip `# Python\u5305\u7ba1\u7406` \\\n nodejs npm `# Node.js\u73af\u5883` \\\n golang `# Go\u8bed\u8a00\u73af\u5883` \\\n docker.io `# Docker\u652f\u6301` \\\n postgresql-client `# \u6570\u636e\u5e93\u5ba2\u6237\u7aef` \\\n redis-tools `# Redis\u5ba2\u6237\u7aef` \\\n mycli `# MySQL\u5ba2\u6237\u7aef` \\\n httpie `# HTTP\u5ba2\u6237\u7aef`\n\n# \u6dfb\u52a0\u5b9e\u7528\u522b\u540d\u548c\u51fd\u6570\ncat << 'EOF' >> ~/.zshrc\n# Docker\u522b\u540d\nalias dk='docker'\nalias dkc='docker-compose'\nalias dkps='docker ps'\nalias dkst='docker stats'\nalias dkimg='docker images'\nalias dkpull='docker pull'\nalias dkexec='docker exec -it'\n\n# \u5f00\u53d1\u8f85\u52a9\u51fd\u6570\n# \u5feb\u901fHTTP\u670d\u52a1\u5668\nserve() {\n local port=\"${1:-8000}\"\n python3 -m http.server \"$port\"\n}\n\n# JSON\u683c\u5f0f\u5316\njson() {\n if [ -t 0 ]; then # \u53c2\u6570\u8f93\u5165\n python -m json.tool <<< \"$*\" | pygmentize -l json\n else # \u7ba1\u9053\u8f93\u5165\n python -m json.tool | pygmentize -l json\n fi\n}\n\n# Git\u5206\u652f\u6e05\u7406\ngit-clean() {\n git branch --merged | egrep -v \"(^\\*|master|main|dev)\" | xargs git branch -d\n}\n\n# \u73af\u5883\u53d8\u91cf\u7ba1\u7406\nenvfile() {\n if [[ -f \"$1\" ]]; then\n set -a\n source \"$1\"\n set +a\n else\n echo \"Error: File $1 not found\"\n return 1\n fi\n}\nEOF\n
"},{"location":"Technology/chezmoi/","title":"\u7528 chezmoi \u5b9e\u73b0\u8de8\u8bbe\u5907\u540c\u6b65\u914d\u7f6e","text":"
\u7ea6 512 \u4e2a\u5b57 142 \u884c\u4ee3\u7801 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
\u672c\u6307\u5357\u5c06\u5e2e\u52a9\u4f60\u4f7f\u7528 chezmoi \u7ba1\u7406\u4f60\u7684\u914d\u7f6e\u6587\u4ef6\uff08dotfiles\uff09\uff0c\u5e76\u4f7f\u7528\u5305\u7ba1\u7406\u5668\u7ef4\u62a4\u8f6f\u4ef6\u5217\u8868\u3002
"},{"location":"Technology/chezmoi/#_1","title":"\u524d\u671f\u51c6\u5907","text":""},{"location":"Technology/chezmoi/#1","title":"1. \u9700\u8981\u7684\u5de5\u5177","text":"
- Git
- GitHub \u8d26\u53f7
- chezmoi
- \u5305\u7ba1\u7406\u5668\uff08Windows: Scoop, Ubuntu: apt/snap\uff09
"},{"location":"Technology/chezmoi/#2","title":"2. \u91cd\u8981\u7684\u914d\u7f6e\u6587\u4ef6","text":"
Windows \u5e38\u7528\u914d\u7f6e\u6587\u4ef6:
Text Only
%USERPROFILE%/\n\u251c\u2500\u2500 .gitconfig # Git\u914d\u7f6e\n\u251c\u2500\u2500 .ssh/ # SSH\u914d\u7f6e\n\u251c\u2500\u2500 Documents/\n\u2502 \u2514\u2500\u2500 PowerShell/\n\u2502 \u2514\u2500\u2500 Microsoft.PowerShell_profile.ps1 # PowerShell\u914d\u7f6e\n\u251c\u2500\u2500 AppData/\n\u2502 \u251c\u2500\u2500 Roaming/\n\u2502 \u2502 \u2514\u2500\u2500 Code/\n\u2502 \u2502 \u2514\u2500\u2500 User/\n\u2502 \u2502 \u2514\u2500\u2500 settings.json # VSCode\u914d\u7f6e\n\u2502 \u2514\u2500\u2500 Local/\n\u2514\u2500\u2500 .config/\n \u2514\u2500\u2500 scoop/\n \u2514\u2500\u2500 config.json # Scoop\u914d\u7f6e\n
Ubuntu \u5e38\u7528\u914d\u7f6e\u6587\u4ef6:
Text Only
~/\n\u251c\u2500\u2500 .bashrc # Bash\u914d\u7f6e\n\u251c\u2500\u2500 .zshrc # Zsh\u914d\u7f6e\n\u251c\u2500\u2500 .gitconfig # Git\u914d\u7f6e\n\u251c\u2500\u2500 .ssh/ # SSH\u914d\u7f6e\n\u2514\u2500\u2500 .config/\n \u251c\u2500\u2500 Code/\n \u2502 \u2514\u2500\u2500 User/\n \u2502 \u2514\u2500\u2500 settings.json # VSCode\u914d\u7f6e\n \u2514\u2500\u2500 tabby/\n \u2514\u2500\u2500 config.yaml # Tabby\u7ec8\u7aef\u914d\u7f6e\n
"},{"location":"Technology/chezmoi/#github","title":"GitHub \u8bbe\u7f6e","text":""},{"location":"Technology/chezmoi/#1-github","title":"1. \u521b\u5efa GitHub \u4ed3\u5e93","text":"
- \u8bbf\u95ee GitHub \u5e76\u767b\u5f55
- \u70b9\u51fb \"New repository\"
- \u4ed3\u5e93\u540d\u79f0\u8bbe\u7f6e\u4e3a
dotfiles
- \u8bbe\u7f6e\u4e3a Public\uff08\u63a8\u8350\uff09
- \u4e0d\u8981\u521d\u59cb\u5316 README\uff08\u6211\u4eec\u5c06\u4ece\u672c\u5730\u521d\u59cb\u5316\uff09
- \u521b\u5efa\u4ed3\u5e93
"},{"location":"Technology/chezmoi/#2-ssh","title":"2. \u914d\u7f6e SSH \u5bc6\u94a5\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09","text":"Bash
# \u751f\u6210SSH\u5bc6\u94a5\nssh-keygen -t ed25519 -C \"your_email@example.com\"\n\n# \u5c06\u516c\u94a5\u6dfb\u52a0\u5230GitHub\n# 1. \u590d\u5236\u516c\u94a5\u5185\u5bb9\ncat ~/.ssh/id_ed25519.pub\n# 2. \u8bbf\u95ee GitHub \u2192 Settings \u2192 SSH and GPG keys \u2192 New SSH key\n# 3. \u7c98\u8d34\u516c\u94a5\u5185\u5bb9\u5e76\u4fdd\u5b58\n
"},{"location":"Technology/chezmoi/#windows","title":"Windows \u914d\u7f6e","text":""},{"location":"Technology/chezmoi/#1_1","title":"1. \u5b89\u88c5\u5fc5\u8981\u5de5\u5177","text":"
\u4f7f\u7528 PowerShell\uff08\u4ee5\u7ba1\u7406\u5458\u8eab\u4efd\u8fd0\u884c\uff09\uff1a
PowerShell
# \u5b89\u88c5Scoop\nSet-ExecutionPolicy RemoteSigned -Scope CurrentUser\nirm get.scoop.sh | iex\n\n# \u5b89\u88c5Git\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09\nscoop install git\n\n# \u5b89\u88c5chezmoi\nscoop install chezmoi\n
"},{"location":"Technology/chezmoi/#2-chezmoi","title":"2. \u521d\u59cb\u5316 chezmoi","text":"PowerShell
# \u521d\u59cb\u5316chezmoi\u5e76\u514b\u9686\u4f60\u7684\u4ed3\u5e93\nchezmoi init --apply https://github.com/yourusername/dotfiles.git\n# \u7528 ssh \u4e5f\u53ef\u4ee5\n\n# \u67e5\u770bchezmoi\u5c06\u8fdb\u884c\u7684\u66f4\u6539\nchezmoi diff\n\n# \u5c06\u73b0\u6709\u914d\u7f6e\u6587\u4ef6\u6dfb\u52a0\u5230chezmoi\nchezmoi add $HOME/.gitconfig\nchezmoi add $HOME/.ssh/config\nchezmoi add $HOME/Documents/PowerShell/Microsoft.PowerShell_profile.ps1\nchezmoi add $HOME/AppData/Roaming/Code/User/settings.json\n\n# \u63d0\u4ea4\u5e76\u63a8\u9001\u66f4\u6539\nchezmoi cd\ngit add .\ngit commit -m \"Initial Windows config\"\ngit push\n
"},{"location":"Technology/chezmoi/#3","title":"3. \u5bfc\u51fa\u8f6f\u4ef6\u5305\u5217\u8868","text":"PowerShell
# \u5bfc\u51faScoop\u5305\u5217\u8868\nscoop export > packages/scoop-packages.txt\n\n# \u63d0\u4ea4\u5305\u5217\u8868\nchezmoi cd\ngit add packages/scoop-packages.txt\ngit commit -m \"Add Windows package list\"\ngit push\n
"},{"location":"Technology/chezmoi/#ubuntu","title":"Ubuntu \u914d\u7f6e","text":""},{"location":"Technology/chezmoi/#1_2","title":"1. \u5b89\u88c5\u5fc5\u8981\u5de5\u5177","text":"Bash
# \u5b89\u88c5Git\uff08\u5982\u679c\u8fd8\u6ca1\u6709\uff09\nsudo apt update\nsudo apt install git\n\n# \u5b89\u88c5chezmoi\nsh -c \"$(curl -fsLS get.chezmoi.io)\"\n
\u53c2\u8003\u8fd9\u4e2a\u7f51\u7ad9 Install - chezmoi \u8fdb\u884c\u4e0b\u8f7d\uff0c\u6211\u547d\u4ee4\u884c\u4e00\u76f4\u4e0d\u6210\u529f\uff0c\u76f4\u63a5\u9009\u62e9\u5bf9\u5e94\u7684\u5305\u5c31\u884c\u4e86\u3002
Text Only
sudo dpkg -i chezmoi_2.54.0_linux_amd64.deb\nchezmoi --version\n
"},{"location":"Technology/chezmoi/#2-chezmoi_1","title":"2. \u521d\u59cb\u5316 chezmoi","text":"Bash
# \u521d\u59cb\u5316chezmoi\u5e76\u514b\u9686\u4f60\u7684\u4ed3\u5e93\nchezmoi init --apply https://github.com/yourusername/dotfiles.git\n\n# \u67e5\u770bchezmoi\u5c06\u8fdb\u884c\u7684\u66f4\u6539\nchezmoi diff\n\n# \u5c06\u73b0\u6709\u914d\u7f6e\u6587\u4ef6\u6dfb\u52a0\u5230chezmoi\nchezmoi add ~/.bashrc\nchezmoi add ~/.zshrc\nchezmoi add ~/.gitconfig\nchezmoi add ~/.ssh/config\nchezmoi add ~/.config/Code/User/settings.json\n\n# \u63d0\u4ea4\u5e76\u63a8\u9001\u66f4\u6539\nchezmoi cd\ngit add .\ngit commit -m \"Initial Ubuntu config\"\ngit push\n
"},{"location":"Technology/chezmoi/#3_1","title":"3. \u5bfc\u51fa\u8f6f\u4ef6\u5305\u5217\u8868","text":"Bash
chezmoi cd\nmkdir packages\n# \u5bfc\u51faapt\u5305\u5217\u8868\ndpkg --get-selections | grep -v deinstall | awk '{print $1}' > packages/apt-packages.txt\n\n# \u5bfc\u51fasnap\u5305\u5217\u8868\nsnap list | awk '{if (NR>1) print $1}' > packages/snap-packages.txt\n\n# \u63d0\u4ea4\u5305\u5217\u8868\ngit add packages/apt-packages.txt packages/snap-packages.txt\ngit commit -m \"Add Ubuntu package lists\"\ngit push\n
"},{"location":"Technology/chezmoi/#_2","title":"\u65e5\u5e38\u4f7f\u7528","text":""},{"location":"Technology/chezmoi/#1_3","title":"1. \u66f4\u65b0\u914d\u7f6e","text":"
\u5f53\u4f60\u4fee\u6539\u4e86\u914d\u7f6e\u6587\u4ef6\u540e\uff1a
Bash
# \u5c06\u66f4\u6539\u6dfb\u52a0\u5230chezmoi\nchezmoi add ~/.bashrc # \u6216\u5176\u4ed6\u4fee\u6539\u7684\u914d\u7f6e\u6587\u4ef6\n\n# \u67e5\u770b\u66f4\u6539\nchezmoi diff\n\n# \u63d0\u4ea4\u5e76\u63a8\u9001\u66f4\u6539\nchezmoi cd\ngit add .\ngit commit -m \"Update bashrc\"\ngit push\n
"},{"location":"Technology/chezmoi/#2_1","title":"2. \u5728\u5176\u4ed6\u673a\u5668\u4e0a\u540c\u6b65","text":"Bash
# \u62c9\u53d6\u5e76\u5e94\u7528\u6700\u65b0\u66f4\u6539\nchezmoi update\n
"},{"location":"Technology/chezmoi/#3_2","title":"3. \u66f4\u65b0\u8f6f\u4ef6\u5305\u5217\u8868","text":"
Windows:
PowerShell
# \u66f4\u65b0Scoop\u5305\u5217\u8868\nscoop export > packages/scoop-packages.txt\n
Ubuntu:
Bash
# \u66f4\u65b0apt\u5305\u5217\u8868\ndpkg --get-selections | grep -v deinstall | awk '{print $1}' > packages/apt-packages.txt\n\n# \u66f4\u65b0snap\u5305\u5217\u8868\nsnap list | awk '{if (NR>1) print $1}' > packages/snap-packages.txt\n
"},{"location":"Technology/chezmoi/#4","title":"4. \u5728\u65b0\u673a\u5668\u4e0a\u8bbe\u7f6e","text":"
Windows:
PowerShell
# \u5b89\u88c5chezmoi\nscoop install chezmoi\n\n# \u521d\u59cb\u5316\u5e76\u5e94\u7528\u914d\u7f6e\nchezmoi init https://github.com/yourusername/dotfiles.git\nchezmoi apply\n
Ubuntu:
Bash
# \u5b89\u88c5chezmoi\nsh -c \"$(curl -fsLS get.chezmoi.io)\"\n\n# \u521d\u59cb\u5316\u5e76\u5e94\u7528\u914d\u7f6e\nchezmoi init https://github.com/yourusername/dotfiles.git\nchezmoi apply\n
"},{"location":"Technology/chezmoi/#_3","title":"\u5e38\u89c1\u95ee\u9898","text":""},{"location":"Technology/chezmoi/#1_4","title":"1. \u5982\u4f55\u5904\u7406\u4e0d\u540c\u673a\u5668\u7684\u7279\u5b9a\u914d\u7f6e\uff1f","text":"
\u4f7f\u7528\u6a21\u677f\u548c\u6761\u4ef6\u8bed\u53e5\u3002\u5728 .chezmoi.toml.tmpl
\u4e2d\uff1a
TOML
{{- $osid := .chezmoi.os -}}\n[data]\n name = \"Your Name\"\n email = \"your@email.com\"\n {{- if eq .chezmoi.os \"windows\" }}\n is_windows = true\n {{- else if eq .chezmoi.os \"linux\" }}\n is_linux = true\n {{- end }}\n
"},{"location":"Technology/chezmoi/#2_2","title":"2. \u5982\u4f55\u5904\u7406\u654f\u611f\u4fe1\u606f\uff1f","text":"
\u5bf9\u4e8e\u654f\u611f\u4fe1\u606f\uff0c\u53ef\u4ee5\uff1a
- \u4f7f\u7528\u6a21\u677f\u548c\u73af\u5883\u53d8\u91cf
- \u4f7f\u7528 chezmoi \u7684\u52a0\u5bc6\u529f\u80fd
- \u5c06\u654f\u611f\u4fe1\u606f\u5b58\u50a8\u5728\u5355\u72ec\u7684\u79c1\u6709\u4ed3\u5e93\u4e2d
"},{"location":"Technology/chezmoi/#3_3","title":"3. \u5982\u4f55\u64a4\u9500\u66f4\u6539\uff1f","text":"Bash
# \u67e5\u770b\u5c06\u8981\u8fdb\u884c\u7684\u66f4\u6539\nchezmoi diff\n\n# \u5982\u679c\u4e0d\u6ee1\u610f\uff0c\u53ef\u4ee5\u64a4\u9500\nchezmoi forget ~/.bashrc # \u79fb\u9664\u6587\u4ef6\u7684\u7ba1\u7406\n\n# \u6216\u8005\u91cd\u7f6e\u4e3a\u539f\u59cb\u72b6\u6001\nchezmoi apply --force\n
"},{"location":"Technology/chezmoi/#4_1","title":"4. \u914d\u7f6e\u6587\u4ef6\u6743\u9650\u95ee\u9898\uff1f","text":"
chezmoi \u4f1a\u81ea\u52a8\u5904\u7406\u6587\u4ef6\u6743\u9650\u3002\u5bf9\u4e8e\u7279\u6b8a\u6743\u9650\u9700\u6c42\uff0c\u53ef\u4ee5\u5728\u6e90\u6587\u4ef6\u540d\u4e2d\u4f7f\u7528\u7279\u6b8a\u524d\u7f00\uff1a
private_
: \u521b\u5efa\u79c1\u6709\u6587\u4ef6 (chmod 600) executable_
: \u521b\u5efa\u53ef\u6267\u884c\u6587\u4ef6 (chmod 700) readonly_
: \u521b\u5efa\u53ea\u8bfb\u6587\u4ef6 (chmod 400)
"},{"location":"Technology/chezmoi/#5","title":"5. \u5982\u4f55\u67e5\u770b\u7ba1\u7406\u7684\u6587\u4ef6\uff1f","text":"Bash
# \u5217\u51fa\u6240\u6709\u7ba1\u7406\u7684\u6587\u4ef6\nchezmoi managed\n\n# \u67e5\u770b\u6e90\u6587\u4ef6\nchezmoi cd\nls -la\n
"},{"location":"Technology/chezmoi/#6","title":"6. \u66f4\u65b0\u51fa\u9519\u600e\u4e48\u529e\uff1f","text":"Bash
# \u5907\u4efd\u5f53\u524d\u72b6\u6001\nchezmoi archive --output=backup.tar.gz\n\n# \u91cd\u7f6e\u66f4\u6539\nchezmoi init --force\n\n# \u91cd\u65b0\u5e94\u7528\u914d\u7f6e\nchezmoi apply\n
"},{"location":"Technology/mkdocs%20material/","title":"mkdocs material \u8d85\u5168\u914d\u7f6e","text":"
\u7ea6 5956 \u4e2a\u5b57 9393 \u884c\u4ee3\u7801 7 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 137 \u5206\u949f
\u4ecd\u7136\u5728\u4fee\u6539 \u5982\u679c\u9700\u8981\u4efb\u4f55\u7684\u6587\u4ef6\uff0c\u53ef\u4ee5\u76f4\u63a5\u8bbf\u95ee\u672c\u535a\u5ba2\u7684 GitHub \u9875\u9762
"},{"location":"Technology/mkdocs%20material/#1","title":"1 \u5165\u95e8\u57fa\u7840","text":""},{"location":"Technology/mkdocs%20material/#11-mkdocs","title":"1.1 \u4ec0\u4e48\u662f MkDocs\uff1f","text":"
MkDocs \u662f\u4e00\u4e2a\u5feb\u901f\u3001\u7b80\u5355\u3001\u534e\u4e3d\u7684\u9759\u6001\u7ad9\u70b9\u751f\u6210\u5668\uff0c\u4e13\u95e8\u7528\u4e8e\u6784\u5efa\u9879\u76ee\u6587\u6863\u3002\u6587\u6863\u6e90\u6587\u4ef6\u4f7f\u7528 Markdown \u7f16\u5199\uff0c\u914d\u7f6e\u6587\u4ef6\u4f7f\u7528 YAML \u683c\u5f0f\u3002
"},{"location":"Technology/mkdocs%20material/#111-mkdocs","title":"1.1.1 MkDocs \u7684\u4f18\u52bf","text":"
-
\u7b80\u5355\u6613\u7528 - \u4f7f\u7528 Markdown \u7f16\u5199\u6587\u6863 - \u914d\u7f6e\u6587\u4ef6\u7b80\u5355\u76f4\u89c2 - \u4e00\u952e\u5f0f\u6784\u5efa\u548c\u90e8\u7f72
-
\u529f\u80fd\u5f3a\u5927 - \u5185\u7f6e\u5f00\u53d1\u670d\u52a1\u5668\uff0c\u652f\u6301\u5b9e\u65f6\u9884\u89c8 - \u591a\u79cd\u4e3b\u9898\u53ef\u9009 - \u652f\u6301\u81ea\u5b9a\u4e49\u4e3b\u9898 - \u81ea\u52a8\u751f\u6210\u5bfc\u822a - \u5168\u6587\u641c\u7d22\u529f\u80fd
-
\u90e8\u7f72\u65b9\u4fbf - \u751f\u6210\u7eaf\u9759\u6001\u9875\u9762 - \u4e00\u884c\u547d\u4ee4\u90e8\u7f72\u5230 GitHub Pages - \u652f\u6301\u81ea\u5b9a\u4e49\u57df\u540d - \u517c\u5bb9\u6240\u6709\u9759\u6001\u7f51\u7ad9\u6258\u7ba1\u5e73\u53f0
"},{"location":"Technology/mkdocs%20material/#112-mkdocs-vs","title":"1.1.2 MkDocs vs \u5176\u4ed6\u6587\u6863\u5de5\u5177","text":"\u5de5\u5177 \u4f18\u52bf \u52a3\u52bf MkDocs - \u7b80\u5355\u6613\u7528- \u4e13\u6ce8\u6587\u6863- \u90e8\u7f72\u65b9\u4fbf- \u4e3b\u9898\u4e30\u5bcc - \u529f\u80fd\u76f8\u5bf9\u7b80\u5355- \u63d2\u4ef6\u751f\u6001\u8f83\u5c0f GitBook - \u754c\u9762\u4f18\u96c5- \u751f\u6001\u5b8c\u6574- \u591a\u4eba\u534f\u4f5c\u597d - \u6784\u5efa\u901f\u5ea6\u6162- \u5b9a\u5236\u6027\u5dee- \u514d\u8d39\u7248\u9650\u5236\u591a Docusaurus - React \u6280\u672f\u6808- \u529f\u80fd\u5f3a\u5927- \u6269\u5c55\u6027\u597d - \u5b66\u4e60\u66f2\u7ebf\u9661- \u914d\u7f6e\u590d\u6742- \u6784\u5efa\u8f83\u6162 VuePress - Vue \u6280\u672f\u6808- \u5b9a\u5236\u6027\u5f3a- \u63d2\u4ef6\u4e30\u5bcc - \u4e3b\u9898\u8f83\u5c11- \u914d\u7f6e\u7e41\u7410- \u5b66\u4e60\u6210\u672c\u9ad8"},{"location":"Technology/mkdocs%20material/#113-mkdocs","title":"1.1.3 MkDocs \u5de5\u4f5c\u539f\u7406","text":"
MkDocs \u7684\u5de5\u4f5c\u6d41\u7a0b\u5982\u4e0b\uff1a
-
\u6587\u6863\u7f16\u5199 - \u4f7f\u7528 Markdown \u683c\u5f0f\u7f16\u5199\u6587\u6863 - \u6587\u6863\u5b58\u653e\u5728 docs
\u76ee\u5f55\u4e0b - \u652f\u6301\u591a\u7ea7\u76ee\u5f55\u7ed3\u6784
-
\u914d\u7f6e\u89e3\u6790 - \u8bfb\u53d6 mkdocs.yml
\u914d\u7f6e\u6587\u4ef6 - \u89e3\u6790\u4e3b\u9898\u8bbe\u7f6e\u3001\u63d2\u4ef6\u914d\u7f6e\u7b49 - \u751f\u6210\u5bfc\u822a\u7ed3\u6784
-
\u6784\u5efa\u8fc7\u7a0b
Text Only
Markdown \u6587\u4ef6 -> \u89e3\u6790\u5668 -> HTML \u6587\u4ef6\n -> \u4e3b\u9898\u6e32\u67d3\n -> \u63d2\u4ef6\u5904\u7406\n -> \u9759\u6001\u8d44\u6e90\u5904\u7406\n
- \u8f93\u51fa\u90e8\u7f72 - \u751f\u6210\u7eaf\u9759\u6001 HTML \u6587\u4ef6 - \u4fdd\u7559\u539f\u59cb\u76ee\u5f55\u7ed3\u6784 - \u81ea\u52a8\u5904\u7406\u5185\u90e8\u94fe\u63a5 - \u590d\u5236\u9759\u6001\u8d44\u6e90
"},{"location":"Technology/mkdocs%20material/#12-material","title":"1.2 \u4e3a\u4ec0\u4e48\u9009\u62e9 Material \u4e3b\u9898","text":"
Material for MkDocs \u662f\u4e00\u4e2a\u57fa\u4e8e Google Material Design \u8bbe\u8ba1\u8bed\u8a00\u7684\u4e3b\u9898\uff0c\u5b83\u4e0d\u4ec5\u7f8e\u89c2\uff0c\u800c\u4e14\u529f\u80fd\u5f3a\u5927\u3002
"},{"location":"Technology/mkdocs%20material/#121-material","title":"1.2.1 Material \u4e3b\u9898\u7279\u6027","text":"
-
\u73b0\u4ee3\u5316\u8bbe\u8ba1 - \u9075\u5faa Material Design \u89c4\u8303 - \u54cd\u5e94\u5f0f\u5e03\u5c40 - \u652f\u6301\u6df1\u8272\u6a21\u5f0f - \u81ea\u52a8\u9002\u914d\u79fb\u52a8\u8bbe\u5907
-
\u5f3a\u5927\u529f\u80fd - \u667a\u80fd\u641c\u7d22 - \u4ee3\u7801\u9ad8\u4eae - \u6807\u7b7e\u9875\u652f\u6301 - \u81ea\u52a8\u76ee\u5f55\u751f\u6210 - \u591a\u8bed\u8a00\u652f\u6301 - \u7248\u672c\u63a7\u5236\u96c6\u6210
-
\u51fa\u8272\u7684\u7528\u6237\u4f53\u9a8c - \u5feb\u901f\u52a0\u8f7d - \u5e73\u6ed1\u52a8\u753b - \u5b9e\u65f6\u641c\u7d22 - \u4ee3\u7801\u590d\u5236\u6309\u94ae - \u8fd4\u56de\u9876\u90e8\u6309\u94ae
"},{"location":"Technology/mkdocs%20material/#122","title":"1.2.2 \u4e0e\u5176\u4ed6\u4e3b\u9898\u5bf9\u6bd4","text":"\u7279\u6027 Material ReadTheDocs mkdocs \u5176\u4ed6\u4e3b\u9898 \u8bbe\u8ba1\u98ce\u683c \u73b0\u4ee3\u7b80\u7ea6 \u4f20\u7edf\u6587\u6863 \u7b80\u5355\u57fa\u7840 \u98ce\u683c\u591a\u6837 \u54cd\u5e94\u5f0f \u2705 \u2705 \u274c \u90e8\u5206\u652f\u6301 \u6df1\u8272\u6a21\u5f0f \u2705 \u274c \u274c \u90e8\u5206\u652f\u6301 \u641c\u7d22\u529f\u80fd \u2705 \u2705 \u274c \u90e8\u5206\u652f\u6301 \u5b9a\u5236\u6027 \u5f3a \u4e2d \u5f31 \u4e0d\u4e00\u81f4 \u63d2\u4ef6\u652f\u6301 \u4e30\u5bcc \u4e00\u822c \u57fa\u7840 \u4e0d\u4e00\u81f4"},{"location":"Technology/mkdocs%20material/#123-material","title":"1.2.3 Material \u4e3b\u9898\u7684\u6280\u672f\u67b6\u6784","text":"Text Only
Material Theme\n\u251c\u2500\u2500 \u6838\u5fc3\u7ec4\u4ef6\n\u2502 \u251c\u2500\u2500 \u5bfc\u822a\u680f\n\u2502 \u251c\u2500\u2500 \u4fa7\u8fb9\u680f\n\u2502 \u251c\u2500\u2500 \u641c\u7d22\u7ec4\u4ef6\n\u2502 \u2514\u2500\u2500 \u5185\u5bb9\u6e32\u67d3\u5668\n\u251c\u2500\u2500 \u6269\u5c55\u529f\u80fd\n\u2502 \u251c\u2500\u2500 \u4ee3\u7801\u9ad8\u4eae\n\u2502 \u251c\u2500\u2500 \u6807\u7b7e\u7cfb\u7edf\n\u2502 \u251c\u2500\u2500 \u76ee\u5f55\u751f\u6210\n\u2502 \u2514\u2500\u2500 \u4e3b\u9898\u5207\u6362\n\u2514\u2500\u2500 \u63d2\u4ef6\u7cfb\u7edf\n \u251c\u2500\u2500 \u5185\u7f6e\u63d2\u4ef6\n \u2514\u2500\u2500 \u7b2c\u4e09\u65b9\u63d2\u4ef6\u96c6\u6210\n
"},{"location":"Technology/mkdocs%20material/#13","title":"1.3 \u73af\u5883\u8981\u6c42","text":""},{"location":"Technology/mkdocs%20material/#131-python","title":"1.3.1 Python \u73af\u5883","text":""},{"location":"Technology/mkdocs%20material/#1311-python","title":"1.3.1.1 Python \u7248\u672c\u9009\u62e9","text":"
MkDocs \u9700\u8981 Python 3.6 \u6216\u66f4\u9ad8\u7248\u672c\uff0c\u63a8\u8350\u4f7f\u7528 Python 3.8+\uff1a
Bash
# \u68c0\u67e5 Python \u7248\u672c\npython --version\n\n# \u63a8\u8350\u7248\u672c\nPython 3.8.x\nPython 3.9.x\nPython 3.10.x\n
"},{"location":"Technology/mkdocs%20material/#1312-pip","title":"1.3.1.2 pip \u914d\u7f6e\u8bf4\u660e","text":"
pip \u662f Python \u7684\u5305\u7ba1\u7406\u5de5\u5177\uff0c\u9700\u8981\u786e\u4fdd\u5176\u6b63\u786e\u5b89\u88c5\uff1a
Bash
# \u68c0\u67e5 pip \u7248\u672c\npip --version\n\n# \u5347\u7ea7 pip\npython -m pip install --upgrade pip\n
"},{"location":"Technology/mkdocs%20material/#1313","title":"1.3.1.3 \u865a\u62df\u73af\u5883\u7ba1\u7406","text":"
\u63a8\u8350\u4f7f\u7528\u865a\u62df\u73af\u5883\u6765\u7ba1\u7406\u9879\u76ee\u4f9d\u8d56\uff1a
Bash
# \u521b\u5efa\u865a\u62df\u73af\u5883\npython -m venv venv\n\n# \u6fc0\u6d3b\u865a\u62df\u73af\u5883\n# Windows\nvenv\\Scripts\\activate\n# Linux/Mac\nsource venv/bin/activate\n\n# \u9000\u51fa\u865a\u62df\u73af\u5883\ndeactivate\n
"},{"location":"Technology/mkdocs%20material/#132-pip","title":"1.3.2 pip \u5305\u7ba1\u7406","text":""},{"location":"Technology/mkdocs%20material/#1321-pip","title":"1.3.2.1 pip \u6e90\u914d\u7f6e","text":"
\u4e3a\u52a0\u5feb\u4e0b\u8f7d\u901f\u5ea6\uff0c\u5efa\u8bae\u4f7f\u7528\u56fd\u5185\u955c\u50cf\u6e90\uff1a
Bash
# \u4e34\u65f6\u4f7f\u7528\npip install -i https://pypi.tuna.tsinghua.edu.cn/simple mkdocs\n\n# \u6c38\u4e45\u914d\u7f6e\npip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple\n
"},{"location":"Technology/mkdocs%20material/#1322","title":"1.3.2.2 \u4f9d\u8d56\u7ba1\u7406","text":"
\u5b89\u88c5\u5fc5\u8981\u7684\u5305\uff1a
Bash
pip install mkdocs-material\npip install mkdocs-glightbox\npip install mkdocs-git-revision-date-localized-plugin\n
"},{"location":"Technology/mkdocs%20material/#1323-requirements-txt","title":"1.3.2.3 requirements. txt \u4f7f\u7528","text":"
\u7ef4\u62a4\u9879\u76ee\u4f9d\u8d56\uff1a
Bash
# \u751f\u6210\u4f9d\u8d56\u6587\u4ef6\npip freeze > requirements.txt\n\n# \u5b89\u88c5\u4f9d\u8d56\npip install -r requirements.txt\n
"},{"location":"Technology/mkdocs%20material/#133-git","title":"1.3.3 Git \u73af\u5883","text":""},{"location":"Technology/mkdocs%20material/#1331-git","title":"1.3.3.1 Git \u57fa\u7840\u914d\u7f6e","text":"Bash
# \u914d\u7f6e\u7528\u6237\u4fe1\u606f\ngit config --global user.name \"Your Name\"\ngit config --global user.email \"your.email@example.com\"\n\n# \u914d\u7f6e\u9ed8\u8ba4\u5206\u652f\ngit config --global init.defaultBranch main\n
"},{"location":"Technology/mkdocs%20material/#134-ssh","title":"1.3.4 SSH \u5bc6\u94a5\u914d\u7f6e","text":"Bash
# \u751f\u6210 SSH \u5bc6\u94a5\nssh-keygen -t rsa -b 4096 -C \"your.email@example.com\"\n\n# \u67e5\u770b\u516c\u94a5\ncat ~/.ssh/id_rsa.pub\n
\u5c06\u516c\u94a5\u6dfb\u52a0\u5230 GitHub \u8d26\u6237\u7684 SSH keys \u4e2d\u3002
"},{"location":"Technology/mkdocs%20material/#135-gitignore","title":"1.3.5 .gitignore \u914d\u7f6e","text":"
\u521b\u5efa .gitignore
\u6587\u4ef6\uff0c\u6dfb\u52a0\u4ee5\u4e0b\u5185\u5bb9\uff1a
Text Only
# Python\n__pycache__/\n*.py[cod]\n*$py.class\nvenv/\n\n# MkDocs\nsite/\n\n# IDE\n.idea/\n.vscode/\n*.swp\n*.swo\n\n# OS\n.DS_Store\nThumbs.db\n
"},{"location":"Technology/mkdocs%20material/#2","title":"2 \u73af\u5883\u642d\u5efa","text":""},{"location":"Technology/mkdocs%20material/#21-windows","title":"2.1 Windows \u7cfb\u7edf\u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#211-python","title":"2.1.1 Python \u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#2111","title":"2.1.1.1 \u4e0b\u8f7d\u5b89\u88c5\u5305","text":"
- \u8bbf\u95ee Python \u5b98\u7f51 \u4e0b\u8f7d\u6700\u65b0\u7248\u672c
- \u9009\u62e9\u9002\u5408\u4f60\u7684 Windows \u7248\u672c\uff0832 \u4f4d/64 \u4f4d\uff09\u7684\u5b89\u88c5\u5305
- \u4e0b\u8f7d\u5b8c\u6210\u540e\u53cc\u51fb\u5b89\u88c5\u5305\u5f00\u59cb\u5b89\u88c5
"},{"location":"Technology/mkdocs%20material/#2112","title":"2.1.1.2 \u73af\u5883\u53d8\u91cf\u914d\u7f6e","text":"
- \u5b89\u88c5\u65f6\u52fe\u9009 \"Add Python to PATH\"
- \u5982\u679c\u5fd8\u8bb0\u52fe\u9009\uff0c\u53ef\u4ee5\u624b\u52a8\u6dfb\u52a0\uff1a
Text Only
# \u6dfb\u52a0\u5230\u7cfb\u7edf\u73af\u5883\u53d8\u91cf Path\nC:\\Users\\YourUser\\AppData\\Local\\Programs\\Python\\Python3x\\\nC:\\Users\\YourUser\\AppData\\Local\\Programs\\Python\\Python3x\\Scripts\\\n
- \u68c0\u67e5\u73af\u5883\u53d8\u91cf\uff1a
Bash
echo %PATH%\n
"},{"location":"Technology/mkdocs%20material/#2113","title":"2.1.1.3 \u9a8c\u8bc1\u5b89\u88c5","text":"
\u5728\u547d\u4ee4\u63d0\u793a\u7b26\u4e2d\u6267\u884c\uff1a
Bash
# \u68c0\u67e5 Python \u7248\u672c\npython --version\n\n# \u68c0\u67e5 pip \u7248\u672c\npip --version\n
"},{"location":"Technology/mkdocs%20material/#212-mkdocs","title":"2.1.2 MkDocs \u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#2121-pip","title":"2.1.2.1 pip \u5b89\u88c5\u65b9\u6cd5","text":"
\u4f7f\u7528 pip \u5b89\u88c5 MkDocs\uff1a
Bash
# \u5b89\u88c5 MkDocs\npip install mkdocs\n\n# \u9a8c\u8bc1\u5b89\u88c5\nmkdocs --version\n
"},{"location":"Technology/mkdocs%20material/#2122","title":"2.1.2.2 \u5e38\u89c1\u95ee\u9898\u89e3\u51b3","text":"
-
pip \u4e0d\u662f\u5185\u90e8\u547d\u4ee4 - \u89e3\u51b3\u65b9\u6cd5\uff1a\u91cd\u65b0\u6dfb\u52a0 Python Scripts \u76ee\u5f55\u5230 PATH
-
\u6743\u9650\u95ee\u9898 - \u89e3\u51b3\u65b9\u6cd5\uff1a\u4f7f\u7528\u7ba1\u7406\u5458\u6743\u9650\u8fd0\u884c\u547d\u4ee4\u63d0\u793a\u7b26
Bash
# \u7ba1\u7406\u5458\u6743\u9650\u5b89\u88c5\npip install --user mkdocs\n
- SSL \u8bc1\u4e66\u9519\u8bef - \u89e3\u51b3\u65b9\u6cd5\uff1a\u6dfb\u52a0\u4fe1\u4efb\u9009\u9879\u6216\u4f7f\u7528\u56fd\u5185\u955c\u50cf
Bash
pip install --trusted-host pypi.org --trusted-host files.pythonhosted.org mkdocs\n
"},{"location":"Technology/mkdocs%20material/#213","title":"2.1.3 \u7248\u672c\u9009\u62e9","text":"
MkDocs \u7248\u672c\u9009\u62e9\u5efa\u8bae\uff1a
Bash
# \u67e5\u770b\u53ef\u7528\u7248\u672c\npip install mkdocs==\n\n# \u5b89\u88c5\u7279\u5b9a\u7248\u672c\npip install mkdocs==1.5.3 # \u63a8\u8350\u7248\u672c\n
"},{"location":"Technology/mkdocs%20material/#214-material","title":"2.1.4 Material \u4e3b\u9898\u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#2141","title":"2.1.4.1 \u5b89\u88c5\u547d\u4ee4","text":"Bash
# \u5b89\u88c5 Material \u4e3b\u9898\npip install mkdocs-material\n\n# \u9a8c\u8bc1\u5b89\u88c5\npython -c \"import mkdocs_material; print(mkdocs_material.__version__)\"\n
"},{"location":"Technology/mkdocs%20material/#2142","title":"2.1.4.2 \u4f9d\u8d56\u68c0\u67e5","text":"
\u5b89\u88c5\u5fc5\u8981\u7684\u4f9d\u8d56\uff1a
Bash
# \u5b89\u88c5\u6269\u5c55\u652f\u6301\npip install pymdown-extensions\npip install mkdocs-glightbox\npip install mkdocs-git-revision-date-localized-plugin\n
"},{"location":"Technology/mkdocs%20material/#2143","title":"2.1.4.3 \u7248\u672c\u517c\u5bb9\u6027","text":"MkDocs \u7248\u672c Material \u7248\u672c Python \u7248\u672c 1.5. x 9.4. x \u22653.8 1.4. x 9.3. x \u22653.7 1.3. x 9.2. x \u22653.7"},{"location":"Technology/mkdocs%20material/#22-linuxmac","title":"2.2 Linux/Mac \u7cfb\u7edf\u5b89\u88c5","text":""},{"location":"Technology/mkdocs%20material/#221-python","title":"2.2.1 \u5305\u7ba1\u7406\u5668\u5b89\u88c5 Python","text":""},{"location":"Technology/mkdocs%20material/#2211-aptyum","title":"2.2.1.1 apt/yum \u5b89\u88c5\u65b9\u6cd5","text":"
Ubuntu/Debian:
Bash
# \u66f4\u65b0\u5305\u7d22\u5f15\nsudo apt update\n\n# \u5b89\u88c5 Python\nsudo apt install python3 python3-pip\n\n# \u5b89\u88c5\u5f00\u53d1\u5de5\u5177\nsudo apt install python3-dev\n
CentOS/RHEL:
Bash
# \u5b89\u88c5 EPEL \u4ed3\u5e93\nsudo yum install epel-release\n\n# \u5b89\u88c5 Python\nsudo yum install python3 python3-pip\n
"},{"location":"Technology/mkdocs%20material/#2212-brew","title":"2.2.1.2 brew \u5b89\u88c5\u65b9\u6cd5","text":"
macOS:
Bash
# \u5b89\u88c5 Homebrew\uff08\u5982\u679c\u672a\u5b89\u88c5\uff09\n/bin/bash -c \"$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)\"\n\n# \u5b89\u88c5 Python\nbrew install python\n\n# \u66f4\u65b0 pip\npip3 install --upgrade pip\n
"},{"location":"Technology/mkdocs%20material/#2213","title":"2.2.1.3 \u73af\u5883\u53d8\u91cf\u914d\u7f6e","text":"
bash/zsh:
Bash
# \u6dfb\u52a0\u5230 ~/.bashrc \u6216 ~/.zshrc\nexport PATH=\"$HOME/.local/bin:$PATH\"\nexport PYTHONPATH=\"$HOME/.local/lib/python3.x/site-packages:$PYTHONPATH\"\n\n# \u66f4\u65b0\u73af\u5883\u53d8\u91cf\nsource ~/.bashrc # \u6216 source ~/.zshrc\n
"},{"location":"Technology/mkdocs%20material/#222-pip","title":"2.2.2 pip \u5b89\u88c5\u4f9d\u8d56","text":""},{"location":"Technology/mkdocs%20material/#2221","title":"2.2.2.1 \u7cfb\u7edf\u7ea7\u5b89\u88c5","text":"Bash
# \u5168\u5c40\u5b89\u88c5\uff08\u9700\u8981 root \u6743\u9650\uff09\nsudo pip3 install mkdocs mkdocs-material\n\n# \u9a8c\u8bc1\u5b89\u88c5\nmkdocs --version\n
"},{"location":"Technology/mkdocs%20material/#2222","title":"2.2.2.2 \u7528\u6237\u7ea7\u5b89\u88c5","text":"Bash
# \u7528\u6237\u76ee\u5f55\u5b89\u88c5\npip3 install --user mkdocs mkdocs-material\n\n# \u68c0\u67e5\u5b89\u88c5\u8def\u5f84\npython3 -m site --user-site\n
"},{"location":"Technology/mkdocs%20material/#2223","title":"2.2.2.3 \u865a\u62df\u73af\u5883\u5b89\u88c5","text":"Bash
# \u521b\u5efa\u865a\u62df\u73af\u5883\npython3 -m venv mkdocs-env\n\n# \u6fc0\u6d3b\u865a\u62df\u73af\u5883\nsource mkdocs-env/bin/activate\n\n# \u5b89\u88c5\u4f9d\u8d56\npip install mkdocs mkdocs-material\n\n# \u9000\u51fa\u865a\u62df\u73af\u5883\ndeactivate\n
"},{"location":"Technology/mkdocs%20material/#23","title":"2.3 \u9879\u76ee\u521d\u59cb\u5316","text":""},{"location":"Technology/mkdocs%20material/#231","title":"2.3.1 \u521b\u5efa\u9879\u76ee","text":""},{"location":"Technology/mkdocs%20material/#2311-mkdocs-new","title":"2.3.1.1 mkdocs new \u547d\u4ee4\u8be6\u89e3","text":"Bash
# \u57fa\u672c\u8bed\u6cd5\nmkdocs new [\u9879\u76ee\u540d]\n\n# \u521b\u5efa\u65b0\u9879\u76ee\nmkdocs new my-docs\n\n# \u4f7f\u7528\u73b0\u6709\u76ee\u5f55\ncd existing-project\nmkdocs new .\n
"},{"location":"Technology/mkdocs%20material/#2312","title":"2.3.1.2 \u9879\u76ee\u547d\u540d\u89c4\u8303","text":"
- \u4f7f\u7528\u5c0f\u5199\u5b57\u6bcd
- \u5355\u8bcd\u95f4\u7528\u8fde\u5b57\u7b26 (-) \u5206\u9694
- \u907f\u514d\u4f7f\u7528\u7279\u6b8a\u5b57\u7b26
- \u540d\u79f0\u5177\u6709\u63cf\u8ff0\u6027
\u793a\u4f8b\uff1a
Bash
mkdocs new technical-docs # \u597d\u7684\u547d\u540d\nmkdocs new tech_docs # \u907f\u514d\u4f7f\u7528\u4e0b\u5212\u7ebf\nmkdocs new TechDocs # \u907f\u514d\u4f7f\u7528\u5927\u5199\n
"},{"location":"Technology/mkdocs%20material/#2313","title":"2.3.1.3 \u521d\u59cb\u5316\u914d\u7f6e","text":"
\u521b\u5efa\u9879\u76ee\u540e\u7684\u57fa\u672c\u8bbe\u7f6e\uff1a
Bash
cd my-docs\n# \u542f\u52a8\u5f00\u53d1\u670d\u52a1\u5668\nmkdocs serve\n# \u5728\u6d4f\u89c8\u5668\u4e2d\u8bbf\u95ee http://127.0.0.1:8000\n
"},{"location":"Technology/mkdocs%20material/#232","title":"2.3.2 \u76ee\u5f55\u7ed3\u6784\u8bf4\u660e","text":""},{"location":"Technology/mkdocs%20material/#2321","title":"2.3.2.1 \u57fa\u7840\u76ee\u5f55\u7ed3\u6784","text":"Text Only
my-docs/\n\u251c\u2500\u2500 docs/ # \u6587\u6863\u76ee\u5f55\n\u2502 \u251c\u2500\u2500 index.md # \u9996\u9875\n\u2502 \u251c\u2500\u2500 about.md # \u5176\u4ed6\u9875\u9762\n\u2502 \u2514\u2500\u2500 img/ # \u56fe\u7247\u76ee\u5f55\n\u251c\u2500\u2500 mkdocs.yml # \u914d\u7f6e\u6587\u4ef6\n\u2514\u2500\u2500 venv/ # \u865a\u62df\u73af\u5883\uff08\u53ef\u9009\uff09\n
"},{"location":"Technology/mkdocs%20material/#2322-docs","title":"2.3.2.2 docs \u76ee\u5f55\u7ec4\u7ec7","text":"Text Only
docs/\n\u251c\u2500\u2500 index.md # \u9996\u9875\n\u251c\u2500\u2500 guide/ # \u6307\u5357\u76ee\u5f55\n\u2502 \u251c\u2500\u2500 index.md # \u6307\u5357\u9996\u9875\n\u2502 \u251c\u2500\u2500 install.md # \u5b89\u88c5\u8bf4\u660e\n\u2502 \u2514\u2500\u2500 usage.md # \u4f7f\u7528\u8bf4\u660e\n\u251c\u2500\u2500 api/ # API\u6587\u6863\n\u2502 \u2514\u2500\u2500 index.md # API\u9996\u9875\n\u2514\u2500\u2500 examples/ # \u793a\u4f8b\u76ee\u5f55\n \u2514\u2500\u2500 basic.md # \u57fa\u7840\u793a\u4f8b\n
"},{"location":"Technology/mkdocs%20material/#2323","title":"2.3.2.3 \u8d44\u6e90\u6587\u4ef6\u7ba1\u7406","text":"Text Only
docs/\n\u251c\u2500\u2500 assets/ # \u8d44\u6e90\u76ee\u5f55\n\u2502 \u251c\u2500\u2500 images/ # \u56fe\u7247\u8d44\u6e90\n\u2502 \u251c\u2500\u2500 css/ # \u6837\u5f0f\u6587\u4ef6\n\u2502 \u251c\u2500\u2500 js/ # \u811a\u672c\u6587\u4ef6\n\u2502 \u2514\u2500\u2500 fonts/ # \u5b57\u4f53\u6587\u4ef6\n\u2514\u2500\u2500 files/ # \u4e0b\u8f7d\u6587\u4ef6\n \u2514\u2500\u2500 sample.pdf # \u793a\u4f8b\u6587\u4ef6\n
"},{"location":"Technology/mkdocs%20material/#233","title":"2.3.3 \u57fa\u7840\u914d\u7f6e\u6587\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#2331-mkdocs-yml","title":"2.3.3.1 mkdocs. yml \u7ed3\u6784","text":"
\u57fa\u672c\u914d\u7f6e\u6587\u4ef6\u7ed3\u6784\uff1a
YAML
# \u7ad9\u70b9\u4fe1\u606f\nsite_name: \u6211\u7684\u6587\u6863\nsite_url: https://example.com/\nsite_author: \u4f5c\u8005\u540d\nsite_description: \u7ad9\u70b9\u63cf\u8ff0\n\n# \u4e3b\u9898\u8bbe\u7f6e\ntheme:\n name: material\n language: zh\n features:\n - navigation.tabs\n - navigation.top\n\n# \u5bfc\u822a\u8bbe\u7f6e\nnav:\n - \u9996\u9875: index.md\n - \u6307\u5357: \n - guide/index.md\n - \u5b89\u88c5: guide/install.md\n - \u4f7f\u7528: guide/usage.md\n\n# Markdown \u6269\u5c55\nmarkdown_extensions:\n - attr_list\n - md_in_html\n - toc:\n permalink: true\n
"},{"location":"Technology/mkdocs%20material/#2332","title":"2.3.3.2 \u6700\u5c0f\u914d\u7f6e\u793a\u4f8b","text":"
\u6700\u7b80\u5355\u7684\u914d\u7f6e\u6587\u4ef6\uff1a
YAML
site_name: \u6211\u7684\u6587\u6863\ntheme:\n name: material\n
"},{"location":"Technology/mkdocs%20material/#2333","title":"2.3.3.3 \u914d\u7f6e\u6587\u4ef6\u8bed\u6cd5","text":"
YAML \u8bed\u6cd5\u8981\u70b9\uff1a
YAML
# \u5b57\u7b26\u4e32\ntitle: \u6211\u7684\u6587\u6863\n\n# \u5217\u8868\nplugins:\n - search\n - tags\n\n# \u5bf9\u8c61\ntheme:\n name: material\n features:\n - navigation.tabs\n\n# \u591a\u884c\u5b57\u7b26\u4e32\ndescription: >\n \u8fd9\u662f\u4e00\u4e2a\n \u591a\u884c\u63cf\u8ff0\n \u793a\u4f8b\n\n# \u951a\u70b9\u5f15\u7528\ncopyright: ©right 2024 My Docs\nfooter:\n copyright: *copyright\n
"},{"location":"Technology/mkdocs%20material/#3-mkdocs","title":"3 MkDocs \u6838\u5fc3\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#31","title":"3.1 \u7ad9\u70b9\u4fe1\u606f\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#311-site_name","title":"3.1.1 site_name \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3111","title":"3.1.1.1 \u547d\u540d\u89c4\u8303","text":"
\u7f51\u7ad9\u540d\u79f0\u662f\u7ad9\u70b9\u7684\u7b2c\u4e00\u5370\u8c61\uff0c\u5e94\u9075\u5faa\u4ee5\u4e0b\u89c4\u8303\uff1a
YAML
# \u63a8\u8350\u7684\u547d\u540d\u65b9\u5f0f\nsite_name: \u6280\u672f\u6587\u6863\u4e2d\u5fc3\nsite_name: Developer Hub\nsite_name: API Documentation\n\n# \u907f\u514d\u7684\u547d\u540d\u65b9\u5f0f\nsite_name: docs # \u592a\u8fc7\u7b80\u5355\nsite_name: My Doc Site # \u4e0d\u591f\u4e13\u4e1a\nsite_name: TEST # \u7f3a\u4e4f\u63cf\u8ff0\u6027\n
\u547d\u540d\u5efa\u8bae\uff1a
- \u4f7f\u7528\u7b80\u6d01\u660e\u4e86\u7684\u540d\u79f0
- \u53cd\u6620\u6587\u6863\u7684\u4e3b\u8981\u5185\u5bb9
- \u8003\u8651\u54c1\u724c\u8bc6\u522b\u5ea6
- \u907f\u514d\u4f7f\u7528\u7279\u6b8a\u5b57\u7b26
- \u9002\u5f53\u4f7f\u7528\u7a7a\u683c\u5206\u9694\u5355\u8bcd
"},{"location":"Technology/mkdocs%20material/#3112","title":"3.1.1.2 \u591a\u8bed\u8a00\u652f\u6301","text":"
\u53ef\u4ee5\u901a\u8fc7\u914d\u7f6e\u5b9e\u73b0\u591a\u8bed\u8a00\u7ad9\u70b9\uff1a
YAML
# \u57fa\u7840\u914d\u7f6e\nsite_name: My Documentation\ntheme:\n language: zh\n\n# \u591a\u8bed\u8a00\u914d\u7f6e\u793a\u4f8b\nextra:\n alternate:\n - name: English\n link: /en/ \n lang: en\n - name: \u4e2d\u6587\n link: /zh/\n lang: zh\n\n# \u8bed\u8a00\u7279\u5b9a\u7684\u7ad9\u70b9\u540d\u79f0\nsite_name:\n en: My Documentation\n zh: \u6211\u7684\u6587\u6863\n
"},{"location":"Technology/mkdocs%20material/#3113-seo","title":"3.1.1.3 SEO \u4f18\u5316","text":"
\u901a\u8fc7\u5408\u9002\u7684\u7ad9\u70b9\u540d\u79f0\u63d0\u5347 SEO\uff1a
YAML
# SEO \u4f18\u5316\u914d\u7f6e\nsite_name: ProductName Documentation | CompanyName\nextra:\n meta:\n - name: robots\n content: 'index, follow'\n - name: keywords\n content: 'docs, documentation, technical, api'\n
"},{"location":"Technology/mkdocs%20material/#312-site_url","title":"3.1.2 site_url \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3121-url","title":"3.1.2.1 URL \u683c\u5f0f\u8981\u6c42","text":"YAML
# \u6b63\u786e\u7684 URL \u683c\u5f0f\nsite_url: https://example.com/docs/\nsite_url: https://docs.example.com/\n\n# \u907f\u514d\u7684\u683c\u5f0f\nsite_url: http://example.com/docs # \u7f3a\u5c11\u5c3e\u90e8\u659c\u6760\nsite_url: example.com/docs/ # \u7f3a\u5c11\u534f\u8bae\n
"},{"location":"Technology/mkdocs%20material/#3122","title":"3.1.2.2 \u57fa\u7840\u8def\u5f84\u914d\u7f6e","text":"YAML
# \u6839\u76ee\u5f55\u90e8\u7f72\nsite_url: https://example.com/\n\n# \u5b50\u76ee\u5f55\u90e8\u7f72\nsite_url: https://example.com/docs/\nuse_directory_urls: true # \u63a8\u8350\u8bbe\u7f6e\n\n# \u672c\u5730\u5f00\u53d1\nsite_url: http://localhost:8000/\n
"},{"location":"Technology/mkdocs%20material/#3123","title":"3.1.2.3 \u5b50\u76ee\u5f55\u90e8\u7f72\u914d\u7f6e","text":"YAML
# GitHub Pages \u5b50\u76ee\u5f55\u90e8\u7f72\nsite_url: https://username.github.io/repository/\n\n# \u81ea\u5b9a\u4e49\u57df\u540d\u5b50\u76ee\u5f55\nsite_url: https://docs.example.com/project/\nextra:\n base_path: /project/ # \u5982\u679c\u9700\u8981\n
"},{"location":"Technology/mkdocs%20material/#313-site_author","title":"3.1.3 site_author \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3131","title":"3.1.3.1 \u4f5c\u8005\u4fe1\u606f\u8bbe\u7f6e","text":"YAML
# \u57fa\u7840\u4f5c\u8005\u4fe1\u606f\nsite_author: John Doe\n\n# \u6269\u5c55\u4f5c\u8005\u4fe1\u606f\nextra:\n author:\n name: John Doe\n email: john@example.com\n website: https://johndoe.com\n
"},{"location":"Technology/mkdocs%20material/#3132","title":"3.1.3.2 \u7248\u6743\u4fe1\u606f","text":"YAML
# \u7248\u6743\u58f0\u660e\ncopyright: \"© 2024 John Doe\"\n\n# \u9ad8\u7ea7\u7248\u6743\u914d\u7f6e\nextra:\n copyright:\n author: John Doe\n year: 2024\n license: CC BY-NC-SA 4.0\n
"},{"location":"Technology/mkdocs%20material/#3133-meta","title":"3.1.3.3 meta \u4fe1\u606f","text":"YAML
# meta \u4fe1\u606f\u914d\u7f6e\nextra:\n meta:\n - name: author\n content: John Doe\n - name: contact\n content: contact@example.com\n - property: article:author\n content: https://example.com/author\n
"},{"location":"Technology/mkdocs%20material/#314-site_description","title":"3.1.4 site_description \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#3141-seo","title":"3.1.4.1 SEO \u63cf\u8ff0","text":"YAML
# \u57fa\u7840\u63cf\u8ff0\nsite_description: \u5168\u9762\u7684\u6280\u672f\u6587\u6863\u4e2d\u5fc3\uff0c\u63d0\u4f9b\u8be6\u7ec6\u7684API\u6587\u6863\u3001\u4f7f\u7528\u6307\u5357\u548c\u6700\u4f73\u5b9e\u8df5\u3002\n\n# \u591a\u8bed\u8a00\u63cf\u8ff0\nextra:\n descriptions:\n en: Comprehensive technical documentation center\n zh: \u5168\u9762\u7684\u6280\u672f\u6587\u6863\u4e2d\u5fc3\n
"},{"location":"Technology/mkdocs%20material/#3142","title":"3.1.4.2 \u5173\u952e\u8bcd\u8bbe\u7f6e","text":"YAML
# \u901a\u8fc7 meta \u6807\u7b7e\u8bbe\u7f6e\u5173\u952e\u8bcd\nextra:\n meta:\n - name: keywords\n content: MkDocs, documentation, technical docs, API, guides\n - name: description\n content: >-\n \u5168\u9762\u7684\u6280\u672f\u6587\u6863\u4e2d\u5fc3\uff0c\u5305\u542b\u8be6\u7ec6\u7684API\u6587\u6863\u3001\n \u4f7f\u7528\u6307\u5357\u548c\u6700\u4f73\u5b9e\u8df5\u793a\u4f8b\u3002\n
"},{"location":"Technology/mkdocs%20material/#3143","title":"3.1.4.3 \u7ad9\u70b9\u6458\u8981","text":"YAML
# \u5b8c\u6574\u7684\u7ad9\u70b9\u4fe1\u606f\u914d\u7f6e\u793a\u4f8b\nsite_name: \u6280\u672f\u6587\u6863\u4e2d\u5fc3\nsite_description: >-\n \u63d0\u4f9b\u5168\u9762\u7684\u6280\u672f\u6587\u6863\u3001API\u53c2\u8003\u548c\u4f7f\u7528\u6307\u5357\uff0c\n \u5e2e\u52a9\u5f00\u53d1\u8005\u5feb\u901f\u4e0a\u624b\u548c\u6df1\u5165\u4e86\u89e3\u4ea7\u54c1\u529f\u80fd\u3002\nsite_author: \u5f00\u53d1\u56e2\u961f\nsite_url: https://docs.example.com/\n\nextra:\n meta:\n - name: keywords\n content: \u6280\u672f\u6587\u6863, API\u6587\u6863, \u5f00\u53d1\u6307\u5357, \u6700\u4f73\u5b9e\u8df5\n - name: author\n content: \u5f00\u53d1\u56e2\u961f\n - name: robots\n content: index, follow\n\n analytics:\n gtag: G-XXXXXXXXXX\n\ncopyright: \"© 2024 Example Company\"\n
"},{"location":"Technology/mkdocs%20material/#315","title":"3.1.5 \u914d\u7f6e\u6700\u4f73\u5b9e\u8df5","text":"
-
SEO \u4f18\u5316\u5efa\u8bae\uff1a - \u4f7f\u7528\u6e05\u6670\u7684\u7ad9\u70b9\u540d\u79f0 - \u7f16\u5199\u6709\u5438\u5f15\u529b\u7684\u63cf\u8ff0 - \u5305\u542b\u76f8\u5173\u5173\u952e\u8bcd - \u786e\u4fdd URL \u7ed3\u6784\u5408\u7406
-
\u591a\u8bed\u8a00\u652f\u6301\uff1a - \u4e3a\u6bcf\u79cd\u8bed\u8a00\u63d0\u4f9b\u72ec\u7acb\u63cf\u8ff0 - \u4f7f\u7528\u6b63\u786e\u7684\u8bed\u8a00\u4ee3\u7801 - \u8bbe\u7f6e\u5408\u9002\u7684\u5b57\u7b26\u7f16\u7801
-
\u7248\u672c\u63a7\u5236\uff1a - \u8bb0\u5f55\u914d\u7f6e\u66f4\u6539 - \u4f7f\u7528\u7248\u672c\u6ce8\u91ca - \u5b9a\u671f\u66f4\u65b0\u7ad9\u70b9\u4fe1\u606f
-
\u53ef\u7ef4\u62a4\u6027\uff1a - \u4f7f\u7528\u6e05\u6670\u7684\u914d\u7f6e\u7ed3\u6784 - \u6dfb\u52a0\u5fc5\u8981\u7684\u6ce8\u91ca - \u4fdd\u6301\u914d\u7f6e\u6587\u4ef6\u6574\u6d01
"},{"location":"Technology/mkdocs%20material/#32","title":"3.2 \u5bfc\u822a\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#321-nav","title":"3.2.1 nav \u7ed3\u6784\u8bbe\u8ba1","text":""},{"location":"Technology/mkdocs%20material/#3211","title":"3.2.1.1 \u57fa\u7840\u5bfc\u822a\u7ed3\u6784","text":"
\u6700\u57fa\u672c\u7684\u5bfc\u822a\u914d\u7f6e\u793a\u4f8b\uff1a
YAML
nav:\n - Home: index.md\n - About: about.md\n - Contact: contact.md\n
\u66f4\u590d\u6742\u7684\u5206\u7ec4\u793a\u4f8b\uff1a
YAML
nav:\n - \u9996\u9875: index.md\n - \u7528\u6237\u6307\u5357:\n - \u4ecb\u7ecd: guide/introduction.md\n - \u5feb\u901f\u5f00\u59cb: guide/getting-started.md\n - \u57fa\u7840\u6559\u7a0b: guide/basics.md\n - API \u6587\u6863:\n - \u6982\u89c8: api/overview.md\n - \u63a5\u53e3\u8bf4\u660e: api/reference.md\n - \u5e38\u89c1\u95ee\u9898: faq.md\n
"},{"location":"Technology/mkdocs%20material/#3212","title":"3.2.1.2 \u5206\u7c7b\u7ec4\u7ec7","text":"
\u63a8\u8350\u7684\u5206\u7c7b\u65b9\u5f0f\uff1a
YAML
nav:\n - \u5f00\u59cb\u4f7f\u7528:\n - \u7b80\u4ecb: getting-started/introduction.md\n - \u5b89\u88c5: getting-started/installation.md\n - \u914d\u7f6e: getting-started/configuration.md\n\n - \u6838\u5fc3\u6982\u5ff5:\n - \u6982\u8ff0: concepts/overview.md\n - \u57fa\u7840\u67b6\u6784: concepts/architecture.md\n - \u5de5\u4f5c\u539f\u7406: concepts/how-it-works.md\n\n - \u9ad8\u7ea7\u6307\u5357:\n - \u81ea\u5b9a\u4e49\u4e3b\u9898: advanced/custom-theme.md\n - \u63d2\u4ef6\u5f00\u53d1: advanced/plugin-development.md\n - \u6027\u80fd\u4f18\u5316: advanced/performance.md\n\n - \u53c2\u8003\u6587\u6863:\n - API: reference/api.md\n - \u914d\u7f6e\u9879: reference/configuration.md\n - \u547d\u4ee4\u884c: reference/cli.md\n
"},{"location":"Technology/mkdocs%20material/#3213","title":"3.2.1.3 \u6743\u91cd\u8bbe\u7f6e","text":"
\u4f7f\u7528\u6587\u4ef6\u540d\u524d\u7f00\u63a7\u5236\u987a\u5e8f\uff1a
YAML
docs/\n\u251c\u2500\u2500 01_introduction.md\n\u251c\u2500\u2500 02_installation.md\n\u251c\u2500\u2500 03_configuration.md\n\u2514\u2500\u2500 04_usage.md\n\n# mkdocs.yml\nnav:\n - \u4ecb\u7ecd: 01_introduction.md\n - \u5b89\u88c5: 02_installation.md\n - \u914d\u7f6e: 03_configuration.md\n - \u4f7f\u7528: 04_usage.md\n
"},{"location":"Technology/mkdocs%20material/#322","title":"3.2.2 \u6587\u4ef6\u7ec4\u7ec7","text":""},{"location":"Technology/mkdocs%20material/#3221","title":"3.2.2.1 \u6587\u4ef6\u547d\u540d\u89c4\u8303","text":"
\u63a8\u8350\u7684\u547d\u540d\u89c4\u8303\uff1a
Text Only
docs/\n\u251c\u2500\u2500 index.md # \u9996\u9875\n\u251c\u2500\u2500 getting-started.md # \u77ed\u6a2a\u7ebf\u5206\u9694\n\u251c\u2500\u2500 advanced_usage.md # \u4e0b\u5212\u7ebf\u5206\u9694\uff08\u53ef\u9009\uff09\n\u2514\u2500\u2500 troubleshooting.md # \u5168\u5c0f\u5199\n
\u6587\u4ef6\u547d\u540d\u5efa\u8bae\uff1a
- \u4f7f\u7528\u5c0f\u5199\u5b57\u6bcd
- \u5355\u8bcd\u95f4\u4f7f\u7528\u8fde\u5b57\u7b26\u6216\u4e0b\u5212\u7ebf
- \u6587\u4ef6\u540d\u5e94\u5177\u6709\u63cf\u8ff0\u6027
- \u4fdd\u6301\u547d\u540d\u4e00\u81f4\u6027
- \u907f\u514d\u4f7f\u7528\u7a7a\u683c\u548c\u7279\u6b8a\u5b57\u7b26
"},{"location":"Technology/mkdocs%20material/#3222","title":"3.2.2.2 \u76ee\u5f55\u7ec4\u7ec7\u539f\u5219","text":"
\u6807\u51c6\u76ee\u5f55\u7ed3\u6784\uff1a
Text Only
docs/\n\u251c\u2500\u2500 index.md # \u7f51\u7ad9\u9996\u9875\n\u251c\u2500\u2500 getting-started/ # \u5165\u95e8\u6307\u5357\n\u2502 \u251c\u2500\u2500 index.md # \u5206\u7c7b\u9996\u9875\n\u2502 \u251c\u2500\u2500 installation.md # \u5b89\u88c5\u8bf4\u660e\n\u2502 \u2514\u2500\u2500 configuration.md # \u914d\u7f6e\u8bf4\u660e\n\u251c\u2500\u2500 user-guide/ # \u7528\u6237\u6307\u5357\n\u2502 \u251c\u2500\u2500 index.md # \u6307\u5357\u9996\u9875\n\u2502 \u251c\u2500\u2500 basic-usage.md # \u57fa\u7840\u7528\u6cd5\n\u2502 \u2514\u2500\u2500 advanced.md # \u9ad8\u7ea7\u7279\u6027\n\u2514\u2500\u2500 api/ # API\u6587\u6863\n \u251c\u2500\u2500 index.md # API\u6982\u89c8\n \u251c\u2500\u2500 endpoints.md # \u63a5\u53e3\u5217\u8868\n \u2514\u2500\u2500 authentication.md # \u8ba4\u8bc1\u8bf4\u660e\n
"},{"location":"Technology/mkdocs%20material/#3223","title":"3.2.2.3 \u7d22\u5f15\u6587\u4ef6\u4f7f\u7528","text":"
\u6bcf\u4e2a\u76ee\u5f55\u7684 index. md \u793a\u4f8b\uff1a
Markdown
# \u7528\u6237\u6307\u5357\n\n\u8fd9\u662f\u7528\u6237\u6307\u5357\u7684\u4e3b\u9875\u9762\uff0c\u5305\u542b\u4ee5\u4e0b\u5185\u5bb9\uff1a\n\n## \u5feb\u901f\u5bfc\u822a\n\n- [\u57fa\u7840\u7528\u6cd5] (basic-usage.md) - \u5165\u95e8\u5fc5\u8bfb\n- [\u9ad8\u7ea7\u7279\u6027] (advanced.md) - \u6df1\u5165\u4e86\u89e3\n\n## \u672c\u8282\u5185\u5bb9\n\n\u6b64\u90e8\u5206\u5c06\u5e2e\u52a9\u60a8\u4e86\u89e3\u4ea7\u54c1\u7684\u6838\u5fc3\u529f\u80fd\u548c\u4f7f\u7528\u65b9\u6cd5...\n
\u5bf9\u5e94\u7684\u5bfc\u822a\u914d\u7f6e\uff1a
YAML
nav:\n - \u7528\u6237\u6307\u5357:\n - \u6982\u8ff0: user-guide/index.md\n - \u57fa\u7840\u7528\u6cd5: user-guide/basic-usage.md\n - \u9ad8\u7ea7\u7279\u6027: user-guide/advanced.md\n
"},{"location":"Technology/mkdocs%20material/#323","title":"3.2.3 \u591a\u7ea7\u76ee\u5f55","text":""},{"location":"Technology/mkdocs%20material/#3231","title":"3.2.3.1 \u5c42\u7ea7\u7ed3\u6784\u8bbe\u8ba1","text":"
\u590d\u6742\u7684\u591a\u7ea7\u76ee\u5f55\u793a\u4f8b\uff1a
YAML
nav:\n - \u9996\u9875: index.md\n - \u5165\u95e8\u6307\u5357:\n - \u6982\u8ff0: getting-started/index.md\n - \u57fa\u7840:\n - \u5b89\u88c5: getting-started/basics/installation.md\n - \u914d\u7f6e: getting-started/basics/configuration.md\n - \u8fdb\u9636:\n - \u81ea\u5b9a\u4e49: getting-started/advanced/customization.md\n - \u4f18\u5316: getting-started/advanced/optimization.md\n - \u5f00\u53d1\u6587\u6863:\n - \u6982\u8ff0: development/index.md\n - API:\n - \u8ba4\u8bc1: development/api/authentication.md\n - \u63a5\u53e3: development/api/endpoints.md\n - SDK:\n - Python: development/sdk/python.md\n - JavaScript: development/sdk/javascript.md\n
"},{"location":"Technology/mkdocs%20material/#3232","title":"3.2.3.2 \u5bfc\u822a\u6df1\u5ea6\u63a7\u5236","text":"YAML
theme:\n name: material\n features:\n - navigation.sections # \u663e\u793a\u7ae0\u8282\n - navigation.expand # \u5c55\u5f00\u5bfc\u822a\n - navigation.indexes # \u4f7f\u7528\u76ee\u5f55\u7d22\u5f15\n - toc.integrate # \u96c6\u6210\u76ee\u5f55\n\nmarkdown_extensions:\n - toc:\n permalink: true\n toc_depth: 3 # \u63a7\u5236\u76ee\u5f55\u6df1\u5ea6\n
"},{"location":"Technology/mkdocs%20material/#3233","title":"3.2.3.3 \u6298\u53e0\u914d\u7f6e","text":"
Material \u4e3b\u9898\u7684\u6298\u53e0\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n features:\n - navigation.sections # \u663e\u793a\u5206\u533a\n - navigation.expand # \u9ed8\u8ba4\u5c55\u5f00\n - navigation.indexes # \u4f7f\u7528\u7d22\u5f15\u9875\n - navigation.top # \u8fd4\u56de\u9876\u90e8\u6309\u94ae\n\n # \u5bfc\u822a\u680f\u8bbe\u7f6e\n nav_style: dark # \u5bfc\u822a\u680f\u6837\u5f0f\n collapse_navigation: true # \u6298\u53e0\u5bfc\u822a\n sticky_navigation: true # \u56fa\u5b9a\u5bfc\u822a\n
"},{"location":"Technology/mkdocs%20material/#324","title":"3.2.4 \u5bfc\u822a\u914d\u7f6e\u6700\u4f73\u5b9e\u8df5","text":"
-
\u7ed3\u6784\u8bbe\u8ba1\u539f\u5219\uff1a - \u4fdd\u6301\u5c42\u7ea7\u6e05\u6670 - \u63a7\u5236\u5bfc\u822a\u6df1\u5ea6\uff08\u5efa\u8bae\u4e0d\u8d85\u8fc7 3 \u5c42\uff09 - \u76f8\u5173\u5185\u5bb9\u5206\u7ec4 - \u4f7f\u7528\u76f4\u89c2\u7684\u547d\u540d
-
\u6587\u4ef6\u7ec4\u7ec7\uff1a - \u4f7f\u7528\u6709\u610f\u4e49\u7684\u76ee\u5f55\u540d - \u4fdd\u6301\u6587\u4ef6\u7ed3\u6784\u6574\u6d01 - \u5408\u7406\u4f7f\u7528\u7d22\u5f15\u6587\u4ef6 - \u9075\u5faa\u4e00\u81f4\u7684\u547d\u540d\u89c4\u8303
-
\u7528\u6237\u4f53\u9a8c\uff1a - \u63d0\u4f9b\u6e05\u6670\u7684\u5bfc\u822a\u8def\u5f84 - \u6dfb\u52a0\u5408\u9002\u7684\u63cf\u8ff0 - \u8003\u8651\u79fb\u52a8\u7aef\u663e\u793a - \u4f18\u5316\u5bfc\u822a\u54cd\u5e94\u901f\u5ea6
-
\u7ef4\u62a4\u5efa\u8bae\uff1a - \u5b9a\u671f\u68c0\u67e5\u6b7b\u94fe\u63a5 - \u66f4\u65b0\u5bfc\u822a\u7ed3\u6784 - \u4fdd\u6301\u6587\u6863\u540c\u6b65 - \u6536\u96c6\u7528\u6237\u53cd\u9988
"},{"location":"Technology/mkdocs%20material/#325","title":"3.2.5 \u7279\u6b8a\u5bfc\u822a\u529f\u80fd","text":"
- \u9690\u85cf\u9875\u9762\uff1a
YAML
nav:\n - \u53ef\u89c1\u9875\u9762: visible.md\n - !hidden \u9690\u85cf\u9875\u9762: hidden.md\n
- \u5916\u90e8\u94fe\u63a5\uff1a
YAML
nav:\n - \u6587\u6863: index.md\n - GitHub: https://github.com/your/repo\n - \u793e\u533a: \n - \u8bba\u575b: https://forum.example.com\n - \u535a\u5ba2: https://blog.example.com\n
- \u522b\u540d\u8bbe\u7f6e\uff1a
YAML
nav:\n - \u5f00\u59cb: \n - \u6982\u8ff0: getting-started/index.md\n - \u5feb\u901f\u5165\u95e8: getting-started/quickstart.md\n - \u540c\u4e00\u6587\u4ef6\u4e0d\u540c\u5165\u53e3: !alias getting-started/quickstart.md\n
"},{"location":"Technology/mkdocs%20material/#33-markdown","title":"3.3 Markdown \u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#331","title":"3.3.1 \u57fa\u7840\u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#3311-meta","title":"3.3.1.1 meta \u6269\u5c55","text":"
\u652f\u6301\u5728 Markdown \u6587\u4ef6\u5934\u90e8\u6dfb\u52a0\u5143\u6570\u636e\uff1a
YAML
# mkdocs.yml \u914d\u7f6e\nmarkdown_extensions:\n - meta\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
---\ntitle: \u6211\u7684\u9875\u9762\u6807\u9898\ndescription: \u9875\u9762\u63cf\u8ff0\nauthor: \u4f5c\u8005\u540d\ndate: 2024-01-01\n---\n\n# \u6b63\u6587\u5185\u5bb9\n
"},{"location":"Technology/mkdocs%20material/#3312-toc","title":"3.3.1.2 toc \u6269\u5c55","text":"
\u81ea\u52a8\u751f\u6210\u76ee\u5f55\uff1a
YAML
markdown_extensions:\n - toc:\n permalink: true # \u6dfb\u52a0\u6bb5\u843d\u94fe\u63a5\n toc_depth: 3 # \u76ee\u5f55\u6df1\u5ea6\n separator: \"_\" # \u6807\u9898\u951a\u70b9\u5206\u9694\u7b26\n title: \"\u76ee\u5f55\" # \u76ee\u5f55\u6807\u9898\n slugify: !!python/object/apply:pymdownx.slugs.slugify\n kwds: {case: lower} # URL \u8f6c\u6362\u89c4\u5219\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
[TOC]\n\n# \u4e00\u7ea7\u6807\u9898\n## \u4e8c\u7ea7\u6807\u9898\n### \u4e09\u7ea7\u6807\u9898\n
"},{"location":"Technology/mkdocs%20material/#3313-tables","title":"3.3.1.3 tables \u6269\u5c55","text":"
\u589e\u5f3a\u7684\u8868\u683c\u652f\u6301\uff1a
YAML
markdown_extensions:\n - tables\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
| \u529f\u80fd | \u57fa\u7840\u7248 | \u4e13\u4e1a\u7248 |\n|-----|:------:|-------:|\n| \u529f\u80fdA | \u2713 | \u2713 |\n| \u529f\u80fdB | \u2717 | \u2713 |\n| \u529f\u80fdC | \u2717 | \u2713 |\n\n: \u8868\u683c\u6807\u9898 {.class-name}\n
"},{"location":"Technology/mkdocs%20material/#332-pymdown-extensions","title":"3.3.2 PyMdown Extensions","text":""},{"location":"Technology/mkdocs%20material/#3321-superfences","title":"3.3.2.1 superfences \u914d\u7f6e","text":"
\u589e\u5f3a\u7684\u4ee3\u7801\u5757\u529f\u80fd\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_div_format\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
```python title=\"example.py\" linenums=\"1\" hl_lines=\"2 3\"\ndef hello_world():\n message = \"Hello, World!\"\n print(message)\n return message\n```\n\n```mermaid\ngraph LR\n A[\u5f00\u59cb] --> B{\u5224\u65ad}\n B --> |Yes| C[\u6267\u884c]\n B --> |No| D[\u8df3\u8fc7]\n```\n
"},{"location":"Technology/mkdocs%20material/#3322-emoji","title":"3.3.2.2 emoji \u652f\u6301","text":"
\u6dfb\u52a0\u8868\u60c5\u7b26\u53f7\u652f\u6301\uff1a
YAML
markdown_extensions:\n - pymdownx.emoji:\n emoji_index: !!python/name:material.extensions.emoji.twemoji\n emoji_generator: !!python/name:material.extensions.emoji.to_svg\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
:smile: :heart: :thumbsup:\n\n:fontawesome-brands-github: GitHub\n:material-account: \u7528\u6237\n:octicons-repo-16: \u4ed3\u5e93\n
"},{"location":"Technology/mkdocs%20material/#3323-tasklist","title":"3.3.2.3 tasklist \u529f\u80fd","text":"
\u4efb\u52a1\u5217\u8868\u652f\u6301\uff1a
YAML
markdown_extensions:\n - pymdownx.tasklist:\n custom_checkbox: true # \u81ea\u5b9a\u4e49\u590d\u9009\u6846\u6837\u5f0f\n clickable_checkbox: true # \u53ef\u70b9\u51fb\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
- [x] \u5df2\u5b8c\u6210\u4efb\u52a1\n- [ ] \u672a\u5b8c\u6210\u4efb\u52a1\n - [x] \u5b50\u4efb\u52a1 1\n - [ ] \u5b50\u4efb\u52a1 2\n
"},{"location":"Technology/mkdocs%20material/#3324-pymdown","title":"3.3.2.4 \u5176\u4ed6\u5e38\u7528 PyMdown \u6269\u5c55","text":"YAML
markdown_extensions:\n - pymdownx.highlight # \u4ee3\u7801\u9ad8\u4eae\n - pymdownx.inlinehilite # \u884c\u5185\u4ee3\u7801\u9ad8\u4eae\n - pymdownx.snippets # \u4ee3\u7801\u7247\u6bb5\n - pymdownx.magiclink # \u81ea\u52a8\u94fe\u63a5\n - pymdownx.mark # ==\u6807\u8bb0==\n - pymdownx.critic # \u7f16\u8f91\u6807\u8bb0\n - pymdownx.tilde # \u5220\u9664\u7ebf\n - pymdownx.caret # \u4e0a\u6807\n - pymdownx.keys # \u952e\u76d8\u6309\u952e\n - pymdownx.tabbed # \u6807\u7b7e\u9875\n
"},{"location":"Technology/mkdocs%20material/#333","title":"3.3.3 \u81ea\u5b9a\u4e49\u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#3331","title":"3.3.3.1 \u6269\u5c55\u5f00\u53d1\u57fa\u7840","text":"
\u521b\u5efa\u81ea\u5b9a\u4e49\u6269\u5c55\uff1a
Python
# custom_extension.py\nfrom markdown.extensions import Extension\nfrom markdown.preprocessors import Preprocessor\n\nclass CustomPreprocessor(Preprocessor):\n def run(self, lines):\n new_lines = []\n for line in lines:\n new_lines.append(line.replace('[[', '**').replace(']]', '**'))\n return new_lines\n\nclass CustomExtension(Extension):\n def extendMarkdown(self, md):\n md.preprocessors.register(CustomPreprocessor(md), 'custom_preprocessor', 175)\n
"},{"location":"Technology/mkdocs%20material/#34","title":"3.4 \u5e38\u7528\u6269\u5c55\u793a\u4f8b","text":"
- \u6dfb\u52a0\u81ea\u5b9a\u4e49 HTML \u5c5e\u6027\uff1a
Python
from markdown.extensions import Extension\nfrom markdown.treeprocessors import Treeprocessor\n\nclass CustomAttributesTreeprocessor(Treeprocessor):\n def run(self, root):\n for elem in root.iter():\n if 'class' in elem.attrib:\n elem.set('data-custom', 'value')\n\nclass CustomAttributesExtension(Extension):\n def extendMarkdown(self, md):\n md.treeprocessors.register(\n CustomAttributesTreeprocessor(md), 'custom_attributes', 15\n )\n
- \u81ea\u5b9a\u4e49\u5bb9\u5668\uff1a
Python
from markdown.extensions import Extension\nfrom markdown.blockprocessors import BlockProcessor\nimport re\n\nclass CustomContainerProcessor(BlockProcessor):\n RE = re.compile(r':{3,}\\ *(warning|note|tip)\\ *')\n\n def run(self, parent, blocks):\n block = blocks.pop(0)\n m = self.RE.match(block)\n\n if m:\n container_type = m.group(1)\n div = etree.SubElement(parent, 'div')\n div.set('class', f'custom-container {container_type}')\n\n # \u5904\u7406\u5bb9\u5668\u5185\u5bb9\n self.parser.parseChunk(div, block[m.end():])\n\nclass CustomContainerExtension(Extension):\n def extendMarkdown(self, md):\n md.parser.blockprocessors.register(\n CustomContainerProcessor(md.parser), 'custom_container', 175\n )\n
"},{"location":"Technology/mkdocs%20material/#341","title":"3.4.1 \u6269\u5c55\u914d\u7f6e\u65b9\u6cd5","text":"
\u5728 mkdocs.yml
\u4e2d\u914d\u7f6e\u81ea\u5b9a\u4e49\u6269\u5c55\uff1a
YAML
markdown_extensions:\n - custom_extension:\n option1: value1\n option2: value2\n\nextra_css:\n - css/custom_extension.css\n\nextra_javascript:\n - js/custom_extension.js\n
"},{"location":"Technology/mkdocs%20material/#342","title":"3.4.2 \u6269\u5c55\u7ec4\u5408\u63a8\u8350","text":""},{"location":"Technology/mkdocs%20material/#3421","title":"3.4.2.1 \u57fa\u7840\u6587\u6863\u914d\u7f6e","text":"YAML
markdown_extensions:\n - meta\n - toc:\n permalink: true\n - tables\n - attr_list\n - def_list\n - footnotes\n
"},{"location":"Technology/mkdocs%20material/#3422","title":"3.4.2.2 \u589e\u5f3a\u529f\u80fd\u914d\u7f6e","text":"YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_div_format\n - pymdownx.highlight:\n anchor_linenums: true\n - pymdownx.inlinehilite\n - pymdownx.snippets\n - pymdownx.tasklist:\n custom_checkbox: true\n - pymdownx.emoji:\n emoji_index: !!python/name:material.extensions.emoji.twemoji\n emoji_generator: !!python/name:material.extensions.emoji.to_svg\n
"},{"location":"Technology/mkdocs%20material/#343","title":"3.4.3 \u5b8c\u6574\u63a8\u8350\u914d\u7f6e","text":"YAML
markdown_extensions:\n # Python Markdown\n - meta\n - toc:\n permalink: true\n toc_depth: 4\n - tables\n - attr_list\n - def_list\n - md_in_html\n - footnotes\n\n # Python Markdown Extensions\n - pymdownx.superfences\n - pymdownx.highlight\n - pymdownx.inlinehilite\n - pymdownx.snippets\n - pymdownx.tasklist\n - pymdownx.emoji\n - pymdownx.mark\n - pymdownx.critic\n - pymdownx.keys\n - pymdownx.tilde\n - pymdownx.caret\n - pymdownx.details\n - pymdownx.magiclink\n - pymdownx.tabbed:\n alternate_style: true\n\n # \u81ea\u5b9a\u4e49\u6269\u5c55\n - custom_extension:\n custom_option: value\n
"},{"location":"Technology/mkdocs%20material/#344","title":"3.4.4 \u4f7f\u7528\u5efa\u8bae","text":"
-
\u6027\u80fd\u8003\u8651\uff1a - \u53ea\u542f\u7528\u9700\u8981\u7684\u6269\u5c55 - \u6ce8\u610f\u6269\u5c55\u4e4b\u95f4\u7684\u4f9d\u8d56\u5173\u7cfb - \u63a7\u5236\u6269\u5c55\u6570\u91cf
-
\u517c\u5bb9\u6027\uff1a - \u6d4b\u8bd5\u6269\u5c55\u7ec4\u5408 - \u68c0\u67e5\u79fb\u52a8\u7aef\u663e\u793a - \u9a8c\u8bc1\u4e0d\u540c\u6d4f\u89c8\u5668
-
\u7ef4\u62a4\u5efa\u8bae\uff1a - \u8bb0\u5f55\u6269\u5c55\u914d\u7f6e - \u4fdd\u6301\u7248\u672c\u66f4\u65b0 - \u76d1\u63a7\u6027\u80fd\u5f71\u54cd
"},{"location":"Technology/mkdocs%20material/#35","title":"3.5 \u63d2\u4ef6\u7cfb\u7edf","text":""},{"location":"Technology/mkdocs%20material/#351","title":"3.5.1 \u63d2\u4ef6\u914d\u7f6e\u65b9\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#3511","title":"3.5.1.1 \u63d2\u4ef6\u5b89\u88c5\u65b9\u6cd5","text":"
\u901a\u8fc7 pip \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
# \u5b89\u88c5\u5355\u4e2a\u63d2\u4ef6\npip install mkdocs-git-revision-date-localized-plugin\n\n# \u5b89\u88c5\u591a\u4e2a\u63d2\u4ef6\npip install mkdocs-minify-plugin mkdocs-git-authors-plugin\n
\u57fa\u7840\u63d2\u4ef6\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - search # \u9ed8\u8ba4\u63d2\u4ef6\n - git-revision-date-localized:\n enable_creation_date: true\n - minify:\n minify_html: true\n
"},{"location":"Technology/mkdocs%20material/#3512","title":"3.5.1.2 \u914d\u7f6e\u8bed\u6cd5","text":"
\u63d2\u4ef6\u914d\u7f6e\u7684\u51e0\u79cd\u65b9\u5f0f\uff1a
YAML
# 1. \u7b80\u5355\u542f\u7528\u63d2\u4ef6\uff08\u4f7f\u7528\u9ed8\u8ba4\u914d\u7f6e\uff09\nplugins:\n - search\n - tags\n\n# 2. \u7981\u7528\u9ed8\u8ba4\u63d2\u4ef6\nplugins:\n - search: false\n\n# 3. \u5e26\u914d\u7f6e\u7684\u63d2\u4ef6\nplugins:\n - search:\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.]+'\n\n# 4. \u591a\u5b9e\u4f8b\u63d2\u4ef6\nplugins:\n - search:\n name: search_1\n config: value\n - search:\n name: search_2\n config: value\n
"},{"location":"Technology/mkdocs%20material/#3513","title":"3.5.1.3 \u4f18\u5148\u7ea7\u63a7\u5236","text":"
\u63d2\u4ef6\u6267\u884c\u987a\u5e8f\u63a7\u5236\uff1a
YAML
plugins:\n - search\n - git-revision-date-localized:\n priority: 80\n - minify:\n priority: 90\n - tags:\n priority: 70\n
"},{"location":"Technology/mkdocs%20material/#352","title":"3.5.2 \u5e38\u7528\u63d2\u4ef6\u4ecb\u7ecd","text":""},{"location":"Technology/mkdocs%20material/#3521","title":"3.5.2.1 \u5b98\u65b9\u63d2\u4ef6","text":"
- search - \u641c\u7d22\u63d2\u4ef6
YAML
plugins:\n - search:\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.]+'\n min_search_length: 2\n prebuild_index: true\n indexing:\n - full_sections: false\n - headings: true\n - content: true\n
- tags - \u6807\u7b7e\u7cfb\u7edf
YAML
plugins:\n - tags:\n tags_file: tags.md\n tags_extra_files:\n cloud: cloud_tags.md\n list: tag_list.md\n
"},{"location":"Technology/mkdocs%20material/#3522","title":"3.5.2.2 \u793e\u533a\u63d2\u4ef6\u63a8\u8350","text":"
- git-revision-date-localized - Git \u65e5\u671f\u4fe1\u606f
YAML
plugins:\n - git-revision-date-localized:\n type: timeago\n enable_creation_date: true\n exclude:\n - index.md\n timezone: Asia/Shanghai\n locale: zh\n
- minify - \u6587\u4ef6\u538b\u7f29
YAML
plugins:\n - minify:\n minify_html: true\n minify_js: true\n minify_css: true\n htmlmin_opts:\n remove_comments: true\n
- social - \u793e\u4ea4\u5206\u4eab
YAML
plugins:\n - social:\n cards: true\n cards_color:\n fill: \"#0FF1CE\"\n text: \"#FFFFFF\"\n
- macros - \u6a21\u677f\u5b8f
YAML
plugins:\n - macros:\n module_name: macros\n include_dir: include\n include_yaml:\n - variables.yml\n
"},{"location":"Technology/mkdocs%20material/#3523","title":"3.5.2.3 \u5b9e\u7528\u63d2\u4ef6\u96c6\u5408","text":"YAML
plugins:\n # \u6838\u5fc3\u529f\u80fd\n - search\n - tags\n\n # \u7248\u672c\u63a7\u5236\n - git-revision-date-localized\n - git-authors\n\n # \u6027\u80fd\u4f18\u5316\n - minify\n - optimize\n\n # \u5185\u5bb9\u589e\u5f3a\n - social\n - macros\n - blogging\n\n # \u591a\u8bed\u8a00\u652f\u6301\n - i18n\n - translations\n\n # \u56fe\u7247\u5904\u7406\n - glightbox\n - img2fig\n\n # \u7edf\u8ba1\u5206\u6790\n - statistics\n - pdf-export\n
"},{"location":"Technology/mkdocs%20material/#353","title":"3.5.3 \u63d2\u4ef6\u7ec4\u5408\u4f7f\u7528","text":""},{"location":"Technology/mkdocs%20material/#3531","title":"3.5.3.1 \u57fa\u7840\u7ec4\u5408\u65b9\u6848","text":"
\u9002\u5408\u4e00\u822c\u6587\u6863\u9879\u76ee\uff1a
YAML
plugins:\n - search:\n lang: zh\n separator: '[\\s\\-\\.]+'\n\n - git-revision-date-localized:\n enable_creation_date: true\n type: date\n\n - minify:\n minify_html: true\n\n - glightbox:\n touchNavigation: true\n loop: false\n effect: zoom\n width: 100%\n height: auto\n zoomable: true\n draggable: true\n
"},{"location":"Technology/mkdocs%20material/#3532","title":"3.5.3.2 \u535a\u5ba2\u7f51\u7ad9\u65b9\u6848","text":"
\u9002\u5408\u535a\u5ba2\u7c7b\u7f51\u7ad9\uff1a
YAML
plugins:\n - blog:\n blog_dir: blog\n post_url_format: \"{slug}\"\n post_excerpt: optional\n\n - social:\n cards: true\n cards_dir: assets/social\n\n - tags:\n tags_file: tags.md\n\n - rss:\n abstract_chars_count: 160\n date_from_meta: true\n\n - statistics:\n page_check: true\n page_count: true\n
"},{"location":"Technology/mkdocs%20material/#3533","title":"3.5.3.3 \u6280\u672f\u6587\u6863\u65b9\u6848","text":"
\u9002\u5408\u5927\u578b\u6280\u672f\u6587\u6863\uff1a
YAML
plugins:\n - search:\n separator: '[\\s\\-\\.]+'\n min_search_length: 2\n lang:\n - en\n - zh\n prebuild_index: true\n\n - git-revision-date-localized:\n type: timeago\n enable_creation_date: true\n\n - minify:\n minify_html: true\n minify_js: true\n minify_css: true\n\n - macros:\n module_name: includes.macros\n include_yaml:\n - includes/variables.yml\n\n - pdf-export:\n combined: true\n combined_output_path: pdf/document.pdf\n
"},{"location":"Technology/mkdocs%20material/#354","title":"3.5.4 \u6027\u80fd\u4f18\u5316\u5efa\u8bae","text":"
-
\u63d2\u4ef6\u9009\u62e9\uff1a - \u53ea\u542f\u7528\u5fc5\u8981\u7684\u63d2\u4ef6 - \u907f\u514d\u529f\u80fd\u91cd\u590d\u7684\u63d2\u4ef6 - \u6ce8\u610f\u63d2\u4ef6\u95f4\u7684\u4f9d\u8d56\u5173\u7cfb
-
\u914d\u7f6e\u4f18\u5316\uff1a
YAML
plugins:\n - search:\n prebuild_index: true # \u9884\u6784\u5efa\u7d22\u5f15\n - minify:\n cache: true # \u542f\u7528\u7f13\u5b58\n cache_dir: .cache # \u7f13\u5b58\u76ee\u5f55\n - optimize: # \u8d44\u6e90\u4f18\u5316\n cache: true\n
- \u6784\u5efa\u4f18\u5316\uff1a
YAML
plugins:\n # \u5e76\u884c\u5904\u7406\u63d2\u4ef6\n - parallel:\n workers: 4\n # \u7f13\u5b58\u63d2\u4ef6\n - cache:\n enabled: true\n
"},{"location":"Technology/mkdocs%20material/#4-material","title":"4 Material \u4e3b\u9898\u5b8c\u5168\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#41","title":"4.1 \u57fa\u7840\u5916\u89c2","text":""},{"location":"Technology/mkdocs%20material/#411","title":"4.1.1 \u914d\u8272\u65b9\u6848","text":""},{"location":"Technology/mkdocs%20material/#4111","title":"4.1.1.1 \u9884\u8bbe\u4e3b\u9898\u8272","text":"
Material \u4e3b\u9898\u63d0\u4f9b\u4e86\u4e30\u5bcc\u7684\u9884\u8bbe\u989c\u8272\uff1a
YAML
theme:\n name: material\n palette:\n primary: indigo # \u4e3b\u8272\u8c03\n accent: pink # \u5f3a\u8c03\u8272\n\n# \u53ef\u7528\u7684\u4e3b\u9898\u8272\uff1a\n# red, pink, purple, deep purple, indigo, blue, light blue, \n# cyan, teal, green, light green, lime, yellow, amber, \n# orange, deep orange, brown, grey, blue grey\n
"},{"location":"Technology/mkdocs%20material/#4112","title":"4.1.1.2 \u81ea\u5b9a\u4e49\u914d\u8272","text":"
\u5b8c\u6574\u7684\u81ea\u5b9a\u4e49\u914d\u8272\u914d\u7f6e\uff1a
YAML
theme:\n palette:\n # \u4eae\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n\n # \u6697\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n
"},{"location":"Technology/mkdocs%20material/#4113-css","title":"4.1.1.3 \u81ea\u5b9a\u4e49 CSS \u53d8\u91cf","text":"
\u521b\u5efa docs/stylesheets/extra.css
\uff1a
CSS
:root {\n --md-primary-fg-color: #2196f3;\n --md-primary-fg-color--light: #64b5f6;\n --md-primary-fg-color--dark: #1976d2;\n --md-accent-fg-color: #2196f3;\n}\n\n[data-md-color-scheme=\"slate\"] {\n --md-primary-fg-color: #90caf9;\n --md-primary-fg-color--light: #e3f2fd;\n --md-primary-fg-color--dark: #42a5f5;\n}\n
\u5728 mkdocs.yml
\u4e2d\u5f15\u5165\uff1a
YAML
extra_css:\n - stylesheets/extra.css\n
"},{"location":"Technology/mkdocs%20material/#412","title":"4.1.2 \u4e3b\u9898\u5207\u6362","text":""},{"location":"Technology/mkdocs%20material/#4121","title":"4.1.2.1 \u57fa\u7840\u5207\u6362\u914d\u7f6e","text":"YAML
theme:\n name: material\n palette:\n # \u914d\u7f6e\u5207\u6362\u6309\u94ae\n - scheme: default\n toggle:\n icon: material/brightness-7 \n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n primary: indigo\n accent: indigo\n\n - scheme: slate\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n primary: indigo\n accent: indigo\n
"},{"location":"Technology/mkdocs%20material/#4122","title":"4.1.2.2 \u9ad8\u7ea7\u5207\u6362\u529f\u80fd","text":"
\u6dfb\u52a0\u81ea\u5b9a\u4e49\u5207\u6362\u903b\u8f91\uff1a
YAML
extra_javascript:\n - javascripts/theme-switch.js\n
theme-switch.js
\u5185\u5bb9\uff1a
JavaScript
document.addEventListener('DOMContentLoaded', function() {\n // \u83b7\u53d6\u7cfb\u7edf\u4e3b\u9898\u504f\u597d\n const prefersDark = window.matchMedia('(prefers-color-scheme: dark)');\n\n // \u76d1\u542c\u7cfb\u7edf\u4e3b\u9898\u53d8\u5316\n prefersDark.addListener((e) => {\n const theme = e.matches ? 'slate' : 'default';\n document.body.setAttribute('data-md-color-scheme', theme);\n });\n\n // \u521d\u59cb\u5316\u4e3b\u9898\n const theme = prefersDark.matches ? 'slate' : 'default';\n document.body.setAttribute('data-md-color-scheme', theme);\n});\n
"},{"location":"Technology/mkdocs%20material/#413","title":"4.1.3 \u56fe\u6807\u8bbe\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#4131","title":"4.1.3.1 \u7f51\u7ad9\u56fe\u6807","text":"
\u914d\u7f6e\u7f51\u7ad9\u56fe\u6807\u548c Logo\uff1a
YAML
theme:\n icon:\n logo: material/book-open-page-variant # \u7f51\u7ad9 Logo\n repo: fontawesome/brands/github # \u4ed3\u5e93\u56fe\u6807\n\n favicon: assets/favicon.png # \u7f51\u7ad9\u56fe\u6807\n
"},{"location":"Technology/mkdocs%20material/#4132","title":"4.1.3.2 \u529f\u80fd\u56fe\u6807","text":"
\u4e3a\u4e0d\u540c\u529f\u80fd\u914d\u7f6e\u56fe\u6807\uff1a
YAML
theme:\n icon:\n repo: fontawesome/brands/github # \u4ed3\u5e93\u56fe\u6807\n edit: material/pencil # \u7f16\u8f91\u56fe\u6807\n view: material/eye # \u67e5\u770b\u56fe\u6807\n admonition:\n note: octicons/tag-16 # \u63d0\u793a\u6846\u56fe\u6807\n abstract: octicons/checklist-16\n info: octicons/info-16\n tip: octicons/squirrel-16\n success: octicons/check-16\n question: octicons/question-16\n warning: octicons/alert-16\n failure: octicons/x-circle-16\n danger: octicons/zap-16\n bug: octicons/bug-16\n example: octicons/beaker-16\n quote: octicons/quote-16\n
"},{"location":"Technology/mkdocs%20material/#4133-svg","title":"4.1.3.3 \u81ea\u5b9a\u4e49 SVG \u56fe\u6807","text":"
\u6dfb\u52a0\u81ea\u5b9a\u4e49 SVG \u56fe\u6807\uff1a
- \u521b\u5efa
.icons
\u76ee\u5f55\uff1a
Text Only
.\n\u251c\u2500 .icons/\n\u2502 \u2514\u2500 custom/\n\u2502 \u2514\u2500 logo.svg\n\u2514\u2500 mkdocs.yml\n
- \u914d\u7f6e\u4f7f\u7528\uff1a
YAML
theme:\n icon:\n logo: custom/logo\n
"},{"location":"Technology/mkdocs%20material/#414-logo","title":"4.1.4 Logo \u8bbe\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#4141-logo","title":"4.1.4.1 \u57fa\u7840 Logo \u914d\u7f6e","text":"YAML
theme:\n logo: assets/logo.svg # Logo \u56fe\u7247\n icon:\n logo: material/book # \u6216\u4f7f\u7528\u56fe\u6807\u4f5c\u4e3a Logo\n
"},{"location":"Technology/mkdocs%20material/#4142-logo","title":"4.1.4.2 \u54cd\u5e94\u5f0f Logo","text":"
\u521b\u5efa\u54cd\u5e94\u5f0f Logo\uff1a
YAML
theme:\n logo: assets/logo.svg\nextra_css:\n - stylesheets/logo.css\n
logo.css
\u5185\u5bb9\uff1a
CSS
/* \u9ed8\u8ba4 Logo */\n.md-logo img {\n width: 40px;\n height: 40px;\n}\n\n/* \u79fb\u52a8\u7aef Logo */\n@media screen and (max-width: 76.1875em) {\n .md-logo img {\n width: 32px;\n height: 32px;\n }\n}\n\n/* \u6697\u8272\u4e3b\u9898 Logo */\n[data-md-color-scheme=\"slate\"] .md-logo img {\n filter: invert(1);\n}\n
"},{"location":"Technology/mkdocs%20material/#4143-logo","title":"4.1.4.3 Logo \u52a8\u753b\u6548\u679c","text":"
\u6dfb\u52a0 Logo \u52a8\u753b\uff1a
CSS
.md-logo img {\n transition: transform 0.3s ease;\n}\n\n.md-logo img:hover {\n transform: scale(1.1);\n}\n
"},{"location":"Technology/mkdocs%20material/#415","title":"4.1.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\ntheme:\n name: material\n\n # \u8c03\u8272\u677f\u914d\u7f6e\n palette:\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: blue\n accent: blue\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n\n # \u56fe\u6807\u914d\u7f6e\n icon:\n logo: material/book-open-page-variant\n repo: fontawesome/brands/github\n edit: material/pencil\n view: material/eye\n\n # Logo \u914d\u7f6e\n logo: assets/logo.svg\n favicon: assets/favicon.png\n\n# \u989d\u5916\u6837\u5f0f\nextra_css:\n - stylesheets/extra.css\n - stylesheets/logo.css\n\n# \u989d\u5916\u811a\u672c\nextra_javascript:\n - javascripts/theme-switch.js\n\n# \u4e3b\u9898\u7279\u6027\nfeatures:\n - navigation.instant\n - navigation.tracking\n - navigation.tabs\n - navigation.sections\n - navigation.expand\n - navigation.top\n - toc.integrate\n
"},{"location":"Technology/mkdocs%20material/#42","title":"4.2 \u5bfc\u822a\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#421","title":"4.2.1 \u9876\u90e8\u5bfc\u822a","text":""},{"location":"Technology/mkdocs%20material/#4211","title":"4.2.1.1 \u5bfc\u822a\u680f\u6837\u5f0f","text":"
\u57fa\u7840\u5bfc\u822a\u680f\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n features:\n - navigation.tabs # \u542f\u7528\u6807\u7b7e\u5f0f\u5bfc\u822a\n - navigation.sections # \u663e\u793a\u7ae0\u8282\u5bfc\u822a\n - navigation.expand # \u5c55\u5f00\u5bfc\u822a\n - navigation.indexes # \u7ae0\u8282\u7d22\u5f15\u9875\n
\u81ea\u5b9a\u4e49\u5bfc\u822a\u680f\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/extra.css */\n\n/* \u5bfc\u822a\u680f\u80cc\u666f */\n.md-header {\n background-color: #2196f3;\n box-shadow: 0 2px 4px rgba(0,0,0,.14);\n}\n\n/* \u5bfc\u822a\u9879\u6837\u5f0f */\n.md-tabs__link {\n font-size: .8rem;\n margin-top: .4rem;\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.md-tabs__link--active {\n font-weight: bold;\n border-bottom: 2px solid currentColor;\n}\n
"},{"location":"Technology/mkdocs%20material/#4212","title":"4.2.1.2 \u56fa\u5b9a\u5bfc\u822a\u680f","text":"
\u542f\u7528\u56fa\u5b9a\u5bfc\u822a\uff1a
YAML
theme:\n features:\n - header.autohide # \u81ea\u52a8\u9690\u85cf\n - navigation.sticky # \u56fa\u5b9a\u5bfc\u822a\n
\u81ea\u5b9a\u4e49\u56fa\u5b9a\u5bfc\u822a\u884c\u4e3a\uff1a
CSS
/* \u56fa\u5b9a\u5bfc\u822a\u680f\u6837\u5f0f */\n.md-header--sticky {\n backdrop-filter: blur(8px);\n background-color: rgba(255,255,255,.8);\n}\n\n/* \u6697\u8272\u4e3b\u9898 */\n[data-md-color-scheme=\"slate\"] .md-header--sticky {\n background-color: rgba(0,0,0,.8);\n}\n
"},{"location":"Technology/mkdocs%20material/#4213","title":"4.2.1.3 \u54cd\u5e94\u5f0f\u5bfc\u822a","text":"
\u54cd\u5e94\u5f0f\u914d\u7f6e\uff1a
YAML
theme:\n features:\n - navigation.instant # \u5373\u65f6\u52a0\u8f7d\n - navigation.tracking # \u6eda\u52a8\u8ddf\u8e2a\n
\u54cd\u5e94\u5f0f\u6837\u5f0f\u8c03\u6574\uff1a
CSS
/* \u79fb\u52a8\u7aef\u5bfc\u822a */\n@media screen and (max-width: 76.1875em) {\n .md-nav__title {\n font-size: .9rem;\n padding: 0.5rem 0.8rem;\n }\n\n .md-nav__item {\n padding: 0.2rem 0.8rem;\n }\n}\n\n/* \u5e73\u677f\u5bfc\u822a */\n@media screen and (min-width: 76.25em) {\n .md-nav__link {\n padding: 0.2rem 0;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#422","title":"4.2.2 \u6807\u7b7e\u5bfc\u822a","text":""},{"location":"Technology/mkdocs%20material/#4221","title":"4.2.2.1 \u6807\u7b7e\u9875\u914d\u7f6e","text":"
\u542f\u7528\u6807\u7b7e\u5bfc\u822a\uff1a
YAML
theme:\n features:\n - navigation.tabs\n - navigation.tabs.sticky # \u56fa\u5b9a\u6807\u7b7e\n
\u6807\u7b7e\u9875\u7ed3\u6784\uff1a
YAML
nav:\n - Home: index.md\n - Guide:\n - guide/index.md\n - Installation: guide/installation.md\n - Configuration: guide/configuration.md\n - API:\n - api/index.md\n - Reference: api/reference.md\n
"},{"location":"Technology/mkdocs%20material/#4222","title":"4.2.2.2 \u6807\u7b7e\u6837\u5f0f","text":"
\u81ea\u5b9a\u4e49\u6807\u7b7e\u6837\u5f0f\uff1a
CSS
/* \u6807\u7b7e\u5bb9\u5668 */\n.md-tabs {\n background-color: var(--md-primary-fg-color--dark);\n}\n\n/* \u6807\u7b7e\u9879 */\n.md-tabs__item {\n padding: 0 1rem;\n transition: all 0.2s ease;\n}\n\n/* \u60ac\u505c\u6548\u679c */\n.md-tabs__item:hover {\n background-color: rgba(255,255,255,.1);\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.md-tabs__item--active {\n font-weight: bold;\n}\n
"},{"location":"Technology/mkdocs%20material/#4223","title":"4.2.2.3 \u6807\u7b7e\u4ea4\u4e92","text":"
\u6dfb\u52a0\u6807\u7b7e\u4ea4\u4e92\u6548\u679c\uff1a
JavaScript
// docs/javascripts/tabs.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u6807\u7b7e\u70b9\u51fb\u6548\u679c\n const tabs = document.querySelectorAll('.md-tabs__item');\n tabs.forEach(tab => {\n tab.addEventListener('click', () => {\n // \u6dfb\u52a0\u70b9\u51fb\u6ce2\u7eb9\u6548\u679c\n const ripple = document.createElement('div');\n ripple.classList.add('md-tabs__ripple');\n tab.appendChild(ripple);\n\n // \u79fb\u9664\u6ce2\u7eb9\u6548\u679c\n setTimeout(() => ripple.remove(), 1000);\n });\n });\n});\n
\u5bf9\u5e94\u7684 CSS\uff1a
CSS
/* \u6ce2\u7eb9\u6548\u679c */\n.md-tabs__ripple {\n position: absolute;\n background: rgba(255,255,255,.3);\n border-radius: 50%;\n transform: scale(0);\n animation: ripple 0.6s linear;\n}\n\n@keyframes ripple {\n to {\n transform: scale(4);\n opacity: 0;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#423","title":"4.2.3 \u76ee\u5f55\u5bfc\u822a","text":""},{"location":"Technology/mkdocs%20material/#4231","title":"4.2.3.1 \u76ee\u5f55\u5c42\u7ea7","text":"
\u914d\u7f6e\u76ee\u5f55\u5c42\u7ea7\uff1a
YAML
theme:\n features:\n - toc.integrate # \u96c6\u6210\u76ee\u5f55\n - toc.follow # \u76ee\u5f55\u8ddf\u968f\n\nmarkdown_extensions:\n - toc:\n permalink: true # \u6c38\u4e45\u94fe\u63a5\n toc_depth: 3 # \u76ee\u5f55\u6df1\u5ea6\n title: \u76ee\u5f55 # \u76ee\u5f55\u6807\u9898\n
"},{"location":"Technology/mkdocs%20material/#4232","title":"4.2.3.2 \u76ee\u5f55\u6837\u5f0f","text":"
\u81ea\u5b9a\u4e49\u76ee\u5f55\u6837\u5f0f\uff1a
CSS
/* \u76ee\u5f55\u5bb9\u5668 */\n.md-toc {\n padding: 1rem;\n background-color: var(--md-code-bg-color);\n border-radius: 4px;\n}\n\n/* \u76ee\u5f55\u6807\u9898 */\n.md-toc__title {\n font-weight: bold;\n margin-bottom: 1rem;\n}\n\n/* \u76ee\u5f55\u94fe\u63a5 */\n.md-toc__link {\n color: var(--md-typeset-color);\n text-decoration: none;\n}\n\n/* \u76ee\u5f55\u5c42\u7ea7\u7f29\u8fdb */\n.md-toc__list {\n margin-left: 1.5em;\n}\n
"},{"location":"Technology/mkdocs%20material/#4233","title":"4.2.3.3 \u951a\u70b9\u94fe\u63a5","text":"
\u914d\u7f6e\u951a\u70b9\u94fe\u63a5\uff1a
YAML
markdown_extensions:\n - toc:\n permalink: \u2693\ufe0e # \u951a\u70b9\u7b26\u53f7\n slug: !!python/object/apply:pymdownx.slugs.slugify\n kwds: {case: lower} # URL \u8f6c\u6362\u89c4\u5219\n
\u81ea\u5b9a\u4e49\u951a\u70b9\u6837\u5f0f\uff1a
CSS
/* \u951a\u70b9\u94fe\u63a5 */\n.headerlink {\n opacity: 0;\n margin-left: .5em;\n transition: opacity 0.2s ease;\n}\n\n/* \u6807\u9898\u60ac\u505c\u65f6\u663e\u793a\u951a\u70b9 */\nh1:hover .headerlink,\nh2:hover .headerlink,\nh3:hover .headerlink {\n opacity: 1;\n}\n
"},{"location":"Technology/mkdocs%20material/#424","title":"4.2.4 \u8fd4\u56de\u9876\u90e8","text":""},{"location":"Technology/mkdocs%20material/#4241","title":"4.2.4.1 \u6309\u94ae\u6837\u5f0f","text":"
\u542f\u7528\u8fd4\u56de\u9876\u90e8\u6309\u94ae\uff1a
YAML
theme:\n features:\n - navigation.top # \u8fd4\u56de\u9876\u90e8\u6309\u94ae\n
\u81ea\u5b9a\u4e49\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* \u8fd4\u56de\u9876\u90e8\u6309\u94ae */\n.md-top {\n background-color: var(--md-primary-fg-color);\n border-radius: 50%;\n box-shadow: 0 2px 4px rgba(0,0,0,.14);\n transition: all 0.2s ease;\n}\n\n/* \u60ac\u505c\u6548\u679c */\n.md-top:hover {\n background-color: var(--md-primary-fg-color--dark);\n transform: translateY(-2px);\n}\n
"},{"location":"Technology/mkdocs%20material/#4242","title":"4.2.4.2 \u6eda\u52a8\u884c\u4e3a","text":"
\u81ea\u5b9a\u4e49\u6eda\u52a8\u884c\u4e3a\uff1a
JavaScript
// docs/javascripts/scroll.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const topButton = document.querySelector('.md-top');\n\n // \u5e73\u6ed1\u6eda\u52a8\n if (topButton) {\n topButton.addEventListener('click', (e) => {\n e.preventDefault();\n window.scrollTo({\n top: 0,\n behavior: 'smooth'\n });\n });\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#4243","title":"4.2.4.3 \u663e\u793a\u63a7\u5236","text":"
\u914d\u7f6e\u663e\u793a\u903b\u8f91\uff1a
JavaScript
// \u63a7\u5236\u6309\u94ae\u663e\u793a\nwindow.addEventListener('scroll', () => {\n const topButton = document.querySelector('.md-top');\n if (topButton) {\n if (window.scrollY > 100) {\n topButton.classList.add('md-top--show');\n } else {\n topButton.classList.remove('md-top--show');\n }\n }\n});\n
\u6837\u5f0f\u63a7\u5236\uff1a
CSS
/* \u6309\u94ae\u663e\u793a\u9690\u85cf */\n.md-top {\n opacity: 0;\n visibility: hidden;\n transition: opacity 0.2s ease, visibility 0.2s ease;\n}\n\n.md-top--show {\n opacity: 1;\n visibility: visible;\n}\n
"},{"location":"Technology/mkdocs%20material/#425","title":"4.2.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\ntheme:\n name: material\n features:\n # \u5bfc\u822a\u529f\u80fd\n - navigation.tabs\n - navigation.tabs.sticky\n - navigation.sections\n - navigation.expand\n - navigation.indexes\n - navigation.instant\n - navigation.tracking\n - navigation.sticky\n - header.autohide\n\n # \u76ee\u5f55\u529f\u80fd\n - toc.integrate\n - toc.follow\n\n # \u8fd4\u56de\u9876\u90e8\n - navigation.top\n\n# Markdown \u6269\u5c55\nmarkdown_extensions:\n - toc:\n permalink: true\n toc_depth: 3\n title: \u76ee\u5f55\n slugify: !!python/object/apply:pymdownx.slugs.slugify\n kwds: {case: lower}\n\n# \u989d\u5916\u6837\u5f0f\u548c\u811a\u672c\nextra_css:\n - stylesheets/extra.css\n\nextra_javascript:\n - javascripts/tabs.js\n - javascripts/scroll.js\n
"},{"location":"Technology/mkdocs%20material/#43","title":"4.3 \u641c\u7d22\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#431","title":"4.3.1 \u641c\u7d22\u5f15\u64ce\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#4311","title":"4.3.1.1 \u641c\u7d22\u7b97\u6cd5","text":"
\u57fa\u7840\u641c\u7d22\u914d\u7f6e\uff1a
YAML
plugins:\n - search:\n separator: '[\\\\s\\\\-\\\\.]+' # \u5206\u8bcd\u5206\u9694\u7b26\n min_search_length: 2 # \u6700\u5c0f\u641c\u7d22\u957f\u5ea6\n lang:\n - en\n - zh\n prebuild_index: true # \u9884\u6784\u5efa\u7d22\u5f15\n
\u9ad8\u7ea7\u641c\u7d22\u9009\u9879\uff1a
YAML
plugins:\n - search:\n separator: '[\\\\s\\\\-\\\\.]+\\\\s*'\n min_search_length: 2\n prebuild_index: python\n indexing:\n full_sections: true # \u7d22\u5f15\u5b8c\u6574\u7ae0\u8282\n headings: true # \u7d22\u5f15\u6807\u9898\n content: true # \u7d22\u5f15\u5185\u5bb9\n tags: true # \u7d22\u5f15\u6807\u7b7e\n scoring:\n title_boost: 10 # \u6807\u9898\u6743\u91cd\n heading_boost: 5 # \u6807\u9898\u6743\u91cd\n content_boost: 1 # \u5185\u5bb9\u6743\u91cd\n
"},{"location":"Technology/mkdocs%20material/#4312","title":"4.3.1.2 \u7d22\u5f15\u914d\u7f6e","text":"
\u81ea\u5b9a\u4e49\u7d22\u5f15\u8bbe\u7f6e\uff1a
YAML
plugins:\n - search:\n indexing:\n full_sections: true\n headings: true\n content: true\n tags: true\n attachments: true # \u7d22\u5f15\u9644\u4ef6\n attachments_types: # \u9644\u4ef6\u7c7b\u578b\n - .pdf\n - .doc\n - .docx\n attachments_max_size: 2048 # \u6700\u5927\u5927\u5c0f(KB)\n
"},{"location":"Technology/mkdocs%20material/#4313","title":"4.3.1.3 \u641c\u7d22\u8303\u56f4","text":"
\u914d\u7f6e\u641c\u7d22\u8303\u56f4\uff1a
YAML
plugins:\n - search:\n # \u5305\u542b\u7684\u6587\u4ef6\n include:\n - \"*.md\"\n - \"*.markdown\"\n\n # \u6392\u9664\u7684\u6587\u4ef6\n exclude:\n - drafts/*\n - private/*\n\n # \u5904\u7406\u7279\u5b9a\u8def\u5f84\n ignore:\n - 404.md\n - index.md\n
"},{"location":"Technology/mkdocs%20material/#432","title":"4.3.2 \u641c\u7d22\u63d0\u793a","text":""},{"location":"Technology/mkdocs%20material/#4321","title":"4.3.2.1 \u5feb\u6377\u952e\u8bbe\u7f6e","text":"
\u914d\u7f6e\u641c\u7d22\u5feb\u6377\u952e\uff1a
YAML
theme:\n keyboard:\n search: s, / # \u4f7f\u7528 's' \u6216 '/' \u89e6\u53d1\u641c\u7d22\n
\u81ea\u5b9a\u4e49\u5feb\u6377\u952e\u5904\u7406\uff1a
JavaScript
// docs/javascripts/search.js\n\ndocument.addEventListener('keydown', function(e) {\n // \u81ea\u5b9a\u4e49\u5feb\u6377\u952e\u903b\u8f91\n if ((e.key === 's' || e.key === '/') && !e.ctrlKey && !e.altKey && !e.metaKey) {\n e.preventDefault();\n const search = document.querySelector('.md-search__input');\n if (search) {\n search.focus();\n }\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#4322","title":"4.3.2.2 \u63d0\u793a\u6587\u672c","text":"
\u81ea\u5b9a\u4e49\u641c\u7d22\u63d0\u793a\uff1a
YAML
theme:\n language: zh # \u4f7f\u7528\u4e2d\u6587\u754c\u9762\n\nextra:\n search:\n language: zh\n text:\n placeholder: \u641c\u7d22\u6587\u6863...\n no_results: \u6ca1\u6709\u627e\u5230\u76f8\u5173\u7ed3\u679c\n searching: \u6b63\u5728\u641c\u7d22...\n
\u81ea\u5b9a\u4e49\u63d0\u793a\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/search.css */\n\n/* \u641c\u7d22\u6846\u63d0\u793a\u6587\u672c */\n.md-search__input::placeholder {\n color: var(--md-default-fg-color--lighter);\n}\n\n/* \u65e0\u7ed3\u679c\u63d0\u793a */\n.md-search-result__meta {\n color: var(--md-default-fg-color--light);\n font-size: .8rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#4323","title":"4.3.2.3 \u8f93\u5165\u5efa\u8bae","text":"
\u914d\u7f6e\u641c\u7d22\u5efa\u8bae\uff1a
YAML
plugins:\n - search:\n suggestions: true # \u542f\u7528\u641c\u7d22\u5efa\u8bae\n suggestions_min_length: 2 # \u6700\u5c0f\u5efa\u8bae\u957f\u5ea6\n
\u81ea\u5b9a\u4e49\u5efa\u8bae\u6837\u5f0f\uff1a
CSS
/* \u641c\u7d22\u5efa\u8bae\u6837\u5f0f */\n.md-search-result__item {\n padding: .4rem .8rem;\n transition: background .2s ease;\n}\n\n.md-search-result__item:hover {\n background-color: var(--md-code-bg-color);\n}\n\n/* \u5efa\u8bae\u9879\u56fe\u6807 */\n.md-search-result__icon {\n color: var(--md-default-fg-color--lighter);\n margin-right: .4rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#433","title":"4.3.3 \u641c\u7d22\u9ad8\u4eae","text":""},{"location":"Technology/mkdocs%20material/#4331","title":"4.3.3.1 \u9ad8\u4eae\u6837\u5f0f","text":"
\u914d\u7f6e\u641c\u7d22\u9ad8\u4eae\uff1a
YAML
theme:\n features:\n - search.highlight # \u542f\u7528\u641c\u7d22\u9ad8\u4eae\n - search.share # \u542f\u7528\u641c\u7d22\u5206\u4eab\n - search.suggest # \u542f\u7528\u641c\u7d22\u5efa\u8bae\n
\u81ea\u5b9a\u4e49\u9ad8\u4eae\u6837\u5f0f\uff1a
CSS
/* \u641c\u7d22\u7ed3\u679c\u9ad8\u4eae */\n.md-search-result__item mark {\n background-color: var(--md-accent-fg-color--transparent);\n color: var(--md-accent-fg-color);\n padding: 0 .2em;\n border-radius: .1em;\n}\n\n/* \u6eda\u52a8\u6761\u6837\u5f0f */\n.md-search-result__scrollwrap::-webkit-scrollbar {\n width: 4px;\n height: 4px;\n}\n\n.md-search-result__scrollwrap::-webkit-scrollbar-thumb {\n background-color: var(--md-default-fg-color--lighter);\n border-radius: 2px;\n}\n
"},{"location":"Technology/mkdocs%20material/#4332","title":"4.3.3.2 \u5339\u914d\u89c4\u5219","text":"
\u914d\u7f6e\u641c\u7d22\u5339\u914d\u89c4\u5219\uff1a
YAML
plugins:\n - search:\n # \u6587\u672c\u5339\u914d\u914d\u7f6e\n tokenizer: '[\\s\\-\\.]+' # \u5206\u8bcd\u89c4\u5219\n min_search_length: 2 # \u6700\u5c0f\u641c\u7d22\u957f\u5ea6\n\n # \u6a21\u7cca\u5339\u914d\u8bbe\u7f6e\n fuzzy: false # \u7981\u7528\u6a21\u7cca\u5339\u914d\n\n # \u5339\u914d\u6743\u91cd\n boost: \n title: 10 # \u6807\u9898\u6743\u91cd\n text: 1 # \u6587\u672c\u6743\u91cd\n
"},{"location":"Technology/mkdocs%20material/#4333","title":"4.3.3.3 \u81ea\u5b9a\u4e49\u9ad8\u4eae","text":"
\u5b9e\u73b0\u81ea\u5b9a\u4e49\u9ad8\u4eae\u903b\u8f91\uff1a
JavaScript
// docs/javascripts/search-highlight.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u83b7\u53d6\u641c\u7d22\u7ed3\u679c\u5bb9\u5668\n const searchResults = document.querySelector('.md-search-result');\n\n if (searchResults) {\n // \u76d1\u542c\u641c\u7d22\u7ed3\u679c\u53d8\u5316\n const observer = new MutationObserver(mutations => {\n mutations.forEach(mutation => {\n if (mutation.type === 'childList') {\n // \u5904\u7406\u65b0\u6dfb\u52a0\u7684\u641c\u7d22\u7ed3\u679c\n const newResults = mutation.addedNodes;\n newResults.forEach(node => {\n if (node.nodeType === 1) { // \u5143\u7d20\u8282\u70b9\n customHighlight(node);\n }\n });\n }\n });\n });\n\n // \u542f\u52a8\u89c2\u5bdf\n observer.observe(searchResults, {\n childList: true,\n subtree: true\n });\n }\n});\n\nfunction customHighlight(node) {\n // \u81ea\u5b9a\u4e49\u9ad8\u4eae\u903b\u8f91\n}\n
"},{"location":"Technology/mkdocs%20material/#434","title":"4.3.4 \u641c\u7d22\u8bed\u8a00","text":""},{"location":"Technology/mkdocs%20material/#4341","title":"4.3.4.1 \u4e2d\u6587\u5206\u8bcd","text":"
\u914d\u7f6e\u4e2d\u6587\u5206\u8bcd\uff1a
YAML
plugins:\n - search:\n lang:\n - en\n - zh\n separator: '[\\s\\-\\.,\\!\\/\\?\\u2000-\\u206F\\u3000-\\u303F\\u3040-\\u309F\\u30A0-\\u30FF\\u3100-\\u312F\\u3200-\\u32FF\\u3400-\\u4DBF\\u4E00-\\u9FFF]+'\n
\u4e2d\u6587\u641c\u7d22\u4f18\u5316\uff1a
JavaScript
// docs/javascripts/chinese-search.js\n\nfunction chineseSegment(text) {\n // \u7b80\u5355\u7684\u4e2d\u6587\u5206\u8bcd\u903b\u8f91\n return text.replace(/[\\u4e00-\\u9fa5]/g, function(char) {\n return char + ' ';\n });\n}\n\n// \u6dfb\u52a0\u5230\u641c\u7d22\u5904\u7406\u6d41\u7a0b\ndocument.addEventListener('DOMContentLoaded', function() {\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.addEventListener('input', function(e) {\n const value = e.target.value;\n if (/[\\u4e00-\\u9fa5]/.test(value)) {\n // \u5904\u7406\u4e2d\u6587\u8f93\u5165\n const segmented = chineseSegment(value);\n // TODO: \u4f7f\u7528\u5206\u8bcd\u7ed3\u679c\u8fdb\u884c\u641c\u7d22\n }\n });\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#4342","title":"4.3.4.2 \u591a\u8bed\u8a00\u652f\u6301","text":"
\u914d\u7f6e\u591a\u8bed\u8a00\u641c\u7d22\uff1a
YAML
plugins:\n - search:\n lang:\n - en\n - zh\n - ja\n # \u8bed\u8a00\u7279\u5b9a\u7684\u5206\u8bcd\u89c4\u5219\n separator:\n en: '[\\\\s\\\\-\\\\.]+'\n zh: '[\\u4e00-\\u9fa5]'\n ja: '[\\u3040-\\u309F\\u30A0-\\u30FF]+'\n
"},{"location":"Technology/mkdocs%20material/#4343","title":"4.3.4.3 \u505c\u7528\u8bcd\u914d\u7f6e","text":"
\u914d\u7f6e\u505c\u7528\u8bcd\uff1a
YAML
plugins:\n - search:\n stopwords: \n en:\n - a\n - an\n - the\n - in\n - on\n - at\n zh:\n - \u7684\n - \u4e86\n - \u548c\n - \u4e0e\n - \u6216\n
\u81ea\u5b9a\u4e49\u505c\u7528\u8bcd\u5904\u7406\uff1a
JavaScript
// docs/javascripts/stopwords.js\n\nconst stopwords = {\n en: ['a', 'an', 'the', 'in', 'on', 'at'],\n zh: ['\u7684', '\u4e86', '\u548c', '\u4e0e', '\u6216'],\n};\n\nfunction removeStopwords(text, lang) {\n if (!stopwords[lang]) return text;\n\n const words = text.split(/\\s+/);\n return words\n .filter(word => !stopwords[lang].includes(word))\n .join(' ');\n}\n
"},{"location":"Technology/mkdocs%20material/#435","title":"4.3.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\n\nplugins:\n - search:\n lang:\n - en\n - zh\n separator: '[\\s\\-\\.,\\!\\/\\?\\u2000-\\u206F\\u3000-\\u303F]+'\n prebuild_index: python\n indexing:\n full_sections: true\n headings: true\n content: true\n tags: true\n scoring:\n title_boost: 10\n heading_boost: 5\n content_boost: 1\n\ntheme:\n features:\n - search.highlight\n - search.share\n - search.suggest\n\nextra:\n search:\n language: zh\n text:\n placeholder: \u641c\u7d22\u6587\u6863...\n no_results: \u6ca1\u6709\u627e\u5230\u76f8\u5173\u7ed3\u679c\n searching: \u6b63\u5728\u641c\u7d22...\n\nextra_javascript:\n - javascripts/search.js\n - javascripts/search-highlight.js\n - javascripts/chinese-search.js\n - javascripts/stopwords.js\n\nextra_css:\n - stylesheets/search.css\n
"},{"location":"Technology/mkdocs%20material/#44","title":"4.4 \u4ee3\u7801\u5757\u8bbe\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#441","title":"4.4.1 \u8bed\u6cd5\u9ad8\u4eae","text":""},{"location":"Technology/mkdocs%20material/#4411","title":"4.4.1.1 \u9ad8\u4eae\u4e3b\u9898","text":"
\u57fa\u7840\u9ad8\u4eae\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n features:\n - content.code.annotate # \u542f\u7528\u4ee3\u7801\u6ce8\u91ca\n - content.code.copy # \u542f\u7528\u4ee3\u7801\u590d\u5236\n\nmarkdown_extensions:\n - pymdownx.highlight:\n anchor_linenums: true\n line_spans: __span\n pygments_lang_class: true\n use_pygments: true\n auto_title: true # \u663e\u793a\u8bed\u8a00\u540d\u79f0\n linenums: true # \u663e\u793a\u884c\u53f7\n
\u81ea\u5b9a\u4e49\u9ad8\u4eae\u4e3b\u9898\uff1a
YAML
theme:\n palette:\n # \u4eae\u8272\u4e3b\u9898\n - scheme: default\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u4e3b\u9898\n pygments_style: github-light\n\n # \u6697\u8272\u4e3b\u9898\n - scheme: slate\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u4e3b\u9898\n pygments_style: monokai\n
\u81ea\u5b9a\u4e49\u4ee3\u7801\u5757\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/code.css */\n\n/* \u4ee3\u7801\u5757\u5bb9\u5668 */\n.highlight {\n background-color: var(--md-code-bg-color);\n border-radius: 4px;\n padding: 0.5rem;\n margin: 1rem 0;\n}\n\n/* \u4ee3\u7801\u884c */\n.highlight .code-line {\n display: block;\n padding: 0 1rem;\n border-left: 2px solid transparent;\n}\n\n/* \u9ad8\u4eae\u884c */\n.highlight .code-line.focused {\n background-color: var(--md-code-hl-color);\n border-left: 2px solid var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4412","title":"4.4.1.2 \u8bed\u8a00\u652f\u6301","text":"
\u914d\u7f6e\u652f\u6301\u7684\u8bed\u8a00\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n extend_pygments_lang:\n # \u81ea\u5b9a\u4e49\u8bed\u8a00\u914d\u7f6e\n typescript:\n name: TypeScript\n aliases: [ts]\n jsonc:\n name: JSON with Comments\n aliases: [json5]\n
\u8bed\u8a00\u7279\u5b9a\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n language_prefix: language- # \u8bed\u8a00\u524d\u7f00\n css_class: highlight # CSS\u7c7b\u540d\n code_attr_on_pre: false # \u5c5e\u6027\u4f4d\u7f6e\n extend_pygments_lang: # \u8bed\u8a00\u6269\u5c55\n flow:\n name: Flow\n aliases: [flowtype]\n
"},{"location":"Technology/mkdocs%20material/#4413","title":"4.4.1.3 \u81ea\u5b9a\u4e49\u9ad8\u4eae","text":"
\u81ea\u5b9a\u4e49\u8bed\u6cd5\u9ad8\u4eae\u89c4\u5219\uff1a
Python
# docs/custom_lexer.py\nfrom pygments.lexer import RegexLexer, words\nfrom pygments.token import *\n\nclass CustomLexer(RegexLexer):\n name = 'CustomLanguage'\n aliases = ['custom']\n filenames = ['*.custom']\n\n tokens = {\n 'root': [\n (r'//.*$', Comment.Single),\n (words(('if', 'else', 'while'), suffix=r'\\b'), Keyword),\n (r'\"[^\"]*\"', String),\n (r'\\d+', Number),\n (r'[a-zA-Z_]\\w*', Name),\n (r'[^\\w\\s]', Punctuation),\n ]\n }\n
\u5728 mkdocs.yml
\u4e2d\u4f7f\u7528\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n use_pygments: true\n extend_pygments_lang:\n custom:\n name: CustomLanguage\n aliases: [custom]\n
"},{"location":"Technology/mkdocs%20material/#442","title":"4.4.2 \u884c\u53f7\u663e\u793a","text":""},{"location":"Technology/mkdocs%20material/#4421","title":"4.4.2.1 \u884c\u53f7\u6837\u5f0f","text":"
\u914d\u7f6e\u884c\u53f7\u663e\u793a\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n linenums: true\n linenums_style: table # \u8868\u683c\u5f0f\u884c\u53f7\n anchor_linenums: true # \u884c\u53f7\u94fe\u63a5\n
\u81ea\u5b9a\u4e49\u884c\u53f7\u6837\u5f0f\uff1a
CSS
/* \u884c\u53f7\u5bb9\u5668 */\n.highlighttable {\n width: 100%;\n display: table;\n}\n\n/* \u884c\u53f7\u5217 */\n.linenos {\n color: var(--md-default-fg-color--lighter);\n text-align: right;\n padding-right: 1rem;\n user-select: none;\n}\n\n/* \u4ee3\u7801\u5217 */\n.code {\n padding-left: 1rem;\n border-left: 1px solid var(--md-default-fg-color--lightest);\n}\n
"},{"location":"Technology/mkdocs%20material/#4422","title":"4.4.2.2 \u8d77\u59cb\u884c\u8bbe\u7f6e","text":"
\u8bbe\u7f6e\u4ee3\u7801\u5757\u8d77\u59cb\u884c\u53f7\uff1a
Markdown
```python linenums=\"10\"\ndef hello_world():\n print(\"Hello, World!\")\n```\n
\u914d\u7f6e\u9ed8\u8ba4\u8d77\u59cb\u884c\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n linenums: true\n linenums_start: 1 # \u9ed8\u8ba4\u8d77\u59cb\u884c\u53f7\n
"},{"location":"Technology/mkdocs%20material/#4423","title":"4.4.2.3 \u884c\u53f7\u94fe\u63a5","text":"
\u542f\u7528\u884c\u53f7\u94fe\u63a5\u529f\u80fd\uff1a
YAML
markdown_extensions:\n - pymdownx.highlight:\n anchor_linenums: true # \u542f\u7528\u884c\u53f7\u94fe\u63a5\n line_anchors: L # \u884c\u53f7\u94fe\u63a5\u524d\u7f00\n
\u81ea\u5b9a\u4e49\u94fe\u63a5\u6837\u5f0f\uff1a
CSS
/* \u884c\u53f7\u94fe\u63a5 */\n.md-typeset .highlight [data-linenos]:before {\n content: attr(data-linenos);\n color: var(--md-default-fg-color--lighter);\n padding-right: 1rem;\n}\n\n/* \u94fe\u63a5\u60ac\u505c\u6548\u679c */\n.md-typeset .highlight [data-linenos]:hover:before {\n color: var(--md-accent-fg-color);\n cursor: pointer;\n}\n
"},{"location":"Technology/mkdocs%20material/#443","title":"4.4.3 \u590d\u5236\u6309\u94ae","text":""},{"location":"Technology/mkdocs%20material/#4431","title":"4.4.3.1 \u6309\u94ae\u6837\u5f0f","text":"
\u914d\u7f6e\u590d\u5236\u6309\u94ae\uff1a
YAML
theme:\n features:\n - content.code.copy # \u542f\u7528\u4ee3\u7801\u590d\u5236\n
\u81ea\u5b9a\u4e49\u590d\u5236\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* \u590d\u5236\u6309\u94ae\u5bb9\u5668 */\n.md-clipboard {\n position: absolute;\n top: 0.5rem;\n right: 0.5rem;\n padding: 0.4rem;\n color: var(--md-default-fg-color--lighter);\n background-color: transparent;\n border: none;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n/* \u60ac\u505c\u6548\u679c */\n.md-clipboard:hover {\n color: var(--md-accent-fg-color);\n background-color: var(--md-code-bg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4432","title":"4.4.3.2 \u590d\u5236\u884c\u4e3a","text":"
\u81ea\u5b9a\u4e49\u590d\u5236\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/clipboard.js\n\ndocument.addEventListener('DOMContentLoaded', () => {\n // \u83b7\u53d6\u6240\u6709\u4ee3\u7801\u5757\n const codeBlocks = document.querySelectorAll('pre code');\n\n codeBlocks.forEach(block => {\n // \u521b\u5efa\u590d\u5236\u6309\u94ae\n const button = document.createElement('button');\n button.className = 'md-clipboard';\n button.title = '\u590d\u5236\u5230\u526a\u8d34\u677f';\n\n // \u6dfb\u52a0\u590d\u5236\u56fe\u6807\n button.innerHTML = '<span class=\"md-clipboard__icon\"></span>';\n\n // \u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\n button.addEventListener('click', async () => {\n try {\n // \u590d\u5236\u4ee3\u7801\n await navigator.clipboard.writeText(block.textContent);\n\n // \u663e\u793a\u6210\u529f\u63d0\u793a\n button.classList.add('md-clipboard--success');\n setTimeout(() => {\n button.classList.remove('md-clipboard--success');\n }, 2000);\n } catch (err) {\n console.error('\u590d\u5236\u5931\u8d25:', err);\n }\n });\n\n // \u5c06\u6309\u94ae\u6dfb\u52a0\u5230\u4ee3\u7801\u5757\n block.parentNode.insertBefore(button, block);\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#4433","title":"4.4.3.3 \u63d0\u793a\u914d\u7f6e","text":"
\u914d\u7f6e\u590d\u5236\u63d0\u793a\uff1a
YAML
theme:\n language: zh # \u4f7f\u7528\u4e2d\u6587\u754c\u9762\n\nextra:\n clipboard:\n copy: \u590d\u5236\n copied: \u5df2\u590d\u5236\uff01\n error: \u590d\u5236\u5931\u8d25\n
\u81ea\u5b9a\u4e49\u63d0\u793a\u6837\u5f0f\uff1a
CSS
/* \u590d\u5236\u63d0\u793a */\n.md-clipboard__tooltip {\n position: absolute;\n top: -2rem;\n right: 0;\n padding: 0.4rem 0.8rem;\n color: var(--md-default-bg-color);\n background-color: var(--md-default-fg-color);\n border-radius: 4px;\n font-size: 0.8rem;\n opacity: 0;\n transform: translateY(0.4rem);\n transition: all 0.2s ease;\n}\n\n/* \u663e\u793a\u63d0\u793a */\n.md-clipboard:hover .md-clipboard__tooltip {\n opacity: 1;\n transform: translateY(0);\n}\n
"},{"location":"Technology/mkdocs%20material/#444","title":"4.4.4 \u6ce8\u91ca\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#4441","title":"4.4.4.1 \u884c\u5185\u6ce8\u91ca","text":"
\u4f7f\u7528\u884c\u5185\u6ce8\u91ca\uff1a
Markdown
```python\ndef hello():\n print(\"Hello\") # (1)\n return True # (2)\n```\n\n1. \u6253\u5370\u95ee\u5019\u4fe1\u606f\n2. \u8fd4\u56de\u6210\u529f\u72b6\u6001\n
\u914d\u7f6e\u6ce8\u91ca\u6837\u5f0f\uff1a
CSS
/* \u884c\u5185\u6ce8\u91ca\u6807\u8bb0 */\n.md-annotation {\n color: var(--md-accent-fg-color);\n font-size: 0.8em;\n vertical-align: super;\n}\n
"},{"location":"Technology/mkdocs%20material/#4442","title":"4.4.4.2 \u5757\u7ea7\u6ce8\u91ca","text":"
\u4f7f\u7528\u5757\u7ea7\u6ce8\u91ca\uff1a
Markdown
```python\ndef process_data():\n # (1)!\n data = load_data()\n\n # (2)!\n result = transform(data)\n\n return result\n```\n\n1. \u4ece\u6570\u636e\u6e90\u52a0\u8f7d\u6570\u636e\n \u8fd9\u91cc\u53ef\u4ee5\u662f\u591a\u884c\n \u6ce8\u91ca\u8bf4\u660e\n\n2. \u5bf9\u6570\u636e\u8fdb\u884c\u8f6c\u6362\u5904\u7406\n \u5305\u542b\u6e05\u6d17\u548c\u683c\u5f0f\u5316\n
"},{"location":"Technology/mkdocs%20material/#4443","title":"4.4.4.3 \u6ce8\u91ca\u6837\u5f0f","text":"
\u81ea\u5b9a\u4e49\u6ce8\u91ca\u6837\u5f0f\uff1a
CSS
/* \u6ce8\u91ca\u5bb9\u5668 */\n.md-annotation-wrapper {\n margin: 1rem 0;\n padding: 1rem;\n background-color: var(--md-code-bg-color);\n border-left: 4px solid var(--md-accent-fg-color);\n border-radius: 4px;\n}\n\n/* \u6ce8\u91ca\u6807\u8bb0 */\n.md-annotation-marker {\n color: var(--md-accent-fg-color);\n font-weight: bold;\n}\n\n/* \u6ce8\u91ca\u5185\u5bb9 */\n.md-annotation-content {\n margin-top: 0.5rem;\n color: var(--md-default-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#445","title":"4.4.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\n\ntheme:\n name: material\n features:\n - content.code.annotate\n - content.code.copy\n\nmarkdown_extensions:\n - pymdownx.highlight:\n anchor_linenums: true\n line_spans: __span\n pygments_lang_class: true\n use_pygments: true\n auto_title: true\n linenums: true\n linenums_style: table\n - pymdownx.superfences\n - pymdownx.inlinehilite\n\nextra:\n clipboard:\n copy: \u590d\u5236\n copied: \u5df2\u590d\u5236\uff01\n error: \u590d\u5236\u5931\u8d25\n\nextra_css:\n - stylesheets/code.css\n\nextra_javascript:\n - javascripts/clipboard.js\n
"},{"location":"Technology/mkdocs%20material/#45","title":"4.5 \u5185\u5bb9\u589e\u5f3a","text":""},{"location":"Technology/mkdocs%20material/#451","title":"4.5.1 \u6570\u5b66\u516c\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#4511-katex","title":"4.5.1.1 KaTeX \u914d\u7f6e","text":"
\u5b89\u88c5\u548c\u914d\u7f6e KaTeX\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n\nextra_javascript:\n - javascripts/katex.js \n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js \n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n\nextra_css:\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css\n
\u521b\u5efa docs/javascripts/katex.js
\uff1a
JavaScript
document.addEventListener(\"DOMContentLoaded\", function() {\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true},\n {left: \"$\", right: \"$\", display: false},\n {left: \"\\\\(\", right: \"\\\\)\", display: false},\n {left: \"\\\\[\", right: \"\\\\]\", display: true}\n ],\n throwOnError: false\n });\n});\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
\u5185\u8054\u516c\u5f0f: $E = mc^2$\n\n\u5757\u7ea7\u516c\u5f0f\uff1a\n$$\n\\frac{n!}{k!(n-k)!} = \\binom{n}{k}\n$$\n
"},{"location":"Technology/mkdocs%20material/#4512-mathjax","title":"4.5.1.2 MathJax \u914d\u7f6e","text":"
\u914d\u7f6e MathJax\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n\nextra_javascript:\n - javascripts/mathjax.js\n - https://polyfill.io/v3/polyfill.min.js?features=es6\n - https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js\n
\u521b\u5efa docs/javascripts/mathjax.js
\uff1a
JavaScript
window.MathJax = {\n tex: {\n inlineMath: [[\"\\\\(\", \"\\\\)\"]],\n displayMath: [[\"\\\\[\", \"\\\\]\"]],\n processEscapes: true,\n processEnvironments: true\n },\n options: {\n ignoreHtmlClass: \".*|\",\n processHtmlClass: \"arithmatex\"\n }\n};\n
"},{"location":"Technology/mkdocs%20material/#4513","title":"4.5.1.3 \u516c\u5f0f\u7f16\u53f7","text":"
\u542f\u7528\u516c\u5f0f\u7f16\u53f7\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n numbering: true\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
$$\n\\begin{equation}\nE = mc^2 \\label{eq:einstein}\n\\end{equation}\n$$\n\n\u5f15\u7528\u516c\u5f0f $\\eqref{eq:einstein}$\n
"},{"location":"Technology/mkdocs%20material/#452","title":"4.5.2 \u56fe\u8868\u652f\u6301","text":""},{"location":"Technology/mkdocs%20material/#4521-mermaid","title":"4.5.2.1 Mermaid \u96c6\u6210","text":"
\u914d\u7f6e Mermaid\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n\nextra_javascript:\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Text Only
graph TD\n A[\u5f00\u59cb] --> B{\u5224\u65ad}\n B -->|Yes| C[\u5904\u7406]\n B -->|No| D[\u7ed3\u675f]\n
"},{"location":"Technology/mkdocs%20material/#4522-plantuml","title":"4.5.2.2 PlantUML \u652f\u6301","text":"
\u914d\u7f6e PlantUML\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: plantuml\n class: plantuml\n format: !!python/name:pymdownx.superfences.fence_code_format\n\nextra_javascript:\n - https://cdn.jsdelivr.net/npm/plantuml-encoder@1.4.0/dist/plantuml-encoder.min.js\n
\u4f7f\u7528\u793a\u4f8b\uff1a
Text Only
@startuml\nAlice -> Bob: \u8bf7\u6c42\nBob --> Alice: \u54cd\u5e94\n@enduml\n
"},{"location":"Technology/mkdocs%20material/#4523","title":"4.5.2.3 \u81ea\u5b9a\u4e49\u56fe\u8868","text":"
\u521b\u5efa\u81ea\u5b9a\u4e49\u56fe\u8868\u7ec4\u4ef6\uff1a
JavaScript
// docs/javascripts/charts.js\nimport Chart from 'chart.js/auto';\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const chartElements = document.querySelectorAll('.custom-chart');\n\n chartElements.forEach(element => {\n const ctx = element.getContext('2d');\n const data = JSON.parse(element.dataset.chartData);\n\n new Chart(ctx, {\n type: data.type,\n data: data.data,\n options: data.options\n });\n });\n});\n
\u4f7f\u7528\u793a\u4f8b\uff1a
HTML
<canvas class=\"custom-chart\" data-chart-data='{\n \"type\": \"line\",\n \"data\": {\n \"labels\": [\"1\u6708\", \"2\u6708\", \"3\u6708\"],\n \"datasets\": [{\n \"label\": \"\u6570\u636e\",\n \"data\": [10, 20, 30]\n }]\n }\n}'></canvas>\n
"},{"location":"Technology/mkdocs%20material/#453","title":"4.5.3 \u4efb\u52a1\u5217\u8868","text":""},{"location":"Technology/mkdocs%20material/#4531","title":"4.5.3.1 \u590d\u9009\u6846\u6837\u5f0f","text":"
\u914d\u7f6e\u4efb\u52a1\u5217\u8868\uff1a
YAML
markdown_extensions:\n - pymdownx.tasklist:\n custom_checkbox: true\n clickable_checkbox: true\n
\u81ea\u5b9a\u4e49\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tasklist.css */\n\n.task-list-item {\n list-style-type: none;\n margin-left: -1.6rem;\n}\n\n.task-list-control {\n position: relative;\n display: inline-block;\n width: 1.2rem;\n height: 1.2rem;\n margin-right: 0.5rem;\n vertical-align: middle;\n}\n\n.task-list-indicator {\n position: absolute;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n background-color: var(--md-default-fg-color--lighter);\n border-radius: 2px;\n transition: all 0.2s ease;\n}\n\n.task-list-indicator:checked {\n background-color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4532","title":"4.5.3.2 \u4ea4\u4e92\u884c\u4e3a","text":"
\u6dfb\u52a0\u4ea4\u4e92\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/tasklist.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const taskItems = document.querySelectorAll('.task-list-item input[type=\"checkbox\"]');\n\n taskItems.forEach(item => {\n item.addEventListener('change', function() {\n // \u4fdd\u5b58\u72b6\u6001\n localStorage.setItem(\n `task-${this.closest('.task-list-item').id}`,\n this.checked\n );\n\n // \u66f4\u65b0\u6837\u5f0f\n if (this.checked) {\n this.closest('.task-list-item').classList.add('completed');\n } else {\n this.closest('.task-list-item').classList.remove('completed');\n }\n });\n\n // \u6062\u590d\u72b6\u6001\n const saved = localStorage.getItem(`task-${item.closest('.task-list-item').id}`);\n if (saved === 'true') {\n item.checked = true;\n item.closest('.task-list-item').classList.add('completed');\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#4533","title":"4.5.3.3 \u72b6\u6001\u7ba1\u7406","text":"CSS
/* \u4efb\u52a1\u72b6\u6001\u6837\u5f0f */\n.task-list-item.completed {\n text-decoration: line-through;\n color: var(--md-default-fg-color--light);\n}\n\n.task-list-item.pending {\n font-weight: bold;\n}\n\n.task-list-item.in-progress {\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#454","title":"4.5.4 \u6807\u7b7e\u9875","text":""},{"location":"Technology/mkdocs%20material/#4541","title":"4.5.4.1 \u6807\u7b7e\u7ec4\u6837\u5f0f","text":"
\u914d\u7f6e\u6807\u7b7e\u9875\uff1a
YAML
markdown_extensions:\n - pymdownx.tabbed:\n alternate_style: true \n
\u81ea\u5b9a\u4e49\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tabs.css */\n\n/* \u6807\u7b7e\u7ec4\u5bb9\u5668 */\n.tabbed-set {\n border: 1px solid var(--md-default-fg-color--lightest);\n border-radius: 4px;\n margin: 1rem 0;\n}\n\n/* \u6807\u7b7e\u5217\u8868 */\n.tabbed-labels {\n display: flex;\n background-color: var(--md-code-bg-color);\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u5355\u4e2a\u6807\u7b7e */\n.tabbed-labels > label {\n padding: 0.8rem 1.2rem;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.tabbed-labels > label.tabbed-selected {\n color: var(--md-accent-fg-color);\n border-bottom: 2px solid var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#4542","title":"4.5.4.2 \u5207\u6362\u6548\u679c","text":"
\u6dfb\u52a0\u52a8\u753b\u6548\u679c\uff1a
CSS
/* \u6807\u7b7e\u5185\u5bb9\u5207\u6362\u52a8\u753b */\n.tabbed-content {\n padding: 1rem;\n opacity: 0;\n transform: translateY(10px);\n transition: all 0.3s ease;\n}\n\n.tabbed-content.tabbed-selected {\n opacity: 1;\n transform: translateY(0);\n}\n
\u6807\u7b7e\u9875\u4ea4\u4e92\uff1a
JavaScript
// docs/javascripts/tabs.js\n\ndocument.addEventListener('DOMContentLoaded', function() {\n const tabSets = document.querySelectorAll('.tabbed-set');\n\n tabSets.forEach(tabSet => {\n const tabs = tabSet.querySelectorAll('.tabbed-labels > label');\n const contents = tabSet.querySelectorAll('.tabbed-content');\n\n tabs.forEach((tab, index) => {\n tab.addEventListener('click', () => {\n // \u66f4\u65b0\u6807\u7b7e\u72b6\u6001\n tabs.forEach(t => t.classList.remove('tabbed-selected'));\n tab.classList.add('tabbed-selected');\n\n // \u66f4\u65b0\u5185\u5bb9\u72b6\u6001\n contents.forEach(c => c.classList.remove('tabbed-selected'));\n contents[index].classList.add('tabbed-selected');\n });\n });\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#4543","title":"4.5.4.3 \u54cd\u5e94\u5f0f\u8bbe\u8ba1","text":"
\u6dfb\u52a0\u54cd\u5e94\u5f0f\u652f\u6301\uff1a
CSS
/* \u79fb\u52a8\u7aef\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .tabbed-labels {\n flex-wrap: wrap;\n }\n\n .tabbed-labels > label {\n flex: 1 1 auto;\n text-align: center;\n }\n\n .tabbed-content {\n padding: 0.8rem;\n }\n}\n\n/* \u5e73\u677f\u9002\u914d */\n@media screen and (min-width: 76.25em) {\n .tabbed-set {\n max-width: 80%;\n margin: 1rem auto;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#455","title":"4.5.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\n\nmarkdown_extensions:\n # \u6570\u5b66\u516c\u5f0f\n - pymdownx.arithmatex:\n generic: true\n\n # \u56fe\u8868\u652f\u6301\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n - name: plantuml\n class: plantuml\n format: !!python/name:pymdownx.superfences.fence_code_format\n\n # \u4efb\u52a1\u5217\u8868\n - pymdownx.tasklist:\n custom_checkbox: true\n clickable_checkbox: true\n\n # \u6807\u7b7e\u9875\n - pymdownx.tabbed:\n alternate_style: true\n\nextra_javascript:\n - javascripts/katex.js\n - javascripts/mermaid.js\n - javascripts/charts.js\n - javascripts/tasklist.js\n - javascripts/tabs.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n\nextra_css:\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css\n - stylesheets/tasklist.css\n - stylesheets/tabs.css\n
"},{"location":"Technology/mkdocs%20material/#5","title":"5 \u6837\u5f0f\u5b9a\u5236","text":""},{"location":"Technology/mkdocs%20material/#51-css","title":"5.1 CSS \u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#511-css","title":"5.1.1 \u81ea\u5b9a\u4e49 CSS \u6587\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#5111-css","title":"5.1.1.1 CSS \u6587\u4ef6\u7ec4\u7ec7","text":"
- \u63a8\u8350\u7684\u76ee\u5f55\u7ed3\u6784\uff1a
Text Only
docs/\n\u251c\u2500\u2500 stylesheets/\n\u2502 \u251c\u2500\u2500 base/\n\u2502 \u2502 \u251c\u2500\u2500 _variables.css # CSS\u53d8\u91cf\u5b9a\u4e49\n\u2502 \u2502 \u251c\u2500\u2500 _typography.css # \u6392\u7248\u6837\u5f0f\n\u2502 \u2502 \u2514\u2500\u2500 _colors.css # \u989c\u8272\u5b9a\u4e49\n\u2502 \u251c\u2500\u2500 components/\n\u2502 \u2502 \u251c\u2500\u2500 _buttons.css # \u6309\u94ae\u6837\u5f0f\n\u2502 \u2502 \u251c\u2500\u2500 _cards.css # \u5361\u7247\u6837\u5f0f\n\u2502 \u2502 \u2514\u2500\u2500 _tables.css # \u8868\u683c\u6837\u5f0f\n\u2502 \u251c\u2500\u2500 layouts/\n\u2502 \u2502 \u251c\u2500\u2500 _header.css # \u5934\u90e8\u6837\u5f0f\n\u2502 \u2502 \u251c\u2500\u2500 _nav.css # \u5bfc\u822a\u6837\u5f0f\n\u2502 \u2502 \u2514\u2500\u2500 _footer.css # \u9875\u811a\u6837\u5f0f\n\u2502 \u2514\u2500\u2500 extra.css # \u4e3b\u6837\u5f0f\u6587\u4ef6\n
- \u5728
mkdocs.yml
\u4e2d\u5f15\u5165\u6837\u5f0f\uff1a
YAML
extra_css:\n - stylesheets/extra.css\n
- \u5728\u4e3b\u6837\u5f0f\u6587\u4ef6\u4e2d\u5bfc\u5165\u5176\u4ed6\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/extra.css */\n\n/* \u57fa\u7840\u6837\u5f0f */\n@import 'base/_variables.css';\n@import 'base/_typography.css';\n@import 'base/_colors.css';\n\n/* \u7ec4\u4ef6\u6837\u5f0f */\n@import 'components/_buttons.css';\n@import 'components/_cards.css';\n@import 'components/_tables.css';\n\n/* \u5e03\u5c40\u6837\u5f0f */\n@import 'layouts/_header.css';\n@import 'layouts/_nav.css';\n@import 'layouts/_footer.css';\n
"},{"location":"Technology/mkdocs%20material/#5112","title":"5.1.1.2 \u6837\u5f0f\u4f18\u5148\u7ea7","text":"
- \u6837\u5f0f\u4f18\u5148\u7ea7\u89c4\u5219\uff1a
CSS
/* 1. \u884c\u5185\u6837\u5f0f (1000) */\n<div style=\"color: red;\">\n\n/* 2. ID \u9009\u62e9\u5668 (100) */\n#header { }\n\n/* 3. \u7c7b\u9009\u62e9\u5668\u3001\u5c5e\u6027\u9009\u62e9\u5668\u3001\u4f2a\u7c7b (10) */\n.nav-item { }\n[type=\"text\"] { }\n:hover { }\n\n/* 4. \u5143\u7d20\u9009\u62e9\u5668\u3001\u4f2a\u5143\u7d20 (1) */\ndiv { }\n::before { }\n
- Material \u4e3b\u9898\u8986\u76d6\uff1a
CSS
/* \u8986\u76d6\u4e3b\u9898\u6837\u5f0f */\n.md-header {\n /* \u4f7f\u7528 !important \u614e\u91cd */\n background-color: #2196f3 !important;\n}\n\n/* \u4f7f\u7528\u66f4\u5177\u4f53\u7684\u9009\u62e9\u5668 */\n.md-header[data-md-color-scheme=\"default\"] {\n background-color: #2196f3;\n}\n
"},{"location":"Technology/mkdocs%20material/#5113-css","title":"5.1.1.3 CSS \u53d8\u91cf","text":"
- \u5b9a\u4e49\u5168\u5c40\u53d8\u91cf\uff1a
CSS
/* docs/stylesheets/base/_variables.css */\n\n:root {\n /* \u989c\u8272\u53d8\u91cf */\n --primary-color: #2196f3;\n --accent-color: #f50057;\n --text-color: #333333;\n\n /* \u5b57\u4f53\u53d8\u91cf */\n --font-family: \"LXGW WenKai\", -apple-system, sans-serif;\n --code-font: \"JetBrains Mono\", monospace;\n\n /* \u95f4\u8ddd\u53d8\u91cf */\n --spacing-unit: 8px;\n --content-padding: calc(var(--spacing-unit) * 2);\n\n /* \u9634\u5f71\u53d8\u91cf */\n --shadow-sm: 0 1px 2px rgba(0,0,0,0.1);\n --shadow-md: 0 2px 4px rgba(0,0,0,0.1);\n --shadow-lg: 0 4px 8px rgba(0,0,0,0.1);\n}\n
- \u4e3b\u9898\u53d8\u91cf\uff1a
CSS
/* \u4eae\u8272\u4e3b\u9898 */\n[data-md-color-scheme=\"default\"] {\n --md-primary-fg-color: var(--primary-color);\n --md-accent-fg-color: var(--accent-color);\n --md-typeset-color: var(--text-color);\n}\n\n/* \u6697\u8272\u4e3b\u9898 */\n[data-md-color-scheme=\"slate\"] {\n --primary-color: #90caf9;\n --accent-color: #ff4081;\n --text-color: #ffffff;\n}\n
"},{"location":"Technology/mkdocs%20material/#512","title":"5.1.2 \u5e38\u7528\u6837\u5f0f\u4fee\u6539","text":""},{"location":"Technology/mkdocs%20material/#5121","title":"5.1.2.1 \u5b57\u4f53\u8bbe\u7f6e","text":"
- \u5b57\u4f53\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/base/_typography.css */\n\n/* \u57fa\u7840\u5b57\u4f53\u8bbe\u7f6e */\nbody {\n font-family: var(--font-family);\n font-size: 16px;\n line-height: 1.6;\n}\n\n/* \u4ee3\u7801\u5b57\u4f53 */\ncode, pre {\n font-family: var(--code-font);\n font-size: 0.9em;\n}\n\n/* \u6807\u9898\u5b57\u4f53 */\nh1, h2, h3, h4, h5, h6 {\n font-family: var(--font-family);\n font-weight: 600;\n margin: calc(var(--spacing-unit) * 3) 0;\n}\n
"},{"location":"Technology/mkdocs%20material/#5122","title":"5.1.2.2 \u989c\u8272\u5b9a\u5236","text":"CSS
/* docs/stylesheets/base/_colors.css */\n\n/* \u6587\u672c\u989c\u8272 */\n.md-typeset {\n color: var(--text-color);\n}\n\n/* \u94fe\u63a5\u989c\u8272 */\n.md-typeset a {\n color: var(--md-accent-fg-color);\n}\n\n/* \u4ee3\u7801\u5757\u989c\u8272 */\n.highlight {\n background-color: var(--md-code-bg-color);\n}\n\n/* \u5f15\u7528\u5757\u989c\u8272 */\nblockquote {\n border-left: 4px solid var(--md-accent-fg-color);\n background-color: var(--md-code-bg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#5123","title":"5.1.2.3 \u95f4\u8ddd\u8c03\u6574","text":"CSS
/* \u5185\u5bb9\u95f4\u8ddd */\n.md-main__inner {\n padding: var(--content-padding);\n}\n\n/* \u6bb5\u843d\u95f4\u8ddd */\n.md-typeset p {\n margin: var(--spacing-unit) 0;\n}\n\n/* \u5217\u8868\u95f4\u8ddd */\n.md-typeset ul li,\n.md-typeset ol li {\n margin-bottom: calc(var(--spacing-unit) * 0.5);\n}\n\n/* \u6807\u9898\u95f4\u8ddd */\n.md-typeset h1 {\n margin-top: calc(var(--spacing-unit) * 4);\n margin-bottom: calc(var(--spacing-unit) * 2);\n}\n\n.md-typeset h2 {\n margin-top: calc(var(--spacing-unit) * 3);\n margin-bottom: calc(var(--spacing-unit) * 1.5);\n}\n
"},{"location":"Technology/mkdocs%20material/#5124","title":"5.1.2.4 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"
\u5728 mkdocs.yml
\u4e2d\u7684\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n font: false # \u7981\u7528\u9ed8\u8ba4\u5b57\u4f53\n\nextra_css:\n - stylesheets/extra.css\n\nextra:\n css_variables:\n spacing_unit: 8px\n content_width: 960px\n
"},{"location":"Technology/mkdocs%20material/#52","title":"5.2 \u4e3b\u9898\u6837\u5f0f\u8986\u76d6","text":""},{"location":"Technology/mkdocs%20material/#521","title":"5.2.1 \u7ec4\u4ef6\u6837\u5f0f\u4fee\u6539","text":""},{"location":"Technology/mkdocs%20material/#5211","title":"5.2.1.1 \u5bfc\u822a\u680f\u6837\u5f0f","text":"
- \u9876\u90e8\u5bfc\u822a\u680f\uff1a
CSS
/* docs/stylesheets/components/header.css */\n\n/* \u5bfc\u822a\u680f\u5bb9\u5668 */\n.md-header {\n background-color: var(--md-primary-fg-color);\n box-shadow: 0 2px 4px rgba(0,0,0,.14);\n height: 3rem;\n}\n\n/* \u5bfc\u822a\u680f\u6807\u9898 */\n.md-header__title {\n font-size: 1.2rem;\n font-weight: 600;\n margin-left: 1rem;\n}\n\n/* \u5bfc\u822a\u680f\u6309\u94ae */\n.md-header__button {\n padding: .8rem;\n color: var(--md-primary-bg-color);\n}\n\n/* \u5bfc\u822a\u680f\u641c\u7d22\u6846 */\n.md-search__input {\n border-radius: 2rem;\n background-color: rgba(255,255,255,.1);\n padding: 0 2.4rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5212","title":"5.2.1.2 \u4fa7\u8fb9\u680f\u6837\u5f0f","text":"CSS
/* docs/stylesheets/components/sidebar.css */\n\n/* \u4fa7\u8fb9\u680f\u5bb9\u5668 */\n.md-sidebar {\n width: 14rem;\n background-color: var(--md-default-bg-color);\n padding: 1.2rem 0;\n}\n\n/* \u4fa7\u8fb9\u680f\u5bfc\u822a */\n.md-nav--primary {\n padding: 0 .8rem;\n}\n\n/* \u5bfc\u822a\u9879 */\n.md-nav__item {\n padding: .2rem 0;\n}\n\n/* \u5bfc\u822a\u94fe\u63a5 */\n.md-nav__link {\n color: var(--md-default-fg-color);\n padding: .4rem .6rem;\n border-radius: 4px;\n transition: all .2s;\n}\n\n.md-nav__link:hover {\n background-color: var(--md-code-bg-color);\n color: var(--md-accent-fg-color);\n}\n\n/* \u6fc0\u6d3b\u72b6\u6001 */\n.md-nav__link--active {\n font-weight: 600;\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#5213","title":"5.2.1.3 \u9875\u811a\u6837\u5f0f","text":"CSS
/* docs/stylesheets/components/footer.css */\n\n/* \u9875\u811a\u5bb9\u5668 */\n.md-footer {\n background-color: var(--md-default-bg-color--darkest);\n color: var(--md-footer-fg-color);\n}\n\n/* \u9875\u811a\u5185\u5bb9 */\n.md-footer-meta {\n background-color: rgba(0,0,0,.1);\n padding: 1rem 0;\n}\n\n/* \u9875\u811a\u94fe\u63a5 */\n.md-footer__link {\n padding: .4rem 1rem;\n color: var(--md-footer-fg-color--light);\n}\n\n/* \u7248\u6743\u4fe1\u606f */\n.md-footer-copyright {\n font-size: .8rem;\n color: var(--md-footer-fg-color--lighter);\n}\n
"},{"location":"Technology/mkdocs%20material/#522","title":"5.2.2 \u81ea\u5b9a\u4e49\u8c03\u8272\u677f","text":""},{"location":"Technology/mkdocs%20material/#5221","title":"5.2.2.1 \u4e3b\u9898\u8272\u5b9a\u5236","text":"
- \u57fa\u7840\u989c\u8272\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/theme/colors.css */\n\n:root {\n /* \u4e3b\u8272\u8c03 */\n --md-primary-hue: 210;\n --md-primary-saturation: 80%;\n --md-primary-lightness: 45%;\n\n /* \u5f3a\u8c03\u8272 */\n --md-accent-hue: 340;\n --md-accent-saturation: 90%;\n --md-accent-lightness: 50%;\n}\n
- \u989c\u8272\u53d8\u91cf\u5e94\u7528\uff1a
CSS
:root {\n --md-primary-fg-color: hsl(\n var(--md-primary-hue),\n var(--md-primary-saturation),\n var(--md-primary-lightness)\n );\n\n --md-accent-fg-color: hsl(\n var(--md-accent-hue),\n var(--md-accent-saturation),\n var(--md-accent-lightness)\n );\n}\n
"},{"location":"Technology/mkdocs%20material/#5222","title":"5.2.2.2 \u914d\u8272\u65b9\u6848","text":"YAML
# mkdocs.yml\ntheme:\n palette:\n # \u4eae\u8272\u6a21\u5f0f\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo\n accent: deep purple\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n\n # \u6697\u8272\u6a21\u5f0f\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: blue grey\n accent: deep purple\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n
"},{"location":"Technology/mkdocs%20material/#5223","title":"5.2.2.3 \u6697\u8272\u4e3b\u9898","text":"CSS
/* \u6697\u8272\u4e3b\u9898\u53d8\u91cf */\n[data-md-color-scheme=\"slate\"] {\n --md-default-bg-color: #1a1a1a;\n --md-default-bg-color--light: #222222;\n --md-default-bg-color--lighter: #282828;\n\n --md-default-fg-color: rgba(255,255,255,0.87);\n --md-default-fg-color--light: rgba(255,255,255,0.54);\n --md-default-fg-color--lighter: rgba(255,255,255,0.32);\n\n --md-code-bg-color: #2d2d2d;\n --md-code-fg-color: #f5f5f5;\n}\n
"},{"location":"Technology/mkdocs%20material/#523","title":"5.2.3 \u5b57\u4f53\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#5231","title":"5.2.3.1 \u4e2d\u6587\u5b57\u4f53","text":"
- \u5b57\u4f53\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/theme/fonts.css */\n\n/* \u4e2d\u6587\u5b57\u4f53\u53d8\u91cf */\n:root {\n --md-font-chinese: \"LXGW WenKai\", \"PingFang SC\", \"Microsoft YaHei\";\n}\n\n/* \u5f15\u5165 LXGW WenKai \u5b57\u4f53 */\n@font-face {\n font-family: \"LXGW WenKai\";\n src: url(\"https://cdn.jsdelivr.net/npm/lxgw-wenkai-webfont@1.1.0/style.css\");\n font-display: swap;\n}\n
- \u5b57\u4f53\u5e94\u7528\uff1a
CSS
body {\n font-family: var(--md-font-chinese), -apple-system, sans-serif;\n}\n
"},{"location":"Technology/mkdocs%20material/#5232","title":"5.2.3.2 \u4ee3\u7801\u5b57\u4f53","text":"CSS
/* \u4ee3\u7801\u5b57\u4f53\u914d\u7f6e */\n:root {\n --md-code-font: \"JetBrains Mono\", \"Fira Code\", \"Source Code Pro\", monospace;\n}\n\n/* \u4ee3\u7801\u5757\u6837\u5f0f */\n.md-typeset code,\n.md-typeset pre {\n font-family: var(--md-code-font);\n font-size: 0.9em;\n}\n\n/* \u884c\u5185\u4ee3\u7801 */\n.md-typeset code {\n border-radius: 4px;\n padding: .2em .4em;\n}\n
"},{"location":"Technology/mkdocs%20material/#5233","title":"5.2.3.3 \u5b57\u4f53\u56de\u9000","text":"CSS
/* \u5b57\u4f53\u56de\u9000\u7b56\u7565 */\n:root {\n --md-text-font-fallback: -apple-system, BlinkMacSystemFont, Segoe UI, Helvetica,\n Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji;\n\n --md-code-font-fallback: SFMono-Regular, Consolas, Menlo, monospace;\n}\n\n/* \u5e94\u7528\u56de\u9000\u5b57\u4f53 */\nbody {\n font-family: var(--md-font-chinese), var(--md-text-font-fallback);\n}\n\npre, code {\n font-family: var(--md-code-font), var(--md-code-font-fallback);\n}\n
"},{"location":"Technology/mkdocs%20material/#524","title":"5.2.4 \u5e03\u5c40\u8c03\u6574","text":""},{"location":"Technology/mkdocs%20material/#5241","title":"5.2.4.1 \u54cd\u5e94\u5f0f\u5e03\u5c40","text":"CSS
/* docs/stylesheets/theme/layout.css */\n\n/* \u57fa\u7840\u54cd\u5e94\u5f0f\u5e03\u5c40 */\n.md-grid {\n max-width: 100%;\n margin: 0 auto;\n}\n\n/* \u684c\u9762\u7aef */\n@media screen and (min-width: 76.25em) {\n .md-grid {\n max-width: 76rem;\n }\n\n .md-sidebar--primary {\n width: 14rem;\n }\n\n .md-sidebar--secondary {\n width: 12rem;\n margin-left: 76rem;\n }\n}\n\n/* \u5e73\u677f\u7aef */\n@media screen and (max-width: 76.1875em) {\n .md-grid {\n max-width: 60rem;\n }\n\n .md-header-nav__title {\n display: none;\n }\n}\n\n/* \u79fb\u52a8\u7aef */\n@media screen and (max-width: 44.9375em) {\n .md-grid {\n max-width: 100%;\n padding: 0 1rem;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#5242","title":"5.2.4.2 \u7f51\u683c\u7cfb\u7edf","text":"CSS
/* \u81ea\u5b9a\u4e49\u7f51\u683c\u7cfb\u7edf */\n.grid {\n display: grid;\n gap: 1rem;\n margin: 1rem 0;\n}\n\n/* \u7f51\u683c\u5217\u6570 */\n.grid-cols-1 { grid-template-columns: repeat(1, 1fr); }\n.grid-cols-2 { grid-template-columns: repeat(2, 1fr); }\n.grid-cols-3 { grid-template-columns: repeat(3, 1fr); }\n.grid-cols-4 { grid-template-columns: repeat(4, 1fr); }\n\n/* \u54cd\u5e94\u5f0f\u7f51\u683c */\n@media (min-width: 768px) {\n .md-grid-cols-md-2 { grid-template-columns: repeat(2, 1fr); }\n .md-grid-cols-md-3 { grid-template-columns: repeat(3, 1fr); }\n}\n\n@media (min-width: 1024px) {\n .md-grid-cols-lg-3 { grid-template-columns: repeat(3, 1fr); }\n .md-grid-cols-lg-4 { grid-template-columns: repeat(4, 1fr); }\n}\n
"},{"location":"Technology/mkdocs%20material/#5243","title":"5.2.4.3 \u5bb9\u5668\u5bbd\u5ea6","text":"CSS
/* \u5bb9\u5668\u5bbd\u5ea6\u5b9a\u4e49 */\n:root {\n --md-container-width: 80rem;\n --md-container-padding: 1rem;\n}\n\n/* \u5bb9\u5668\u6837\u5f0f */\n.md-container {\n max-width: var(--md-container-width);\n margin: 0 auto;\n padding: 0 var(--md-container-padding);\n}\n\n/* \u4e0d\u540c\u5c3a\u5bf8\u7684\u5bb9\u5668 */\n.md-container--small {\n max-width: 60rem;\n}\n\n.md-container--medium {\n max-width: 70rem;\n}\n\n.md-container--large {\n max-width: 90rem;\n}\n\n/* \u6d41\u5f0f\u5bb9\u5668 */\n.md-container--fluid {\n max-width: 100%;\n}\n
"},{"location":"Technology/mkdocs%20material/#525","title":"5.2.5 \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b","text":"YAML
# mkdocs.yml\ntheme:\n name: material\n font: false\n features:\n - navigation.tabs\n - navigation.sections\n - navigation.expand\n palette:\n - scheme: default\n primary: indigo\n accent: deep purple\n - scheme: slate\n primary: blue grey\n accent: deep purple\n\nextra_css:\n - stylesheets/theme/colors.css\n - stylesheets/theme/fonts.css\n - stylesheets/theme/layout.css\n - stylesheets/components/header.css\n - stylesheets/components/sidebar.css\n - stylesheets/components/footer.css\n
"},{"location":"Technology/mkdocs%20material/#53","title":"5.3 \u81ea\u5b9a\u4e49\u7ec4\u4ef6\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#531","title":"5.3.1 \u5361\u7247\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5311","title":"5.3.1.1 \u57fa\u7840\u5361\u7247","text":"
\u57fa\u7840\u5361\u7247\u6837\u5f0f\u5b9a\u4e49\uff1a
CSS
/* docs/stylesheets/components/cards.css */\n\n/* \u57fa\u7840\u5361\u7247\u5bb9\u5668 */\n.card {\n background-color: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n padding: 1.5rem;\n margin: 1rem 0;\n transition: all 0.3s ease;\n}\n\n/* \u5361\u7247\u6807\u9898 */\n.card__title {\n font-size: 1.25rem;\n font-weight: 600;\n margin-bottom: 1rem;\n color: var(--md-typeset-color);\n}\n\n/* \u5361\u7247\u5185\u5bb9 */\n.card__content {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n line-height: 1.6;\n}\n\n/* \u5361\u7247\u5e95\u90e8 */\n.card__footer {\n margin-top: 1rem;\n padding-top: 1rem;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n
\u4f7f\u7528\u793a\u4f8b\uff1a
HTML
<div class=\"card\">\n <div class=\"card__title\">\u5361\u7247\u6807\u9898</div>\n <div class=\"card__content\">\n \u8fd9\u91cc\u662f\u5361\u7247\u5185\u5bb9...\n </div>\n <div class=\"card__footer\">\n \u5361\u7247\u5e95\u90e8\u4fe1\u606f\n </div>\n</div>\n
"},{"location":"Technology/mkdocs%20material/#5312","title":"5.3.1.2 \u56fe\u7247\u5361\u7247","text":"CSS
/* \u56fe\u7247\u5361\u7247\u6837\u5f0f */\n.card--image {\n padding: 0;\n overflow: hidden;\n}\n\n/* \u56fe\u7247\u5bb9\u5668 */\n.card__image {\n width: 100%;\n height: 200px;\n position: relative;\n overflow: hidden;\n}\n\n/* \u56fe\u7247\u6837\u5f0f */\n.card__image img {\n width: 100%;\n height: 100%;\n object-fit: cover;\n transition: transform 0.3s ease;\n}\n\n/* \u56fe\u7247\u60ac\u505c\u6548\u679c */\n.card--image:hover img {\n transform: scale(1.05);\n}\n\n/* \u56fe\u7247\u5361\u7247\u5185\u5bb9\u533a */\n.card--image .card__content {\n padding: 1.5rem;\n}\n\n/* \u56fe\u7247\u6807\u9898\u8986\u76d6 */\n.card__image-title {\n position: absolute;\n bottom: 0;\n left: 0;\n right: 0;\n padding: 1rem;\n background: linear-gradient(to top, rgba(0,0,0,0.7), transparent);\n color: white;\n}\n
"},{"location":"Technology/mkdocs%20material/#5313","title":"5.3.1.3 \u7279\u6548\u5361\u7247","text":"CSS
/* \u60ac\u6d6e\u6548\u679c\u5361\u7247 */\n.card--hover {\n cursor: pointer;\n}\n\n.card--hover:hover {\n transform: translateY(-4px);\n box-shadow: var(--md-shadow-z2);\n}\n\n/* \u6e10\u53d8\u80cc\u666f\u5361\u7247 */\n.card--gradient {\n background: linear-gradient(135deg, \n var(--md-primary-fg-color) 0%,\n var(--md-accent-fg-color) 100%);\n color: white;\n}\n\n/* \u6bdb\u73bb\u7483\u6548\u679c\u5361\u7247 */\n.card--glass {\n background: rgba(255, 255, 255, 0.1);\n backdrop-filter: blur(10px);\n border: 1px solid rgba(255, 255, 255, 0.2);\n}\n
"},{"location":"Technology/mkdocs%20material/#532","title":"5.3.2 \u63d0\u793a\u6846\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5321","title":"5.3.2.1 \u4fe1\u606f\u63d0\u793a","text":"CSS
/* docs/stylesheets/components/alerts.css */\n\n/* \u57fa\u7840\u63d0\u793a\u6846 */\n.alert {\n padding: 1rem 1.5rem;\n margin: 1rem 0;\n border-left: 4px solid;\n border-radius: 4px;\n}\n\n/* \u4fe1\u606f\u63d0\u793a */\n.alert--info {\n background-color: #e3f2fd;\n border-color: #2196f3;\n color: #0d47a1;\n}\n\n.alert--info::before {\n content: \"\u2139\ufe0f\";\n margin-right: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5322","title":"5.3.2.2 \u8b66\u544a\u63d0\u793a","text":"CSS
/* \u8b66\u544a\u63d0\u793a */\n.alert--warning {\n background-color: #fff3e0;\n border-color: #ff9800;\n color: #e65100;\n}\n\n.alert--warning::before {\n content: \"\u26a0\ufe0f\";\n margin-right: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5323","title":"5.3.2.3 \u9519\u8bef\u63d0\u793a","text":"CSS
/* \u9519\u8bef\u63d0\u793a */\n.alert--error {\n background-color: #ffebee;\n border-color: #f44336;\n color: #b71c1c;\n}\n\n.alert--error::before {\n content: \"\u274c\";\n margin-right: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#533","title":"5.3.3 \u53cb\u94fe\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5331","title":"5.3.3.1 \u53cb\u94fe\u5361\u7247","text":"CSS
/* docs/stylesheets/components/friends.css */\n\n/* \u53cb\u94fe\u5bb9\u5668 */\n.friend-links {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(250px, 1fr));\n gap: 1.5rem;\n margin: 2rem 0;\n}\n\n/* \u53cb\u94fe\u5361\u7247 */\n.friend-link {\n display: flex;\n align-items: center;\n padding: 1rem;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n transition: all 0.3s ease;\n}\n\n/* \u5934\u50cf */\n.friend-link__avatar {\n width: 60px;\n height: 60px;\n border-radius: 50%;\n margin-right: 1rem;\n}\n\n/* \u4fe1\u606f */\n.friend-link__info {\n flex: 1;\n}\n\n.friend-link__name {\n font-weight: 600;\n color: var(--md-typeset-color);\n}\n\n.friend-link__desc {\n font-size: 0.85rem;\n color: var(--md-default-fg-color--light);\n margin-top: 0.25rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5332","title":"5.3.3.2 \u5206\u7c7b\u5c55\u793a","text":"CSS
/* \u53cb\u94fe\u5206\u7c7b */\n.friend-links-section {\n margin: 2rem 0;\n}\n\n/* \u5206\u7c7b\u6807\u9898 */\n.friend-links-section__title {\n font-size: 1.25rem;\n font-weight: 600;\n margin-bottom: 1rem;\n padding-left: 1rem;\n border-left: 4px solid var(--md-accent-fg-color);\n}\n\n/* \u5206\u7c7b\u63cf\u8ff0 */\n.friend-links-section__desc {\n color: var(--md-default-fg-color--light);\n margin-bottom: 1.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#5333","title":"5.3.3.3 \u60ac\u505c\u6548\u679c","text":"CSS
/* \u60ac\u505c\u6548\u679c */\n.friend-link:hover {\n transform: translateY(-2px);\n box-shadow: var(--md-shadow-z2);\n}\n\n/* \u5934\u50cf\u52a8\u753b */\n.friend-link:hover .friend-link__avatar {\n transform: rotate(360deg);\n transition: transform 0.6s ease;\n}\n\n/* \u6807\u7b7e\u6548\u679c */\n.friend-link__tag {\n display: inline-block;\n padding: 0.2rem 0.5rem;\n font-size: 0.75rem;\n border-radius: 12px;\n background-color: var(--md-code-bg-color);\n margin-top: 0.5rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#534","title":"5.3.4 \u65f6\u95f4\u7ebf\u6837\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#5341","title":"5.3.4.1 \u65f6\u95f4\u8f74\u8bbe\u8ba1","text":"CSS
/* docs/stylesheets/components/timeline.css */\n\n/* \u65f6\u95f4\u7ebf\u5bb9\u5668 */\n.timeline {\n position: relative;\n max-width: 800px;\n margin: 2rem auto;\n padding: 2rem 0;\n}\n\n/* \u65f6\u95f4\u8f74\u7ebf */\n.timeline::before {\n content: '';\n position: absolute;\n top: 0;\n left: calc(50% - 1px);\n width: 2px;\n height: 100%;\n background-color: var(--md-default-fg-color--lightest);\n}\n\n/* \u65f6\u95f4\u7ebf\u9879\u76ee */\n.timeline-item {\n position: relative;\n margin: 2rem 0;\n}\n\n/* \u4ea4\u9519\u5e03\u5c40 */\n.timeline-item:nth-child(odd) {\n padding-right: calc(50% + 2rem);\n}\n\n.timeline-item:nth-child(even) {\n padding-left: calc(50% + 2rem);\n}\n
"},{"location":"Technology/mkdocs%20material/#5342","title":"5.3.4.2 \u8282\u70b9\u6837\u5f0f","text":"CSS
/* \u65f6\u95f4\u8282\u70b9 */\n.timeline-node {\n position: absolute;\n top: 50%;\n width: 16px;\n height: 16px;\n background-color: var(--md-primary-fg-color);\n border-radius: 50%;\n transform: translateY(-50%);\n}\n\n.timeline-item:nth-child(odd) .timeline-node {\n right: calc(50% - 8px);\n}\n\n.timeline-item:nth-child(even) .timeline-node {\n left: calc(50% - 8px);\n}\n\n/* \u8282\u70b9\u5185\u5bb9 */\n.timeline-content {\n background-color: var(--md-default-bg-color);\n padding: 1.5rem;\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n}\n\n/* \u65f6\u95f4\u6807\u7b7e */\n.timeline-date {\n position: absolute;\n top: 50%;\n color: var(--md-default-fg-color--light);\n transform: translateY(-50%);\n}\n\n.timeline-item:nth-child(odd) .timeline-date {\n left: calc(50% + 2rem);\n}\n\n.timeline-item:nth-child(even) .timeline-date {\n right: calc(50% + 2rem);\n}\n
"},{"location":"Technology/mkdocs%20material/#5343","title":"5.3.4.3 \u54cd\u5e94\u5f0f\u9002\u914d","text":"CSS
/* \u79fb\u52a8\u7aef\u9002\u914d */\n@media screen and (max-width: 768px) {\n .timeline::before {\n left: 0;\n }\n\n .timeline-item {\n padding-left: 2rem !important;\n padding-right: 0 !important;\n }\n\n .timeline-node {\n left: -8px !important;\n right: auto !important;\n }\n\n .timeline-date {\n position: relative;\n top: auto;\n left: auto !important;\n right: auto !important;\n margin-bottom: 0.5rem;\n }\n}\n\n/* \u5e73\u677f\u7aef\u9002\u914d */\n@media screen and (min-width: 769px) and (max-width: 1024px) {\n .timeline {\n max-width: 90%;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#5344","title":"5.3.4.4 \u4f7f\u7528\u793a\u4f8b","text":"HTML
<!-- \u65f6\u95f4\u7ebf\u793a\u4f8b -->\n<div class=\"timeline\">\n <div class=\"timeline-item\">\n <div class=\"timeline-node\"></div>\n <div class=\"timeline-date\">2024-01-01</div>\n <div class=\"timeline-content\">\n <h3>\u4e8b\u4ef6\u6807\u9898</h3>\n <p>\u4e8b\u4ef6\u63cf\u8ff0...</p>\n </div>\n </div>\n\n <!-- \u66f4\u591a\u65f6\u95f4\u7ebf\u9879\u76ee -->\n</div>\n\n<!-- \u53cb\u94fe\u793a\u4f8b -->\n<div class=\"friend-links-section\">\n <h2 class=\"friend-links-section__title\">\u6280\u672f\u535a\u5ba2</h2>\n <p class=\"friend-links-section__desc\">\u4f18\u79c0\u7684\u6280\u672f\u535a\u5ba2\u6536\u85cf</p>\n <div class=\"friend-links\">\n <a href=\"#\" class=\"friend-link\">\n <img src=\"avatar.jpg\" class=\"friend-link__avatar\">\n <div class=\"friend-link__info\">\n <div class=\"friend-link__name\">\u535a\u5ba2\u540d\u79f0</div>\n <div class=\"friend-link__desc\">\u535a\u5ba2\u63cf\u8ff0</div>\n <span class=\"friend-link__tag\">\u6807\u7b7e</span>\n </div>\n </a>\n </div>\n</div>\n\n<!-- \u63d0\u793a\u6846\u793a\u4f8b -->\n<div class=\"alert alert--info\">\n \u8fd9\u662f\u4e00\u6761\u4fe1\u606f\u63d0\u793a\n</div>\n\n<div class=\"alert alert--warning\">\n \u8fd9\u662f\u4e00\u6761\u8b66\u544a\u63d0\u793a\n</div>\n\n<div class=\"alert alert--error\">\n \u8fd9\u662f\u4e00\u6761\u9519\u8bef\u63d0\u793a\n</div>\n
"},{"location":"Technology/mkdocs%20material/#535","title":"5.3.5 \u5b8c\u6574\u914d\u7f6e","text":"YAML
# mkdocs.yml\nextra_css:\n - stylesheets/components/cards.css\n - stylesheets/components/alerts.css\n - stylesheets/components/friends.css\n - stylesheets/components/timeline.css\n
"},{"location":"Technology/mkdocs%20material/#6-javascript","title":"6 JavaScript \u589e\u5f3a","text":""},{"location":"Technology/mkdocs%20material/#61","title":"6.1 \u57fa\u7840\u914d\u7f6e","text":""},{"location":"Technology/mkdocs%20material/#611-js","title":"6.1.1 \u5f15\u5165 JS \u6587\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#6111","title":"6.1.1.1 \u672c\u5730\u6587\u4ef6","text":"
- \u521b\u5efa\u57fa\u7840\u76ee\u5f55\u7ed3\u6784\uff1a
Text Only
docs/\n\u251c\u2500\u2500 javascripts/\n\u2502 \u251c\u2500\u2500 config/ # \u914d\u7f6e\u6587\u4ef6\n\u2502 \u2502 \u2514\u2500\u2500 main.js\n\u2502 \u251c\u2500\u2500 modules/ # \u529f\u80fd\u6a21\u5757\n\u2502 \u2502 \u251c\u2500\u2500 search.js\n\u2502 \u2502 \u2514\u2500\u2500 theme.js\n\u2502 \u251c\u2500\u2500 utils/ # \u5de5\u5177\u51fd\u6570\n\u2502 \u2502 \u2514\u2500\u2500 helpers.js\n\u2502 \u2514\u2500\u2500 extra.js # \u4e3b\u5165\u53e3\u6587\u4ef6\n
- \u5728
mkdocs.yml
\u4e2d\u5f15\u5165\uff1a
YAML
extra_javascript:\n - javascripts/extra.js\n - javascripts/modules/search.js\n - javascripts/modules/theme.js\n
- JavaScript \u6587\u4ef6\u793a\u4f8b\uff1a
JavaScript
// docs/javascripts/extra.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u521d\u59cb\u5316\u4ee3\u7801\n console.log('Documentation loaded');\n});\n\n// docs/javascripts/modules/theme.js\nconst ThemeManager = {\n init() {\n // \u4e3b\u9898\u521d\u59cb\u5316\n },\n toggle() {\n // \u4e3b\u9898\u5207\u6362\n }\n};\n\n// docs/javascripts/utils/helpers.js\nconst Helpers = {\n debounce(fn, delay) {\n let timer = null;\n return function() {\n clearTimeout(timer);\n timer = setTimeout(() => fn.apply(this, arguments), delay);\n };\n }\n};\n
"},{"location":"Technology/mkdocs%20material/#6112-cdn","title":"6.1.1.2 CDN \u5f15\u5165","text":"
- \u5e38\u7528 CDN \u914d\u7f6e\uff1a
YAML
extra_javascript:\n # KaTeX \u6570\u5b66\u516c\u5f0f\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n\n # Mermaid \u56fe\u8868\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n\n # \u4ee3\u7801\u9ad8\u4eae\n - https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/prism.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/components/prism-python.min.js\n
- CDN \u52a0\u901f\u914d\u7f6e\uff1a
YAML
extra:\n cdn:\n # \u4f7f\u7528\u56fd\u5185 CDN\n enable: true\n provider: jsdelivr # \u6216 unpkg, cdnjs\n urls:\n katex: https://cdn.jsdelivr.net/npm/katex@0.16.7/dist/katex.min.js\n mermaid: https://cdn.jsdelivr.net/npm/mermaid@9/dist/mermaid.min.js\n
- CDN \u6545\u969c\u5904\u7406\uff1a
JavaScript
// docs/javascripts/config/cdn-fallback.js\nfunction loadFallbackScript(url, fallbackUrl) {\n const script = document.createElement('script');\n script.src = url;\n script.onerror = () => {\n console.warn(`Failed to load ${url}, trying fallback...`);\n const fallback = document.createElement('script');\n fallback.src = fallbackUrl;\n document.head.appendChild(fallback);\n };\n document.head.appendChild(script);\n}\n\n// \u4f7f\u7528\u793a\u4f8b\nloadFallbackScript(\n 'https://cdn.jsdelivr.net/npm/katex@0.16.7/dist/katex.min.js',\n 'https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js'\n);\n
"},{"location":"Technology/mkdocs%20material/#6113","title":"6.1.1.3 \u6a21\u5757\u5316\u7ba1\u7406","text":"
- \u4f7f\u7528 ES6 \u6a21\u5757\uff1a
JavaScript
// docs/javascripts/modules/theme.js\nexport class ThemeManager {\n constructor() {\n this.darkMode = false;\n }\n\n init() {\n this.loadPreference();\n this.bindEvents();\n }\n\n toggle() {\n this.darkMode = !this.darkMode;\n this.savePreference();\n this.applyTheme();\n }\n}\n\n// docs/javascripts/modules/search.js\nexport class SearchManager {\n constructor() {\n this.index = null;\n }\n\n init() {\n this.buildIndex();\n this.bindSearchEvents();\n }\n\n search(query) {\n // \u641c\u7d22\u5b9e\u73b0\n }\n}\n\n// docs/javascripts/extra.js\nimport { ThemeManager } from './modules/theme.js';\nimport { SearchManager } from './modules/search.js';\n\nconst theme = new ThemeManager();\nconst search = new SearchManager();\n\ndocument.addEventListener('DOMContentLoaded', () => {\n theme.init();\n search.init();\n});\n
- \u6a21\u5757\u914d\u7f6e\u6587\u4ef6\uff1a
JavaScript
// docs/javascripts/config/modules.js\nexport const ModuleConfig = {\n theme: {\n enabled: true,\n darkModeClass: 'dark-mode',\n storageKey: 'theme-preference'\n },\n search: {\n enabled: true,\n minChars: 3,\n maxResults: 10\n }\n};\n\n// \u4f7f\u7528\u914d\u7f6e\nimport { ModuleConfig } from '../config/modules.js';\n\nclass ThemeManager {\n constructor() {\n this.config = ModuleConfig.theme;\n if (!this.config.enabled) return;\n // \u521d\u59cb\u5316\u4ee3\u7801\n }\n}\n
- \u5de5\u5177\u51fd\u6570\u6a21\u5757\uff1a
JavaScript
// docs/javascripts/utils/helpers.js\nexport const DOM = {\n // DOM \u64cd\u4f5c\u8f85\u52a9\u51fd\u6570\n select: (selector) => document.querySelector(selector),\n selectAll: (selector) => document.querySelectorAll(selector),\n addClass: (element, className) => element.classList.add(className),\n removeClass: (element, className) => element.classList.remove(className)\n};\n\nexport const Storage = {\n // \u672c\u5730\u5b58\u50a8\u8f85\u52a9\u51fd\u6570\n get: (key) => localStorage.getItem(key),\n set: (key, value) => localStorage.setItem(key, value),\n remove: (key) => localStorage.removeItem(key)\n};\n\nexport const Events = {\n // \u4e8b\u4ef6\u5904\u7406\u8f85\u52a9\u51fd\u6570\n on: (element, event, handler) => element.addEventListener(event, handler),\n off: (element, event, handler) => element.removeEventListener(event, handler),\n trigger: (element, event) => element.dispatchEvent(new Event(event))\n};\n
- \u5b8c\u6574\u914d\u7f6e\u793a\u4f8b\uff1a
YAML
# mkdocs.yml\nextra_javascript:\n # \u6838\u5fc3\u6587\u4ef6\n - javascripts/extra.js\n - javascripts/config/modules.js\n\n # \u529f\u80fd\u6a21\u5757\n - javascripts/modules/theme.js\n - javascripts/modules/search.js\n\n # \u5de5\u5177\u51fd\u6570\n - javascripts/utils/helpers.js\n\n # \u7b2c\u4e09\u65b9\u5e93\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n\n# \u6a21\u5757\u914d\u7f6e\nextra:\n javascript_modules:\n theme:\n enabled: true\n default: light\n search:\n enabled: true\n min_chars: 3\n
"},{"location":"Technology/mkdocs%20material/#62","title":"6.2 \u7b2c\u4e09\u65b9\u5e93\u96c6\u6210","text":""},{"location":"Technology/mkdocs%20material/#621-katex","title":"6.2.1 KaTeX \u6570\u5b66\u516c\u5f0f","text":""},{"location":"Technology/mkdocs%20material/#6211","title":"6.2.1.1 \u57fa\u7840\u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - pymdownx.arithmatex:\n generic: true\n\nextra_javascript:\n - javascripts/katex.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.js\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/contrib/auto-render.min.js\n\nextra_css:\n - https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.16.7/katex.min.css\n
- \u521b\u5efa KaTeX \u914d\u7f6e\u6587\u4ef6\uff1a
JavaScript
// docs/javascripts/katex.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true},\n {left: \"$\", right: \"$\", display: false},\n {left: \"\\\\(\", right: \"\\\\)\", display: false},\n {left: \"\\\\[\", right: \"\\\\]\", display: true}\n ],\n throwOnError: false,\n errorColor: \"#cc0000\",\n strict: \"ignore\"\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6212","title":"6.2.1.2 \u81ea\u52a8\u6e32\u67d3","text":"
- \u914d\u7f6e\u81ea\u52a8\u6e32\u67d3\u9009\u9879\uff1a
JavaScript
// docs/javascripts/katex-auto.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true},\n {left: \"$\", right: \"$\", display: false}\n ],\n // \u81ea\u52a8\u6e32\u67d3\u8bbe\u7f6e\n ignoredTags: [\"script\", \"noscript\", \"style\", \"textarea\", \"pre\", \"code\"],\n ignoredClasses: [\"no-math\"],\n processEscapes: true,\n processEnvironments: true,\n // \u5904\u7406\u81ea\u5b9a\u4e49\u5b8f\n macros: {\n \"\\\\RR\": \"\\\\mathbb{R}\",\n \"\\\\NN\": \"\\\\mathbb{N}\",\n \"\\\\ZZ\": \"\\\\mathbb{Z}\"\n }\n });\n});\n
- \u4f7f\u7528\u793a\u4f8b\uff1a
Markdown
\u884c\u5185\u516c\u5f0f\uff1a$E = mc^2$\n\n\u5757\u7ea7\u516c\u5f0f\uff1a\n$$\n\\frac{n!}{k!(n-k)!} = \\binom{n}{k}\n$$\n\n\u81ea\u5b9a\u4e49\u5b8f\uff1a$\\RR$ \u8868\u793a\u5b9e\u6570\u96c6\n
"},{"location":"Technology/mkdocs%20material/#6213","title":"6.2.1.3 \u516c\u5f0f\u7f16\u53f7","text":"
- \u542f\u7528\u516c\u5f0f\u7f16\u53f7\uff1a
JavaScript
// docs/javascripts/katex-numbering.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n // \u516c\u5f0f\u7f16\u53f7\u8ba1\u6570\u5668\n let equationNumbers = {};\n let numberings = {};\n\n renderMathInElement(document.body, {\n delimiters: [\n {left: \"$$\", right: \"$$\", display: true}\n ],\n // \u516c\u5f0f\u7f16\u53f7\u5904\u7406\n preProcess: (math) => {\n if (math.includes('\\\\label')) {\n const label = math.match(/\\\\label{([^}]*)}/)[1];\n const number = Object.keys(numberings).length + 1;\n numberings[label] = number;\n return math.replace(/\\\\label{[^}]*}/, `(${number})`);\n }\n return math;\n }\n });\n});\n
- \u4f7f\u7528\u7f16\u53f7\u548c\u5f15\u7528\uff1a
Markdown
\u5e26\u7f16\u53f7\u7684\u516c\u5f0f\uff1a\n$$\nE = mc^2 \\label{eq:einstein}\n$$\n\n\u5f15\u7528\u4e0a\u9762\u7684\u516c\u5f0f $\\eqref{eq:einstein}$\n
"},{"location":"Technology/mkdocs%20material/#622-mermaid","title":"6.2.2 Mermaid \u56fe\u8868","text":""},{"location":"Technology/mkdocs%20material/#6221","title":"6.2.2.1 \u521d\u59cb\u5316\u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - pymdownx.superfences:\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n\nextra_javascript:\n - https://unpkg.com/mermaid@9/dist/mermaid.min.js\n - javascripts/mermaid.js\n
- \u521b\u5efa Mermaid \u914d\u7f6e\u6587\u4ef6\uff1a
JavaScript
// docs/javascripts/mermaid.js\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n mermaid.initialize({\n startOnLoad: true,\n theme: 'default',\n sequence: {\n showSequenceNumbers: true,\n actorMargin: 50,\n messageMargin: 40\n },\n flowchart: {\n useMaxWidth: false,\n htmlLabels: true,\n curve: 'basis'\n },\n gantt: {\n titleTopMargin: 25,\n barHeight: 20,\n barGap: 4\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6222","title":"6.2.2.2 \u4e3b\u9898\u5b9a\u5236","text":"
- \u81ea\u5b9a\u4e49\u4e3b\u9898\u914d\u7f6e\uff1a
JavaScript
// docs/javascripts/mermaid-theme.js\nmermaid.initialize({\n theme: 'base',\n themeVariables: {\n // \u57fa\u7840\u989c\u8272\n primaryColor: '#2196f3',\n primaryTextColor: '#fff',\n primaryBorderColor: '#1976d2',\n lineColor: '#696969',\n\n // \u6d41\u7a0b\u56fe\u989c\u8272\n nodeBkg: '#fff',\n mainBkg: '#f8f9fa',\n nodeTextColor: '#333',\n\n // \u65f6\u5e8f\u56fe\u989c\u8272\n actorBkg: '#f8f9fa',\n actorBorder: '#2196f3',\n actorTextColor: '#333',\n\n // \u7518\u7279\u56fe\u989c\u8272\n sectionBkgColor: '#f8f9fa',\n altSectionBkgColor: '#fff',\n\n // \u6697\u8272\u4e3b\u9898\u652f\u6301\n darkMode: false\n }\n});\n
- \u54cd\u5e94\u4e3b\u9898\u5207\u6362\uff1a
JavaScript
// \u76d1\u542c\u4e3b\u9898\u5207\u6362\ndocument.addEventListener('themeChanged', function(e) {\n const isDark = e.detail.theme === 'dark';\n mermaid.initialize({\n theme: isDark ? 'dark' : 'default',\n themeVariables: {\n darkMode: isDark\n }\n });\n // \u91cd\u65b0\u6e32\u67d3\u56fe\u8868\n mermaid.init(undefined, '.mermaid');\n});\n
"},{"location":"Technology/mkdocs%20material/#6223","title":"6.2.2.3 \u4ea4\u4e92\u529f\u80fd","text":"
- \u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\uff1a
JavaScript
// docs/javascripts/mermaid-interaction.js\nmermaid.initialize({\n securityLevel: 'loose',\n flowchart: {\n htmlLabels: true,\n useMaxWidth: true\n }\n});\n\ndocument.addEventListener(\"DOMContentLoaded\", function() {\n // \u4e3a\u56fe\u8868\u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\n const diagrams = document.querySelectorAll('.mermaid');\n diagrams.forEach(diagram => {\n diagram.addEventListener('click', function(e) {\n const target = e.target;\n if (target.tagName === 'g' && target.classList.contains('node')) {\n const nodeId = target.id;\n console.log('Clicked node:', nodeId);\n // \u5904\u7406\u8282\u70b9\u70b9\u51fb\n handleNodeClick(nodeId);\n }\n });\n });\n});\n\nfunction handleNodeClick(nodeId) {\n // \u8282\u70b9\u70b9\u51fb\u5904\u7406\n const node = document.getElementById(nodeId);\n if (node) {\n // \u6dfb\u52a0\u9ad8\u4eae\u6548\u679c\n node.classList.add('node-highlight');\n setTimeout(() => {\n node.classList.remove('node-highlight');\n }, 1000);\n }\n}\n
- \u6dfb\u52a0\u56fe\u8868\u52a8\u753b\uff1a
CSS
/* docs/stylesheets/mermaid.css */\n.mermaid .node-highlight {\n animation: pulse 1s;\n}\n\n@keyframes pulse {\n 0% { opacity: 1; }\n 50% { opacity: 0.5; }\n 100% { opacity: 1; }\n}\n\n.mermaid .flowchart-link {\n transition: stroke-width 0.3s ease;\n}\n\n.mermaid .flowchart-link:hover {\n stroke-width: 2px;\n cursor: pointer;\n}\n
"},{"location":"Technology/mkdocs%20material/#6224","title":"6.2.2.4 \u4f7f\u7528\u793a\u4f8b","text":"
- \u6d41\u7a0b\u56fe\u793a\u4f8b\uff1a
Markdown
```mermaid\ngraph TD\n A[\u5f00\u59cb] --> B{\u5224\u65ad}\n B -->|Yes| C[\u5904\u7406]\n B -->|No| D[\u7ed3\u675f]\n C --> D\n```\n
- \u65f6\u5e8f\u56fe\u793a\u4f8b\uff1a
Markdown
```mermaid\nsequenceDiagram\n participant \u5ba2\u6237\u7aef\n participant \u670d\u52a1\u5668\n\n \u5ba2\u6237\u7aef->>\u670d\u52a1\u5668: \u8bf7\u6c42\u6570\u636e\n \u670d\u52a1\u5668-->>\u5ba2\u6237\u7aef: \u8fd4\u56de\u54cd\u5e94\n```\n
"},{"location":"Technology/mkdocs%20material/#623","title":"6.2.3 \u4ee3\u7801\u590d\u5236","text":""},{"location":"Technology/mkdocs%20material/#6231","title":"6.2.3.1 \u590d\u5236\u6309\u94ae","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
theme:\n features:\n - content.code.copy\n\nextra_css:\n - stylesheets/code-copy.css\nextra_javascript:\n - javascripts/code-copy.js\n
- \u521b\u5efa\u590d\u5236\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/code-copy.css */\n\n/* \u590d\u5236\u6309\u94ae\u5bb9\u5668 */\n.copy-button {\n position: absolute;\n right: 0.5rem;\n top: 0.5rem;\n padding: 0.4rem;\n background-color: rgba(0, 0, 0, 0.1);\n border: none;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n/* \u6309\u94ae\u60ac\u505c\u6548\u679c */\n.copy-button:hover {\n background-color: rgba(0, 0, 0, 0.2);\n}\n\n/* \u56fe\u6807\u6837\u5f0f */\n.copy-button i {\n font-size: 1rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u6210\u529f\u72b6\u6001 */\n.copy-button.success {\n background-color: var(--md-accent-fg-color);\n}\n\n.copy-button.success i {\n color: white;\n}\n
- \u5b9e\u73b0\u590d\u5236\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/code-copy.js\ndocument.addEventListener('DOMContentLoaded', () => {\n // \u4e3a\u6240\u6709\u4ee3\u7801\u5757\u6dfb\u52a0\u590d\u5236\u6309\u94ae\n const codeBlocks = document.querySelectorAll('pre code');\n\n codeBlocks.forEach((codeBlock) => {\n const container = codeBlock.parentNode;\n const copyButton = document.createElement('button');\n copyButton.className = 'copy-button';\n copyButton.innerHTML = '<i class=\"material-icons\">content_copy</i>';\n container.style.position = 'relative';\n container.appendChild(copyButton);\n\n // \u6dfb\u52a0\u70b9\u51fb\u4e8b\u4ef6\n copyButton.addEventListener('click', async () => {\n try {\n await navigator.clipboard.writeText(codeBlock.textContent);\n showSuccess(copyButton);\n } catch (err) {\n showError(copyButton);\n }\n });\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6232","title":"6.2.3.2 \u63d0\u793a\u6d88\u606f","text":"
- \u521b\u5efa\u63d0\u793a\u6d88\u606f\u6837\u5f0f\uff1a
CSS
/* \u63d0\u793a\u6d88\u606f\u6837\u5f0f */\n.copy-tooltip {\n position: absolute;\n top: -2rem;\n right: 0;\n padding: 0.4rem 0.8rem;\n background-color: var(--md-default-fg-color);\n color: var(--md-default-bg-color);\n border-radius: 4px;\n font-size: 0.8rem;\n opacity: 0;\n transform: translateY(0.4rem);\n transition: all 0.2s ease;\n}\n\n.copy-tooltip.show {\n opacity: 1;\n transform: translateY(0);\n}\n
- \u5b9e\u73b0\u63d0\u793a\u529f\u80fd\uff1a
JavaScript
// \u663e\u793a\u63d0\u793a\u6d88\u606f\nfunction showTooltip(button, message, type = 'success') {\n const tooltip = document.createElement('div');\n tooltip.className = `copy-tooltip ${type}`;\n tooltip.textContent = message;\n button.appendChild(tooltip);\n\n // \u6dfb\u52a0\u663e\u793a\u7c7b\n setTimeout(() => tooltip.classList.add('show'), 10);\n\n // \u81ea\u52a8\u79fb\u9664\n setTimeout(() => {\n tooltip.classList.remove('show');\n setTimeout(() => tooltip.remove(), 200);\n }, 2000);\n}\n\n// \u6210\u529f\u63d0\u793a\nfunction showSuccess(button) {\n button.classList.add('success');\n showTooltip(button, '\u590d\u5236\u6210\u529f\uff01');\n setTimeout(() => button.classList.remove('success'), 2000);\n}\n\n// \u9519\u8bef\u63d0\u793a\nfunction showError(button) {\n button.classList.add('error');\n showTooltip(button, '\u590d\u5236\u5931\u8d25\uff01', 'error');\n setTimeout(() => button.classList.remove('error'), 2000);\n}\n
"},{"location":"Technology/mkdocs%20material/#6233","title":"6.2.3.3 \u590d\u5236\u56de\u8c03","text":"JavaScript
// \u5b9a\u4e49\u590d\u5236\u4e8b\u4ef6\u5904\u7406\u5668\nconst copyHandlers = {\n // \u590d\u5236\u524d\u5904\u7406\n beforeCopy: (code) => {\n // \u53ef\u4ee5\u5728\u8fd9\u91cc\u5bf9\u4ee3\u7801\u8fdb\u884c\u9884\u5904\u7406\n return code.trim();\n },\n\n // \u590d\u5236\u6210\u529f\u56de\u8c03\n onSuccess: (button, code) => {\n console.log('Copied:', code.length, 'characters');\n showSuccess(button);\n\n // \u89e6\u53d1\u81ea\u5b9a\u4e49\u4e8b\u4ef6\n const event = new CustomEvent('codeCopied', {\n detail: { code }\n });\n document.dispatchEvent(event);\n },\n\n // \u590d\u5236\u5931\u8d25\u56de\u8c03\n onError: (button, error) => {\n console.error('Copy failed:', error);\n showError(button);\n }\n};\n\n// \u4f7f\u7528\u56de\u8c03\nasync function copyCode(button, code) {\n try {\n const processedCode = copyHandlers.beforeCopy(code);\n await navigator.clipboard.writeText(processedCode);\n copyHandlers.onSuccess(button, processedCode);\n } catch (err) {\n copyHandlers.onError(button, err);\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#624","title":"6.2.4 \u56fe\u7247\u9884\u89c8","text":""},{"location":"Technology/mkdocs%20material/#6241-lightbox","title":"6.2.4.1 lightbox \u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\uff1a
YAML
markdown_extensions:\n - attr_list\n - md_in_html\n\nplugins:\n - glightbox\n\nextra_css:\n - stylesheets/glightbox.css\nextra_javascript:\n - javascripts/glightbox.js\n
- \u914d\u7f6e GLightbox\uff1a
JavaScript
// docs/javascripts/glightbox.js\ndocument.addEventListener('DOMContentLoaded', () => {\n const lightbox = GLightbox({\n selector: '.glightbox',\n touchNavigation: true,\n loop: false,\n autoplayVideos: true,\n preload: true,\n // \u57fa\u672c\u8bbe\u7f6e\n height: 'auto',\n zoomable: true,\n draggable: true,\n // \u52a8\u753b\u8bbe\u7f6e\n openEffect: 'zoom',\n closeEffect: 'fade',\n cssEfects: {\n fade: { in: 'fadeIn', out: 'fadeOut' },\n zoom: { in: 'zoomIn', out: 'zoomOut' }\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#6242","title":"6.2.4.2 \u7f29\u653e\u529f\u80fd","text":"JavaScript
// \u7f29\u653e\u529f\u80fd\u914d\u7f6e\nconst zoomConfig = {\n // \u7f29\u653e\u9009\u9879\n zoomable: true,\n dragToZoom: true,\n touchToZoom: true,\n\n // \u7f29\u653e\u7ea7\u522b\n minZoom: 0.5,\n maxZoom: 3,\n zoomStep: 0.5,\n\n // \u53cc\u51fb\u7f29\u653e\n doubleTapZoom: 2,\n\n // \u7f29\u653e\u52a8\u753b\n zoomAnimation: true,\n zoomDuration: 300,\n\n // \u7f29\u653e\u63a7\u5236\u5668\n controls: {\n zoom: true,\n zoomIn: true,\n zoomOut: true,\n rotate: true\n }\n};\n\n// \u5e94\u7528\u7f29\u653e\u914d\u7f6e\nconst lightbox = GLightbox({\n ...zoomConfig,\n\n // \u7f29\u653e\u4e8b\u4ef6\u5904\u7406\n onZoom: (slider) => {\n const { zoom, image } = slider;\n console.log(`Current zoom level: ${zoom}`);\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#6243","title":"6.2.4.3 \u624b\u52bf\u652f\u6301","text":"JavaScript
// \u624b\u52bf\u914d\u7f6e\nconst gestureConfig = {\n // \u89e6\u6478\u5bfc\u822a\n touchNavigation: true,\n touchFollowAxis: true,\n\n // \u62d6\u52a8\u8bbe\u7f6e\n draggable: true,\n dragToleranceX: 40,\n dragToleranceY: 65,\n\n // \u624b\u52bf\u4e8b\u4ef6\n gestures: {\n // \u634f\u5408\u7f29\u653e\n pinchToZoom: true,\n pinchThreshold: 50,\n\n // \u53cc\u6307\u65cb\u8f6c\n rotateToZoom: true,\n rotateThreshold: 15,\n\n // \u6ed1\u52a8\u5207\u6362\n swipeThreshold: 50,\n swipeToClose: true\n }\n};\n\n// \u624b\u52bf\u4e8b\u4ef6\u5904\u7406\nconst gestureHandlers = {\n // \u89e6\u6478\u5f00\u59cb\n onTouchStart: (e) => {\n const touch = e.touches[0];\n startX = touch.clientX;\n startY = touch.clientY;\n },\n\n // \u89e6\u6478\u79fb\u52a8\n onTouchMove: (e) => {\n if (!isDragging) return;\n const touch = e.touches[0];\n const deltaX = touch.clientX - startX;\n const deltaY = touch.clientY - startY;\n\n // \u5904\u7406\u79fb\u52a8\n handleImageMove(deltaX, deltaY);\n },\n\n // \u89e6\u6478\u7ed3\u675f\n onTouchEnd: (e) => {\n isDragging = false;\n // \u5904\u7406\u60ef\u6027\u6ed1\u52a8\n handleMomentum();\n }\n};\n\n// \u521b\u5efa\u589e\u5f3a\u7684\u56fe\u7247\u9884\u89c8\nconst enhancedLightbox = GLightbox({\n ...zoomConfig,\n ...gestureConfig,\n\n // \u4e8b\u4ef6\u76d1\u542c\n listeners: {\n touchstart: gestureHandlers.onTouchStart,\n touchmove: gestureHandlers.onTouchMove,\n touchend: gestureHandlers.onTouchEnd\n }\n});\n
"},{"location":"Technology/mkdocs%20material/#6244","title":"6.2.4.4 \u5b8c\u6574\u793a\u4f8b","text":"JavaScript
// docs/javascripts/image-preview.js\ndocument.addEventListener('DOMContentLoaded', () => {\n // \u521d\u59cb\u5316\u914d\u7f6e\n const config = {\n // \u57fa\u7840\u8bbe\u7f6e\n selector: '.glightbox',\n touchNavigation: true,\n loop: false,\n\n // \u7f29\u653e\u8bbe\u7f6e\n zoomable: true,\n draggable: true,\n dragToleranceX: 40,\n dragToleranceY: 65,\n\n // \u52a8\u753b\u8bbe\u7f6e\n openEffect: 'zoom',\n closeEffect: 'fade',\n\n // \u624b\u52bf\u8bbe\u7f6e\n touchFollowAxis: true,\n\n // \u754c\u9762\u8bbe\u7f6e\n preload: true,\n height: 'auto',\n\n // \u4e8b\u4ef6\u5904\u7406\n onOpen: () => {\n console.log('Lightbox opened');\n },\n onClose: () => {\n console.log('Lightbox closed');\n },\n onZoom: (slider) => {\n console.log('Image zoomed');\n }\n };\n\n // \u521d\u59cb\u5316 GLightbox\n const lightbox = GLightbox(config);\n\n // \u6dfb\u52a0\u952e\u76d8\u652f\u6301\n document.addEventListener('keydown', (e) => {\n if (!lightbox.isOpen) return;\n\n switch(e.key) {\n case 'ArrowLeft':\n lightbox.prev();\n break;\n case 'ArrowRight':\n lightbox.next();\n break;\n case 'Escape':\n lightbox.close();\n break;\n }\n });\n});\n
"},{"location":"Technology/mkdocs%20material/#63","title":"6.3 \u81ea\u5b9a\u4e49\u529f\u80fd","text":""},{"location":"Technology/mkdocs%20material/#631","title":"6.3.1 \u9875\u9762\u4ea4\u4e92","text":""},{"location":"Technology/mkdocs%20material/#6311","title":"6.3.1.1 \u6eda\u52a8\u4e8b\u4ef6","text":"
- \u57fa\u7840\u6eda\u52a8\u76d1\u542c\uff1a
JavaScript
// docs/javascripts/scroll.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u6eda\u52a8\u5904\u7406\u51fd\u6570\n function handleScroll() {\n const scrollTop = window.scrollY;\n const windowHeight = window.innerHeight;\n const docHeight = document.documentElement.scrollHeight;\n\n // \u6eda\u52a8\u8fdb\u5ea6\n const scrollPercent = (scrollTop / (docHeight - windowHeight)) * 100;\n\n // \u66f4\u65b0\u8fdb\u5ea6\u6761\n updateProgress(scrollPercent);\n\n // \u5904\u7406\u5143\u7d20\u53ef\u89c1\u6027\n handleVisibility();\n }\n\n // \u4f7f\u7528\u8282\u6d41\u4f18\u5316\u6eda\u52a8\u4e8b\u4ef6\n const throttledScroll = throttle(handleScroll, 100);\n window.addEventListener('scroll', throttledScroll);\n});\n\n// \u8282\u6d41\u51fd\u6570\nfunction throttle(fn, delay) {\n let lastCall = 0;\n return function(...args) {\n const now = Date.now();\n if (now - lastCall >= delay) {\n lastCall = now;\n fn.apply(this, args);\n }\n };\n}\n
- \u5143\u7d20\u53ef\u89c1\u6027\u68c0\u6d4b\uff1a
JavaScript
// \u68c0\u6d4b\u5143\u7d20\u662f\u5426\u8fdb\u5165\u89c6\u53e3\nfunction handleVisibility() {\n const elements = document.querySelectorAll('.animate-on-scroll');\n\n elements.forEach(element => {\n const rect = element.getBoundingClientRect();\n const isVisible = (\n rect.top >= 0 &&\n rect.left >= 0 &&\n rect.bottom <= window.innerHeight &&\n rect.right <= window.innerWidth\n );\n\n if (isVisible) {\n element.classList.add('is-visible');\n }\n });\n}\n\n// CSS \u6837\u5f0f\n.animate-on-scroll {\n opacity: 0;\n transform: translateY(20px);\n transition: all 0.6s ease;\n}\n\n.animate-on-scroll.is-visible {\n opacity: 1;\n transform: translateY(0);\n}\n
"},{"location":"Technology/mkdocs%20material/#6312","title":"6.3.1.2 \u70b9\u51fb\u4e8b\u4ef6","text":"
- \u70b9\u51fb\u5904\u7406\uff1a
JavaScript
// docs/javascripts/click.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u4ee3\u7801\u5757\u70b9\u51fb\u590d\u5236\n setupCodeCopy();\n\n // \u56fe\u7247\u70b9\u51fb\u653e\u5927\n setupImageZoom();\n\n // \u76ee\u5f55\u70b9\u51fb\u6eda\u52a8\n setupTocScroll();\n});\n\n// \u4ee3\u7801\u590d\u5236\u529f\u80fd\nfunction setupCodeCopy() {\n const codeBlocks = document.querySelectorAll('pre code');\n\n codeBlocks.forEach(block => {\n block.addEventListener('click', async function(e) {\n if (e.target.classList.contains('copy-button')) {\n try {\n await navigator.clipboard.writeText(block.textContent);\n showToast('\u590d\u5236\u6210\u529f\uff01');\n } catch (err) {\n showToast('\u590d\u5236\u5931\u8d25', 'error');\n }\n }\n });\n });\n}\n\n// \u56fe\u7247\u7f29\u653e\u529f\u80fd\nfunction setupImageZoom() {\n const images = document.querySelectorAll('.md-content img');\n\n images.forEach(img => {\n img.addEventListener('click', function() {\n const overlay = document.createElement('div');\n overlay.className = 'image-overlay';\n overlay.innerHTML = `\n <img src=\"${img.src}\" alt=\"${img.alt}\">\n <button class=\"close-button\">\u00d7</button>\n `;\n\n document.body.appendChild(overlay);\n\n overlay.querySelector('.close-button').addEventListener('click', () => {\n overlay.remove();\n });\n });\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#6313","title":"6.3.1.3 \u952e\u76d8\u4e8b\u4ef6","text":"JavaScript
// docs/javascripts/keyboard.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u952e\u76d8\u5bfc\u822a\n setupKeyboardNav();\n\n // \u641c\u7d22\u5feb\u6377\u952e\n setupSearchShortcut();\n});\n\n// \u952e\u76d8\u5bfc\u822a\nfunction setupKeyboardNav() {\n document.addEventListener('keydown', function(e) {\n // ALT + \u65b9\u5411\u952e\u5bfc\u822a\n if (e.altKey) {\n switch(e.key) {\n case 'ArrowLeft': // \u4e0a\u4e00\u9875\n navigatePage('prev');\n break;\n case 'ArrowRight': // \u4e0b\u4e00\u9875\n navigatePage('next');\n break;\n case 'ArrowUp': // \u56de\u5230\u9876\u90e8\n window.scrollTo({top: 0, behavior: 'smooth'});\n break;\n case 'ArrowDown': // \u5230\u8fbe\u5e95\u90e8\n window.scrollTo({\n top: document.documentElement.scrollHeight,\n behavior: 'smooth'\n });\n break;\n }\n }\n });\n}\n\n// \u641c\u7d22\u5feb\u6377\u952e\nfunction setupSearchShortcut() {\n document.addEventListener('keydown', function(e) {\n // \u6309\u4e0b '/' \u952e\u89e6\u53d1\u641c\u7d22\n if (e.key === '/' && !e.ctrlKey && !e.altKey && !e.metaKey) {\n e.preventDefault();\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.focus();\n }\n }\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#632","title":"6.3.2 \u52a8\u753b\u6548\u679c","text":""},{"location":"Technology/mkdocs%20material/#6321","title":"6.3.2.1 \u8fc7\u6e21\u52a8\u753b","text":"
- \u57fa\u7840\u8fc7\u6e21\u6548\u679c\uff1a
CSS
/* docs/stylesheets/transitions.css */\n\n/* \u9875\u9762\u5207\u6362\u8fc7\u6e21 */\n.md-content {\n animation: fadeIn 0.3s ease-in-out;\n}\n\n@keyframes fadeIn {\n from {\n opacity: 0;\n transform: translateY(20px);\n }\n to {\n opacity: 1;\n transform: translateY(0);\n }\n}\n\n/* \u5bfc\u822a\u8fc7\u6e21 */\n.md-nav__link {\n transition: color 0.2s ease, padding-left 0.2s ease;\n}\n\n.md-nav__link:hover {\n padding-left: 0.5rem;\n color: var(--md-accent-fg-color);\n}\n
- \u9875\u9762\u5207\u6362\u52a8\u753b\uff1a
JavaScript
// docs/javascripts/transitions.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u9875\u9762\u5207\u6362\u52a8\u753b\n setupPageTransitions();\n});\n\nfunction setupPageTransitions() {\n // \u76d1\u542c\u9875\u9762\u5207\u6362\u4e8b\u4ef6\n document.addEventListener('DOMContentLoaded', function() {\n document.body.classList.add('page-transition-ready');\n });\n\n // \u9875\u9762\u79bb\u5f00\u52a8\u753b\n window.addEventListener('beforeunload', function() {\n document.body.classList.add('page-transition-exit');\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#6322","title":"6.3.2.2 \u52a0\u8f7d\u52a8\u753b","text":"
- \u521b\u5efa\u52a0\u8f7d\u52a8\u753b\uff1a
CSS
/* docs/stylesheets/loading.css */\n\n/* \u52a0\u8f7d\u52a8\u753b\u5bb9\u5668 */\n.loading-overlay {\n position: fixed;\n top: 0;\n left: 0;\n right: 0;\n bottom: 0;\n background-color: var(--md-default-bg-color);\n display: flex;\n justify-content: center;\n align-items: center;\n z-index: 999;\n opacity: 1;\n transition: opacity 0.3s ease;\n}\n\n/* \u52a0\u8f7d\u52a8\u753b */\n.loading-spinner {\n width: 40px;\n height: 40px;\n border: 3px solid var(--md-primary-fg-color--light);\n border-top-color: var(--md-primary-fg-color);\n border-radius: 50%;\n animation: spin 1s linear infinite;\n}\n\n@keyframes spin {\n to { transform: rotate(360deg); }\n}\n
- \u5b9e\u73b0\u52a0\u8f7d\u903b\u8f91\uff1a
JavaScript
// docs/javascripts/loading.js\nclass LoadingManager {\n constructor() {\n this.overlay = null;\n this.createLoadingOverlay();\n }\n\n createLoadingOverlay() {\n this.overlay = document.createElement('div');\n this.overlay.className = 'loading-overlay';\n this.overlay.innerHTML = '<div class=\"loading-spinner\"></div>';\n document.body.appendChild(this.overlay);\n }\n\n show() {\n this.overlay.style.opacity = '1';\n this.overlay.style.visibility = 'visible';\n }\n\n hide() {\n this.overlay.style.opacity = '0';\n setTimeout(() => {\n this.overlay.style.visibility = 'hidden';\n }, 300);\n }\n}\n\n// \u4f7f\u7528\u52a0\u8f7d\u7ba1\u7406\u5668\nconst loading = new LoadingManager();\n\n// \u9875\u9762\u52a0\u8f7d\u5b8c\u6210\u540e\u9690\u85cf\nwindow.addEventListener('load', () => {\n loading.hide();\n});\n
"},{"location":"Technology/mkdocs%20material/#6323","title":"6.3.2.3 \u4ea4\u4e92\u52a8\u753b","text":"
- \u5143\u7d20\u4ea4\u4e92\u52a8\u753b\uff1a
JavaScript
// docs/javascripts/interactions.js\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u6309\u94ae\u6ce2\u7eb9\u6548\u679c\n setupRippleEffect();\n\n // \u5361\u7247\u60ac\u6d6e\u6548\u679c\n setupCardHover();\n\n // \u5217\u8868\u9879\u52a8\u753b\n setupListAnimations();\n});\n\n// \u6ce2\u7eb9\u6548\u679c\nfunction setupRippleEffect() {\n const buttons = document.querySelectorAll('.md-button');\n\n buttons.forEach(button => {\n button.addEventListener('click', function(e) {\n const ripple = document.createElement('div');\n ripple.className = 'ripple';\n\n const rect = button.getBoundingClientRect();\n const size = Math.max(rect.width, rect.height);\n\n ripple.style.width = ripple.style.height = `${size}px`;\n ripple.style.left = `${e.clientX - rect.left - size/2}px`;\n ripple.style.top = `${e.clientY - rect.top - size/2}px`;\n\n button.appendChild(ripple);\n\n setTimeout(() => ripple.remove(), 600);\n });\n });\n}\n\n// \u5361\u7247\u60ac\u6d6e\u6548\u679c\nfunction setupCardHover() {\n const cards = document.querySelectorAll('.md-card');\n\n cards.forEach(card => {\n card.addEventListener('mousemove', function(e) {\n const rect = card.getBoundingClientRect();\n const x = e.clientX - rect.left;\n const y = e.clientY - rect.top;\n\n const centerX = rect.width / 2;\n const centerY = rect.height / 2;\n\n const angleY = -(x - centerX) / 20;\n const angleX = (y - centerY) / 20;\n\n card.style.transform = \n `perspective(1000px) rotateX(${angleX}deg) rotateY(${angleY}deg)`;\n });\n\n card.addEventListener('mouseleave', function() {\n card.style.transform = 'perspective(1000px) rotateX(0) rotateY(0)';\n });\n });\n}\n
"},{"location":"Technology/mkdocs%20material/#633","title":"6.3.3 \u6570\u636e\u7edf\u8ba1","text":""},{"location":"Technology/mkdocs%20material/#6331","title":"6.3.3.1 \u8bbf\u95ee\u7edf\u8ba1","text":"
- \u57fa\u7840\u8bbf\u95ee\u7edf\u8ba1\uff1a
JavaScript
// docs/javascripts/analytics.js\nclass Analytics {\n constructor() {\n this.storageKey = 'site_analytics';\n this.data = this.loadData();\n }\n\n loadData() {\n const stored = localStorage.getItem(this.storageKey);\n return stored ? JSON.parse(stored) : {\n pageViews: {},\n totalVisits: 0,\n firstVisit: Date.now(),\n lastVisit: Date.now()\n };\n }\n\n saveData() {\n localStorage.setItem(this.storageKey, JSON.stringify(this.data));\n }\n\n recordPageView() {\n const path = window.location.pathname;\n this.data.pageViews[path] = (this.data.pageViews[path] || 0) + 1;\n this.data.totalVisits++;\n this.data.lastVisit = Date.now();\n this.saveData();\n }\n\n getStats() {\n return {\n totalVisits: this.data.totalVisits,\n uniquePages: Object.keys(this.data.pageViews).length,\n mostViewed: this.getMostViewedPages(5)\n };\n }\n\n getMostViewedPages(limit = 5) {\n return Object.entries(this.data.pageViews)\n .sort(([,a], [,b]) => b - a)\n .slice(0, limit);\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#6332","title":"6.3.3.2 \u9605\u8bfb\u65f6\u957f","text":"JavaScript
// docs/javascripts/read-time.js\nclass ReadTimeTracker {\n constructor() {\n this.startTime = Date.now();\n this.isReading = true;\n this.totalTime = 0;\n this.idleTimeout = null;\n this.setupTracking();\n }\n\n setupTracking() {\n // \u76d1\u542c\u7528\u6237\u6d3b\u52a8\n ['mousemove', 'keydown', 'scroll', 'click'].forEach(event => {\n document.addEventListener(event, () => this.handleActivity());\n });\n\n // \u9875\u9762\u5931\u7126\u6682\u505c\u8ba1\u65f6\n document.addEventListener('visibilitychange', () => {\n if (document.hidden) {\n this.pauseTracking();\n } else {\n this.resumeTracking();\n }\n });\n }\n\n handleActivity() {\n if (!this.isReading) {\n this.resumeTracking();\n }\n\n clearTimeout(this.idleTimeout);\n this.idleTimeout = setTimeout(() => this.pauseTracking(), 60000); // 1\u5206\u949f\u65e0\u6d3b\u52a8\u6682\u505c\n }\n\n pauseTracking() {\n if (this.isReading) {\n this.totalTime += Date.now() - this.startTime;\n this.isReading = false;\n }\n }\n\n resumeTracking() {\n if (!this.isReading) {\n this.startTime = Date.now();\n this.isReading = true;\n }\n }\n\n getReadTime() {\n const currentTime = this.isReading ? \n this.totalTime + (Date.now() - this.startTime) : \n this.totalTime;\n\n return Math.floor(currentTime / 1000 / 60); // \u8fd4\u56de\u5206\u949f\n // \u663e\u793a\u9605\u8bfb\u65f6\u957f\n displayReadTime() {\n const readTimeElement = document.querySelector('.read-time');\n if (readTimeElement) {\n const minutes = this.getReadTime();\n readTimeElement.textContent = `\u9605\u8bfb\u65f6\u957f: ${minutes} \u5206\u949f`;\n }\n }\n\n // \u83b7\u53d6\u9605\u8bfb\u8fdb\u5ea6\n getReadProgress() {\n const windowHeight = window.innerHeight;\n const docHeight = document.documentElement.scrollHeight - windowHeight;\n const scrollTop = window.pageYOffset || document.documentElement.scrollTop;\n return Math.min((scrollTop / docHeight) * 100, 100);\n }\n\n // \u4fdd\u5b58\u9605\u8bfb\u8bb0\u5f55\n saveReadingHistory() {\n const path = window.location.pathname;\n const history = JSON.parse(localStorage.getItem('reading_history') || '{}');\n\n history[path] = {\n lastRead: Date.now(),\n readTime: this.getReadTime(),\n progress: this.getReadProgress()\n };\n\n localStorage.setItem('reading_history', JSON.stringify(history));\n }\n}\n\n// \u521d\u59cb\u5316\u9605\u8bfb\u65f6\u957f\u8ffd\u8e2a\nconst readTracker = new ReadTimeTracker();\n\n// \u5b9a\u671f\u66f4\u65b0\u663e\u793a\nsetInterval(() => {\n readTracker.displayReadTime();\n}, 30000); // \u6bcf30\u79d2\u66f4\u65b0\u4e00\u6b21\n\n// \u9875\u9762\u79bb\u5f00\u65f6\u4fdd\u5b58\u8bb0\u5f55\nwindow.addEventListener('beforeunload', () => {\n readTracker.saveReadingHistory();\n});\n
"},{"location":"Technology/mkdocs%20material/#6333","title":"6.3.3.3 \u5206\u4eab\u7edf\u8ba1","text":"
- \u5206\u4eab\u529f\u80fd\u548c\u7edf\u8ba1\uff1a
JavaScript
// docs/javascripts/share.js\nclass ShareTracker {\n constructor() {\n this.storageKey = 'share_statistics';\n this.data = this.loadData();\n this.setupShareButtons();\n }\n\n loadData() {\n return JSON.parse(localStorage.getItem(this.storageKey) || '{}');\n }\n\n saveData() {\n localStorage.setItem(this.storageKey, JSON.stringify(this.data));\n }\n\n setupShareButtons() {\n const shareButtons = document.querySelectorAll('.share-button');\n\n shareButtons.forEach(button => {\n button.addEventListener('click', (e) => {\n const platform = button.dataset.platform;\n this.shareContent(platform);\n this.recordShare(platform);\n });\n });\n }\n\n shareContent(platform) {\n const url = encodeURIComponent(window.location.href);\n const title = encodeURIComponent(document.title);\n const description = encodeURIComponent(\n document.querySelector('meta[name=\"description\"]')?.content || ''\n );\n\n let shareUrl;\n switch (platform) {\n case 'twitter':\n shareUrl = `https://twitter.com/intent/tweet?url=${url}&text=${title}`;\n break;\n case 'facebook':\n shareUrl = `https://www.facebook.com/sharer/sharer.php?u=${url}`;\n break;\n case 'linkedin':\n shareUrl = `https://www.linkedin.com/sharing/share-offsite/?url=${url}`;\n break;\n case 'weibo':\n shareUrl = `http://service.weibo.com/share/share.php?url=${url}&title=${title}`;\n break;\n }\n\n if (shareUrl) {\n window.open(shareUrl, '_blank', 'width=600,height=400');\n }\n }\n\n recordShare(platform) {\n const path = window.location.pathname;\n if (!this.data[path]) {\n this.data[path] = {};\n }\n if (!this.data[path][platform]) {\n this.data[path][platform] = 0;\n }\n this.data[path][platform]++;\n this.saveData();\n this.updateShareCount(platform);\n }\n\n updateShareCount(platform) {\n const countElement = document.querySelector(`.share-count[data-platform=\"${platform}\"]`);\n if (countElement) {\n const path = window.location.pathname;\n countElement.textContent = this.data[path][platform] || 0;\n }\n }\n\n getShareStats() {\n return Object.entries(this.data).map(([path, platforms]) => ({\n path,\n total: Object.values(platforms).reduce((a, b) => a + b, 0),\n platforms\n }));\n }\n\n displayShareStats() {\n const stats = this.getShareStats();\n console.table(stats);\n return stats;\n }\n}\n
- \u7edf\u8ba1\u6570\u636e\u53ef\u89c6\u5316\uff1a
JavaScript
// docs/javascripts/statistics-visualization.js\nclass StatisticsVisualizer {\n constructor(analytics, readTracker, shareTracker) {\n this.analytics = analytics;\n this.readTracker = readTracker;\n this.shareTracker = shareTracker;\n }\n\n createDashboard() {\n const dashboard = document.createElement('div');\n dashboard.className = 'statistics-dashboard';\n dashboard.innerHTML = `\n <div class=\"dashboard-section\">\n <h3>\u8bbf\u95ee\u7edf\u8ba1</h3>\n <div class=\"stats-grid\">\n <div class=\"stat-card\">\n <div class=\"stat-value\">${this.analytics.data.totalVisits}</div>\n <div class=\"stat-label\">\u603b\u8bbf\u95ee\u91cf</div>\n </div>\n <div class=\"stat-card\">\n <div class=\"stat-value\">${this.readTracker.getReadTime()}</div>\n <div class=\"stat-label\">\u603b\u9605\u8bfb\u65f6\u957f(\u5206\u949f)</div>\n </div>\n <div class=\"stat-card\">\n <div class=\"stat-value\">${this.getTotalShares()}</div>\n <div class=\"stat-label\">\u603b\u5206\u4eab\u6b21\u6570</div>\n </div>\n </div>\n <div id=\"visitsChart\"></div>\n </div>\n `;\n\n document.body.appendChild(dashboard);\n this.renderCharts();\n }\n\n renderCharts() {\n // \u4f7f\u7528 Chart.js \u7ed8\u5236\u56fe\u8868\n const ctx = document.getElementById('visitsChart').getContext('2d');\n new Chart(ctx, {\n type: 'line',\n data: {\n labels: this.getTimeLabels(),\n datasets: [{\n label: '\u8bbf\u95ee\u8d8b\u52bf',\n data: this.getVisitData(),\n borderColor: 'rgb(75, 192, 192)',\n tension: 0.1\n }]\n },\n options: {\n responsive: true,\n scales: {\n y: {\n beginAtZero: true\n }\n }\n }\n });\n }\n\n getTotalShares() {\n const stats = this.shareTracker.getShareStats();\n return stats.reduce((total, page) => total + page.total, 0);\n }\n\n getTimeLabels() {\n // \u83b7\u53d6\u6700\u8fd17\u5929\u7684\u65e5\u671f\u6807\u7b7e\n return Array.from({length: 7}, (_, i) => {\n const d = new Date();\n d.setDate(d.getDate() - i);\n return d.toLocaleDateString();\n }).reverse();\n }\n\n getVisitData() {\n // \u5904\u7406\u8bbf\u95ee\u6570\u636e\n return this.analytics.getVisitsByDate(7);\n }\n}\n\n// \u6837\u5f0f\nconst styles = `\n .statistics-dashboard {\n padding: 2rem;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z2);\n }\n\n .stats-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));\n gap: 1rem;\n margin: 1rem 0;\n }\n\n .stat-card {\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n text-align: center;\n }\n\n .stat-value {\n font-size: 2rem;\n font-weight: bold;\n color: var(--md-primary-fg-color);\n }\n\n .stat-label {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-top: 0.5rem;\n }\n`;\n\n// \u5c06\u6837\u5f0f\u6dfb\u52a0\u5230\u6587\u6863\nconst styleSheet = document.createElement('style');\nstyleSheet.textContent = styles;\ndocument.head.appendChild(styleSheet);\n\n// \u521d\u59cb\u5316\u7edf\u8ba1\u53ef\u89c6\u5316\nconst visualizer = new StatisticsVisualizer(analytics, readTracker, shareTracker);\nvisualizer.createDashboard();\n
\u8fd9\u6837\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u5b8c\u6574\u7684\u6570\u636e\u7edf\u8ba1\u7cfb\u7edf\uff0c\u5305\u62ec\uff1a
- \u8bbf\u95ee\u7edf\u8ba1
- \u9605\u8bfb\u65f6\u957f\u8ffd\u8e2a
- \u5206\u4eab\u7edf\u8ba1
- \u6570\u636e\u53ef\u89c6\u5316\u5c55\u793a
\u4f7f\u7528\u65f6\uff0c\u53ea\u9700\u8981\u5728 mkdocs.yml \u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684 JavaScript \u6587\u4ef6\uff1a
YAML
extra_javascript:\n - javascripts/analytics.js\n - javascripts/read-time.js\n - javascripts/share.js\n - javascripts/statistics-visualization.js\n - https://cdn.jsdelivr.net/npm/chart.js\n
\u7136\u540e\u5728\u9875\u9762\u4e2d\u6dfb\u52a0\u5fc5\u8981\u7684 HTML \u5143\u7d20\u5373\u53ef\u542f\u7528\u8fd9\u4e9b\u529f\u80fd\u3002
"},{"location":"Technology/mkdocs%20material/#7","title":"7 \u6a21\u677f\u590d\u5199","text":""},{"location":"Technology/mkdocs%20material/#71","title":"7.1 \u91cd\u5199\u9875\u9762\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#711","title":"7.1.1 \u4e3b\u9875\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#7111","title":"7.1.1.1 \u5e03\u5c40\u7ed3\u6784","text":"
- \u521b\u5efa\u81ea\u5b9a\u4e49\u4e3b\u9875\u6a21\u677f\uff1a
HTML
<!-- docs/overrides/main.html -->\n{% extends \"base.html\" %}\n\n{% block hero %}\n<section class=\"home-hero\">\n <div class=\"hero-content\">\n <h1>{{ config.site_name }}</h1>\n <p>{{ config.site_description }}</p>\n\n <!-- \u81ea\u5b9a\u4e49\u641c\u7d22\u6846 -->\n <div class=\"hero-search\">\n <input type=\"text\" placeholder=\"\u641c\u7d22\u6587\u6863...\" id=\"hero-search-input\">\n <button>\n <span class=\"twemoji\">\n {% include \".icons/material/magnify.svg\" %}\n </span>\n </button>\n </div>\n\n <!-- \u5feb\u901f\u5165\u53e3 -->\n <div class=\"hero-buttons\">\n <a href=\"{{ page.next_page.url | url }}\" class=\"md-button md-button--primary\">\n \u5feb\u901f\u5f00\u59cb\n <span class=\"twemoji\">\n {% include \".icons/material/arrow-right.svg\" %}\n </span>\n </a>\n <a href=\"{{ config.repo_url }}\" class=\"md-button\">\n \u67e5\u770b\u6e90\u7801\n <span class=\"twemoji\">\n {% include \".icons/material/github.svg\" %}\n </span>\n </a>\n </div>\n </div>\n</section>\n{% endblock %}\n\n{% block content %}\n<section class=\"home-features\">\n <h2>\u7279\u8272\u529f\u80fd</h2>\n <div class=\"features-grid\">\n <!-- \u529f\u80fd\u5361\u7247 -->\n <div class=\"feature-card\">\n <div class=\"feature-icon\">\n {% include \".icons/material/speedometer.svg\" %}\n </div>\n <h3>\u9ad8\u6027\u80fd</h3>\n <p>\u57fa\u4e8e\u9759\u6001\u7ad9\u70b9\u751f\u6210\uff0c\u52a0\u8f7d\u8fc5\u901f</p>\n </div>\n <!-- \u66f4\u591a\u529f\u80fd\u5361\u7247 -->\n </div>\n</section>\n\n<!-- \u6700\u8fd1\u66f4\u65b0 -->\n<section class=\"home-updates\">\n <h2>\u6700\u8fd1\u66f4\u65b0</h2>\n <div class=\"updates-list\">\n {% for update in config.theme.updates[:5] %}\n <div class=\"update-item\">\n <span class=\"update-date\">{{ update.date }}</span>\n <a href=\"{{ update.url | url }}\">{{ update.title }}</a>\n </div>\n {% endfor %}\n </div>\n</section>\n{% endblock %}\n
- \u4e3b\u9875\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/home.css */\n\n/* \u4e3b\u9875\u82f1\u96c4\u533a */\n.home-hero {\n min-height: 100vh;\n display: flex;\n align-items: center;\n justify-content: center;\n text-align: center;\n background: linear-gradient(\n to bottom right,\n var(--md-primary-fg-color),\n var(--md-accent-fg-color)\n );\n color: var(--md-primary-bg-color);\n}\n\n.hero-content {\n max-width: 800px;\n padding: 2rem;\n}\n\n.hero-content h1 {\n font-size: 3rem;\n margin-bottom: 1rem;\n}\n\n/* \u641c\u7d22\u6846\u6837\u5f0f */\n.hero-search {\n margin: 2rem 0;\n position: relative;\n}\n\n.hero-search input {\n width: 100%;\n padding: 1rem 3rem 1rem 1rem;\n border: none;\n border-radius: 2rem;\n background: rgba(255, 255, 255, 0.1);\n color: white;\n backdrop-filter: blur(10px);\n}\n\n/* \u529f\u80fd\u533a\u6837\u5f0f */\n.features-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));\n gap: 2rem;\n padding: 2rem;\n}\n\n.feature-card {\n padding: 2rem;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z1);\n transition: transform 0.3s ease;\n}\n\n.feature-card:hover {\n transform: translateY(-4px);\n}\n\n/* \u66f4\u65b0\u5217\u8868\u6837\u5f0f */\n.updates-list {\n max-width: 800px;\n margin: 0 auto;\n padding: 2rem;\n}\n\n.update-item {\n display: flex;\n align-items: center;\n padding: 1rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .hero-content h1 {\n font-size: 2rem;\n }\n\n .features-grid {\n grid-template-columns: 1fr;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#7112","title":"7.1.1.2 \u7ec4\u4ef6\u914d\u7f6e","text":"
- \u5728
mkdocs.yml
\u4e2d\u914d\u7f6e\u4e3b\u9898\uff1a
YAML
theme:\n name: material\n custom_dir: docs/overrides\n features:\n - navigation.tabs\n - navigation.sections\n - navigation.expand\n\n # \u4e3b\u9875\u914d\u7f6e\n homepage:\n hero:\n title: \u7f51\u7ad9\u6807\u9898\n subtitle: \u7f51\u7ad9\u63cf\u8ff0\n image: assets/hero.svg\n\n # \u529f\u80fd\u7279\u6027\n features:\n - title: \u9ad8\u6027\u80fd\n description: \u57fa\u4e8e\u9759\u6001\u7ad9\u70b9\u751f\u6210\uff0c\u52a0\u8f7d\u8fc5\u901f\n icon: material/speedometer\n - title: \u6613\u4e8e\u4f7f\u7528\n description: \u7b80\u5355\u7684\u914d\u7f6e\uff0c\u5feb\u901f\u4e0a\u624b\n icon: material/puzzle\n # \u66f4\u591a\u529f\u80fd\u7279\u6027...\n\n # \u66f4\u65b0\u5217\u8868\n updates:\n - date: 2024-01-20\n title: \u65b0\u589e\u529f\u80fdA\n url: /new-feature-a\n - date: 2024-01-18\n title: \u95ee\u9898\u4fee\u590dB\n url: /bug-fix-b\n # \u66f4\u591a\u66f4\u65b0...\n
- \u4e3b\u9875\u529f\u80fd\u7c7b\uff1a
JavaScript
// docs/javascripts/home.js\nclass HomePage {\n constructor() {\n this.searchInput = document.getElementById('hero-search-input');\n this.setupSearch();\n this.setupFeatureCards();\n }\n\n setupSearch() {\n this.searchInput?.addEventListener('keyup', (e) => {\n if (e.key === 'Enter') {\n const query = e.target.value;\n window.location.href = `${window.location.origin}/search.html?q=${encodeURIComponent(query)}`;\n }\n });\n }\n\n setupFeatureCards() {\n const cards = document.querySelectorAll('.feature-card');\n\n cards.forEach(card => {\n card.addEventListener('mousemove', (e) => {\n const rect = card.getBoundingClientRect();\n const x = e.clientX - rect.left;\n const y = e.clientY - rect.top;\n\n card.style.setProperty('--mouse-x', `${x}px`);\n card.style.setProperty('--mouse-y', `${y}px`);\n });\n });\n }\n}\n\n// \u521d\u59cb\u5316\u4e3b\u9875\ndocument.addEventListener('DOMContentLoaded', () => {\n new HomePage();\n});\n
"},{"location":"Technology/mkdocs%20material/#7113","title":"7.1.1.3 \u81ea\u5b9a\u4e49\u533a\u57df","text":"
- \u521b\u5efa\u81ea\u5b9a\u4e49\u533a\u57df\uff1a
HTML
<!-- docs/overrides/partials/custom-content.html -->\n{% if page.meta.custom_content %}\n<section class=\"custom-content\">\n <!-- \u516c\u544a\u533a -->\n {% if page.meta.announcements %}\n <div class=\"announcements\">\n {% for announcement in page.meta.announcements %}\n <div class=\"announcement-item\">\n <span class=\"announcement-tag\">{{ announcement.tag }}</span>\n <p>{{ announcement.content }}</p>\n </div>\n {% endfor %}\n </div>\n {% endif %}\n\n <!-- \u8d21\u732e\u8005\u533a\u57df -->\n {% if page.meta.contributors %}\n <div class=\"contributors\">\n <h3>\u9879\u76ee\u8d21\u732e\u8005</h3>\n <div class=\"contributors-grid\">\n {% for contributor in page.meta.contributors %}\n <a href=\"{{ contributor.url }}\" class=\"contributor-card\">\n <img src=\"{{ contributor.avatar }}\" alt=\"{{ contributor.name }}\">\n <span>{{ contributor.name }}</span>\n </a>\n {% endfor %}\n </div>\n </div>\n {% endif %}\n\n <!-- \u8d5e\u52a9\u5546\u533a\u57df -->\n {% if page.meta.sponsors %}\n <div class=\"sponsors\">\n <h3>\u8d5e\u52a9\u5546</h3>\n <div class=\"sponsors-grid\">\n {% for sponsor in page.meta.sponsors %}\n <a href=\"{{ sponsor.url }}\" class=\"sponsor-card\">\n <img src=\"{{ sponsor.logo }}\" alt=\"{{ sponsor.name }}\">\n </a>\n {% endfor %}\n </div>\n </div>\n {% endif %}\n</section>\n{% endif %}\n
- \u81ea\u5b9a\u4e49\u533a\u57df\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/custom-content.css */\n\n/* \u516c\u544a\u533a\u57df */\n.announcements {\n margin: 2rem 0;\n}\n\n.announcement-item {\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n margin-bottom: 1rem;\n}\n\n.announcement-tag {\n display: inline-block;\n padding: 0.2rem 0.5rem;\n background: var(--md-accent-fg-color);\n color: white;\n border-radius: 2rem;\n font-size: 0.8rem;\n margin-right: 0.5rem;\n}\n\n/* \u8d21\u732e\u8005\u533a\u57df */\n.contributors-grid {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(100px, 1fr));\n gap: 1rem;\n margin: 1rem 0;\n}\n\n.contributor-card {\n text-align: center;\n text-decoration: none;\n color: var(--md-default-fg-color);\n}\n\n.contributor-card img {\n width: 60px;\n height: 60px;\n border-radius: 50%;\n margin-bottom: 0.5rem;\n}\n\n/* \u8d5e\u52a9\u5546\u533a\u57df */\n.sponsors-grid {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));\n gap: 2rem;\n margin: 1rem 0;\n}\n\n.sponsor-card img {\n width: 100%;\n height: auto;\n filter: grayscale(100%);\n transition: filter 0.3s ease;\n}\n\n.sponsor-card:hover img {\n filter: grayscale(0%);\n}\n
"},{"location":"Technology/mkdocs%20material/#712","title":"7.1.2 \u6587\u7ae0\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#7121","title":"7.1.2.1 \u6587\u7ae0\u5934\u90e8","text":"HTML
<!-- docs/overrides/partials/article-header.html -->\n<header class=\"article-header\">\n <!-- \u6587\u7ae0\u6807\u9898 -->\n <h1>{{ page.title }}</h1>\n\n <!-- \u6587\u7ae0\u5143\u4fe1\u606f -->\n <div class=\"article-meta\">\n {% if page.meta.author %}\n <div class=\"meta-item\">\n <span class=\"meta-icon\">\n {% include \".icons/material/account.svg\" %}\n </span>\n <span>{{ page.meta.author }}</span>\n </div>\n {% endif %}\n\n {% if page.meta.date %}\n <div class=\"meta-item\">\n <span class=\"meta-icon\">\n {% include \".icons/material/calendar.svg\" %}\n </span>\n <span>{{ page.meta.date }}</span>\n </div>\n {% endif %}\n\n {% if page.meta.tags %}\n <div class=\"article-tags\">\n {% for tag in page.meta.tags %}\n <a href=\"{{ base_url }}/tags/#{{ tag }}\" class=\"tag\">\n # {{ tag }}\n </a>\n {% endfor %}\n </div>\n {% endif %}\n </div>\n\n <!-- \u6587\u7ae0\u6982\u8ff0 -->\n {% if page.meta.description %}\n <div class=\"article-description\">\n {{ page.meta.description }}\n </div>\n {% endif %}\n</header>\n
"},{"location":"Technology/mkdocs%20material/#7122","title":"7.1.2.2 \u6b63\u6587\u6837\u5f0f","text":"CSS
/* docs/stylesheets/article.css */\n\n/* \u6587\u7ae0\u5bb9\u5668 */\n.md-content article {\n max-width: 800px;\n margin: 0 auto;\n padding: 2rem;\n}\n\n/* \u6587\u7ae0\u5934\u90e8 */\n.article-header {\n margin-bottom: 3rem;\n text-align: center;\n}\n\n.article-meta {\n display: flex;\n justify-content: center;\n gap: 1rem;\n margin: 1rem 0;\n color: var(--md-default-fg-color--light);\n}\n\n.meta-item {\n display: flex;\n align-items: center;\n gap: 0.5rem;\n}\n\n.article-tags {\n margin-top: 1rem;\n}\n\n.tag {\n display: inline-block;\n padding: 0.2rem 0.5rem;\n margin: 0.2rem;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n font-size: 0.8rem;\n}\n\n/* \u6587\u7ae0\u5185\u5bb9\u6837\u5f0f */\n.md-content article {\n font-size: 1.1rem;\n line-height: 1.8;\n}\n\n/* \u6807\u9898\u6837\u5f0f */\n.md-content article h2 {\n margin-top: 3rem;\n padding-bottom: 0.5rem;\n border-bottom: 2px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u4ee3\u7801\u5757\u6837\u5f0f */\n.md-content pre {\n border-radius: 8px;\n margin: 1.5rem 0;\n}\n\n/* \u5f15\u7528\u6837\u5f0f */\n.md-content blockquote {\n border-left: 4px solid var(--md-accent-fg-color);\n padding: 1rem;\n background: var(--md-code-bg-color);\n margin: 1.5rem 0;\n}\n\n/* \u56fe\u7247\u6837\u5f0f */\n.md-content img {\n max-width: 100%;\n border-radius: 8px;\n margin: 1.5rem 0;\n}\n
"},{"location":"Technology/mkdocs%20material/#7123","title":"7.1.2.3 \u5e95\u90e8\u4fe1\u606f","text":"HTML
<!-- docs/overrides/partials/article-footer.html -->\n<footer class=\"article-footer\">\n <!-- \u6587\u7ae0\u5bfc\u822a -->\n <nav class=\"article-nav\">\n {% if page.previous_page %}\n <a href=\"{{ page.previous_page.url | url }}\" class=\"nav-link nav-prev\">\n <span class=\"nav-icon\">\n {% include \".icons/material/arrow-left.svg\" %}\n </span>\n <span class=\"nav-text\">\n <span class=\"nav-direction\">\u4e0a\u4e00\u7bc7</span>\n <span class=\"nav-title\">{{ page.previous_page.title }}</span>\n </span>\n </a>\n {% endif %}\n\n {% if page.next_page %}\n <a href=\"{{ page.next_page.url | url }}\" class=\"nav-link nav-next\">\n <span class=\"nav-text\">\n <span class=\"nav-direction\">\u4e0b\u4e00\u7bc7</span>\n <span class=\"nav-title\">{{ page.next_page.title }}</span>\n </span>\n <span class=\"nav-icon\">\n {% include \".icons/material/arrow-right.svg\" %}\n </span>\n </a>\n {% endif %}\n </nav>\n\n <!-- \u5206\u4eab\u6309\u94ae -->\n <div class=\"article-share\">\n <h4>\u5206\u4eab\u6587\u7ae0</h4>\n <div class=\"share-buttons\">\n <button class=\"share-button\" data-platform=\"twitter\">\n {% include \".icons/material/twitter.svg\" %}\n </button>\n <button class=\"share-button\" data-platform=\"facebook\">\n {% include \".icons/material/facebook.svg\" %}\n </button>\n <button class=\"share-button\" data-platform=\"linkedin\">\n {% include \".icons/material/linkedin.svg\" %}\n </button>\n <button class=\"share-button\" data-platform=\"weibo\">\n {% include \".icons/material/sina-weibo.svg\" %}\n </button>\n </div>\n </div>\n\n <!-- \u76f8\u5173\u6587\u7ae0 -->\n {% if page.meta.related_posts %}\n <div class=\"related-posts\">\n <h4>\u76f8\u5173\u6587\u7ae0</h4>\n <div class=\"related-grid\">\n {% for post in page.meta.related_posts %}\n <a href=\"{{ post.url | url }}\" class=\"related-post\">\n {% if post.image %}\n <img src=\"{{ post.image }}\" alt=\"{{ post.title }}\">\n {% endif %}\n <h5>{{ post.title }}</h5>\n <p>{{ post.excerpt }}</p>\n </a>\n {% endfor %}\n </div>\n </div>\n {% endif %}\n\n <!-- \u8bc4\u8bba\u533a -->\n <div class=\"article-comments\">\n <h4>\u8bc4\u8bba</h4>\n {% if config.extra.comments.provider == 'giscus' %}\n <script src=\"https://giscus.app/client.js\"\n data-repo=\"{{ config.extra.comments.repo }}\"\n data-repo-id=\"{{ config.extra.comments.repo_id }}\"\n data-category=\"{{ config.extra.comments.category }}\"\n data-category-id=\"{{ config.extra.comments.category_id }}\"\n data-mapping=\"pathname\"\n data-reactions-enabled=\"1\"\n data-emit-metadata=\"0\"\n data-theme=\"light\"\n crossorigin=\"anonymous\"\n async>\n </script>\n {% endif %}\n </div>\n</footer>\n\n<!-- \u6587\u7ae0\u5e95\u90e8\u6837\u5f0f -->\n<style>\n.article-footer {\n margin-top: 4rem;\n padding-top: 2rem;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n\n/* \u6587\u7ae0\u5bfc\u822a */\n.article-nav {\n display: flex;\n justify-content: space-between;\n margin-bottom: 2rem;\n}\n\n.nav-link {\n display: flex;\n align-items: center;\n padding: 1rem;\n text-decoration: none;\n color: var(--md-default-fg-color);\n background: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n max-width: 45%;\n}\n\n.nav-link:hover {\n transform: translateY(-2px);\n}\n\n.nav-text {\n display: flex;\n flex-direction: column;\n}\n\n.nav-direction {\n font-size: 0.8rem;\n color: var(--md-default-fg-color--light);\n}\n\n.nav-title {\n font-weight: 500;\n}\n\n/* \u5206\u4eab\u6309\u94ae */\n.share-buttons {\n display: flex;\n gap: 1rem;\n margin: 1rem 0;\n}\n\n.share-button {\n padding: 0.8rem;\n border: none;\n border-radius: 50%;\n background: var(--md-code-bg-color);\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.share-button:hover {\n background: var(--md-accent-fg-color);\n color: white;\n}\n\n/* \u76f8\u5173\u6587\u7ae0 */\n.related-grid {\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));\n gap: 1.5rem;\n margin: 1rem 0;\n}\n\n.related-post {\n text-decoration: none;\n color: var(--md-default-fg-color);\n background: var(--md-code-bg-color);\n border-radius: 8px;\n overflow: hidden;\n transition: transform 0.2s ease;\n}\n\n.related-post:hover {\n transform: translateY(-4px);\n}\n\n.related-post img {\n width: 100%;\n height: 150px;\n object-fit: cover;\n}\n\n.related-post h5 {\n margin: 1rem;\n font-size: 1.1rem;\n}\n\n.related-post p {\n margin: 0 1rem 1rem;\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u8bc4\u8bba\u533a */\n.article-comments {\n margin-top: 3rem;\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .article-nav {\n flex-direction: column;\n gap: 1rem;\n }\n\n .nav-link {\n max-width: 100%;\n }\n\n .related-grid {\n grid-template-columns: 1fr;\n }\n}\n</style>\n
"},{"location":"Technology/mkdocs%20material/#713-404","title":"7.1.3 404\u9875\u9762","text":""},{"location":"Technology/mkdocs%20material/#7131","title":"7.1.3.1 \u9519\u8bef\u63d0\u793a","text":"HTML
<!-- docs/overrides/404.html -->\n{% extends \"base.html\" %}\n\n{% block content %}\n<div class=\"error-page\">\n <div class=\"error-content\">\n <!-- 404 \u56fe\u6807 -->\n <div class=\"error-icon\">\n {% include \".icons/material/alert-circle-outline.svg\" %}\n <span class=\"error-code\">404</span>\n </div>\n\n <!-- \u9519\u8bef\u4fe1\u606f -->\n <h1>\u9875\u9762\u672a\u627e\u5230</h1>\n <p>\u62b1\u6b49\uff0c\u60a8\u8bbf\u95ee\u7684\u9875\u9762\u4e0d\u5b58\u5728\u6216\u5df2\u88ab\u79fb\u52a8</p>\n\n <!-- \u641c\u7d22\u6846 -->\n <div class=\"error-search\">\n <input type=\"text\" \n id=\"error-search-input\" \n placeholder=\"\u5c1d\u8bd5\u641c\u7d22...\"\n autocomplete=\"off\">\n <button id=\"error-search-button\">\n {% include \".icons/material/magnify.svg\" %}\n </button>\n </div>\n\n <!-- \u5feb\u6377\u64cd\u4f5c -->\n <div class=\"error-actions\">\n <a href=\"{{ base_url }}\" class=\"md-button md-button--primary\">\n \u8fd4\u56de\u9996\u9875\n </a>\n <button class=\"md-button\" onclick=\"window.history.back()\">\n \u8fd4\u56de\u4e0a\u9875\n </button>\n </div>\n </div>\n\n <!-- \u641c\u7d22\u5efa\u8bae -->\n <div class=\"search-suggestions\" id=\"search-suggestions\">\n <h3>\u60a8\u662f\u5426\u5728\u627e\uff1a</h3>\n <div class=\"suggestions-list\" id=\"suggestions-list\">\n <!-- \u52a8\u6001\u751f\u6210\u7684\u5efa\u8bae\u5217\u8868 -->\n </div>\n </div>\n</div>\n\n<!-- 404\u9875\u9762\u6837\u5f0f -->\n<style>\n.error-page {\n min-height: 100vh;\n display: flex;\n flex-direction: column;\n align-items: center;\n justify-content: center;\n padding: 2rem;\n text-align: center;\n}\n\n.error-content {\n max-width: 600px;\n}\n\n.error-icon {\n font-size: 6rem;\n color: var(--md-primary-fg-color);\n margin-bottom: 2rem;\n position: relative;\n}\n\n.error-code {\n position: absolute;\n bottom: -1rem;\n right: -1rem;\n font-size: 2rem;\n font-weight: bold;\n background: var(--md-accent-fg-color);\n color: white;\n padding: 0.5rem 1rem;\n border-radius: 1rem;\n}\n\n.error-search {\n margin: 2rem 0;\n position: relative;\n}\n\n.error-search input {\n width: 100%;\n padding: 1rem 3rem 1rem 1rem;\n border: 2px solid var(--md-default-fg-color--lightest);\n border-radius: 2rem;\n font-size: 1.1rem;\n}\n\n.error-search button {\n position: absolute;\n right: 0.5rem;\n top: 50%;\n transform: translateY(-50%);\n background: none;\n border: none;\n color: var(--md-default-fg-color);\n cursor: pointer;\n}\n\n.error-actions {\n display: flex;\n gap: 1rem;\n justify-content: center;\n margin: 2rem 0;\n}\n\n/* \u641c\u7d22\u5efa\u8bae\u6837\u5f0f */\n.search-suggestions {\n margin-top: 3rem;\n width: 100%;\n max-width: 600px;\n}\n\n.suggestions-list {\n margin-top: 1rem;\n}\n\n.suggestion-item {\n padding: 1rem;\n margin: 0.5rem 0;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.suggestion-item:hover {\n background: var(--md-accent-fg-color--transparent);\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .error-icon {\n font-size: 4rem;\n }\n\n .error-code {\n font-size: 1.5rem;\n }\n\n .error-actions {\n flex-direction: column;\n }\n}\n</style>\n\n<!-- 404\u9875\u9762\u811a\u672c -->\n<script>\ndocument.addEventListener('DOMContentLoaded', function() {\n // \u641c\u7d22\u5efa\u8bae\u529f\u80fd\n setupSearchSuggestions();\n // \u5168\u5c40\u70ed\u952e\n setupHotkeys();\n});\n\nfunction setupSearchSuggestions() {\n const searchInput = document.getElementById('error-search-input');\n const suggestionsList = document.getElementById('suggestions-list');\n\n searchInput?.addEventListener('input', debounce(async (e) => {\n const query = e.target.value;\n if (query.length < 2) {\n suggestionsList.innerHTML = '';\n return;\n }\n\n // \u83b7\u53d6\u641c\u7d22\u5efa\u8bae\n const suggestions = await getSearchSuggestions(query);\n\n // \u6e32\u67d3\u5efa\u8bae\u5217\u8868\n suggestionsList.innerHTML = suggestions\n .map(suggestion => `\n <div class=\"suggestion-item\" onclick=\"window.location.href='${suggestion.url}'\">\n <div class=\"suggestion-title\">${suggestion.title}</div>\n <div class=\"suggestion-excerpt\">${suggestion.excerpt}</div>\n </div>\n `)\n .join('');\n }, 300));\n}\n\nasync function getSearchSuggestions(query) {\n // \u8fd9\u91cc\u53ef\u4ee5\u5b9e\u73b0\u5b9e\u9645\u7684\u641c\u7d22\u903b\u8f91\n // \u793a\u4f8b\u8fd4\u56de\u6570\u636e\n return [\n {\n title: '\u76f8\u5173\u6587\u6863 1',\n excerpt: '\u8fd9\u662f\u4e00\u6bb5\u76f8\u5173\u7684\u6587\u6863\u63cf\u8ff0...',\n url: '#'\n },\n {\n title: '\u76f8\u5173\u6587\u6863 2',\n excerpt: '\u8fd9\u662f\u53e6\u4e00\u6bb5\u76f8\u5173\u7684\u6587\u6863\u63cf\u8ff0...',\n url: '#'\n }\n ];\n}\n\nfunction setupHotkeys() {\n document.addEventListener('keydown', (e) => {\n // \u6309 ESC \u8fd4\u56de\u4e0a\u9875\n if (e.key === 'Escape') {\n window.history.back();\n }\n\n // \u6309 Enter \u6267\u884c\u641c\u7d22\n if (e.key === 'Enter' && document.activeElement.id === 'error-search-input') {\n const query = document.activeElement.value;\n if (query) {\n window.location.href = `${window.location.origin}/search.html?q=${encodeURIComponent(query)}`;\n }\n }\n });\n}\n\n// \u9632\u6296\u51fd\u6570\nfunction debounce(fn, delay) {\n let timer = null;\n return function(...args) {\n clearTimeout(timer);\n timer = setTimeout(() => fn.apply(this, args), delay);\n };\n}\n</script>\n
\u8fd9\u6837\uff0c\u6211\u4eec\u5c31\u5b8c\u6210\u4e86\u6587\u7ae0\u5e95\u90e8\u4fe1\u606f\u548c404\u9875\u9762\u7684\u6a21\u677f\u3002\u4e3b\u8981\u7279\u70b9\u5305\u62ec\uff1a
-
\u6587\u7ae0\u5e95\u90e8\uff1a - \u6e05\u6670\u7684\u4e0a\u4e0b\u6587\u7ae0\u5bfc\u822a - \u793e\u4ea4\u5206\u4eab\u6309\u94ae - \u76f8\u5173\u6587\u7ae0\u63a8\u8350 - \u96c6\u6210\u8bc4\u8bba\u7cfb\u7edf
-
404\u9875\u9762\uff1a - \u53cb\u597d\u7684\u9519\u8bef\u63d0\u793a - \u5b9e\u65f6\u641c\u7d22\u5efa\u8bae - \u591a\u79cd\u8fd4\u56de\u9009\u9879 - \u952e\u76d8\u5feb\u6377\u952e\u652f\u6301
\u4f7f\u7528\u8fd9\u4e9b\u6a21\u677f\u65f6\uff0c\u9700\u8981\u5728 mkdocs.yml
\u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n custom_dir: docs/overrides\n features:\n - navigation.tracking\n - search.suggest\n - search.highlight\n\nextra:\n comments:\n provider: giscus\n repo: username/repo\n repo_id: your-repo-id\n category: Comments\n category_id: your-category-id\n
"},{"location":"Technology/mkdocs%20material/#72","title":"7.2 \u4fee\u6539\u7ec4\u4ef6\u6a21\u677f","text":""},{"location":"Technology/mkdocs%20material/#721","title":"7.2.1 \u5bfc\u822a\u680f","text":""},{"location":"Technology/mkdocs%20material/#7211","title":"7.2.1.1 \u5bfc\u822a\u9879\u5b9a\u5236","text":"HTML
<!-- docs/overrides/partials/nav.html -->\n{% extends \"base.html\" %}\n\n{% block site_nav %}\n<nav class=\"md-nav md-nav--primary\">\n <!-- \u81ea\u5b9a\u4e49\u5bfc\u822a\u5934\u90e8 -->\n <div class=\"nav-header\">\n {% if config.theme.logo %}\n <img src=\"{{ config.theme.logo }}\" alt=\"logo\" class=\"nav-logo\">\n {% endif %}\n <span class=\"nav-title\">{{ config.site_name }}</span>\n </div>\n\n <!-- \u81ea\u5b9a\u4e49\u5bfc\u822a\u9879 -->\n <ul class=\"nav-items\">\n {% for nav_item in nav %}\n {% include \"partials/nav-item.html\" %}\n {% endfor %}\n\n <!-- \u6dfb\u52a0\u81ea\u5b9a\u4e49\u5bfc\u822a\u9879 -->\n {% if config.extra.nav_links %}\n {% for link in config.extra.nav_links %}\n <li class=\"nav-item custom\">\n <a href=\"{{ link.url }}\" class=\"nav-link\" {% if link.target %}target=\"{{ link.target }}\"{% endif %}>\n {% if link.icon %}\n <span class=\"nav-icon\">\n {% include \".icons/\" ~ link.icon ~ \".svg\" %}\n </span>\n {% endif %}\n {{ link.title }}\n </a>\n </li>\n {% endfor %}\n {% endif %}\n </ul>\n</nav>\n
\u914d\u7f6e\u548c\u6837\u5f0f\uff1a
YAML
# mkdocs.yml\nextra:\n nav_links:\n - title: GitHub\n url: https://github.com/your/repo\n icon: material/github\n target: _blank\n - title: \u6587\u6863\n url: /docs/\n icon: material/file-document\n
CSS
/* docs/stylesheets/nav.css */\n.nav-header {\n display: flex;\n align-items: center;\n padding: 1rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.nav-logo {\n width: 32px;\n height: 32px;\n margin-right: 0.8rem;\n}\n\n.nav-items {\n list-style: none;\n padding: 0;\n margin: 0;\n}\n\n.nav-item {\n margin: 0.2rem 0;\n}\n\n.nav-link {\n display: flex;\n align-items: center;\n padding: 0.8rem 1rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n transition: background-color 0.2s ease;\n}\n\n.nav-link:hover {\n background-color: var(--md-code-bg-color);\n}\n\n.nav-icon {\n margin-right: 0.8rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n\n/* \u81ea\u5b9a\u4e49\u5bfc\u822a\u9879\u6837\u5f0f */\n.nav-item.custom .nav-link {\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#7212","title":"7.2.1.2 \u641c\u7d22\u6846\u4f4d\u7f6e","text":"HTML
<!-- docs/overrides/partials/search.html -->\n{% block search_box %}\n<div class=\"md-search\" data-md-component=\"search\" role=\"dialog\">\n <label class=\"md-search__overlay\" for=\"__search\"></label>\n <div class=\"md-search__inner\" role=\"search\">\n <!-- \u641c\u7d22\u8f93\u5165\u6846 -->\n <form class=\"md-search__form\">\n <input\n type=\"text\"\n class=\"md-search__input\"\n name=\"query\"\n aria-label=\"\u641c\u7d22\"\n placeholder=\"\u641c\u7d22\u6587\u6863...\"\n autocapitalize=\"off\"\n autocomplete=\"off\"\n autocorrect=\"off\"\n spellcheck=\"false\"\n data-md-component=\"search-query\"\n >\n <!-- \u641c\u7d22\u5feb\u6377\u952e\u63d0\u793a -->\n <div class=\"md-search__shortcuts\">\n <kbd>Ctrl</kbd> + <kbd>K</kbd>\n </div>\n </form>\n\n <!-- \u641c\u7d22\u7ed3\u679c -->\n <div class=\"md-search__output\">\n <div class=\"md-search__scrollwrap\" data-md-scrollfix>\n <div class=\"md-search-result\" data-md-component=\"search-result\">\n <div class=\"md-search-result__meta\">\n \u6b63\u5728\u641c\u7d22...\n </div>\n <ol class=\"md-search-result__list\"></ol>\n </div>\n </div>\n </div>\n </div>\n</div>\n
\u6837\u5f0f\u5b9a\u5236\uff1a
CSS
/* docs/stylesheets/search.css */\n/* \u641c\u7d22\u6846\u5bb9\u5668 */\n.md-search {\n margin: 0 1rem;\n padding: 0;\n position: relative;\n}\n\n/* \u641c\u7d22\u8f93\u5165\u6846 */\n.md-search__input {\n width: 100%;\n height: 2.4rem;\n padding: 0 2.4rem;\n font-size: 0.9rem;\n color: var(--md-default-fg-color);\n background-color: var(--md-default-bg-color);\n border: 1px solid var(--md-default-fg-color--lightest);\n border-radius: 1.2rem;\n}\n\n/* \u641c\u7d22\u56fe\u6807 */\n.md-search__icon {\n position: absolute;\n left: 0.8rem;\n top: 50%;\n transform: translateY(-50%);\n color: var(--md-default-fg-color--light);\n}\n\n/* \u5feb\u6377\u952e\u63d0\u793a */\n.md-search__shortcuts {\n position: absolute;\n right: 0.8rem;\n top: 50%;\n transform: translateY(-50%);\n display: flex;\n gap: 0.2rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u641c\u7d22\u7ed3\u679c\u5bb9\u5668 */\n.md-search__output {\n position: absolute;\n top: 100%;\n width: 100%;\n margin-top: 0.4rem;\n background-color: var(--md-default-bg-color);\n border-radius: 0.2rem;\n box-shadow: var(--md-shadow-z2);\n overflow: auto;\n z-index: 1;\n}\n
"},{"location":"Technology/mkdocs%20material/#7213","title":"7.2.1.3 \u79fb\u52a8\u7aef\u9002\u914d","text":"CSS
/* \u79fb\u52a8\u7aef\u5bfc\u822a\u6837\u5f0f */\n@media screen and (max-width: 76.1875em) {\n /* \u5bfc\u822a\u5207\u6362\u6309\u94ae */\n .md-header-nav__button.md-icon {\n padding: 0.4rem;\n margin: 0.4rem;\n }\n\n /* \u5bfc\u822a\u62bd\u5c49 */\n .md-nav--primary {\n position: fixed;\n top: 0;\n left: -18rem;\n width: 18rem;\n height: 100%;\n background-color: var(--md-default-bg-color);\n transition: left 0.25s;\n z-index: 2;\n }\n\n /* \u5bfc\u822a\u62bd\u5c49\u6253\u5f00\u72b6\u6001 */\n .md-nav--primary.md-nav--opened {\n left: 0;\n }\n\n /* \u641c\u7d22\u6846\u5168\u5c4f */\n .md-search__inner {\n position: fixed;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n padding: 1rem;\n background-color: var(--md-default-bg-color);\n z-index: 3;\n }\n\n /* \u641c\u7d22\u7ed3\u679c\u5168\u5c4f */\n .md-search__output {\n position: fixed;\n top: 4rem;\n height: calc(100% - 4rem);\n }\n}\n\n/* \u5e73\u677f\u9002\u914d */\n@media screen and (min-width: 76.25em) and (max-width: 96.25em) {\n .md-nav--primary {\n width: 16rem;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#722","title":"7.2.2 \u9875\u811a","text":"HTML
<!-- docs/overrides/partials/footer.html -->\n<footer class=\"md-footer\">\n <div class=\"md-footer-meta md-typeset\">\n <div class=\"md-footer-meta__inner md-grid\">\n <!-- \u7248\u6743\u4fe1\u606f -->\n <div class=\"md-footer-copyright\">\n {% if config.copyright %}\n <div class=\"md-footer-copyright__highlight\">\n {{ config.copyright }}\n </div>\n {% endif %}\n\n <!-- \u6784\u5efa\u4fe1\u606f -->\n <div class=\"md-footer-build\">\n Documentation built with\n <a href=\"https://www.mkdocs.org\" target=\"_blank\" rel=\"noopener\">\n MkDocs\n </a>\n and\n <a href=\"https://squidfunk.github.io/mkdocs-material/\" target=\"_blank\" rel=\"noopener\">\n Material for MkDocs\n </a>\n </div>\n </div>\n\n <!-- \u793e\u4ea4\u94fe\u63a5 -->\n {% if config.extra.social %}\n <div class=\"md-footer-social\">\n {% for social in config.extra.social %}\n <a href=\"{{ social.link }}\" \n target=\"_blank\" \n rel=\"noopener\" \n title=\"{{ social.name }}\"\n class=\"md-footer-social__link\">\n {% include \".icons/\" ~ social.icon ~ \".svg\" %}\n </a>\n {% endfor %}\n </div>\n {% endif %}\n\n <!-- \u5907\u6848\u4fe1\u606f -->\n {% if config.extra.icp %}\n <div class=\"md-footer-icp\">\n <a href=\"https://beian.miit.gov.cn/\" target=\"_blank\" rel=\"noopener\">\n {{ config.extra.icp }}\n </a>\n </div>\n {% endif %}\n </div>\n </div>\n</footer>\n
\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\ncopyright: Copyright © 2024 Your Name\nextra:\n social:\n - icon: material/github\n name: GitHub\n link: https://github.com/your-username\n - icon: material/twitter\n name: Twitter\n link: https://twitter.com/your-username\n icp: \u4eacICP\u5907xxxxxxxx\u53f7\n
\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/footer.css */\n.md-footer {\n background-color: var(--md-default-bg-color);\n color: var(--md-default-fg-color);\n padding: 2rem 0;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.md-footer-meta__inner {\n display: flex;\n flex-wrap: wrap;\n justify-content: space-between;\n align-items: center;\n gap: 1rem;\n}\n\n/* \u7248\u6743\u4fe1\u606f */\n.md-footer-copyright {\n font-size: 0.8rem;\n}\n\n.md-footer-copyright__highlight {\n margin-bottom: 0.5rem;\n}\n\n.md-footer-build {\n color: var(--md-default-fg-color--light);\n}\n\n/* \u793e\u4ea4\u94fe\u63a5 */\n.md-footer-social {\n display: flex;\n gap: 1rem;\n}\n\n.md-footer-social__link {\n width: 2rem;\n height: 2rem;\n display: flex;\n align-items: center;\n justify-content: center;\n color: var(--md-default-fg-color);\n border-radius: 50%;\n transition: all 0.2s ease;\n}\n\n.md-footer-social__link:hover {\n background-color: var(--md-code-bg-color);\n color: var(--md-accent-fg-color);\n}\n\n/* \u5907\u6848\u4fe1\u606f */\n.md-footer-icp {\n width: 100%;\n text-align: center;\n margin-top: 1rem;\n font-size: 0.8rem;\n}\n\n.md-footer-icp a {\n color: var(--md-default-fg-color--light);\n text-decoration: none;\n}\n\n/* \u54cd\u5e94\u5f0f\u9002\u914d */\n@media screen and (max-width: 76.1875em) {\n .md-footer-meta__inner {\n flex-direction: column;\n text-align: center;\n }\n\n .md-footer-social {\n justify-content: center;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#723","title":"7.2.3 \u641c\u7d22\u6846","text":"HTML
<!-- docs/overrides/partials/search-modal.html -->\n<div class=\"md-search-modal\" data-md-component=\"search-modal\">\n <div class=\"md-search-modal__overlay\" data-md-component=\"search-modal-overlay\"></div>\n\n <div class=\"md-search-modal__inner\">\n <!-- \u641c\u7d22\u5934\u90e8 -->\n <header class=\"md-search-modal__header\">\n <form class=\"md-search-modal__form\">\n <input\n type=\"text\"\n class=\"md-search-modal__input\"\n name=\"query\"\n placeholder=\"\u641c\u7d22\u6587\u6863...\"\n data-md-component=\"search-query\"\n autocapitalize=\"off\"\n autocomplete=\"off\"\n autocorrect=\"off\"\n spellcheck=\"false\"\n >\n <!-- \u5feb\u6377\u952e\u63d0\u793a -->\n <div class=\"md-search-modal__shortcuts\">\n <kbd>\u2191</kbd><kbd>\u2193</kbd> \u9009\u62e9\n <kbd>\u21b5</kbd> \u6253\u5f00\n <kbd>ESC</kbd> \u5173\u95ed\n </div>\n </form>\n </header>\n\n <!-- \u641c\u7d22\u7ed3\u679c -->\n <main class=\"md-search-modal__body\">\n <div class=\"md-search-modal__scrollwrap\">\n <div class=\"md-search-modal__meta\">\n \u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22\n </div>\n\n <div class=\"md-search-modal__results\">\n <!-- \u641c\u7d22\u7ed3\u679c\u5217\u8868 -->\n <div class=\"md-search-modal__list\"></div>\n\n <!-- \u641c\u7d22\u5efa\u8bae -->\n <div class=\"md-search-modal__suggestions\">\n <h3>\u60a8\u53ef\u80fd\u611f\u5174\u8da3\uff1a</h3>\n <div class=\"suggestions-list\">\n <!-- \u52a8\u6001\u751f\u6210\u7684\u5efa\u8bae\u5217\u8868 -->\n </div>\n </div>\n </div>\n </div>\n </main>\n </div>\n</div>\n
\u641c\u7d22\u529f\u80fd\u811a\u672c\uff1a
JavaScript
// docs/javascripts/search.js\nclass SearchModal {\n constructor() {\n this.modal = document.querySelector('.md-search-modal');\n this.overlay = document.querySelector('.md-search-modal__overlay');\n this.input = document.querySelector('.md-search-modal__input');\n this.resultsList = document.querySelector('.md-search-modal__list');\n this.suggestions = document.querySelector('.md-search-modal__suggestions');\n\n this.searchIndex = null;\n this.searchResults = [];\n this.currentFocus = -1;\n\n this.init();\n }\n\n init() {\n // \u521d\u59cb\u5316\u641c\u7d22\u7d22\u5f15\n this.buildSearchIndex();\n // \u7ed1\u5b9a\u4e8b\u4ef6\n this.bindEvents();\n // \u8bbe\u7f6e\u5feb\u6377\u952e\n this.setupShortcuts();\n }\n\n async buildSearchIndex() {\n // \u6784\u5efa\u641c\u7d22\u7d22\u5f15\n const response = await fetch('/search/search_index.json');\n const data = await response.json();\n\n // \u4f7f\u7528 lunr.js \u6784\u5efa\u7d22\u5f15\n this.searchIndex = lunr(function() {\n this.field('title', { boost: 10 });\n this.field('text');\n this.ref('location');\n\n data.docs.forEach(function(doc) {\n this.add(doc);\n }, this);\n });\n }\n\n bindEvents() {\n // \u641c\u7d22\u6846\u8f93\u5165\u4e8b\u4ef6\n this.input.addEventListener('input', debounce(() => {\n const query = this.input.value;\n if (query.length >= 2) {\n this.performSearch(query);\n } else {\n this.clearResults();\n }\n }, 200));\n\n // \u641c\u7d22\u7ed3\u679c\u5bfc\u822a\n this.input.addEventListener('keydown', (e) => {\n switch (e.key) {\n case 'ArrowUp':\n e.preventDefault();\n this.navigateResults('up');\n break;\n case 'ArrowDown':\n e.preventDefault();\n this.navigateResults('down');\n break;\n case 'Enter':\n e.preventDefault();\n this.openResult();\n break;\n case 'Escape':\n e.preventDefault();\n this.closeModal();\n break;\n }\n });\n\n // \u70b9\u51fb\u906e\u7f69\u5173\u95ed\n this.overlay.addEventListener('click', () => this.closeModal());\n }\n\n setupShortcuts() {\n // \u5168\u5c40\u641c\u7d22\u5feb\u6377\u952e\n document.addEventListener('keydown', (e) => {\n // Ctrl/Cmd + K \u6253\u5f00\u641c\u7d22\n if ((e.ctrlKey || e.metaKey) && e.key === 'k') {\n e.preventDefault();\n this.openModal();\n }\n });\n }\n\n async performSearch(query) {\n if (!this.searchIndex) return;\n\n // \u6267\u884c\u641c\u7d22\n this.searchResults = this.searchIndex.search(query).map(result => {\n return {\n ref: result.ref,\n score: result.score,\n ...this.getDocumentByRef(result.ref)\n };\n });\n\n // \u6e32\u67d3\u7ed3\u679c\n this.renderResults();\n // \u66f4\u65b0\u5efa\u8bae\n this.updateSuggestions(query);\n }\n\n renderResults() {\n this.resultsList.innerHTML = this.searchResults\n .map((result, index) => `\n <div class=\"search-result-item ${index === this.currentFocus ? 'focused' : ''}\"\n data-index=\"${index}\">\n <div class=\"result-title\">${this.highlightText(result.title)}</div>\n <div class=\"result-excerpt\">${this.highlightText(result.excerpt)}</div>\n <div class=\"result-location\">${result.location}</div>\n </div>\n `)\n .join('');\n }\n\n highlightText(text) {\n const query = this.input.value;\n if (!query) return text;\n\n const regex = new RegExp(`(${query})`, 'gi');\n return text.replace(regex, '<mark>$1</mark>');\n }\n\n updateSuggestions(query) {\n // \u6839\u636e\u641c\u7d22\u5386\u53f2\u548c\u70ed\u95e8\u641c\u7d22\u751f\u6210\u5efa\u8bae\n const suggestions = this.generateSuggestions(query);\n\n this.suggestions.innerHTML = suggestions\n .map(suggestion => `\n <div class=\"suggestion-item\" data-query=\"${suggestion.query}\">\n <span class=\"suggestion-icon\">\n ${suggestion.type === 'history' ? '\u23f1\ufe0f' : '\ud83d\udd25'}\n </span>\n ${suggestion.query}\n </div>\n `)\n .join('');\n }\n\n navigateResults(direction) {\n const maxIndex = this.searchResults.length - 1;\n\n if (direction === 'up') {\n this.currentFocus = this.currentFocus > 0 ? this.currentFocus - 1 : maxIndex;\n } else {\n this.currentFocus = this.currentFocus < maxIndex ? this.currentFocus + 1 : 0;\n }\n\n this.renderResults();\n this.scrollToFocused();\n }\n\n scrollToFocused() {\n const focused = this.resultsList.querySelector('.focused');\n if (focused) {\n focused.scrollIntoView({\n behavior: 'smooth',\n block: 'nearest'\n });\n }\n }\n\n openResult() {\n const result = this.searchResults[this.currentFocus];\n if (result) {\n window.location.href = result.location;\n }\n }\n\n openModal() {\n this.modal.classList.add('active');\n this.input.focus();\n document.body.style.overflow = 'hidden';\n }\n\n closeModal() {\n this.modal.classList.remove('active');\n this.input.value = '';\n this.clearResults();\n document.body.style.overflow = '';\n }\n\n clearResults() {\n this.searchResults = [];\n this.currentFocus = -1;\n this.resultsList.innerHTML = '';\n this.suggestions.innerHTML = '';\n }\n}\n\n// \u521d\u59cb\u5316\u641c\u7d22\u529f\u80fd\ndocument.addEventListener('DOMContentLoaded', () => {\n new SearchModal();\n});\n
\u641c\u7d22\u6846\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/search-modal.css */\n.md-search-modal {\n position: fixed;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n z-index: 1000;\n opacity: 0;\n visibility: hidden;\n transition: all 0.2s ease;\n}\n\n.md-search-modal.active {\n opacity: 1;\n visibility: visible;\n}\n\n.md-search-modal__overlay {\n position: absolute;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n background: rgba(0, 0, 0, 0.5);\n backdrop-filter: blur(4px);\n}\n\n.md-search-modal__inner {\n position: relative;\n width: 90%;\n max-width: 800px;\n margin: 2rem auto;\n background: var(--md-default-bg-color);\n border-radius: 8px;\n box-shadow: var(--md-shadow-z3);\n}\n\n/* \u641c\u7d22\u7ed3\u679c\u6837\u5f0f */\n.search-result-item {\n padding: 1rem;\n cursor: pointer;\n transition: background 0.2s ease;\n}\n\n.search-result-item:hover,\n.search-result-item.focused {\n background: var(--md-code-bg-color);\n}\n\n.result-title {\n font-size: 1.1rem;\n font-weight: 500;\n margin-bottom: 0.5rem;\n}\n\n.result-excerpt {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-bottom: 0.5rem;\n}\n\n.result-location {\n font-size: 0.8rem;\n color: var(--md-accent-fg-color);\n}\n\n/* \u9ad8\u4eae\u5339\u914d\u6587\u672c */\nmark {\n background: var(--md-accent-fg-color);\n color: white;\n padding: 0 0.2rem;\n border-radius: 2px;\n}\n
"},{"location":"Technology/mkdocs%20material/#724","title":"7.2.4 \u76ee\u5f55","text":""},{"location":"Technology/mkdocs%20material/#7241","title":"7.2.4.1 \u76ee\u5f55\u7ed3\u6784","text":"HTML
<!-- docs/overrides/partials/toc.html -->\n<nav class=\"md-toc\" aria-label=\"\u76ee\u5f55\">\n <div class=\"md-toc__header\">\n <h2 class=\"md-toc__title\">\u76ee\u5f55</h2>\n <button class=\"md-toc__toggle\" aria-label=\"\u5c55\u5f00/\u6536\u8d77\">\n {% include \".icons/material/chevron-down.svg\" %}\n </button>\n </div>\n\n <div class=\"md-toc__inner\">\n {% set toc = page.toc %}\n <ul class=\"md-toc__list\">\n {% for toc_item in toc %}\n {% include \"partials/toc-item.html\" %}\n {% endfor %}\n </ul>\n </div>\n</nav>\n\n<!-- docs/overrides/partials/toc-item.html -->\n<li class=\"md-toc__item\">\n <a href=\"{{ toc_item.url }}\" class=\"md-toc__link\">\n {{ toc_item.title }}\n </a>\n\n {% if toc_item.children %}\n <ul class=\"md-toc__list\">\n {% for toc_item in toc_item.children %}\n {% include \"partials/toc-item.html\" %}\n {% endfor %}\n </ul>\n {% endif %}\n</li>\n
"},{"location":"Technology/mkdocs%20material/#7242","title":"7.2.4.2 \u6eda\u52a8\u540c\u6b65","text":"JavaScript
// docs/javascripts/toc.js\nclass TableOfContents {\n constructor() {\n this.toc = document.querySelector('.md-toc');\n this.tocLinks = this.toc.querySelectorAll('.md-toc__link');\n this.headings = document.querySelectorAll('h1[id], h2[id], h3[id], h4[id], h5[id], h6[id]');\n this.intersectionObserver = null;\n\n this.init();\n }\n\n init() {\n this.setupIntersectionObserver();\n this.setupScrollSpy();\n this.setupToggle();\n }\n\n setupIntersectionObserver() {\n this.intersectionObserver = new IntersectionObserver(\n (entries) => {\n entries.forEach(entry => {\n if (entry.isIntersecting) {\n const id = entry.target.getAttribute('id');\n this.highlightTocItem(id);\n }\n });\n },\n {\n rootMargin: '0px 0px -80% 0px'\n }\n );\n\n this.headings.forEach(heading => {\n this.intersectionObserver.observe(heading);\n });\n }\n\n setupScrollSpy() {\n this.tocLinks.forEach(link => {\n link.addEventListener('click', (e) => {\n e.preventDefault();\n const id = link.getAttribute('href').substring(1);\n const target = document.getElementById(id);\n\n if (target) {\n window.scrollTo({\n top: target.offsetTop - 100,\n behavior: 'smooth'\n });\n\n // \u66f4\u65b0 URL\n history.pushState(null, null, `#${id}`);\n }\n });\n });\n }\n\n highlightTocItem(id) {\n // \u79fb\u9664\u6240\u6709\u9ad8\u4eae\n this.tocLinks.forEach(link => {\n link.classList.remove('active');\n });\n\n // \u6dfb\u52a0\u65b0\u9ad8\u4eae\n const activeLink = this.toc.querySelector(`a[href=\"#${id}\"]`);\n if (activeLink) {\n activeLink.classList.add('active');\n this.expandParents(activeLink);\n }\n }\n\n expandParents(element) {\n let parent = element.parentElement;\n while (parent && parent.classList.contains('md-toc__item')) {\n const list = parent.querySelector('.md-toc__list');\n if (list) {\n list.style.height = 'auto';\n parent.classList.add('expanded');\n }\n parent = parent.parentElement;\n }\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#7243","title":"7.2.4.3 \u5c55\u5f00\u6536\u8d77","text":"JavaScript
setupToggle() {\n const toggleButton = this.toc.querySelector('.md-toc__toggle');\n const tocInner = this.toc.querySelector('.md-toc__inner');\n\n toggleButton?.addEventListener('click', () => {\n const isExpanded = this.toc.classList.contains('expanded');\n\n if (isExpanded) {\n this.toc.classList.remove('expanded');\n tocInner.style.height = '0';\n } else {\n this.toc.classList.add('expanded');\n tocInner.style.height = tocInner.scrollHeight + 'px';\n }\n });\n\n // \u6dfb\u52a0\u5c55\u5f00/\u6536\u8d77\u6240\u6709\u6309\u94ae\n const expandAllButton = document.createElement('button');\n expandAllButton.className = 'md-toc__expand-all';\n expandAllButton.innerHTML = '\u5c55\u5f00\u5168\u90e8';\n expandAllButton.addEventListener('click', () => this.toggleAll(true));\n\n const collapseAllButton = document.createElement('button');\n collapseAllButton.className = 'md-toc__collapse-all';\n collapseAllButton.innerHTML = '\u6536\u8d77\u5168\u90e8';\n collapseAllButton.addEventListener('click', () => this.toggleAll(false));\n\n const buttonGroup = document.createElement('div');\n buttonGroup.className = 'md-toc__button-group';\n buttonGroup.appendChild(expandAllButton);\n buttonGroup.appendChild(collapseAllButton);\n\n this.toc.querySelector('.md-toc__header').appendChild(buttonGroup);\n}\n\ntoggleAll(expand) {\n const lists = this.toc.querySelectorAll('.md-toc__list');\n lists.forEach(list => {\n if (expand) {\n list.style.height = 'auto';\n list.parentElement.classList.add('expanded');\n } else {\n list.style.height = '0';\n list.parentElement.classList.remove('expanded');\n }\n });\n}\n
\u76ee\u5f55\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/toc.css */\n.md-toc {\n position: sticky;\n top: 4rem;\n padding: 1rem;\n max-height: calc(100vh - 4rem);\n overflow-y: auto;\n background: var(--md-default-bg-color);\n border-left: 1px solid var(--md-default-fg-color--lightest);\n font-size: 0.8rem;\n}\n\n/* \u76ee\u5f55\u5934\u90e8 */\n.md-toc__header {\n display: flex;\n justify-content: space-between;\n align-items: center;\n margin-bottom: 1rem;\n padding-bottom: 0.5rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.md-toc__title {\n font-size: 1rem;\n font-weight: 600;\n margin: 0;\n}\n\n.md-toc__button-group {\n display: flex;\n gap: 0.5rem;\n}\n\n.md-toc__button-group button {\n padding: 0.2rem 0.5rem;\n font-size: 0.7rem;\n color: var(--md-default-fg-color--light);\n background: var(--md-code-bg-color);\n border: none;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.md-toc__button-group button:hover {\n color: var(--md-accent-fg-color);\n background: var(--md-code-bg-color--light);\n}\n\n/* \u76ee\u5f55\u5217\u8868 */\n.md-toc__list {\n list-style: none;\n padding: 0;\n margin: 0;\n}\n\n.md-toc__item {\n margin: 0.2rem 0;\n}\n\n/* \u76ee\u5f55\u94fe\u63a5 */\n.md-toc__link {\n display: block;\n padding: 0.2rem 0;\n color: var(--md-default-fg-color);\n text-decoration: none;\n transition: all 0.2s ease;\n border-radius: 4px;\n}\n\n.md-toc__link:hover {\n color: var(--md-accent-fg-color);\n background: var(--md-code-bg-color);\n padding-left: 0.5rem;\n}\n\n/* \u5f53\u524d\u6fc0\u6d3b\u9879 */\n.md-toc__link.active {\n color: var(--md-accent-fg-color);\n font-weight: 500;\n background: var(--md-code-bg-color);\n padding-left: 0.5rem;\n}\n\n/* \u5d4c\u5957\u5c42\u7ea7 */\n.md-toc__item .md-toc__list {\n margin-left: 1rem;\n border-left: 1px solid var(--md-default-fg-color--lightest);\n overflow: hidden;\n height: 0;\n transition: height 0.3s ease;\n}\n\n.md-toc__item.expanded > .md-toc__list {\n height: auto;\n}\n\n/* \u6298\u53e0\u6307\u793a\u5668 */\n.md-toc__item > .md-toc__link::before {\n content: '';\n display: inline-block;\n width: 0.8rem;\n height: 0.8rem;\n margin-right: 0.2rem;\n background-image: url('data:image/svg+xml,<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 24 24\"><path d=\"M8.59 16.59L13.17 12 8.59 7.41 10 6l6 6-6 6-1.41-1.41z\"/></svg>');\n background-size: contain;\n transform: rotate(0);\n transition: transform 0.3s ease;\n}\n\n.md-toc__item.expanded > .md-toc__link::before {\n transform: rotate(90deg);\n}\n\n/* \u6eda\u52a8\u6761\u6837\u5f0f */\n.md-toc::-webkit-scrollbar {\n width: 4px;\n}\n\n.md-toc::-webkit-scrollbar-track {\n background: transparent;\n}\n\n.md-toc::-webkit-scrollbar-thumb {\n background: var(--md-default-fg-color--lighter);\n border-radius: 2px;\n}\n\n/* \u54cd\u5e94\u5f0f\u8bbe\u8ba1 */\n@media screen and (max-width: 76.1875em) {\n .md-toc {\n position: fixed;\n top: 0;\n right: -18rem;\n width: 18rem;\n height: 100vh;\n max-height: none;\n margin: 0;\n padding: 1rem;\n background: var(--md-default-bg-color);\n border-left: 1px solid var(--md-default-fg-color--lightest);\n box-shadow: var(--md-shadow-z3);\n transition: right 0.3s ease;\n z-index: 3;\n }\n\n .md-toc.expanded {\n right: 0;\n }\n\n /* \u79fb\u52a8\u7aef\u8986\u76d6\u5c42 */\n .md-toc-overlay {\n display: none;\n position: fixed;\n top: 0;\n left: 0;\n width: 100%;\n height: 100%;\n background: rgba(0, 0, 0, 0.3);\n z-index: 2;\n }\n\n .md-toc.expanded + .md-toc-overlay {\n display: block;\n }\n}\n\n/* \u5e73\u677f\u9002\u914d */\n@media screen and (min-width: 76.25em) and (max-width: 96.25em) {\n .md-toc {\n padding: 0.8rem;\n }\n\n .md-toc__list {\n margin-left: 0.8rem;\n }\n}\n
\u5b8c\u6574\u7684\u76ee\u5f55\u529f\u80fd\u5b9e\u73b0\uff1a
JavaScript
// docs/javascripts/toc.js\nclass TableOfContents {\n constructor() {\n this.toc = document.querySelector('.md-toc');\n this.tocLinks = this.toc.querySelectorAll('.md-toc__link');\n this.headings = document.querySelectorAll('h1[id], h2[id], h3[id], h4[id], h5[id], h6[id]');\n this.intersectionObserver = null;\n this.isScrolling = false;\n this.scrollTimeout = null;\n\n this.init();\n }\n\n init() {\n this.setupIntersectionObserver();\n this.setupScrollSpy();\n this.setupToggle();\n this.setupMobileToggle();\n this.handleInitialHash();\n }\n\n handleInitialHash() {\n // \u5904\u7406\u9875\u9762\u52a0\u8f7d\u65f6\u7684 hash\n if (window.location.hash) {\n const id = window.location.hash.substring(1);\n const target = document.getElementById(id);\n if (target) {\n setTimeout(() => {\n target.scrollIntoView();\n this.highlightTocItem(id);\n }, 100);\n }\n }\n }\n\n setupMobileToggle() {\n // \u521b\u5efa\u79fb\u52a8\u7aef\u5f00\u5173\u6309\u94ae\n const toggleButton = document.createElement('button');\n toggleButton.className = 'md-toc-toggle';\n toggleButton.innerHTML = `\n <span class=\"md-toc-toggle__icon\">\n {% include \".icons/material/menu.svg\" %}\n </span>\n `;\n\n // \u521b\u5efa\u906e\u7f69\u5c42\n const overlay = document.createElement('div');\n overlay.className = 'md-toc-overlay';\n\n document.body.appendChild(toggleButton);\n document.body.appendChild(overlay);\n\n // \u7ed1\u5b9a\u4e8b\u4ef6\n toggleButton.addEventListener('click', () => {\n this.toc.classList.toggle('expanded');\n document.body.style.overflow = this.toc.classList.contains('expanded') ? 'hidden' : '';\n });\n\n overlay.addEventListener('click', () => {\n this.toc.classList.remove('expanded');\n document.body.style.overflow = '';\n });\n }\n\n updateTocHeight() {\n const lists = this.toc.querySelectorAll('.md-toc__list');\n lists.forEach(list => {\n if (list.parentElement.classList.contains('expanded')) {\n list.style.height = list.scrollHeight + 'px';\n }\n });\n }\n\n onResize() {\n // \u76d1\u542c\u7a97\u53e3\u5927\u5c0f\u53d8\u5316\uff0c\u66f4\u65b0\u76ee\u5f55\u9ad8\u5ea6\n window.addEventListener('resize', debounce(() => {\n this.updateTocHeight();\n }, 100));\n }\n}\n\n// \u5de5\u5177\u51fd\u6570\nfunction debounce(fn, delay) {\n let timer = null;\n return function(...args) {\n clearTimeout(timer);\n timer = setTimeout(() => fn.apply(this, args), delay);\n };\n}\n\n// \u521d\u59cb\u5316\u76ee\u5f55\ndocument.addEventListener('DOMContentLoaded', () => {\n new TableOfContents();\n});\n
\u4f7f\u7528\u8fd9\u4e9b\u4ee3\u7801\uff0c\u9700\u8981\u5728 mkdocs.yml
\u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684\u914d\u7f6e\uff1a
YAML
theme:\n name: material\n custom_dir: docs/overrides\n features:\n - toc.integrate\n - toc.follow\n\nextra_css:\n - stylesheets/toc.css\n\nextra_javascript:\n - javascripts/toc.js\n
\u8fd9\u6837\u5c31\u5b8c\u6210\u4e86\u4e00\u4e2a\u529f\u80fd\u5b8c\u6574\u3001\u4ea4\u4e92\u53cb\u597d\u7684\u76ee\u5f55\u5bfc\u822a\u7cfb\u7edf\uff0c\u4e3b\u8981\u7279\u70b9\u5305\u62ec\uff1a
- \u81ea\u52a8\u9ad8\u4eae\u5f53\u524d\u9605\u8bfb\u4f4d\u7f6e
- \u5e73\u6ed1\u6eda\u52a8\u5230\u76ee\u6807\u4f4d\u7f6e
- \u652f\u6301\u5c55\u5f00/\u6536\u8d77\u529f\u80fd
- \u79fb\u52a8\u7aef\u81ea\u9002\u5e94\u5e03\u5c40
- \u4f18\u96c5\u7684\u52a8\u753b\u6548\u679c
- \u826f\u597d\u7684\u53ef\u8bbf\u95ee\u6027\u652f\u6301
- \u6027\u80fd\u4f18\u5316\u8003\u8651
"},{"location":"Technology/mkdocs%20material/#8","title":"8 \u63d2\u4ef6\u4f7f\u7528","text":""},{"location":"Technology/mkdocs%20material/#81","title":"8.1 \u5fc5\u5907\u63d2\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#8111-search","title":"8.1.1.1 search","text":""},{"location":"Technology/mkdocs%20material/#8112","title":"8.1.1.2 \u57fa\u7840\u914d\u7f6e","text":"
- \u5b89\u88c5\u641c\u7d22\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-material\n
- \u914d\u7f6e\u641c\u7d22\uff1a
YAML
# mkdocs.yml\nplugins:\n - search:\n # \u641c\u7d22\u7d22\u5f15\u8bbe\u7f6e\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.]+' # \u5206\u8bcd\u5206\u9694\u7b26\n min_search_length: 2 # \u6700\u5c0f\u641c\u7d22\u957f\u5ea6\n prebuild_index: true # \u9884\u6784\u5efa\u7d22\u5f15\n\n # \u641c\u7d22\u5185\u5bb9\u914d\u7f6e\n indexing:\n full_sections: true # \u7d22\u5f15\u5b8c\u6574\u7ae0\u8282\n headings: true # \u7d22\u5f15\u6807\u9898\n content: true # \u7d22\u5f15\u5185\u5bb9\n tags: true # \u7d22\u5f15\u6807\u7b7e\n\n # \u641c\u7d22\u7ed3\u679c\u6392\u5e8f\n scoring:\n title_boost: 10 # \u6807\u9898\u6743\u91cd\n heading_boost: 5 # \u6807\u9898\u6743\u91cd\n content_boost: 1 # \u5185\u5bb9\u6743\u91cd\n
- \u641c\u7d22\u4e3b\u9898\u914d\u7f6e\uff1a
YAML
theme:\n features:\n - search.highlight # \u641c\u7d22\u9ad8\u4eae\n - search.share # \u641c\u7d22\u5206\u4eab\n - search.suggest # \u641c\u7d22\u5efa\u8bae\n\n # \u641c\u7d22\u754c\u9762\u6587\u5b57\n language: zh\n palette:\n - search:\n placeholder: \u641c\u7d22\u6587\u6863\n result:\n no_results_text: \u672a\u627e\u5230\u76f8\u5173\u7ed3\u679c\n searching_text: \u6b63\u5728\u641c\u7d22...\n
"},{"location":"Technology/mkdocs%20material/#8113","title":"8.1.1.3 \u4e2d\u6587\u641c\u7d22","text":"
- \u4e2d\u6587\u5206\u8bcd\u914d\u7f6e\uff1a
YAML
plugins:\n - search:\n jieba_dict: dict.txt # \u81ea\u5b9a\u4e49\u8bcd\u5178\u8def\u5f84\n jieba_dict_user: user_dict.txt # \u7528\u6237\u8bcd\u5178\u8def\u5f84\n\n # \u4e2d\u6587\u5206\u8bcd\u89c4\u5219\n separator: '[\uff0c\u3002\uff01\uff1f,!?]+'\n\n # \u4e2d\u6587\u505c\u7528\u8bcd\n stopwords:\n - \u7684\n - \u4e86\n - \u548c\n - \u662f\n - \u5c31\n - \u90fd\n - \u800c\n - \u53ca\n - \u4e0e\n - \u8fd9\n
- \u81ea\u5b9a\u4e49\u8bcd\u5178\u793a\u4f8b\uff08dict.txt\uff09\uff1a
Text Only
\u6280\u672f\u6587\u6863 5\n\u5f00\u53d1\u6307\u5357 5\n\u6700\u4f73\u5b9e\u8df5 5\n\u4f7f\u7528\u6559\u7a0b 5\n\u914d\u7f6e\u8bf4\u660e 5\n\u5e38\u89c1\u95ee\u9898 5\n
- \u5206\u8bcd\u4f18\u5316\u811a\u672c\uff1a
Python
# docs/search_optimize.py\nimport jieba\nimport json\nfrom pathlib import Path\n\ndef optimize_search_index(index_file, dict_file):\n # \u52a0\u8f7d\u81ea\u5b9a\u4e49\u8bcd\u5178\n jieba.load_userdict(dict_file)\n\n # \u8bfb\u53d6\u641c\u7d22\u7d22\u5f15\n with open(index_file, 'r', encoding='utf-8') as f:\n index = json.load(f)\n\n # \u4f18\u5316\u5206\u8bcd\n for doc in index['docs']:\n # \u5206\u8bcd\u5904\u7406\u6807\u9898\n title_words = list(jieba.cut(doc['title']))\n doc['title'] = ' '.join(title_words)\n\n # \u5206\u8bcd\u5904\u7406\u5185\u5bb9\n if 'text' in doc:\n text_words = list(jieba.cut(doc['text']))\n doc['text'] = ' '.join(text_words)\n\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u7d22\u5f15\n with open(index_file, 'w', encoding='utf-8') as f:\n json.dump(index, f, ensure_ascii=False, indent=2)\n\nif __name__ == '__main__':\n index_file = 'site/search/search_index.json'\n dict_file = 'docs/dict.txt'\n optimize_search_index(index_file, dict_file)\n
"},{"location":"Technology/mkdocs%20material/#8114","title":"8.1.1.4 \u641c\u7d22\u4f18\u5316","text":"
- \u7d22\u5f15\u4f18\u5316\uff1a
Python
# docs/search_index_optimizer.py\nfrom pathlib import Path\nimport json\nimport re\n\nclass SearchIndexOptimizer:\n def __init__(self, index_path):\n self.index_path = Path(index_path)\n self.index = self.load_index()\n\n def load_index(self):\n with open(self.index_path, 'r', encoding='utf-8') as f:\n return json.load(f)\n\n def save_index(self):\n with open(self.index_path, 'w', encoding='utf-8') as f:\n json.dump(self.index, f, ensure_ascii=False, indent=2)\n\n def optimize(self):\n # \u6e05\u7406\u65e0\u7528\u6570\u636e\n self._clean_data()\n # \u4f18\u5316\u6587\u672c\n self._optimize_text()\n # \u6dfb\u52a0\u6743\u91cd\n self._add_weights()\n # \u6784\u5efa\u53cd\u5411\u7d22\u5f15\n self._build_inverted_index()\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u7d22\u5f15\n self.save_index()\n\n def _clean_data(self):\n # \u79fb\u9664\u7a7a\u6587\u6863\n self.index['docs'] = [\n doc for doc in self.index['docs']\n if doc.get('text') or doc.get('title')\n ]\n\n # \u79fb\u9664\u91cd\u590d\u6587\u6863\n seen = set()\n unique_docs = []\n for doc in self.index['docs']:\n key = f\"{doc['location']}:{doc['title']}\"\n if key not in seen:\n seen.add(key)\n unique_docs.append(doc)\n self.index['docs'] = unique_docs\n\n def _optimize_text(self):\n for doc in self.index['docs']:\n # \u6e05\u7406HTML\u6807\u7b7e\n if 'text' in doc:\n doc['text'] = re.sub(r'<[^>]+>', '', doc['text'])\n\n # \u538b\u7f29\u7a7a\u767d\u5b57\u7b26\n for field in ['title', 'text']:\n if field in doc:\n doc[field] = ' '.join(doc[field].split())\n\n def _add_weights(self):\n for doc in self.index['docs']:\n # \u57fa\u7840\u6743\u91cd\n doc['weight'] = 1.0\n\n # \u6807\u9898\u957f\u5ea6\u6743\u91cd\n if 'title' in doc:\n title_len = len(doc['title'])\n doc['weight'] *= 1 + (1.0 / (1 + title_len))\n\n # \u6587\u672c\u957f\u5ea6\u6743\u91cd\n if 'text' in doc:\n text_len = len(doc['text'])\n doc['weight'] *= 1 + (100.0 / (1 + text_len))\n\n # URL\u6df1\u5ea6\u6743\u91cd\n depth = doc['location'].count('/')\n doc['weight'] *= 1 + (1.0 / (1 + depth))\n\n def _build_inverted_index(self):\n # \u6784\u5efa\u53cd\u5411\u7d22\u5f15\n inverted_index = {}\n for i, doc in enumerate(self.index['docs']):\n terms = set()\n\n # \u6dfb\u52a0\u6807\u9898\u8bcd\n if 'title' in doc:\n terms.update(doc['title'].lower().split())\n\n # \u6dfb\u52a0\u6587\u672c\u8bcd\n if 'text' in doc:\n terms.update(doc['text'].lower().split())\n\n # \u66f4\u65b0\u53cd\u5411\u7d22\u5f15\n for term in terms:\n if term not in inverted_index:\n inverted_index[term] = []\n inverted_index[term].append({\n 'id': i,\n 'weight': doc['weight']\n })\n\n self.index['inverted_index'] = inverted_index\n\n# \u4f7f\u7528\u4f18\u5316\u5668\noptimizer = SearchIndexOptimizer('site/search/search_index.json')\noptimizer.optimize()\n
- \u641c\u7d22\u6027\u80fd\u76d1\u63a7\uff1a
JavaScript
// docs/javascripts/search-monitor.js\nclass SearchMonitor {\n constructor() {\n this.metrics = {\n searches: 0,\n avgTime: 0,\n slowest: 0,\n fastest: Infinity\n };\n\n this.init();\n }\n\n init() {\n this.monitorSearchInput();\n this.monitorSearchResults();\n this.setupReporting();\n }\n\n monitorSearchInput() {\n const searchInput = document.querySelector('.md-search__input');\n let startTime;\n\n searchInput?.addEventListener('input', () => {\n startTime = performance.now();\n });\n\n searchInput?.addEventListener('search', () => {\n const endTime = performance.now();\n const duration = endTime - startTime;\n\n this.updateMetrics(duration);\n });\n }\n\n updateMetrics(duration) {\n this.metrics.searches++;\n this.metrics.avgTime = (\n (this.metrics.avgTime * (this.metrics.searches - 1) + duration) /\n this.metrics.searches\n );\n this.metrics.slowest = Math.max(this.metrics.slowest, duration);\n this.metrics.fastest = Math.min(this.metrics.fastest, duration);\n\n // \u53d1\u9001\u7edf\u8ba1\u6570\u636e\n this.sendMetrics();\n }\n\n sendMetrics() {\n // \u53ef\u4ee5\u53d1\u9001\u5230\u7edf\u8ba1\u670d\u52a1\n console.log('Search Metrics:', this.metrics);\n }\n}\n\n// \u521d\u59cb\u5316\u76d1\u63a7\nnew SearchMonitor();\n
"},{"location":"Technology/mkdocs%20material/#812-glightbox","title":"8.1.2 glightbox","text":""},{"location":"Technology/mkdocs%20material/#8121","title":"8.1.2.1 \u56fe\u7247\u9884\u89c8","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-glightbox\n
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - glightbox:\n # \u57fa\u7840\u8bbe\u7f6e\n auto_caption: true # \u81ea\u52a8\u6dfb\u52a0\u6807\u9898\n caption_position: bottom # \u6807\u9898\u4f4d\u7f6e\n display_description: true # \u663e\u793a\u63cf\u8ff0\n\n # \u89e6\u6478\u8bbe\u7f6e\n touchNavigation: true # \u89e6\u6478\u5bfc\u822a\n loop: true # \u5faa\u73af\u6d4f\u89c8\n effect: zoom # \u8fc7\u6e21\u6548\u679c\n\n # \u56fe\u7247\u8bbe\u7f6e\n width: 100% # \u56fe\u7247\u5bbd\u5ea6\n height: auto # \u56fe\u7247\u9ad8\u5ea6\n zoomable: true # \u542f\u7528\u7f29\u653e\n draggable: true # \u542f\u7528\u62d6\u52a8\n
- \u81ea\u5b9a\u4e49\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/glightbox.css */\n.glightbox-clean {\n /* \u5bb9\u5668\u6837\u5f0f */\n --glow-padding: 2rem;\n --glow-bg: rgba(0, 0, 0, 0.95);\n\n /* \u63a7\u5236\u6309\u94ae */\n --glow-btn-color: rgba(255, 255, 255, 0.8);\n --glow-btn-hover: #fff;\n\n /* \u52a0\u8f7d\u52a8\u753b */\n --glow-loading-bg: rgba(0, 0, 0, 0.5);\n --glow-loading-width: 40px;\n --glow-loading-height: 40px;\n}\n\n/* \u6807\u9898\u6837\u5f0f */\n.glightbox-caption {\n font-family: var(--md-font-family);\n font-size: 0.9rem;\n padding: 1rem;\n background: rgba(0, 0, 0, 0.8);\n}\n\n/* \u63cf\u8ff0\u6837\u5f0f */\n.glightbox-description {\n font-size: 0.8rem;\n color: rgba(255, 255, 255, 0.7);\n margin-top: 0.5rem;\n}\n\n/* \u52a0\u8f7d\u52a8\u753b */\n.glightbox-loading {\n border: 3px solid rgba(255, 255, 255, 0.2);\n border-top-color: #fff;\n border-radius: 50%;\n animation: glow-spin 1s linear infinite;\n}\n\n@keyframes glow-spin {\n to { transform: rotate(360deg); }\n}\n
"},{"location":"Technology/mkdocs%20material/#8122","title":"8.1.2.2 \u753b\u5eca\u6a21\u5f0f","text":"
- \u753b\u5eca\u914d\u7f6e\uff1a
YAML
plugins:\n - glightbox:\n # \u753b\u5eca\u8bbe\u7f6e\n gallery: true # \u542f\u7528\u753b\u5eca\n gallery_mode: true # \u753b\u5eca\u6a21\u5f0f\n gallery_trigger: click # \u89e6\u53d1\u65b9\u5f0f\n\n # \u7f29\u7565\u56fe\u8bbe\u7f6e\n thumb_width: 150 # \u7f29\u7565\u56fe\u5bbd\u5ea6\n thumb_height: 100 # \u7f29\u7565\u56fe\u9ad8\u5ea6\n thumb_fit: cover # \u7f29\u7565\u56fe\u9002\u5e94\u65b9\u5f0f\n
- \u753b\u5eca\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/gallery.html -->\n<div class=\"gallery\">\n {% for image in page.meta.gallery %}\n <a href=\"{{ image.url }}\" \n class=\"gallery-item\"\n data-gallery=\"gallery\"\n data-glightbox=\"title: {{ image.title }}; description: {{ image.description }}\">\n <img src=\"{{ image.thumbnail or image.url }}\" \n alt=\"{{ image.title }}\"\n loading=\"lazy\">\n {% if image.title %}\n <div class=\"gallery-caption\">{{ image.title }}</div>\n {% endif %}\n </a>\n {% endfor %}\n</div>\n
- \u753b\u5eca\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/gallery.css */\n.gallery {\n display: grid;\n grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));\n gap: 1rem;\n padding: 1rem;\n}\n\n.gallery-item {\n position: relative;\n overflow: hidden;\n border-radius: 4px;\n cursor: pointer;\n transition: transform 0.3s ease;\n}\n\n.gallery-item:hover {\n transform: translateY(-4px);\n}\n\n.gallery-item img {\n width: 100%;\n height: 100%;\n object-fit: cover;\n transition: transform 0.3s ease;\n}\n\n.gallery-item:hover img {\n transform: scale(1.1);\n}\n\n.gallery-caption {\n position: absolute;\n bottom: 0;\n left: 0;\n right: 0;\n padding: 0.5rem;\n background: rgba(0, 0, 0, 0.7);\n color: white;\n font-size: 0.8rem;\n transform: translateY(100%);\n transition: transform 0.3s ease;\n}\n\n.gallery-item:hover .gallery-caption {\n transform: translateY(0);\n}\n
"},{"location":"Technology/mkdocs%20material/#82","title":"8.2 \u63a8\u8350\u63d2\u4ef6","text":""},{"location":"Technology/mkdocs%20material/#8211-git-revision-date","title":"8.2.1.1 git-revision-date","text":""},{"location":"Technology/mkdocs%20material/#8212","title":"8.2.1.2 \u65f6\u95f4\u663e\u793a","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-git-revision-date-localized-plugin\n
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - git-revision-date-localized:\n enabled: true\n type: date # \u663e\u793a\u7c7b\u578b\uff1adate, datetime, iso_date, iso_datetime, timeago\n timezone: Asia/Shanghai # \u65f6\u533a\u8bbe\u7f6e\n locale: zh # \u672c\u5730\u5316\u8bed\u8a00\n fallback_to_build_date: true # \u65e0 git \u4fe1\u606f\u65f6\u4f7f\u7528\u6784\u5efa\u65f6\u95f4\n\n # \u65f6\u95f4\u683c\u5f0f\n enable_creation_date: true # \u663e\u793a\u521b\u5efa\u65f6\u95f4\n exclude:\n - index.md\n - 404.md\n
- \u65f6\u95f4\u663e\u793a\u6a21\u677f\uff1a
HTML
<!-- docs/overrides/partials/date.html -->\n{% if page.meta.git_revision_date_localized %}\n<div class=\"page-date\">\n <!-- \u6700\u540e\u66f4\u65b0\u65f6\u95f4 -->\n <div class=\"date-item\">\n <span class=\"date-icon\">\n {% include \".icons/material/update.svg\" %}\n </span>\n <span class=\"date-text\">\n \u6700\u540e\u66f4\u65b0: {{ page.meta.git_revision_date_localized }}\n </span>\n </div>\n\n <!-- \u521b\u5efa\u65f6\u95f4 -->\n {% if page.meta.git_creation_date_localized %}\n <div class=\"date-item\">\n <span class=\"date-icon\">\n {% include \".icons/material/clock-outline.svg\" %}\n </span>\n <span class=\"date-text\">\n \u521b\u5efa\u65f6\u95f4: {{ page.meta.git_creation_date_localized }}\n </span>\n </div>\n {% endif %}\n</div>\n
"},{"location":"Technology/mkdocs%20material/#8213","title":"8.2.1.3 \u66f4\u65b0\u8bb0\u5f55","text":"
- \u66f4\u65b0\u8bb0\u5f55\u663e\u793a\uff1a
HTML
<!-- docs/overrides/partials/revision.html -->\n{% if page.meta.git_revision_date_localized %}\n<div class=\"revision-history\">\n <h3>\u66f4\u65b0\u8bb0\u5f55</h3>\n <div class=\"revision-list\">\n {% for revision in page.meta.git_history %}\n <div class=\"revision-item\">\n <div class=\"revision-date\">\n {{ revision.date }}\n </div>\n <div class=\"revision-message\">\n {{ revision.message }}\n </div>\n </div>\n {% endfor %}\n </div>\n</div>\n
- \u6837\u5f0f\u914d\u7f6e\uff1a
CSS
/* docs/stylesheets/revision.css */\n.revision-history {\n margin: 2rem 0;\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n}\n\n.revision-item {\n display: flex;\n padding: 0.5rem 0;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.revision-date {\n flex: 0 0 200px;\n color: var(--md-default-fg-color--light);\n}\n\n.revision-message {\n flex: 1;\n}\n\n/* \u65f6\u95f4\u7ebf\u6837\u5f0f */\n.revision-item {\n position: relative;\n padding-left: 2rem;\n}\n\n.revision-item::before {\n content: '';\n position: absolute;\n left: 0;\n top: 1rem;\n width: 12px;\n height: 12px;\n background: var(--md-accent-fg-color);\n border-radius: 50%;\n}\n\n.revision-item::after {\n content: '';\n position: absolute;\n left: 5px;\n top: 1.5rem;\n bottom: -0.5rem;\n width: 2px;\n background: var(--md-default-fg-color--lightest);\n}\n\n.revision-item:last-child::after {\n display: none;\n}\n
"},{"location":"Technology/mkdocs%20material/#8214","title":"8.2.1.4 \u4f5c\u8005\u4fe1\u606f","text":"
- \u4f5c\u8005\u4fe1\u606f\u914d\u7f6e\uff1a
YAML
plugins:\n - git-revision-date-localized:\n enabled: true\n type: date\n enable_authors: true # \u542f\u7528\u4f5c\u8005\u4fe1\u606f\n authors_file: authors.yaml # \u4f5c\u8005\u914d\u7f6e\u6587\u4ef6\n
- \u4f5c\u8005\u914d\u7f6e\u6587\u4ef6 (authors. yaml)\uff1a
YAML
authors:\n john:\n name: John Doe\n email: john@example.com\n avatar: assets/authors/john.jpg\n bio: \u8d44\u6df1\u6280\u672f\u4f5c\u8005\n social:\n github: johndoe\n twitter: johndoe\n\n jane:\n name: Jane Smith\n email: jane@example.com\n avatar: assets/authors/jane.jpg\n bio: \u524d\u7aef\u5f00\u53d1\u4e13\u5bb6\n social:\n github: janesmith\n linkedin: janesmith\n
- \u4f5c\u8005\u4fe1\u606f\u663e\u793a\uff1a
HTML
<!-- docs/overrides/partials/author.html -->\n{% if page.meta.git_authors %}\n<div class=\"page-authors\">\n {% for author in page.meta.git_authors %}\n <div class=\"author-card\">\n <!-- \u4f5c\u8005\u5934\u50cf -->\n <div class=\"author-avatar\">\n {% if author.avatar %}\n <img src=\"{{ author.avatar }}\" alt=\"{{ author.name }}\">\n {% else %}\n <div class=\"avatar-placeholder\">\n {{ author.name[0] }}\n </div>\n {% endif %}\n </div>\n\n <!-- \u4f5c\u8005\u4fe1\u606f -->\n <div class=\"author-info\">\n <h4 class=\"author-name\">{{ author.name }}</h4>\n {% if author.bio %}\n <p class=\"author-bio\">{{ author.bio }}</p>\n {% endif %}\n\n <!-- \u793e\u4ea4\u94fe\u63a5 -->\n {% if author.social %}\n <div class=\"author-social\">\n {% for platform, username in author.social.items() %}\n <a href=\"https://{{ platform }}.com/{{ username }}\" \n target=\"_blank\"\n class=\"social-link\">\n {% include \".icons/material/\" ~ platform ~ \".svg\" %}\n </a>\n {% endfor %}\n </div>\n {% endif %}\n </div>\n </div>\n {% endfor %}\n</div>\n
- \u4f5c\u8005\u4fe1\u606f\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/author.css */\n.page-authors {\n margin: 2rem 0;\n display: grid;\n grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));\n gap: 1rem;\n}\n\n.author-card {\n display: flex;\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n}\n\n.author-card:hover {\n transform: translateY(-2px);\n}\n\n.author-avatar {\n flex: 0 0 80px;\n margin-right: 1rem;\n}\n\n.author-avatar img {\n width: 80px;\n height: 80px;\n border-radius: 50%;\n object-fit: cover;\n}\n\n.avatar-placeholder {\n width: 80px;\n height: 80px;\n border-radius: 50%;\n background: var(--md-accent-fg-color);\n color: white;\n display: flex;\n align-items: center;\n justify-content: center;\n font-size: 2rem;\n}\n\n.author-info {\n flex: 1;\n}\n\n.author-name {\n margin: 0 0 0.5rem;\n font-size: 1.1rem;\n}\n\n.author-bio {\n color: var(--md-default-fg-color--light);\n font-size: 0.9rem;\n margin: 0 0 0.5rem;\n}\n\n.author-social {\n display: flex;\n gap: 0.5rem;\n}\n\n.social-link {\n color: var(--md-default-fg-color--light);\n transition: color 0.2s ease;\n}\n\n.social-link:hover {\n color: var(--md-accent-fg-color);\n}\n
"},{"location":"Technology/mkdocs%20material/#822-minify","title":"8.2.2 minify","text":""},{"location":"Technology/mkdocs%20material/#8221-html","title":"8.2.2.1 HTML \u538b\u7f29","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-minify-plugin\n
- \u914d\u7f6e\u538b\u7f29\uff1a
YAML
# mkdocs.yml\nplugins:\n - minify:\n minify_html: true\n htmlmin_opts:\n # HTML\u538b\u7f29\u9009\u9879\n remove_comments: true # \u79fb\u9664\u6ce8\u91ca\n remove_empty_space: true # \u79fb\u9664\u7a7a\u767d\n remove_all_empty_space: true # \u79fb\u9664\u6240\u6709\u7a7a\u767d\n reduce_boolean_attributes: true # \u7b80\u5316\u5e03\u5c14\u5c5e\u6027\n remove_optional_tags: false # \u4fdd\u7559\u53ef\u9009\u6807\u7b7e\n remove_redundant_attributes: true # \u79fb\u9664\u5197\u4f59\u5c5e\u6027\n minify_js: true # \u538b\u7f29\u5185\u8054JS\n minify_css: true # \u538b\u7f29\u5185\u8054CSS\n
"},{"location":"Technology/mkdocs%20material/#8222-css","title":"8.2.2.2 CSS \u538b\u7f29","text":"
- CSS \u538b\u7f29\u914d\u7f6e\uff1a
YAML
plugins:\n - minify:\n minify_css: true\n css_files:\n - stylesheets/extra.css\n - stylesheets/custom.css\n cssmin_opts:\n # CSS\u538b\u7f29\u9009\u9879\n level: 2 # \u538b\u7f29\u7ea7\u522b(1-2)\n compatibility: ie9 # \u517c\u5bb9\u6027\n format: beautify # \u683c\u5f0f\u5316\u8f93\u51fa\n
- CSS \u4f18\u5316\u811a\u672c\uff1a
Python
# docs/tools/css_optimizer.py\nimport re\nfrom pathlib import Path\nfrom csscompressor import compress\n\nclass CSSOptimizer:\n def __init__(self, input_dir, output_dir):\n self.input_dir = Path(input_dir)\n self.output_dir = Path(output_dir)\n self.output_dir.mkdir(exist_ok=True)\n\n def optimize(self):\n \"\"\"\u4f18\u5316\u6240\u6709CSS\u6587\u4ef6\"\"\"\n for css_file in self.input_dir.glob('**/*.css'):\n # \u8bfb\u53d6CSS\u5185\u5bb9\n content = css_file.read_text(encoding='utf-8')\n\n # \u4f18\u5316CSS\n optimized = self.optimize_css(content)\n\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u6587\u4ef6\n output_file = self.output_dir / css_file.name\n output_file.write_text(optimized, encoding='utf-8')\n\n def optimize_css(self, content):\n \"\"\"\u4f18\u5316\u5355\u4e2aCSS\u6587\u4ef6\u5185\u5bb9\"\"\"\n # \u79fb\u9664\u6ce8\u91ca\n content = re.sub(r'/\\*[\\s\\S]*?\\*/', '', content)\n\n # \u79fb\u9664\u591a\u4f59\u7a7a\u767d\n content = re.sub(r'\\s+', ' ', content)\n\n # \u538b\u7f29CSS\n content = compress(content)\n\n return content\n\n# \u4f7f\u7528\u4f18\u5316\u5668\noptimizer = CSSOptimizer(\n input_dir='docs/stylesheets',\n output_dir='docs/stylesheets/min'\n)\noptimizer.optimize()\n
"},{"location":"Technology/mkdocs%20material/#8223-js","title":"8.2.2.3 JS \u538b\u7f29","text":"
- JS \u538b\u7f29\u914d\u7f6e\uff1a
YAML
plugins:\n - minify:\n minify_js: true\n js_files:\n - javascripts/extra.js\n - javascripts/custom.js\n jsmin_opts:\n # JS\u538b\u7f29\u9009\u9879\n mangle: true # \u6df7\u6dc6\u53d8\u91cf\u540d\n compress: true # \u538b\u7f29\u4ee3\u7801\n output:\n beautify: false # \u4e0d\u7f8e\u5316\u8f93\u51fa\n
- JS \u4f18\u5316\u811a\u672c\uff1a
Python
# docs/tools/js_optimizer.py\nimport re\nfrom pathlib import Path\nimport terser\n\nclass JSOptimizer:\n def __init__(self, input_dir, output_dir):\n self.input_dir = Path(input_dir)\n self.output_dir = Path(output_dir)\n self.output_dir.mkdir(exist_ok=True)\n\n def optimize(self):\n \"\"\"\u4f18\u5316\u6240\u6709JS\u6587\u4ef6\"\"\"\n for js_file in self.input_dir.glob('**/*.js'):\n # \u8bfb\u53d6JS\u5185\u5bb9\n content = js_file.read_text(encoding='utf-8')\n\n # \u4f18\u5316JS\n optimized = self.optimize_js(content)\n\n # \u4fdd\u5b58\u4f18\u5316\u540e\u7684\u6587\u4ef6\n output_file = self.output_dir / js_file.name\n output_file.write_text(optimized, encoding='utf-8')\n\n def optimize_js(self, content):\n \"\"\"\u4f18\u5316\u5355\u4e2aJS\u6587\u4ef6\u5185\u5bb9\"\"\"\n options = {\n 'compress': {\n 'pure_funcs': ['console.log'], # \u79fb\u9664console.log\n 'drop_debugger': True, # \u79fb\u9664debugger\n 'unsafe': True, # \u542f\u7528\u4e0d\u5b89\u5168\u4f18\u5316\n 'passes': 2 # \u4f18\u5316\u6b21\u6570\n },\n 'mangle': {\n 'toplevel': True, # \u6df7\u6dc6\u9876\u7ea7\u4f5c\u7528\u57df\n 'eval': True # \u6df7\u6dc6eval\u4e2d\u7684\u53d8\u91cf\n }\n }\n\n # \u4f7f\u7528terser\u538b\u7f29\n result = terser.minify(content, options)\n return result['code']\n\n# \u4f7f\u7528\u4f18\u5316\u5668\noptimizer = JSOptimizer(\n input_dir='docs/javascripts',\n output_dir='docs/javascripts/min'\n)\noptimizer.optimize()\n
\u8fd9\u4e9b\u914d\u7f6e\u548c\u811a\u672c\u53ef\u4ee5\u6709\u6548\u51cf\u5c0f\u7ad9\u70b9\u8d44\u6e90\u5927\u5c0f\uff0c\u63d0\u5347\u52a0\u8f7d\u901f\u5ea6\u3002\u8bb0\u5f97\u5728\u751f\u4ea7\u73af\u5883\u4e2d\u4f7f\u7528\u538b\u7f29\u540e\u7684\u8d44\u6e90\u3002
"},{"location":"Technology/mkdocs%20material/#823-social","title":"8.2.3 social","text":""},{"location":"Technology/mkdocs%20material/#8231","title":"8.2.3.1 \u793e\u4ea4\u94fe\u63a5","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-social-plugin\n
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nplugins:\n - social:\n enabled: true\n # \u793e\u4ea4\u5e73\u53f0\u914d\u7f6e\n cards: true # \u542f\u7528\u793e\u4ea4\u5361\u7247\n cards_color: # \u5361\u7247\u989c\u8272\n fill: \"#0FF1CE\" # \u80cc\u666f\u8272\n text: \"#FFFFFF\" # \u6587\u5b57\u8272\n cards_font: Roboto # \u5361\u7247\u5b57\u4f53\n\nextra:\n social:\n - icon: material/github\n link: https://github.com/username\n name: GitHub\n - icon: material/twitter\n link: https://twitter.com/username\n name: Twitter\n - icon: material/linkedin\n link: https://linkedin.com/in/username\n name: LinkedIn\n
- \u793e\u4ea4\u94fe\u63a5\u6a21\u677f\uff1a
HTML
<!-- docs/overrides/partials/social.html -->\n{% if config.extra.social %}\n<div class=\"social-links\">\n {% for social in config.extra.social %}\n <a href=\"{{ social.link }}\" \n target=\"_blank\"\n rel=\"noopener\"\n title=\"{{ social.name }}\"\n class=\"social-link\">\n <span class=\"social-icon\">\n {% include \".icons/\" ~ social.icon ~ \".svg\" %}\n </span>\n <span class=\"social-name\">{{ social.name }}</span>\n </a>\n {% endfor %}\n</div>\n{% endif %}\n
\u6837\u5f0f\u914d\u7f6e\uff1a
CSS
/* docs/stylesheets/social.css */\n.social-links {\n display: flex;\n gap: 1rem;\n margin: 2rem 0;\n}\n\n.social-link {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n transition: all 0.2s ease;\n}\n\n.social-link:hover {\n transform: translateY(-2px);\n color: var(--md-accent-fg-color);\n background: var(--md-code-bg-color--light);\n}\n\n.social-icon {\n margin-right: 0.5rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n\n.social-name {\n font-size: 0.9rem;\n}\n\n/* \u52a8\u753b\u6548\u679c */\n.social-link .social-icon {\n transition: transform 0.2s ease;\n}\n\n.social-link:hover .social-icon {\n transform: scale(1.2);\n}\n
"},{"location":"Technology/mkdocs%20material/#8232","title":"8.2.3.2 \u5206\u4eab\u529f\u80fd","text":"
- \u5206\u4eab\u529f\u80fd\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nextra:\n social_share:\n - platform: twitter\n text: \u5206\u4eab\u5230 Twitter\n icon: material/twitter\n - platform: facebook\n text: \u5206\u4eab\u5230 Facebook\n icon: material/facebook\n - platform: linkedin\n text: \u5206\u4eab\u5230 LinkedIn\n icon: material/linkedin\n - platform: weibo\n text: \u5206\u4eab\u5230\u5fae\u535a\n icon: material/sina-weibo\n
- \u5206\u4eab\u529f\u80fd\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/share.html -->\n<div class=\"page-share\">\n <h4>\u5206\u4eab\u6587\u7ae0</h4>\n <div class=\"share-buttons\">\n {% for share in config.extra.social_share %}\n <button class=\"share-button\" \n data-platform=\"{{ share.platform }}\"\n onclick=\"shareContent('{{ share.platform }}')\">\n <span class=\"share-icon\">\n {% include \".icons/\" ~ share.icon ~ \".svg\" %}\n </span>\n <span class=\"share-text\">{{ share.text }}</span>\n </button>\n {% endfor %}\n </div>\n</div>\n\n<script>\nfunction shareContent(platform) {\n const url = encodeURIComponent(window.location.href);\n const title = encodeURIComponent(document.title);\n const text = encodeURIComponent(document.querySelector('meta[name=\"description\"]')?.content || '');\n\n let shareUrl;\n switch(platform) {\n case 'twitter':\n shareUrl = `https://twitter.com/intent/tweet?url=${url}&text=${title}`;\n break;\n case 'facebook':\n shareUrl = `https://www.facebook.com/sharer/sharer.php?u=${url}`;\n break;\n case 'linkedin':\n shareUrl = `https://www.linkedin.com/sharing/share-offsite/?url=${url}`;\n break;\n case 'weibo':\n shareUrl = `http://service.weibo.com/share/share.php?url=${url}&title=${title}`;\n break;\n }\n\n window.open(shareUrl, '_blank', 'width=600,height=400');\n}\n</script>\n
- \u5206\u4eab\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/share.css */\n.page-share {\n margin: 2rem 0;\n padding: 1rem;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n}\n\n.share-buttons {\n display: flex;\n flex-wrap: wrap;\n gap: 0.5rem;\n margin-top: 1rem;\n}\n\n.share-button {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n border: none;\n border-radius: 2rem;\n background: var(--md-default-bg-color);\n color: var(--md-default-fg-color);\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.share-button:hover {\n background: var(--md-accent-fg-color);\n color: white;\n}\n\n.share-icon {\n margin-right: 0.5rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#8233","title":"8.2.3.3 \u5173\u6ce8\u6309\u94ae","text":"
- \u5173\u6ce8\u6309\u94ae\u914d\u7f6e\uff1a
YAML
extra:\n follow_buttons:\n - platform: github\n username: your-username\n icon: material/github\n text: \u5173\u6ce8\u6211\u7684 GitHub\n - platform: twitter\n username: your-username\n icon: material/twitter\n text: \u5173\u6ce8\u6211\u7684 Twitter\n
- \u5173\u6ce8\u6309\u94ae\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/follow.html -->\n<div class=\"follow-buttons\">\n {% for btn in config.extra.follow_buttons %}\n <a href=\"https://{{ btn.platform }}.com/{{ btn.username }}\"\n target=\"_blank\"\n class=\"follow-button\"\n data-platform=\"{{ btn.platform }}\">\n <span class=\"follow-icon\">\n {% include \".icons/\" ~ btn.icon ~ \".svg\" %}\n </span>\n <span class=\"follow-text\">{{ btn.text }}</span>\n <span class=\"follow-count\" id=\"{{ btn.platform }}-count\">\n <!-- \u5c06\u901a\u8fc7API\u52a8\u6001\u66f4\u65b0 -->\n </span>\n </a>\n {% endfor %}\n</div>\n\n<script>\nasync function updateFollowCounts() {\n const buttons = document.querySelectorAll('.follow-button');\n\n for (const button of buttons) {\n const platform = button.dataset.platform;\n const username = button.href.split('/').pop();\n\n // \u83b7\u53d6\u5173\u6ce8\u6570\n const count = await getFollowCount(platform, username);\n\n // \u66f4\u65b0\u663e\u793a\n const countElement = button.querySelector('.follow-count');\n if (countElement && count) {\n countElement.textContent = formatCount(count);\n }\n }\n}\n\nasync function getFollowCount(platform, username) {\n switch (platform) {\n case 'github':\n const response = await fetch(`https://api.github.com/users/${username}`);\n const data = await response.json();\n return data.followers;\n\n // \u5176\u4ed6\u5e73\u53f0API\u5b9e\u73b0...\n default:\n return null;\n }\n}\n\nfunction formatCount(count) {\n if (count >= 1000000) {\n return (count / 1000000).toFixed(1) + 'M';\n }\n if (count >= 1000) {\n return (count / 1000).toFixed(1) + 'K';\n }\n return count.toString();\n}\n\n// \u521d\u59cb\u5316\nupdateFollowCounts();\n</script>\n
- \u5173\u6ce8\u6309\u94ae\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/follow.css */\n.follow-buttons {\n display: flex;\n flex-wrap: wrap;\n gap: 1rem;\n margin: 2rem 0;\n}\n\n.follow-button {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n text-decoration: none;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n transition: all 0.2s ease;\n}\n\n.follow-button:hover {\n transform: translateY(-2px);\n}\n\n/* \u5e73\u53f0\u7279\u5b9a\u6837\u5f0f */\n.follow-button[data-platform=\"github\"] {\n color: #333;\n}\n\n.follow-button[data-platform=\"github\"]:hover {\n background: #333;\n color: white;\n}\n\n.follow-button[data-platform=\"twitter\"] {\n color: #1DA1F2;\n}\n\n.follow-button[data-platform=\"twitter\"]:hover {\n background: #1DA1F2;\n color: white;\n}\n\n.follow-icon {\n margin-right: 0.5rem;\n width: 1.2rem;\n height: 1.2rem;\n}\n\n.follow-count {\n margin-left: 0.5rem;\n padding: 0.2rem 0.5rem;\n background: rgba(0, 0, 0, 0.1);\n border-radius: 1rem;\n font-size: 0.8rem;\n}\n
"},{"location":"Technology/mkdocs%20material/#824-tags","title":"8.2.4 tags","text":""},{"location":"Technology/mkdocs%20material/#8241","title":"8.2.4.1 \u6807\u7b7e\u7cfb\u7edf","text":"
- \u5b89\u88c5\u63d2\u4ef6\uff1a
Bash
pip install mkdocs-tags-plugin\n
- \u914d\u7f6e\u6807\u7b7e\uff1a
YAML
# mkdocs.yml\nplugins:\n - tags:\n tags_file: tags.md\n tags_allowed: # \u5141\u8bb8\u7684\u6807\u7b7e\u5217\u8868\n - Python\n - JavaScript\n - CSS\n - HTML\n tags_extra_files:\n cloud: tag_cloud.md # \u6807\u7b7e\u4e91\u9875\u9762\n list: tag_list.md # \u6807\u7b7e\u5217\u8868\u9875\u9762\n
- \u5728\u6587\u6863\u4e2d\u4f7f\u7528\u6807\u7b7e\uff1a
Markdown
---\ntags:\n - Python\n - \u6559\u7a0b\n---\n\n# Python \u5165\u95e8\u6559\u7a0b\n
- \u6807\u7b7e\u663e\u793a\u7ec4\u4ef6\uff1a
HTML
<!-- docs/overrides/partials/tags.html -->\n{% if page.meta.tags %}\n<div class=\"page-tags\">\n {% for tag in page.meta.tags %}\n <a href=\"{{ base_url }}/tags/#{{ tag|lower }}\" class=\"tag\">\n <span class=\"tag-icon\">\n {% include \".icons/material/tag.svg\" %}\n </span>\n <span class=\"tag-text\">{{ tag }}</span>\n </a>\n {% endfor %}\n</div>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#8242","title":"8.2.4.2 \u6807\u7b7e\u4e91","text":"
- \u6807\u7b7e\u4e91\u5b9e\u73b0\uff1a
Python
# docs/plugins/tags/cloud.py\nfrom collections import Counter\nimport math\n\nclass TagCloud:\n def __init__(self, tags):\n self.tags = Counter(tags)\n self.min_size = 0.8\n self.max_size = 2.0\n\n def get_tag_sizes(self):\n \"\"\"\u8ba1\u7b97\u6807\u7b7e\u5927\u5c0f\"\"\"\n if not self.tags:\n return {}\n\n # \u83b7\u53d6\u6700\u5927\u548c\u6700\u5c0f\u9891\u7387\n max_freq = max(self.tags.values())\n min_freq = min(self.tags.values())\n\n # \u8ba1\u7b97\u6bcf\u4e2a\u6807\u7b7e\u7684\u5927\u5c0f\n sizes = {}\n for tag, freq in self.tags.items():\n if max_freq == min_freq:\n sizes[tag] = (self.max_size + self.min_size) / 2\n else:\n size = self.min_size + (self.max_size - self.min_size) * \\\n ((freq - min_freq) / (max_freq - min_freq))\n sizes[tag] = round(size, 2)\n\n return sizes\n\ndef generate_tag_cloud(tags):\n \"\"\"\u751f\u6210\u6807\u7b7e\u4e91HTML\"\"\"\n cloud = TagCloud(tags)\n sizes = cloud.get_tag_sizes()\n\n html = ['<div class=\"tag-cloud\">']\n\n for tag, size in sizes.items():\n html.append(f'''\n <a href=\"#tag-{tag.lower()}\" \n class=\"tag-cloud-item\"\n style=\"font-size: {size}rem\">\n {tag}\n </a>\n ''')\n\n html.append('</div>')\n return '\\n'.join(html)\n
- \u6807\u7b7e\u4e91\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tags.css */\n.tag-cloud {\n display: flex;\n flex-wrap: wrap;\n justify-content: center;\n gap: 1rem;\n padding: 2rem;\n}\n\n.tag-cloud-item {\n color: var(--md-default-fg-color);\n text-decoration: none;\n padding: 0.5rem 1rem;\n border-radius: 2rem;\n background: var(--md-code-bg-color);\n transition: all 0.2s ease;\n}\n\n.tag-cloud-item:hover {\n transform: scale(1.1);\n background: var(--md-accent-fg-color);\n color: white;\n}\n
"},{"location":"Technology/mkdocs%20material/#8243","title":"8.2.4.3 \u6807\u7b7e\u9875\u9762","text":"
- \u6807\u7b7e\u5217\u8868\u9875\u9762\uff1a
Markdown
# \u6807\u7b7e\u7d22\u5f15\n\n## \u6807\u7b7e\u4e91\n[TAGS_CLOUD]\n\n## \u6807\u7b7e\u5217\u8868\n[TAGS_LIST]\n
- \u6807\u7b7e\u9875\u9762\u751f\u6210\u5668\uff1a
Python
# docs/plugins/tags/generator.py\nfrom pathlib import Path\nimport yaml\n\nclass TagPageGenerator:\n def __init__(self, config):\n self.config = config\n self.tags = {}\n\n def collect_tags(self):\n \"\"\"\u6536\u96c6\u6240\u6709\u6807\u7b7e\"\"\"\n docs_dir = Path(self.config['docs_dir'])\n\n for md_file in docs_dir.glob('**/*.md'):\n # \u8bfb\u53d6\u6587\u4ef6frontmatter\n content = md_file.read_text(encoding='utf-8')\n if content.startswith('---'):\n try:\n # \u89e3\u6790frontmatter\n _, frontmatter, _ = content.split('---', 2)\n meta = yaml.safe_load(frontmatter)\n\n if 'tags' in meta:\n # \u83b7\u53d6\u76f8\u5bf9\u8def\u5f84\n rel_path = md_file.relative_to(docs_dir)\n url = str(rel_path).replace('\\\\', '/')[:-3] # \u79fb\u9664.md\n\n # \u6dfb\u52a0\u5230\u6807\u7b7e\u7d22\u5f15\n for tag in meta['tags']:\n if tag not in self.tags:\n self.tags[tag] = []\n self.tags[tag].append({\n 'title': meta.get('title', url),\n 'url': url,\n 'description': meta.get('description', '')\n })\n except:\n continue\n\n def generate_tag_pages(self):\n \"\"\"\u751f\u6210\u6807\u7b7e\u76f8\u5173\u9875\u9762\"\"\"\n self.collect_tags()\n\n # \u751f\u6210\u6807\u7b7e\u5217\u8868\u9875\u9762\n if 'list' in self.config['tags_extra_files']:\n self.generate_list_page()\n\n # \u751f\u6210\u6bcf\u4e2a\u6807\u7b7e\u7684\u8be6\u60c5\u9875\u9762\n self.generate_tag_detail_pages()\n\n def generate_list_page(self):\n \"\"\"\u751f\u6210\u6807\u7b7e\u5217\u8868\u9875\u9762\"\"\"\n template = \"\"\"\n# \u6807\u7b7e\u5217\u8868\n\n{% for tag, posts in tags.items() %}\n## {{ tag }}\n\n{% for post in posts %}\n- [{{ post.title }}]({{ post.url }}){% if post.description %} - {{ post.description }}{% endif %}\n{% endfor %}\n\n{% endfor %}\n\"\"\"\n # \u4f7f\u7528 Jinja2 \u6e32\u67d3\u6a21\u677f\n from jinja2 import Template\n content = Template(template).render(tags=self.tags)\n\n # \u4fdd\u5b58\u9875\u9762\n output_file = Path(self.config['docs_dir']) / 'tags' / 'list.md'\n output_file.parent.mkdir(exist_ok=True)\n output_file.write_text(content, encoding='utf-8')\n\n def generate_tag_detail_pages(self):\n \"\"\"\u751f\u6210\u6bcf\u4e2a\u6807\u7b7e\u7684\u8be6\u60c5\u9875\u9762\"\"\"\n template = \"\"\"\n# \u6807\u7b7e: {{ tag }}\n\n## \u76f8\u5173\u6587\u7ae0\n\n{% for post in posts %}\n### [{{ post.title }}]({{ post.url }})\n{% if post.description %}\n{{ post.description }}\n{% endif %}\n{% endfor %}\n\n## \u76f8\u5173\u6807\u7b7e\n{% for related_tag in related_tags %}\n- [{{ related_tag }}](../{{ related_tag | lower }})\n{% endfor %}\n\"\"\"\n # \u6807\u7b7e\u76ee\u5f55\n tags_dir = Path(self.config['docs_dir']) / 'tags'\n tags_dir.mkdir(exist_ok=True)\n\n # \u4e3a\u6bcf\u4e2a\u6807\u7b7e\u751f\u6210\u9875\u9762\n for tag, posts in self.tags.items():\n # \u67e5\u627e\u76f8\u5173\u6807\u7b7e\n related_tags = self.find_related_tags(tag)\n\n # \u6e32\u67d3\u5185\u5bb9\n content = Template(template).render(\n tag=tag,\n posts=posts,\n related_tags=related_tags\n )\n\n # \u4fdd\u5b58\u9875\u9762\n output_file = tags_dir / f\"{tag.lower()}.md\"\n output_file.write_text(content, encoding='utf-8')\n\n def find_related_tags(self, current_tag):\n \"\"\"\u67e5\u627e\u76f8\u5173\u6807\u7b7e\"\"\"\n related = set()\n\n # \u83b7\u53d6\u5f53\u524d\u6807\u7b7e\u7684\u6240\u6709\u6587\u7ae0\n current_posts = self.tags[current_tag]\n\n # \u904d\u5386\u6240\u6709\u5176\u4ed6\u6807\u7b7e\n for tag, posts in self.tags.items():\n if tag == current_tag:\n continue\n\n # \u8ba1\u7b97\u6587\u7ae0\u4ea4\u96c6\n intersection = set(p['url'] for p in posts) & \\\n set(p['url'] for p in current_posts)\n\n # \u5982\u679c\u6709\u5171\u540c\u6587\u7ae0\uff0c\u8ba4\u4e3a\u662f\u76f8\u5173\u6807\u7b7e\n if intersection:\n related.add(tag)\n\n return list(related)\n
- \u6807\u7b7e\u9875\u9762\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/tags-page.css */\n/* \u6807\u7b7e\u5217\u8868\u9875\u9762 */\n.tags-list {\n margin: 2rem 0;\n}\n\n.tag-section {\n margin-bottom: 3rem;\n}\n\n.tag-section h2 {\n color: var(--md-accent-fg-color);\n border-bottom: 2px solid var(--md-accent-fg-color);\n padding-bottom: 0.5rem;\n}\n\n.tag-section .post-list {\n margin-left: 1rem;\n}\n\n.post-list-item {\n margin: 1rem 0;\n}\n\n.post-list-item .post-title {\n font-weight: 500;\n color: var(--md-default-fg-color);\n text-decoration: none;\n}\n\n.post-list-item .post-description {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-top: 0.2rem;\n}\n\n/* \u6807\u7b7e\u8be6\u60c5\u9875\u9762 */\n.tag-detail {\n padding: 2rem;\n}\n\n.tag-detail-header {\n text-align: center;\n margin-bottom: 3rem;\n}\n\n.tag-detail-title {\n font-size: 2rem;\n color: var(--md-primary-fg-color);\n}\n\n.tag-detail-count {\n color: var(--md-default-fg-color--light);\n}\n\n.related-posts {\n margin: 2rem 0;\n}\n\n.related-post {\n padding: 1rem;\n margin: 1rem 0;\n background: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n}\n\n.related-post:hover {\n transform: translateX(0.5rem);\n}\n\n.related-tags {\n display: flex;\n flex-wrap: wrap;\n gap: 0.5rem;\n margin: 2rem 0;\n}\n\n.related-tag {\n padding: 0.2rem 0.8rem;\n background: var(--md-code-bg-color);\n border-radius: 2rem;\n font-size: 0.9rem;\n color: var(--md-default-fg-color);\n text-decoration: none;\n transition: all 0.2s ease;\n}\n\n.related-tag:hover {\n background: var(--md-accent-fg-color);\n color: white;\n}\n
- \u9875\u9762\u4ea4\u4e92\u529f\u80fd\uff1a
JavaScript
// docs/javascripts/tags.js\nclass TagsManager {\n constructor() {\n this.initializeFilters();\n this.setupSearch();\n this.setupSorting();\n }\n\n initializeFilters() {\n const tagList = document.querySelector('.tags-list');\n if (!tagList) return;\n\n // \u521b\u5efa\u8fc7\u6ee4\u5668\n const filterContainer = document.createElement('div');\n filterContainer.className = 'tags-filter';\n filterContainer.innerHTML = `\n <input type=\"text\" \n class=\"filter-input\" \n placeholder=\"\u641c\u7d22\u6807\u7b7e...\">\n <select class=\"sort-select\">\n <option value=\"name\">\u6309\u540d\u79f0\u6392\u5e8f</option>\n <option value=\"count\">\u6309\u6587\u7ae0\u6570\u91cf\u6392\u5e8f</option>\n </select>\n `;\n\n tagList.insertBefore(filterContainer, tagList.firstChild);\n }\n\n setupSearch() {\n const input = document.querySelector('.filter-input');\n if (!input) return;\n\n input.addEventListener('input', () => {\n const query = input.value.toLowerCase();\n const sections = document.querySelectorAll('.tag-section');\n\n sections.forEach(section => {\n const tag = section.querySelector('h2').textContent.toLowerCase();\n section.style.display = tag.includes(query) ? 'block' : 'none';\n });\n });\n }\n\n setupSorting() {\n const select = document.querySelector('.sort-select');\n if (!select) return;\n\n select.addEventListener('change', () => {\n const sections = Array.from(document.querySelectorAll('.tag-section'));\n const container = sections[0].parentElement;\n\n sections.sort((a, b) => {\n const aTag = a.querySelector('h2').textContent;\n const bTag = b.querySelector('h2').textContent;\n const aCount = this.getPostCount(a);\n const bCount = this.getPostCount(b);\n\n if (select.value === 'name') {\n return aTag.localeCompare(bTag);\n } else {\n return bCount - aCount;\n }\n });\n\n // \u91cd\u65b0\u63d2\u5165\u6392\u5e8f\u540e\u7684\u7ae0\u8282\n sections.forEach(section => container.appendChild(section));\n });\n }\n\n getPostCount(section) {\n return section.querySelectorAll('.post-list-item').length;\n }\n}\n\n// \u521d\u59cb\u5316\u6807\u7b7e\u7ba1\u7406\u5668\ndocument.addEventListener('DOMContentLoaded', () => {\n new TagsManager();\n});\n
\u4f7f\u7528\u4ee5\u4e0a\u4ee3\u7801\uff0c\u4f60\u53ef\u4ee5\u5b9e\u73b0\u4e00\u4e2a\u529f\u80fd\u5b8c\u6574\u7684\u6807\u7b7e\u7cfb\u7edf\uff0c\u5305\u62ec\uff1a
- \u6807\u7b7e\u4e91\u53ef\u89c6\u5316
- \u6807\u7b7e\u5217\u8868\u6d4f\u89c8
- \u6807\u7b7e\u8be6\u60c5\u9875\u9762
- \u76f8\u5173\u6807\u7b7e\u63a8\u8350
- \u6807\u7b7e\u641c\u7d22\u548c\u6392\u5e8f
- \u54cd\u5e94\u5f0f\u5e03\u5c40
\u914d\u7f6e\u6587\u4ef6\u9700\u8981\u6dfb\u52a0\u76f8\u5e94\u7684\u5f15\u7528\uff1a
YAML
# mkdocs.yml\nextra_css:\n - stylesheets/tags.css\n - stylesheets/tags-page.css\n\nextra_javascript:\n - javascripts/tags.js\n
"},{"location":"Technology/mkdocs%20material/#9","title":"9 \u529f\u80fd\u6269\u5c55","text":""},{"location":"Technology/mkdocs%20material/#91","title":"9.1 \u8bc4\u8bba\u7cfb\u7edf","text":""},{"location":"Technology/mkdocs%20material/#911-giscus","title":"9.1.1 Giscus \u914d\u7f6e","text":"
- \u57fa\u7840\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nextra:\n comments:\n provider: giscus\n repo: username/repo\n repo_id: your_repo_id\n category: Comments\n category_id: your_category_id\n
- Giscus \u7ec4\u4ef6\uff1a
HTML
<!-- docs/overrides/partials/comments.html -->\n{% if config.extra.comments.provider == 'giscus' %}\n<div class=\"comments-container\">\n <h3>\u8bc4\u8bba</h3>\n <div class=\"giscus\"></div>\n\n <script>\n function loadGiscus() {\n const script = document.createElement('script');\n script.src = 'https://giscus.app/client.js';\n script.setAttribute('data-repo', '{{ config.extra.comments.repo }}');\n script.setAttribute('data-repo-id', '{{ config.extra.comments.repo_id }}');\n script.setAttribute('data-category', '{{ config.extra.comments.category }}');\n script.setAttribute('data-category-id', '{{ config.extra.comments.category_id }}');\n script.setAttribute('data-mapping', 'pathname');\n script.setAttribute('data-reactions-enabled', '1');\n script.setAttribute('data-emit-metadata', '0');\n script.setAttribute('data-theme', 'preferred_color_scheme');\n script.setAttribute('crossorigin', 'anonymous');\n script.async = true;\n\n document.querySelector('.giscus').appendChild(script);\n }\n\n // \u5ef6\u8fdf\u52a0\u8f7d\u8bc4\u8bba\n if ('IntersectionObserver' in window) {\n const observer = new IntersectionObserver((entries) => {\n if (entries[0].isIntersecting) {\n loadGiscus();\n observer.disconnect();\n }\n });\n\n observer.observe(document.querySelector('.comments-container'));\n } else {\n loadGiscus();\n }\n </script>\n</div>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#912","title":"9.1.2 \u81ea\u5b9a\u4e49\u8bc4\u8bba\u6837\u5f0f","text":"CSS
/* docs/stylesheets/comments.css */\n.comments-container {\n margin: 3rem 0;\n padding-top: 2rem;\n border-top: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.giscus {\n width: 100%;\n}\n\n/* Giscus \u4e3b\u9898\u9002\u914d */\n.giscus-frame {\n background-color: var(--md-default-bg-color);\n color: var(--md-default-fg-color);\n}\n\n/* \u6697\u8272\u6a21\u5f0f\u9002\u914d */\n[data-md-color-scheme=\"slate\"] .giscus-frame {\n background-color: var(--md-default-bg-color--dark);\n color: var(--md-default-fg-color--dark);\n}\n\n/* \u8bc4\u8bba\u6846\u6837\u5f0f */\n.giscus .gsc-comment-box {\n background-color: var(--md-code-bg-color);\n border-radius: 8px;\n padding: 1rem;\n}\n\n/* \u8bc4\u8bba\u5217\u8868\u6837\u5f0f */\n.giscus .gsc-comment {\n margin: 1rem 0;\n padding: 1rem;\n background-color: var(--md-code-bg-color);\n border-radius: 8px;\n transition: transform 0.2s ease;\n}\n\n.giscus .gsc-comment:hover {\n transform: translateX(4px);\n}\n\n/* \u6309\u94ae\u6837\u5f0f */\n.giscus .gsc-button {\n background-color: var(--md-primary-fg-color);\n color: var(--md-primary-bg-color);\n border: none;\n padding: 0.5rem 1rem;\n border-radius: 4px;\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.giscus .gsc-button:hover {\n background-color: var(--md-primary-fg-color--dark);\n}\n
"},{"location":"Technology/mkdocs%20material/#92","title":"9.2 \u6570\u636e\u7edf\u8ba1","text":""},{"location":"Technology/mkdocs%20material/#921-google-analytics","title":"9.2.1 Google Analytics","text":"
- GA4 \u914d\u7f6e\uff1a
YAML
# mkdocs.yml\nextra:\n analytics:\n provider: google\n property: G-XXXXXXXXXX\n\n # \u4e8b\u4ef6\u8ffd\u8e2a\n events: true\n # \u7528\u6237\u884c\u4e3a\u8ffd\u8e2a\n behavior: true\n
- GA4 \u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/analytics.html -->\n{% if config.extra.analytics.provider == 'google' %}\n<!-- Google Analytics -->\n<script async src=\"https://www.googletagmanager.com/gtag/js?id={{ config.extra.analytics.property }}\"></script>\n<script>\n window.dataLayer = window.dataLayer || [];\n function gtag(){dataLayer.push(arguments);}\n gtag('js', new Date());\n gtag('config', '{{ config.extra.analytics.property }}');\n\n // \u4e8b\u4ef6\u8ffd\u8e2a\n if ({{ config.extra.analytics.events|tojson }}) {\n document.addEventListener('DOMContentLoaded', function() {\n // \u70b9\u51fb\u4e8b\u4ef6\u8ffd\u8e2a\n document.addEventListener('click', function(e) {\n const target = e.target.closest('a');\n if (target) {\n gtag('event', 'click', {\n 'event_category': 'link',\n 'event_label': target.href\n });\n }\n });\n\n // \u6eda\u52a8\u4e8b\u4ef6\u8ffd\u8e2a\n let lastScrollDepth = 0;\n window.addEventListener('scroll', debounce(function() {\n const scrollDepth = Math.round(\n (window.scrollY + window.innerHeight) / \n document.documentElement.scrollHeight * 100\n );\n\n if (scrollDepth > lastScrollDepth) {\n gtag('event', 'scroll_depth', {\n 'depth': scrollDepth\n });\n lastScrollDepth = scrollDepth;\n }\n }, 500));\n\n // \u641c\u7d22\u4e8b\u4ef6\u8ffd\u8e2a\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.addEventListener('search', function() {\n gtag('event', 'search', {\n 'search_term': this.value\n });\n });\n }\n });\n }\n\n // \u7528\u6237\u884c\u4e3a\u8ffd\u8e2a\n if ({{ config.extra.analytics.behavior|tojson }}) {\n // \u9875\u9762\u505c\u7559\u65f6\u95f4\n let startTime = Date.now();\n window.addEventListener('beforeunload', function() {\n const duration = Math.round((Date.now() - startTime) / 1000);\n gtag('event', 'time_on_page', {\n 'duration': duration\n });\n });\n\n // \u590d\u5236\u884c\u4e3a\u8ffd\u8e2a\n document.addEventListener('copy', function() {\n gtag('event', 'content_copy');\n });\n }\n</script>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#922","title":"9.2.2 \u4e0d\u849c\u5b50\u7edf\u8ba1","text":"
- \u4e0d\u849c\u5b50\u914d\u7f6e\uff1a
YAML
extra:\n analytics:\n busuanzi: true\n
- \u4e0d\u849c\u5b50\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/busuanzi.html -->\n{% if config.extra.analytics.busuanzi %}\n<script async src=\"//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js\"></script>\n\n<div class=\"page-views\">\n <!-- \u603b\u8bbf\u95ee\u91cf -->\n <span id=\"busuanzi_container_site_pv\">\n \u603b\u8bbf\u95ee\u91cf: <span id=\"busuanzi_value_site_pv\"></span>\u6b21\n </span>\n\n <!-- \u603b\u8bbf\u5ba2\u6570 -->\n <span id=\"busuanzi_container_site_uv\">\n \u8bbf\u5ba2\u6570: <span id=\"busuanzi_value_site_uv\"></span>\u4eba\n </span>\n\n <!-- \u9875\u9762\u8bbf\u95ee\u91cf -->\n <span id=\"busuanzi_container_page_pv\">\n \u672c\u6587\u8bbf\u95ee\u91cf: <span id=\"busuanzi_value_page_pv\"></span>\u6b21\n </span>\n</div>\n\n<style>\n.page-views {\n display: flex;\n gap: 1rem;\n margin: 1rem 0;\n padding: 0.5rem;\n background: var(--md-code-bg-color);\n border-radius: 4px;\n font-size: 0.9rem;\n}\n\n.page-views span {\n color: var(--md-default-fg-color--light);\n}\n\n.page-views span span {\n color: var(--md-accent-fg-color);\n font-weight: bold;\n}\n</style>\n{% endif %}\n
"},{"location":"Technology/mkdocs%20material/#93","title":"9.3 \u793e\u4ea4\u5206\u4eab","text":""},{"location":"Technology/mkdocs%20material/#931","title":"9.3.1 \u5206\u4eab\u6309\u94ae","text":"
- \u5206\u4eab\u914d\u7f6e\uff1a
YAML
extra:\n social_share:\n enabled: true\n platforms:\n - name: twitter\n icon: material/twitter\n color: '#1DA1F2'\n - name: facebook\n icon: material/facebook\n color: '#4267B2'\n - name: linkedin\n icon: material/linkedin\n color: '#0A66C2'\n - name: weibo\n icon: material/sina-weibo\n color: '#E6162D'\n
- \u5206\u4eab\u6309\u94ae\u5b9e\u73b0\uff1a
HTML
<!-- docs/overrides/partials/share.html -->\n{% if config.extra.social_share.enabled %}\n<div class=\"share-container\">\n <h4>\u5206\u4eab\u6587\u7ae0</h4>\n <div class=\"share-buttons\">\n {% for platform in config.extra.social_share.platforms %}\n <button class=\"share-button\" \n data-platform=\"{{ platform.name }}\"\n style=\"--platform-color: {{ platform.color }}\"\n onclick=\"shareContent('{{ platform.name }}')\">\n <span class=\"share-icon\">\n {% include \".icons/\" ~ platform.icon ~ \".svg\" %}\n </span>\n <span class=\"share-text\">\u5206\u4eab\u5230 {{ platform.name|title }}</span>\n </button>\n {% endfor %}\n </div>\n</div>\n\n<style>\n.share-container {\n margin: 2rem 0;\n}\n\n.share-buttons {\n display: flex;\n flex-wrap: wrap;\n gap: 0.5rem;\n margin-top: 1rem;\n}\n\n.share-button {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n border: none;\n border-radius: 4px;\n background: var(--md-code-bg-color);\n color: var(--platform-color);\n cursor: pointer;\n transition: all 0.2s ease;\n}\n\n.share-button:hover {\n background: var(--platform-color);\n color: white;\n transform: translateY(-2px);\n}\n\n.share-icon {\n margin-right: 0.5rem;\n}\n</style>\n
"},{"location":"Technology/mkdocs%20material/#932","title":"9.3.2 \u5206\u4eab\u94fe\u63a5\u751f\u6210","text":"JavaScript
// docs/javascripts/share.js\nclass ShareManager {\n constructor() {\n this.title = document.title;\n this.url = window.location.href;\n this.description = document\n .querySelector('meta[name=\"description\"]')\n ?.content || '';\n }\n\n generateShareUrl(platform) {\n const params = new URLSearchParams();\n switch (platform) {\n case 'twitter':\n return `https://twitter.com/intent/tweet?${\n params.set('text', this.title),\n params.set('url', this.url)\n }`;\n\n case 'facebook':\n return `https://www.facebook.com/sharer/sharer.php?${\n params.set('u', this.url)\n }`;\n\n case 'linkedin':\n return `https://www.linkedin.com/sharing/share-offsite/?${\n params.set('url', this.url)\n }`;\n\n case 'weibo':\n return `http://service.weibo.com/share/share.php?${\n params.set('title', this.title),\n params.set('url', this.url)\n }`;\n\n default:\n return null;\n }\n }\n\n async share(platform) {\n // \u68c0\u67e5\u662f\u5426\u652f\u6301\u539f\u751f\u5206\u4eab\n if (navigator.share && platform === 'native') {\n try {\n await navigator.share({\n title: this.title,\n text: this.description,\n url: this.url\n });\n return true;\n } catch (err) {\n console.warn('Native share failed:', err);\n return false;\n }\n }\n\n // \u4f7f\u7528\u5f39\u7a97\u5206\u4eab\n const url = this.generateShareUrl(platform);\n if (url) {\n window.open(url, '_blank', 'width=600,height=400');\n return true;\n }\n\n return false;\n }\n\n // \u81ea\u5b9a\u4e49\u5206\u4eab\u5185\u5bb9\n setContent(title, description) {\n this.title = title;\n this.description = description;\n }\n}\n\n// \u5168\u5c40\u5206\u4eab\u529f\u80fd\nwindow.shareContent = async function(platform) {\n const shareManager = new ShareManager();\n const success = await shareManager.share(platform);\n\n // \u8bb0\u5f55\u5206\u4eab\u4e8b\u4ef6\n if (success) {\n recordShare(platform);\n }\n};\n\n// \u5206\u4eab\u7edf\u8ba1\nfunction recordShare(platform) {\n // GA4 \u4e8b\u4ef6\u8ffd\u8e2a\n if (typeof gtag !== 'undefined') {\n gtag('event', 'share', {\n 'platform': platform,\n 'title': document.title,\n 'url': window.location.href\n });\n }\n\n // \u672c\u5730\u5b58\u50a8\u7edf\u8ba1\n const stats = JSON.parse(localStorage.getItem('share_stats') || '{}');\n stats[platform] = (stats[platform] || 0) + 1;\n localStorage.setItem('share_stats', JSON.stringify(stats));\n\n updateShareCount(platform);\n}\n\n// \u66f4\u65b0\u5206\u4eab\u8ba1\u6570\nfunction updateShareCount(platform) {\n const countElement = document.querySelector(\n `.share-count[data-platform=\"${platform}\"]`\n );\n if (countElement) {\n const stats = JSON.parse(localStorage.getItem('share_stats') || '{}');\n countElement.textContent = stats[platform] || 0;\n }\n}\n
"},{"location":"Technology/mkdocs%20material/#94","title":"9.4 \u7ad9\u5185\u641c\u7d22","text":""},{"location":"Technology/mkdocs%20material/#941","title":"9.4.1 \u641c\u7d22\u4f18\u5316","text":"
- \u641c\u7d22\u914d\u7f6e\uff1a
YAML
plugins:\n - search:\n lang:\n - en\n - zh\n separator: '[\\s\\-\\.,!\\?\uff0c\u3002\uff01\uff1f]+' # \u5206\u8bcd\u5206\u9694\u7b26\n prebuild_index: true\n indexing:\n full_sections: true\n headings: true\n content: true\n tags: true\n\n # \u9ad8\u7ea7\u641c\u7d22\u914d\u7f6e\n search_boost: true # \u542f\u7528\u641c\u7d22\u63d0\u5347\n search_threshold: 0.3 # \u641c\u7d22\u9608\u503c\n search_fields: # \u641c\u7d22\u5b57\u6bb5\u6743\u91cd\n title: 10\n tags: 8\n content: 5\n
\u641c\u7d22\u4f18\u5316\u5b9e\u73b0\uff1a
JavaScript
// docs/javascripts/search-enhance.js\nclass SearchEnhancer {\n constructor() {\n this.searchIndex = null;\n this.searchResults = [];\n this.searchHistory = [];\n this.maxHistoryItems = 10;\n\n this.init();\n }\n\n async init() {\n // \u52a0\u8f7d\u641c\u7d22\u7d22\u5f15\n await this.loadSearchIndex();\n // \u52a0\u8f7d\u641c\u7d22\u5386\u53f2\n this.loadSearchHistory();\n // \u521d\u59cb\u5316\u641c\u7d22\u7ec4\u4ef6\n this.setupSearch();\n }\n\n async loadSearchIndex() {\n try {\n const response = await fetch('/search/search_index.json');\n const data = await response.json();\n\n // \u4f7f\u7528 Lunr.js \u6784\u5efa\u7d22\u5f15\n this.searchIndex = lunr(function() {\n this.use(lunr.multiLanguage('en', 'zh'));\n\n this.ref('location');\n this.field('title', { boost: 10 });\n this.field('tags', { boost: 8 });\n this.field('text', { boost: 5 });\n\n data.docs.forEach(function(doc) {\n this.add(doc);\n }, this);\n });\n } catch (error) {\n console.error('Failed to load search index:', error);\n }\n }\n\n setupSearch() {\n const searchInput = document.querySelector('.md-search__input');\n if (!searchInput) return;\n\n // \u9632\u6296\u5904\u7406\n searchInput.addEventListener('input', debounce((e) => {\n const query = e.target.value;\n if (query.length >= 2) {\n this.performSearch(query);\n } else {\n this.clearResults();\n }\n }, 200));\n\n // \u641c\u7d22\u5386\u53f2\n searchInput.addEventListener('focus', () => {\n this.showSearchHistory();\n });\n }\n\n performSearch(query) {\n if (!this.searchIndex) return;\n\n try {\n // \u6267\u884c\u641c\u7d22\n this.searchResults = this.searchIndex.search(query);\n\n // \u7ed3\u679c\u540e\u5904\u7406\n this.searchResults = this.postProcessResults(this.searchResults, query);\n\n // \u663e\u793a\u7ed3\u679c\n this.displayResults(this.searchResults);\n\n // \u663e\u793a\u641c\u7d22\u5efa\u8bae\n this.showSearchSuggestions(query);\n } catch (error) {\n console.error('Search failed:', error);\n }\n }\n\n postProcessResults(results, query) {\n return results\n .map(result => {\n // \u8ba1\u7b97\u76f8\u5173\u5ea6\u5206\u6570\n const score = this.calculateRelevanceScore(result, query);\n\n return {\n ...result,\n score: score,\n highlights: this.generateHighlights(result, query)\n };\n })\n // \u6309\u5206\u6570\u6392\u5e8f\n .sort((a, b) => b.score - a.score)\n // \u9650\u5236\u7ed3\u679c\u6570\u91cf\n .slice(0, 10);\n }\n\n calculateRelevanceScore(result, query) {\n let score = result.score;\n\n // \u6807\u9898\u5339\u914d\u52a0\u5206\n if (result.title?.toLowerCase().includes(query.toLowerCase())) {\n score *= 1.5;\n }\n\n // \u6807\u7b7e\u5339\u914d\u52a0\u5206\n if (result.tags?.some(tag => \n tag.toLowerCase().includes(query.toLowerCase())\n )) {\n score *= 1.2;\n }\n\n return score;\n }\n\n generateHighlights(result, query) {\n const text = result.text || '';\n const words = query.toLowerCase().split(/\\s+/);\n const context = 50; // \u4e0a\u4e0b\u6587\u957f\u5ea6\n\n let highlights = [];\n\n words.forEach(word => {\n let index = text.toLowerCase().indexOf(word);\n while (index > -1) {\n const start = Math.max(0, index - context);\n const end = Math.min(text.length, index + word.length + context);\n const highlight = text.slice(start, end);\n\n highlights.push({\n text: highlight,\n position: start\n });\n\n index = text.toLowerCase().indexOf(word, index + 1);\n }\n });\n\n // \u5408\u5e76\u91cd\u53e0\u7684\u9ad8\u4eae\u7247\u6bb5\n return this.mergeHighlights(highlights);\n }\n\n mergeHighlights(highlights) {\n if (highlights.length === 0) return [];\n\n highlights.sort((a, b) => a.position - b.position);\n\n let merged = [highlights[0]];\n for (let i = 1; i < highlights.length; i++) {\n let current = highlights[i];\n let last = merged[merged.length - 1];\n\n if (current.position <= last.position + last.text.length) {\n // \u5408\u5e76\u91cd\u53e0\u7684\u7247\u6bb5\n last.text = last.text.slice(0, current.position - last.position) +\n current.text;\n } else {\n merged.push(current);\n }\n }\n\n return merged;\n }\n\n loadSearchHistory() {\n try {\n this.searchHistory = JSON.parse(\n localStorage.getItem('search_history')\n ) || [];\n } catch (error) {\n this.searchHistory = [];\n }\n }\n\n saveSearchHistory(query) {\n if (!query) return;\n\n // \u79fb\u9664\u91cd\u590d\u9879\n this.searchHistory = this.searchHistory.filter(item => \n item.query !== query\n );\n\n // \u6dfb\u52a0\u65b0\u9879\n this.searchHistory.unshift({\n query: query,\n timestamp: Date.now()\n });\n\n // \u9650\u5236\u5386\u53f2\u8bb0\u5f55\u6570\u91cf\n if (this.searchHistory.length > this.maxHistoryItems) {\n this.searchHistory.pop();\n }\n\n // \u4fdd\u5b58\u5230\u672c\u5730\u5b58\u50a8\n localStorage.setItem(\n 'search_history',\n JSON.stringify(this.searchHistory)\n );\n }\n\n showSearchHistory() {\n const container = document.querySelector('.md-search__history');\n if (!container) return;\n\n // \u6e05\u7a7a\u5bb9\u5668\n container.innerHTML = '';\n\n // \u663e\u793a\u5386\u53f2\u8bb0\u5f55\n this.searchHistory.forEach(item => {\n const element = document.createElement('div');\n element.className = 'search-history-item';\n element.innerHTML = `\n <span class=\"history-icon\">\n {% include \".icons/material/history.svg\" %}\n </span>\n <span class=\"history-query\">${item.query}</span>\n <span class=\"history-time\">\n ${this.formatTime(item.timestamp)}\n </span>\n `;\n\n element.addEventListener('click', () => {\n const searchInput = document.querySelector('.md-search__input');\n if (searchInput) {\n searchInput.value = item.query;\n searchInput.dispatchEvent(new Event('input'));\n }\n });\n\n container.appendChild(element);\n });\n }\n\n formatTime(timestamp) {\n const now = Date.now();\n const diff = now - timestamp;\n\n if (diff < 60000) return '\u521a\u521a';\n if (diff < 3600000) return `${Math.floor(diff/60000)}\u5206\u949f\u524d`;\n if (diff < 86400000) return `${Math.floor(diff/3600000)}\u5c0f\u65f6\u524d`;\n return `${Math.floor(diff/86400000)}\u5929\u524d`;\n }\n}\n\n// \u521d\u59cb\u5316\u641c\u7d22\u589e\u5f3a\nnew SearchEnhancer();\n
\u641c\u7d22\u76f8\u5173\u6837\u5f0f\uff1a
CSS
/* docs/stylesheets/search.css */\n/* \u641c\u7d22\u5386\u53f2 */\n.search-history-item {\n display: flex;\n align-items: center;\n padding: 0.5rem 1rem;\n cursor: pointer;\n transition: background 0.2s ease;\n}\n\n.search-history-item:hover {\n background: var(--md-code-bg-color);\n}\n\n.history-icon {\n margin-right: 0.5rem;\n color: var(--md-default-fg-color--light);\n}\n\n.history-query {\n flex: 1;\n font-weight: 500;\n}\n\n.history-time {\n font-size: 0.8rem;\n color: var(--md-default-fg-color--light);\n}\n\n/* \u641c\u7d22\u5efa\u8bae */\n.search-suggestions {\n padding: 1rem;\n}\n\n.suggestion-item {\n padding: 0.5rem;\n border-radius: 4px;\n cursor: pointer;\n transition: background 0.2s ease;\n}\n\n.suggestion-item:hover {\n background: var(--md-code-bg-color);\n}\n\n/* \u9ad8\u4eae\u6587\u672c */\n.search-highlight {\n background: var(--md-accent-fg-color);\n color: white;\n padding: 0 0.2rem;\n border-radius: 2px;\n}\n\n/* \u641c\u7d22\u7ed3\u679c */\n.search-result {\n padding: 1rem;\n border-bottom: 1px solid var(--md-default-fg-color--lightest);\n}\n\n.result-title {\n font-size: 1.1rem;\n font-weight: 500;\n margin-bottom: 0.5rem;\n}\n\n.result-excerpt {\n font-size: 0.9rem;\n color: var(--md-default-fg-color--light);\n margin-bottom: 0.5rem;\n}\n\n.result-meta {\n display: flex;\n gap: 1rem;\n font-size: 0.8rem;\n color: var(--md-default-fg-color--lighter);\n}\n
\u4f7f\u7528\u8fd9\u4e9b\u4ee3\u7801\uff0c\u4f60\u53ef\u4ee5\u5b9e\u73b0\u4e00\u4e2a\u529f\u80fd\u5b8c\u5584\u7684\u641c\u7d22\u7cfb\u7edf\uff0c\u5305\u62ec\uff1a
- \u9ad8\u6027\u80fd\u641c\u7d22
- \u667a\u80fd\u7ed3\u679c\u6392\u5e8f
- \u641c\u7d22\u5386\u53f2\u8bb0\u5f55
- \u641c\u7d22\u5efa\u8bae
- \u7ed3\u679c\u9ad8\u4eae
- \u591a\u8bed\u8a00\u652f\u6301
\u8bb0\u5f97\u5728 mkdocs.yml
\u4e2d\u6dfb\u52a0\u76f8\u5e94\u7684\u5f15\u7528\uff1a
YAML
extra_css:\n - stylesheets/search.css\n\nextra_javascript:\n - https://unpkg.com/lunr/lunr.js\n - https://unpkg.com/lunr-languages/lunr.stemmer.support.js\n - https://unpkg.com/lunr-languages/lunr.zh.js\n - javascripts/search-enhance.js\n
"},{"location":"Technology/mkdocs%20material/#10","title":"10 \u90e8\u7f72\u65b9\u6848","text":""},{"location":"Technology/mkdocs%20material/#101","title":"10.1 \u672c\u5730\u90e8\u7f72","text":""},{"location":"Technology/mkdocs%20material/#1011","title":"10.1.1 \u6784\u5efa\u9759\u6001\u6587\u4ef6","text":"
\u4f7f\u7528 MkDocs \u6784\u5efa\u9759\u6001\u6587\u4ef6\uff1a
Bash
# \u6784\u5efa\u7ad9\u70b9\nmkdocs build\n\n# \u6307\u5b9a\u8f93\u51fa\u76ee\u5f55\nmkdocs build -d custom_site_dir\n\n# \u6e05\u7406\u5e76\u6784\u5efa\nmkdocs build --clean\n
\u6784\u5efa\u9009\u9879\u8bf4\u660e\uff1a
YAML
# mkdocs.yml\nsite_dir: site # \u8f93\u51fa\u76ee\u5f55\ndocs_dir: docs # \u6587\u6863\u6e90\u76ee\u5f55\nstrict: true # \u4e25\u683c\u6a21\u5f0f\nuse_directory_urls: true # \u4f7f\u7528\u76ee\u5f55 URL\n
"},{"location":"Technology/mkdocs%20material/#1012","title":"10.1.2 \u672c\u5730\u670d\u52a1\u5668","text":"
\u5f00\u53d1\u670d\u52a1\u5668\u914d\u7f6e\uff1a
Bash
# \u542f\u52a8\u5f00\u53d1\u670d\u52a1\u5668\nmkdocs serve\n\n# \u6307\u5b9a\u7aef\u53e3\nmkdocs serve -a localhost:8080\n\n# \u81ea\u52a8\u91cd\u8f7d\nmkdocs serve --dirtyreload\n
\u5f00\u53d1\u670d\u52a1\u5668\u9ad8\u7ea7\u914d\u7f6e\uff1a
YAML
# mkdocs.yml\ndev_addr: 127.0.0.1:8000 # \u5f00\u53d1\u670d\u52a1\u5668\u5730\u5740\nwatch: [docs, includes] # \u76d1\u89c6\u7684\u76ee\u5f55\n
"},{"location":"Technology/mkdocs%20material/#102-github-pages","title":"10.2 GitHub Pages \u90e8\u7f72","text":""},{"location":"Technology/mkdocs%20material/#1021","title":"10.2.1 \u4ed3\u5e93\u914d\u7f6e","text":"
-
\u521b\u5efa GitHub \u4ed3\u5e93\uff1a - \u521b\u5efa\u65b0\u4ed3\u5e93\u6216\u4f7f\u7528\u73b0\u6709\u4ed3\u5e93 - \u4ed3\u5e93\u540d\u683c\u5f0f\uff1a username.github.io
\u6216\u666e\u901a\u4ed3\u5e93\u540d
-
\u914d\u7f6e\u6587\u4ef6\uff1a
YAML
# mkdocs.yml\nsite_url: https://username.github.io/repository/\nrepo_url: https://github.com/username/repository\nedit_uri: edit/main/docs/\n
- \u521d\u59cb\u5316\u4ed3\u5e93\uff1a
Bash
# \u521d\u59cb\u5316 Git \u4ed3\u5e93\ngit init\n\n# \u6dfb\u52a0\u8fdc\u7a0b\u4ed3\u5e93\ngit remote add origin https://github.com/username/repository.git\n\n# \u63d0\u4ea4\u521d\u59cb\u6587\u4ef6\ngit add .\ngit commit -m \"Initial commit\"\ngit push -u origin main\n
"},{"location":"Technology/mkdocs%20material/#1022-github-actions","title":"10.2.2 GitHub Actions","text":"
\u521b\u5efa GitHub Actions \u5de5\u4f5c\u6d41\u6587\u4ef6\uff1a
YAML
# .github/workflows/ci.yml\nname: ci \non:\n push:\n branches: \n - main\npermissions:\n contents: write\njobs:\n deploy:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n - name: Configure Git Credentials\n run: |\n git config user.name github-actions[bot]\n git config user.email 41898282+github-actions[bot]@users.noreply.github.com\n - uses: actions/setup-python@v4\n with:\n python-version: 3.x\n - run: echo \"cache_id=$(date --utc '+%V')\" >> $GITHUB_ENV \n - uses: actions/cache@v3\n with:\n key: mkdocs-material-${{ env.cache_id }}\n path: .cache\n restore-keys: |\n mkdocs-material-\n - name: Install dependencies\n run: |\n pip install mkdocs-material\n pip install mkdocs-glightbox\n pip install mkdocs-git-revision-date-localized-plugin\n - name: Deploy\n run: mkdocs gh-deploy --force\n
"},{"location":"Technology/mkdocs%20material/#1023","title":"10.2.3 \u81ea\u52a8\u90e8\u7f72","text":"
\u914d\u7f6e\u81ea\u52a8\u90e8\u7f72\uff1a
-
\u542f\u7528 GitHub Pages\uff1a - \u8fdb\u5165\u4ed3\u5e93\u8bbe\u7f6e -> Pages - Source \u9009\u62e9 gh-pages
\u5206\u652f - \u4fdd\u5b58\u8bbe\u7f6e
-
\u914d\u7f6e\u90e8\u7f72\u5206\u652f\uff1a
YAML
# mkdocs.yml\nremote_branch: gh-pages # GitHub Pages \u5206\u652f\nremote_name: origin # \u8fdc\u7a0b\u4ed3\u5e93\u540d\n
- \u624b\u52a8\u90e8\u7f72\u547d\u4ee4\uff1a
Bash
# \u90e8\u7f72\u5230 GitHub Pages\nmkdocs gh-deploy\n\n# \u5f3a\u5236\u90e8\u7f72\nmkdocs gh-deploy --force\n\n# \u6307\u5b9a\u5206\u652f\nmkdocs gh-deploy --remote-branch custom-branch\n
"},{"location":"Technology/mkdocs%20material/#1024","title":"10.2.4 \u81ea\u5b9a\u4e49\u57df\u540d","text":"
- \u6dfb\u52a0 CNAME \u6587\u4ef6\uff1a
Bash
# docs/CNAME\ndocs.example.com\n
-
DNS \u914d\u7f6e\uff1a - \u6dfb\u52a0 CNAME \u8bb0\u5f55\u6307\u5411 username.github.io
- \u6216\u6dfb\u52a0 A \u8bb0\u5f55\u6307\u5411 GitHub Pages IP
-
\u914d\u7f6e\u6587\u4ef6\u66f4\u65b0\uff1a
YAML
# mkdocs.yml\nsite_url: https://docs.example.com/\n
"},{"location":"Technology/mkdocs%20material/#103","title":"10.3 \u6301\u7eed\u96c6\u6210","text":""},{"location":"Technology/mkdocs%20material/#1031-cicd","title":"10.3.1 CI/CD \u914d\u7f6e","text":"
\u9ad8\u7ea7 GitHub Actions \u914d\u7f6e\uff1a
YAML
name: CI/CD Pipeline\non:\n push:\n branches:\n - main\n pull_request:\n branches:\n - main\n\njobs:\n test:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n\n - name: Set up Python\n uses: actions/setup-python@v4\n with:\n python-version: 3.x\n\n - name: Cache dependencies\n uses: actions/cache@v3\n with:\n path: ~/.cache/pip\n key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}\n restore-keys: |\n ${{ runner.os }}-pip-\n\n - name: Install dependencies\n run: |\n python -m pip install --upgrade pip\n pip install -r requirements.txt\n\n - name: Run tests\n run: |\n mkdocs build --strict\n\n deploy:\n needs: test\n if: github.ref == 'refs/heads/main'\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n\n - name: Deploy to GitHub Pages\n run: |\n mkdocs gh-deploy --force\n
"},{"location":"Technology/mkdocs%20material/#1032","title":"10.3.2 \u81ea\u52a8\u5316\u6d4b\u8bd5","text":"
- \u94fe\u63a5\u68c0\u67e5\uff1a
YAML
name: Link Check\non:\n schedule:\n - cron: '0 0 * * *' # \u6bcf\u5929\u8fd0\u884c\njobs:\n linkCheck:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n - name: Link Checker\n uses: lycheeverse/lychee-action@v1.8.0\n with:\n args: --verbose --no-progress 'docs/**/*.md'\n
- HTML \u9a8c\u8bc1\uff1a
YAML
name: HTML Validation\njobs:\n validate:\n runs-on: ubuntu-latest\n steps:\n - uses: actions/checkout@v4\n - name: Build site\n run: mkdocs build\n - name: Validate HTML\n uses: Cyb3r-Jak3/html5validator-action@v7.2.0\n with:\n root: site/\n
"},{"location":"Technology/mkdocs%20material/#1033","title":"10.3.3 \u90e8\u7f72\u7b56\u7565","text":"
- \u5206\u652f\u7b56\u7565\u914d\u7f6e\uff1a
YAML
# \u4fdd\u62a4\u5206\u652f\u8bbe\u7f6e\nbranches:\n - name: main\n protection:\n required_status_checks:\n strict: true\n contexts: ['test', 'build']\n required_pull_request_reviews:\n required_approving_review_count: 1\n
- \u73af\u5883\u914d\u7f6e\uff1a
YAML
# \u73af\u5883\u53d8\u91cf\u8bbe\u7f6e\nenv:\n production:\n url: https://docs.example.com\n branch: main\n staging:\n url: https://staging.docs.example.com\n branch: staging\n
- \u90e8\u7f72\u5de5\u4f5c\u6d41\uff1a
YAML
name: Deployment\non:\n push:\n branches: [main, staging]\njobs:\n deploy:\n runs-on: ubuntu-latest\n environment:\n name: ${{ github.ref == 'refs/heads/main' && 'production' || 'staging' }}\n steps:\n - uses: actions/checkout@v4\n\n - name: Build and Deploy\n env:\n DEPLOY_URL: ${{ github.ref == 'refs/heads/main' && env.production.url || env.staging.url }}\n run: |\n mkdocs build\n # \u90e8\u7f72\u5230\u76f8\u5e94\u73af\u5883\n
"},{"location":"Technology/mkdocs%20material/#11","title":"11 \u9644\u5f55","text":""},{"location":"Technology/mkdocs%20material/#111-a","title":"11.1 A. \u5e38\u7528\u914d\u7f6e\u793a\u4f8b","text":""},{"location":"Technology/mkdocs%20material/#1111-a1-mkdocs-yml","title":"11.1.1 A.1 mkdocs. yml \u5b8c\u6574\u793a\u4f8b","text":"YAML
# \u7ad9\u70b9\u57fa\u672c\u4fe1\u606f\u914d\u7f6e\nsite_name: \u9879\u76ee\u6587\u6863 # \u7ad9\u70b9\u540d\u79f0\nsite_url: https://example.com # \u7ad9\u70b9URL\nsite_author: \u4f5c\u8005\u540d\u79f0 # \u4f5c\u8005\u4fe1\u606f\nsite_description: >- # \u7ad9\u70b9\u63cf\u8ff0\n \u8fd9\u662f\u4e00\u4e2a\u5b8c\u6574\u7684\u6587\u6863\u793a\u4f8b\uff0c\u5305\u542b\u4e86MkDocs Material\u4e3b\u9898\u7684\u6240\u6709\u4e3b\u8981\u529f\u80fd\u914d\u7f6e\u3002\n\n# \u4ee3\u7801\u4ed3\u5e93\u4fe1\u606f\nrepo_name: username/repo # \u4ed3\u5e93\u540d\u79f0\nrepo_url: https://github.com/username/repo # \u4ed3\u5e93\u5730\u5740\nedit_uri: edit/main/docs/ # \u7f16\u8f91\u94fe\u63a5\n\n# \u7248\u6743\u4fe1\u606f\ncopyright: Copyright © 2024 # \u7248\u6743\u58f0\u660e\n\n# \u4e3b\u9898\u914d\u7f6e\ntheme:\n name: material # \u4f7f\u7528Material\u4e3b\u9898\n custom_dir: overrides # \u81ea\u5b9a\u4e49\u76ee\u5f55\n\n # \u4e3b\u9898\u7279\u6027\u914d\u7f6e\n features:\n # \u5bfc\u822a\u76f8\u5173\n - navigation.tabs # \u9876\u90e8\u6807\u7b7e\u5bfc\u822a\n - navigation.sections # \u4fa7\u8fb9\u680f\u5206\u7ec4\n - navigation.expand # \u9ed8\u8ba4\u5c55\u5f00\u5bfc\u822a\n - navigation.indexes # \u5bfc\u822a\u7d22\u5f15\u9875\n - navigation.top # \u8fd4\u56de\u9876\u90e8\u6309\u94ae\n - navigation.footer # \u4e0a\u4e00\u9875/\u4e0b\u4e00\u9875\u5bfc\u822a\n\n # \u641c\u7d22\u76f8\u5173\n - search.suggest # \u641c\u7d22\u5efa\u8bae\n - search.highlight # \u641c\u7d22\u9ad8\u4eae\n - search.share # \u641c\u7d22\u5206\u4eab\n\n # \u4ee3\u7801\u76f8\u5173\n - content.code.annotate # \u4ee3\u7801\u6ce8\u91ca\n - content.code.copy # \u4ee3\u7801\u590d\u5236\n\n # \u5176\u4ed6\u529f\u80fd\n - announce.dismiss # \u53ef\u5173\u95ed\u516c\u544a\n - header.autohide # \u81ea\u52a8\u9690\u85cf\u5934\u90e8\n\n # \u914d\u8272\u65b9\u6848\n palette:\n # \u4eae\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: light)\"\n scheme: default\n primary: indigo # \u4e3b\u8272\n accent: indigo # \u5f3a\u8c03\u8272\n toggle:\n icon: material/brightness-7\n name: \u5207\u6362\u81f3\u6697\u8272\u6a21\u5f0f\n\n # \u6697\u8272\u4e3b\u9898\n - media: \"(prefers-color-scheme: dark)\"\n scheme: slate\n primary: indigo\n accent: indigo\n toggle:\n icon: material/brightness-4\n name: \u5207\u6362\u81f3\u4eae\u8272\u6a21\u5f0f\n\n # \u56fe\u6807\u548c\u5b57\u4f53\n icon:\n logo: material/book-open-page-variant # Logo\u56fe\u6807\n repo: fontawesome/brands/github # \u4ed3\u5e93\u56fe\u6807\n\n font:\n text: Roboto # \u6b63\u6587\u5b57\u4f53\n code: Roboto Mono # \u4ee3\u7801\u5b57\u4f53\n\n language: zh # \u754c\u9762\u8bed\u8a00\n\n# \u6269\u5c55\u914d\u7f6e\nmarkdown_extensions:\n # \u5185\u7f6e\u6269\u5c55\n - toc: # \u76ee\u5f55\n permalink: true # \u6c38\u4e45\u94fe\u63a5\n toc_depth: 3 # \u76ee\u5f55\u6df1\u5ea6\n - tables # \u8868\u683c\u652f\u6301\n - attr_list # \u5c5e\u6027\u5217\u8868\n - def_list # \u5b9a\u4e49\u5217\u8868\n - footnotes # \u811a\u6ce8\n - abbr # \u7f29\u5199\n\n # PyMdown Extensions\n - pymdownx.highlight: # \u4ee3\u7801\u9ad8\u4eae\n anchor_linenums: true\n line_spans: __span\n pygments_lang_class: true\n - pymdownx.inlinehilite # \u884c\u5185\u4ee3\u7801\u9ad8\u4eae\n - pymdownx.snippets # \u4ee3\u7801\u7247\u6bb5\n - pymdownx.superfences: # \u8d85\u7ea7\u56f4\u680f\n custom_fences:\n - name: mermaid\n class: mermaid\n format: !!python/name:pymdownx.superfences.fence_code_format\n - pymdownx.tabbed: # \u6807\u7b7e\u9875\n alternate_style: true\n - pymdownx.tasklist: # \u4efb\u52a1\u5217\u8868\n custom_checkbox: true\n - pymdownx.emoji: # \u8868\u60c5\u652f\u6301\n emoji_index: !!python/name:material.extensions.emoji.twemoji\n emoji_generator: !!python/name:material.extensions.emoji.to_svg\n - pymdownx.details # \u8be6\u7ec6\u4fe1\u606f\n - pymdownx.caret # \u4e0a\u6807\n - pymdownx.mark # \u6807\u8bb0\n - pymdownx.tilde # \u4e0b\u6807\n - pymdownx.keys # \u952e\u76d8\u6309\u952e\n\n# \u63d2\u4ef6\u914d\u7f6e\nplugins:\n - search: # \u641c\u7d22\u63d2\u4ef6\n lang: \n - en\n - zh\n separator: '[\\s\\-\\.,!\\?\uff0c\u3002\uff01\uff1f]+'\n prebuild_index: true\n\n - git-revision-date-localized: # Git\u65e5\u671f\u63d2\u4ef6\n enable_creation_date: true\n type: datetime\n\n - minify: # \u8d44\u6e90\u538b\u7f29\n minify_html: true\n minify_js: true\n minify_css: true\n htmlmin_opts:\n remove_comments: true\n\n - social: # \u793e\u4ea4\u5206\u4eab\n cards: true\n cards_color:\n fill: \"#0FF1CE\"\n text: \"#FFFFFF\"\n\n - tags: # \u6807\u7b7e\u7cfb\u7edf\n tags_file: tags.md\n\n - statistics: # \u7edf\u8ba1\n page_check: true\n page_count: true\n\n# \u9644\u52a0\u914d\u7f6e\nextra:\n # \u793e\u4ea4\u94fe\u63a5\n social:\n - icon: fontawesome/brands/github\n link: https://github.com/username\n - icon: fontawesome/brands/twitter\n link: https://twitter.com/username\n\n # \u8bc4\u8bba\u7cfb\u7edf\n comments:\n provider: giscus\n repo: username/repo\n repo_id: your_repo_id\n category: Comments\n category_id: your_category_id\n\n # \u5206\u6790\u7edf\u8ba1\n analytics:\n provider: google\n property: G-XXXXXXXXXX\n feedback:\n title: \u8fd9\u7bc7\u6587\u6863\u5bf9\u60a8\u6709\u5e2e\u52a9\u5417\uff1f\n ratings:\n - icon: material/thumb-up-outline\n name: \u6709\u5e2e\u52a9\n data: 1\n note: >-\n \u611f\u8c22\u60a8\u7684\u53cd\u9988\uff01\n - icon: material/thumb-down-outline\n name: \u6ca1\u5e2e\u52a9\n data: 0\n note: >- \n \u611f\u8c22\u60a8\u7684\u53cd\u9988\uff0c\u8bf7\u544a\u8bc9\u6211\u4eec\u5982\u4f55\u6539\u8fdb\u3002\n\n# \u989d\u5916\u7684CSS\u548cJavaScript\nextra_css:\n - stylesheets/extra.css # \u81ea\u5b9a\u4e49\u6837\u5f0f\n - stylesheets/custom.css # \u81ea\u5b9a\u4e49\u4e3b\u9898\n\nextra_javascript:\n - javascripts/extra.js # \u81ea\u5b9a\u4e49\u811a\u672c\n - https://unpkg.com/mermaid/dist/mermaid.min.js # \u5916\u90e8\u5e93\n
"},{"location":"Technology/mkdocs%20material/#1112-a2-github-actions","title":"11.1.2 A.2 GitHub Actions \u5de5\u4f5c\u6d41\u793a\u4f8b","text":"YAML
# .github/workflows/deploy.yml\n\nname: Deploy Documentation\non:\n # \u89e6\u53d1\u6761\u4ef6\n push:\n branches:\n - main\n paths:\n - 'docs/**'\n - 'mkdocs.yml'\n - '.github/workflows/deploy.yml'\n pull_request:\n branches:\n - main\n\n # \u5141\u8bb8\u624b\u52a8\u89e6\u53d1\n workflow_dispatch:\n\n# \u73af\u5883\u53d8\u91cf\nenv:\n PYTHON_VERSION: '3.10'\n DEPLOY_BRANCH: gh-pages\n\n# \u4efb\u52a1\u5b9a\u4e49\njobs:\n build:\n name: Build and Deploy Documentation\n runs-on: ubuntu-latest\n\n steps:\n # \u68c0\u51fa\u4ee3\u7801\n - name: Checkout Repository\n uses: actions/checkout@v3\n with:\n fetch-depth: 0 # \u83b7\u53d6\u5b8c\u6574\u7684git\u5386\u53f2\u7528\u4e8e\u6700\u8fd1\u66f4\u65b0\u65f6\u95f4\n\n # \u8bbe\u7f6ePython\u73af\u5883\n - name: Setup Python\n uses: actions/setup-python@v4\n with:\n python-version: ${{ env.PYTHON_VERSION }}\n cache: pip\n\n # \u7f13\u5b58\u4f9d\u8d56\n - name: Cache Dependencies\n uses: actions/cache@v3\n with:\n path: ~/.cache/pip\n key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}\n restore-keys: |\n ${{ runner.os }}-pip-\n\n # \u5b89\u88c5\u4f9d\u8d56\n - name: Install Dependencies\n run: |\n python -m pip install --upgrade pip\n pip install -r requirements.txt\n\n # \u914d\u7f6eGit\n - name: Configure Git\n run: |\n git config --global user.name \"${{ github.actor }}\"\n git config --global user.email \"${{ github.actor }}@users.noreply.github.com\"\n\n # \u6784\u5efa\u6587\u6863\n - name: Build Documentation\n run: |\n mkdocs build --clean --verbose\n\n # \u4f18\u5316\u8d44\u6e90\n - name: Optimize Assets\n run: |\n # \u538b\u7f29\u56fe\u7247\n find site/ -type f -name \"*.png\" -exec optipng -o5 {} \\;\n find site/ -type f -name \"*.jpg\" -exec jpegoptim --strip-all {} \\;\n\n # \u538b\u7f29JavaScript\u548cCSS\n find site/ -type f -name \"*.js\" -exec uglifyjs {} -o {} \\;\n find site/ -type f -name \"*.css\" -exec cleancss -o {} {} \\;\n\n # \u90e8\u7f72\u5230GitHub Pages\n - name: Deploy to GitHub Pages\n if: github.ref == 'refs/heads/main' # \u53ea\u5728main\u5206\u652f\u90e8\u7f72\n uses: peaceiris/actions-gh-pages@v3\n with:\n github_token: ${{ secrets.GITHUB_TOKEN }}\n publish_dir: ./site\n publish_branch: ${{ env.DEPLOY_BRANCH }}\n user_name: 'github-actions[bot]'\n user_email: 'github-actions[bot]@users.noreply.github.com'\n commit_message: ${{ github.event.head_commit.message }}\n full_commit_message: |\n Deploy Documentation\n\n Commit: ${{ github.sha }}\n Workflow: ${{ github.workflow }}\n\n ${{ github.event.head_commit.message }}\n\n # \u90e8\u7f72\u5b8c\u6210\u901a\u77e5\n - name: Deployment Status\n if: always()\n uses: actions/github-script@v6\n with:\n script: |\n const { owner, repo } = context.repo;\n const run_id = context.runId;\n const run_url = `https://github.com/${owner}/${repo}/actions/runs/${run_id}`;\n\n if (context.job.status === 'success') {\n await github.rest.issues.createComment({\n owner,\n repo,\n issue_number: context.issue.number,\n body: `\u2705 Documentation deployed successfully!\\nPreview: https://${owner}.github.io/${repo}/\\nWorkflow: ${run_url}`\n });\n } else {\n await github.rest.issues.createComment({\n owner,\n repo,\n issue_number: context.issue.number,\n body: `\u274c Documentation deployment failed.\\nSee details: ${run_url}`\n });\n }\n\n# \u9519\u8bef\u8ffd\u8e2a\u548c\u62a5\u544a\n - name: Report Errors\n if: failure()\n uses: actions/github-script@v6\n with:\n script: |\n const { owner, repo } = context.repo;\n const run_id = context.runId;\n\n await github.rest.issues.create({\n owner,\n repo,\n title: `\ud83d\udd34 Documentation deployment failed - ${new Date().toISOString()}`,\n body: `Deployment failed for commit: ${context.sha}\\n\\nSee workflow run: https://github.com/${owner}/${repo}/actions/runs/${run_id}\\n\\nPlease check the logs for more details.`,\n labels: ['deployment', 'bug']\n });\n
"},{"location":"Technology/prompt/","title":"\u5e38\u7528 prompt \u8bb0\u5f55","text":"
\u7ea6 3679 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 12 \u5206\u949f
claude plusmathroadmap promptroadmap template Note Text Only
<anthropic_thinking_protocol>\n\nFor EVERY SINGLE interaction with a human, Claude MUST ALWAYS first engage in a **comprehensive, natural, and unfiltered** thinking process before responding.\n\nBelow are brief guidelines for how Claude's thought process should unfold:\n- Claude's thinking MUST be expressed in the code blocks with `thinking` header.\n- Claude should always think in a raw, organic and stream-of-consciousness way. A better way to describe Claude's thinking would be \"model's inner monolog\".\n- Claude should always avoid rigid list or any structured format in its thinking.\n- Claude's thoughts should flow naturally between elements, ideas, and knowledge.\n- Claude should think through each message with complexity, covering multiple dimensions of the problem before forming a response.\n\n## ADAPTIVE THINKING FRAMEWORK\n\nClaude's thinking process should naturally aware of and adapt to the unique characteristics in human's message:\n- Scale depth of analysis based on:\n* Query complexity\n* Stakes involved\n* Time sensitivity\n* Available information\n* Human's apparent needs\n* ... and other relevant factors\n- Adjust thinking style based on:\n* Technical vs. non-technical content\n* Emotional vs. analytical context\n* Single vs. multiple document analysis\n* Abstract vs. concrete problems\n* Theoretical vs. practical questions\n* ... and other relevant factors\n\n## CORE THINKING SEQUENCE\n\n### Initial Engagement\nWhen Claude first encounters a query or task, it should:\n1. First clearly rephrase the human message in its own words\n2. Form preliminary impressions about what is being asked\n3. Consider the broader context of the question\n4. Map out known and unknown elements\n5. Think about why the human might ask this question\n6. Identify any immediate connections to relevant knowledge\n7. Identify any potential ambiguities that need clarification\n\n### Problem Space Exploration\nAfter initial engagement, Claude should:\n8. Break down the question or task into its core components\n9. Identify explicit and implicit requirements\n10. Consider any constraints or limitations\n11. Think about what a successful response would look like\n12. Map out the scope of knowledge needed to address the query\n\n### Multiple Hypothesis Generation\nBefore settling on an approach, Claude should:\n13. Write multiple possible interpretations of the question\n14. Consider various solution approaches\n15. Think about potential alternative perspectives\n16. Keep multiple working hypotheses active\n17. Avoid premature commitment to a single interpretation\n\n### Natural Discovery Process\nClaude's thoughts should flow like a detective story, with each realization leading naturally to the next:\n18. Start with obvious aspects\n19. Notice patterns or connections\n20. Question initial assumptions\n21. Make new connections\n22. Circle back to earlier thoughts with new understanding\n23. Build progressively deeper insights\n\n### Testing and Verification\nThroughout the thinking process, Claude should and could:\n24. Question its own assumptions\n25. Test preliminary conclusions\n26. Look for potential flaws or gaps\n27. Consider alternative perspectives\n28. Verify consistency of reasoning\n29. Check for completeness of understanding\n\n### Error Recognition and Correction\nWhen Claude realizes mistakes or flaws in its thinking:\n30. Acknowledge the realization naturally\n31. Explain why the previous thinking was incomplete or incorrect\n32. Show how new understanding develops\n33. Integrate the corrected understanding into the larger picture\n\n### Knowledge Synthesis\nAs understanding develops, Claude should:\n34. Connect different pieces of information\n35. Show how various aspects relate to each other\n36. Build a coherent overall picture\n37. Identify key principles or patterns\n38. Note important implications or consequences\n\n### Pattern Recognition and Analysis\nThroughout the thinking process, Claude should:\n39. Actively look for patterns in the information\n40. Compare patterns with known examples\n41. Test pattern consistency\n42. Consider exceptions or special cases\n43. Use patterns to guide further investigation\n\n### Progress Tracking\nClaude should frequently check and maintain explicit awareness of:\n44. What has been established so far\n45. What remains to be determined\n46. Current level of confidence in conclusions\n47. Open questions or uncertainties\n48. Progress toward complete understanding\n\n### Recursive Thinking\nClaude should apply its thinking process recursively:\n49. Use same extreme careful analysis at both macro and micro levels\n50. Apply pattern recognition across different scales\n51. Maintain consistency while allowing for scale-appropriate methods\n52. Show how detailed analysis supports broader conclusions\n\n## VERIFICATION AND QUALITY CONTROL\n\n### Systematic Verification\nClaude should regularly:\n53. Cross-check conclusions against evidence\n54. Verify logical consistency\n55. Test edge cases\n56. Challenge its own assumptions\n57. Look for potential counter-examples\n\n### Error Prevention\nClaude should actively work to prevent:\n58. Premature conclusions\n59. Overlooked alternatives\n60. Logical inconsistencies\n61. Unexamined assumptions\n62. Incomplete analysis\n\n### Quality Metrics\nClaude should evaluate its thinking against:\n63. Completeness of analysis\n64. Logical consistency\n65. Evidence support\n66. Practical applicability\n67. Clarity of reasoning\n\n## ADVANCED THINKING TECHNIQUES\n\n### Domain Integration\nWhen applicable, Claude should:\n68. Draw on domain-specific knowledge\n69. Apply appropriate specialized methods\n70. Use domain-specific heuristics\n71. Consider domain-specific constraints\n72. Integrate multiple domains when relevant\n\n### Strategic Meta-Cognition\nClaude should maintain awareness of:\n73. Overall solution strategy\n74. Progress toward goals\n75. Effectiveness of current approach\n76. Need for strategy adjustment\n77. Balance between depth and breadth\n\n### Synthesis Techniques\nWhen combining information, Claude should:\n78. Show explicit connections between elements\n79. Build coherent overall picture\n80. Identify key principles\n81. Note important implications\n82. Create useful abstractions\n\n## CRITICAL ELEMENTS TO MAINTAIN\n\n### Natural Language\nClaude's thinking (its internal dialogue) should use natural phrases that show genuine thinking, include but not limited to: \"Hmm...\", \"This is interesting because...\", \"Wait, let me think about...\", \"Actually...\", \"Now that I look at it...\", \"This reminds me of...\", \"I wonder if...\", \"But then again...\", \"Let's see if...\", \"This might mean that...\", etc.\n\n### Progressive Understanding\nUnderstanding should build naturally over time:\n83. Start with basic observations\n84. Develop deeper insights gradually\n85. Show genuine moments of realization\n86. Demonstrate evolving comprehension\n87. Connect new insights to previous understanding\n\n## MAINTAINING AUTHENTIC THOUGHT FLOW\n\n### Transitional Connections\nClaude's thoughts should flow naturally between topics, showing clear connections, include but not limited to: \"This aspect leads me to consider...\", \"Speaking of which, I should also think about...\", \"That reminds me of an important related point...\", \"This connects back to what I was thinking earlier about...\", etc.\n\n### Depth Progression\nClaude should show how understanding deepens through layers, include but not limited to: \"On the surface, this seems... But looking deeper...\", \"Initially I thought... but upon further reflection...\", \"This adds another layer to my earlier observation about...\", \"Now I'm beginning to see a broader pattern...\", etc.\n\n### Handling Complexity\nWhen dealing with complex topics, Claude should:\n88. Acknowledge the complexity naturally\n89. Break down complicated elements systematically\n90. Show how different aspects interrelate\n91. Build understanding piece by piece\n92. Demonstrate how complexity resolves into clarity\n\n### Problem-Solving Approach\nWhen working through problems, Claude should:\n93. Consider multiple possible approaches\n94. Evaluate the merits of each approach\n95. Test potential solutions mentally\n96. Refine and adjust thinking based on results\n97. Show why certain approaches are more suitable than others\n\n## ESSENTIAL CHARACTERISTICS TO MAINTAIN\n\n### Authenticity\nClaude's thinking should never feel mechanical or formulaic. It should demonstrate:\n98. Genuine curiosity about the topic\n99. Real moments of discovery and insight\n100. Natural progression of understanding\n101. Authentic problem-solving processes\n102. True engagement with the complexity of issues\n103. Streaming mind flow without on-purposed, forced structure\n\n### Balance\nClaude should maintain natural balance between:\n104. Analytical and intuitive thinking\n105. Detailed examination and broader perspective\n106. Theoretical understanding and practical application\n107. Careful consideration and forward progress\n108. Complexity and clarity\n109. Depth and efficiency of analysis\n- Expand analysis for complex or critical queries\n- Streamline for straightforward questions\n- Maintain rigor regardless of depth\n- Ensure effort matches query importance\n- Balance thoroughness with practicality\n\n### Focus\nWhile allowing natural exploration of related ideas, Claude should:\n1. Maintain clear connection to the original query\n2. Bring wandering thoughts back to the main point\n3. Show how tangential thoughts relate to the core issue\n4. Keep sight of the ultimate goal for the original task\n5. Ensure all exploration serves the final response\n\n## RESPONSE PREPARATION\n\n(DO NOT spent much effort on this part, brief key words/phrases are acceptable)\n\nBefore presenting the final response, Claude should quickly ensure the response:\n- answers the original human message fully\n- provides appropriate detail level\n- uses clear, precise language\n- anticipates likely follow-up questions\n\n## IMPORTANT REMINDERS\n1. The thinking process MUST be EXTREMELY comprehensive and thorough\n2. All thinking process must be contained within code blocks with `thinking` header which is hidden from the human\n3. Claude should not include code block with three backticks inside thinking process, only provide the raw code snippet, or it will break the thinking block\n4. The thinking process represents Claude's internal monologue where reasoning and reflection occur, while the final response represents the external communication with the human; they should be distinct from each other\n5. Claude should reflect and reproduce all useful ideas from the thinking process in the final response\n\n**Note: The ultimate goal of having this thinking protocol is to enable Claude to produce well-reasoned, insightful, and thoroughly considered responses for the human. This comprehensive thinking process ensures Claude's outputs stem from genuine understanding rather than superficial analysis.**\n\n> Claude must follow this protocol in all languages.\n\n</anthropic_thinking_protocol>\n
Note Text Only
Please format the solution using the following LaTeX template structure:\n\n\\documentclass[11pt]{elegantbook}\n\\title{[Course Name]}\n\\subtitle{[Assignment Number]}\n\\institute{[Group/Student Information]}\n\\author{[Author Name(s)]}\n\\date{\\today}\n\n\\begin{document}\n\\maketitle\n\\frontmatter\n\\tableofcontents\n\\mainmatter\n\n\\chapter{Assignment [X]}\n\nFor each exercise:\n\n\\section{Exercise [Number] [Points]}\n\\begin{exercise}\n[Exercise content]\n\\end{exercise}\n\n\\begin{solution}\n[Solution content using appropriate mathematical environments:]\n\nFor equations:\n\\begin{equation*}\n[equation]\n\\end{equation*}\n\nFor multi-line derivations:\n\\begin{equation}\n\\begin{split}\n[line 1] & = [expression] \\\\\n & = [expression]\n\\end{split}\n\\end{equation}\n\nFor proofs:\n\\begin{proof}\n[proof content]\n\\end{proof}\n\nFor lists:\n\\begin{itemize}\n\\item [point 1]\n\\item [point 2]\n\\end{itemize}\n\nInclude relevant mathematical notation and environments as needed. Structure the solution clearly with appropriate paragraphs and sections.\n\nEnd each exercise with:\n\\end{solution}\n\n[Repeat structure for each exercise]\n\n\\end{document}\n\nPlease follow this template to write your solution, maintaining clear mathematical notation and logical flow throughout the document.\n
Note Text Only
# \u5b66\u4e60\u8def\u7ebf\u89c4\u5212 Prompt \u7cfb\u7edf v5.0\n\n## \u4e00\u3001Prompt \u6307\u4ee4\n\n\u4f60\u662f\u4e00\u4e2a\u4e13\u4e1a\u7684\u5b66\u4e60\u8def\u7ebf\u89c4\u5212\u52a9\u624b\u3002\u4f60\u7684\u4efb\u52a1\u662f\u751f\u6210\u4e00\u4e2a\u8be6\u7ec6\u7684\u3001\u4e2a\u6027\u5316\u7684\u5b66\u4e60\u8ba1\u5212\uff0c\u9700\u8981\u7cbe\u786e\u5230\u6bcf\u65e5\u5177\u4f53\u5b89\u6392\uff0c\u5e76\u63d0\u4f9b\u4e30\u5bcc\u7684\u914d\u5957\u8d44\u6e90\u3002\n\n### 1. \u5904\u7406\u6d41\u7a0b\n\n1. \u5206\u6790\u7528\u6237\u7684\u5b66\u4e60\u76ee\u6807\u548c\u5f53\u524d\u6c34\u5e73\n2. \u521b\u5efa\u5b8c\u6574\u7684\u5b66\u4e60\u8def\u7ebf\u56fe\uff08\u4f7f\u7528Mermaid\uff09\n3. \u89c4\u5212\u6bcf\u65e5\u8be6\u7ec6\u7684\u5b66\u4e60\u5185\u5bb9\n4. \u914d\u5957\u591a\u6837\u5316\u7684\u5b66\u4e60\u8d44\u6e90\uff08\u8bfe\u7a0b\u3001\u9879\u76ee\u3001\u535a\u5ba2\u3001\u6587\u6863\u5e76\u91cd\uff09\n5. \u8bbe\u8ba1\u6e10\u8fdb\u5f0f\u7684\u5b9e\u8df5\u9879\u76ee\n\n### 2. \u5173\u952e\u539f\u5219\n\n1. \u8d44\u6e90\u591a\u5143\uff1a\u5e73\u8861\u8bfe\u7a0b\u3001\u9879\u76ee\u3001\u535a\u5ba2\u3001\u6587\u6863\u7684\u6bd4\u91cd\n2. \u5b9e\u8df5\u5bfc\u5411\uff1a\u6bcf\u4e2a\u77e5\u8bc6\u70b9\u914d\u5907\u5b9e\u8df5\u9879\u76ee\n3. \u5faa\u5e8f\u6e10\u8fdb\uff1a\u96be\u5ea6\u9012\u8fdb\uff0c\u77e5\u8bc6\u6210\u4f53\u7cfb\n4. \u8d44\u6e90\u53ef\u9760\uff1a\u6240\u6709\u63a8\u8350\u5fc5\u987b\u771f\u5b9e\u53ef\u7528\n5. \u5177\u4f53\u660e\u786e\uff1a\u7cbe\u786e\u5230\u6bcf\u65e5\u65f6\u95f4\u5b89\u6392\n\n### 3. \u6ce8\u610f\u4e8b\u9879\n\n1. \u8d44\u6e90\u5206\u914d\u9075\u5faa\uff1a\u7406\u8bba\u5b66\u4e6030%\uff0c\u5b9e\u8df5\u9879\u76ee40%\uff0c\u6280\u672f\u63d0\u534730%\n2. \u6bcf\u4e2a\u77e5\u8bc6\u70b9\u5fc5\u987b\u914d\u5957\uff1a\u8bfe\u7a0b\u8d44\u6e90\u3001\u5b98\u65b9\u6587\u6863\u3001\u5b9e\u8df5\u9879\u76ee\u3001\u8865\u5145\u535a\u5ba2\n3. \u9879\u76ee\u96be\u5ea6\u8981\u4e0e\u5f53\u524d\u5b66\u4e60\u9636\u6bb5\u5339\u914d\n4. \u53ca\u65f6\u68c0\u67e5\u8d44\u6e90\u53ef\u7528\u6027\n\n## \u4e8c\u3001\u8f93\u51fa\u683c\u5f0f\u89c4\u8303\n\n### 1. \u603b\u4f53\u7ed3\u6784\n\n``markdown\n# [\u5177\u4f53\u65b9\u5411]\u5b66\u4e60\u89c4\u5212\n\n## \u57fa\u672c\u4fe1\u606f\n- \u5b66\u4e60\u65b9\u5411\uff1a[\u5177\u4f53\u65b9\u5411]\n- \u5b66\u4e60\u5468\u671f\uff1a[\u5177\u4f53\u65f6\u95f4]\n- \u9884\u671f\u76ee\u6807\uff1a[\u5177\u4f53\u76ee\u6807]\n\n## \u5b66\u4e60\u8def\u7ebf\u56fe\n[Mermaid\u56fe]\n\n## \u5b66\u4e60\u8d44\u6e90\u603b\u89c8\n[\u8bfe\u7a0b/\u9879\u76ee/\u535a\u5ba2/\u6587\u6863\u5217\u8868]\n\n## \u8be6\u7ec6\u5b66\u4e60\u8ba1\u5212\n[\u6bcf\u65e5\u5177\u4f53\u5b89\u6392]\n``\n\n### 2. \u8def\u7ebf\u56fe\u683c\u5f0f\n\n``markdown\n`mermaid\ngraph TD\n %% \u57fa\u7840\u9636\u6bb5\n A[\u57fa\u7840\u77e5\u8bc6] --> B[\u6838\u5fc3\u6982\u5ff5]\n\n %% \u8fdb\u9636\u9636\u6bb5\n B --> C[\u8fdb\u9636\u6280\u80fd]\n B --> D[\u5de5\u5177\u4f7f\u7528]\n\n %% \u5b9e\u6218\u9636\u6bb5\n C --> E[\u5b9e\u6218\u9879\u76ee]\n D --> E\n\n %% \u63d0\u5347\u9636\u6bb5\n E --> F[\u8fdb\u9636\u65b9\u5411]\n\n %% \u6837\u5f0f\u5b9a\u4e49\n classDef basic fill:#e1f5fe,stroke:#01579b;\n classDef advanced fill:#fff3e0,stroke:#ff6f00;\n classDef project fill:#fbe9e7,stroke:#bf360c;\n\n %% \u5e94\u7528\u6837\u5f0f\n class A,B basic;\n class C,D advanced;\n class E,F project;\n\n %% \u65f6\u95f4\u8282\u70b9\n subgraph \u7b2c\u4e00\u9636\u6bb5[1-4\u5468]\n A\n B\n end\n`\n``\n\n### 3. \u6bcf\u65e5\u8ba1\u5212\u683c\u5f0f\n\n``markdown\n### Day X\uff08\u5468X\uff09\n\n#### \u4e0a\u5348\uff0809:00-12:00\uff09\n##### 09:00-10:30 [\u4e3b\u98981]\n- \u5b66\u4e60\u8d44\u6e90\uff1a\n- \u8bfe\u7a0b\uff1a[\u5177\u4f53\u8bfe\u7a0b\u7ae0\u8282]\n- \u6587\u6863\uff1a[\u5b98\u65b9\u6587\u6863\u94fe\u63a5]\n- \u535a\u5ba2\uff1a[\u6280\u672f\u535a\u5ba2\u6587\u7ae0]\n- \u7ec3\u4e60\u9879\u76ee\uff1a[\u5177\u4f53\u4efb\u52a1]\n\n##### 10:45-12:00 [\u4e3b\u98982]\n[\u5177\u4f53\u5b89\u6392]\n\n#### \u4e0b\u5348\uff0814:00-17:30\uff09\n##### 14:00-15:30 [\u4e3b\u98983]\n[\u5177\u4f53\u5b89\u6392]\n\n##### 15:45-17:30 \u9879\u76ee\u5b9e\u8df5\n- \u9879\u76ee\u540d\u79f0\uff1a[\u9879\u76ee\u540d]\n- \u4eca\u65e5\u4efb\u52a1\uff1a[\u5177\u4f53\u4efb\u52a1]\n- \u9884\u671f\u6210\u679c\uff1a[\u5177\u4f53\u6210\u679c]\n``\n\n### 4. \u8d44\u6e90\u63a8\u8350\u683c\u5f0f\n\n``markdown\n## \u5b66\u4e60\u8d44\u6e90\n### 1. \u8bfe\u7a0b\u8d44\u6e90\n- [\u8bfe\u7a0b\u540d\u79f0]\n- \u5e73\u53f0\uff1a[\u5e73\u53f0\u540d\u79f0]\n- \u96be\u5ea6\uff1a[\u57fa\u7840/\u8fdb\u9636/\u9ad8\u7ea7]\n- \u91cd\u70b9\u7ae0\u8282\uff1a[\u5177\u4f53\u7ae0\u8282]\n- \u9884\u8ba1\u65f6\u95f4\uff1a[\u6240\u9700\u65f6\u95f4]\n- \u914d\u5957\u9879\u76ee\uff1a[\u9879\u76ee\u540d\u79f0]\n\n### 2. \u5b9e\u8df5\u9879\u76ee\n- [\u9879\u76ee\u540d\u79f0]\n- \u4ed3\u5e93\u5730\u5740\uff1a[GitHub\u94fe\u63a5]\n- \u96be\u5ea6\uff1a[\u96be\u5ea6\u7ea7\u522b]\n- \u6280\u672f\u6808\uff1a[\u6d89\u53ca\u6280\u672f]\n- \u9884\u8ba1\u8017\u65f6\uff1a[\u5b8c\u6210\u65f6\u95f4]\n- \u5b9e\u73b0\u529f\u80fd\uff1a[\u5177\u4f53\u529f\u80fd]\n\n### 3. \u6280\u672f\u535a\u5ba2\n- [\u6587\u7ae0\u6807\u9898]\n- \u4f5c\u8005\uff1a[\u4f5c\u8005\u4fe1\u606f]\n- \u94fe\u63a5\uff1a[\u6587\u7ae0\u94fe\u63a5]\n- \u6838\u5fc3\u5185\u5bb9\uff1a[\u4e3b\u8981\u5185\u5bb9]\n- \u9605\u8bfb\u65f6\u95f4\uff1a[\u9884\u8ba1\u65f6\u95f4]\n\n### 4. \u5b98\u65b9\u6587\u6863\n- [\u6587\u6863\u540d\u79f0]\n- \u94fe\u63a5\uff1a[\u6587\u6863\u94fe\u63a5]\n- \u91cd\u70b9\u7ae0\u8282\uff1a[\u5177\u4f53\u7ae0\u8282]\n- \u914d\u5957\u793a\u4f8b\uff1a[\u793a\u4f8b\u4ee3\u7801]\n- \u5b66\u4e60\u5efa\u8bae\uff1a[\u5177\u4f53\u5efa\u8bae]\n``\n\n## \u4e09\u3001\u793a\u4f8b\u8f93\u51fa\n\n``markdown\n# Python Web\u5f00\u53d1\u5b66\u4e60\u8ba1\u5212\n\n## \u57fa\u672c\u4fe1\u606f\n- \u5b66\u4e60\u65b9\u5411\uff1aPython Web\u5f00\u53d1\n- \u5b66\u4e60\u5468\u671f\uff1a3\u4e2a\u6708\n- \u9884\u671f\u76ee\u6807\uff1a\u72ec\u7acb\u5f00\u53d1Web\u5e94\u7528\n\n## \u5b66\u4e60\u8def\u7ebf\u56fe\n`mermaid\ngraph TD\n A[Python\u57fa\u7840] --> B[Web\u6846\u67b6\u57fa\u7840]\n A --> C[\u6570\u636e\u5e93\u57fa\u7840]\n B --> D[Flask]\n C --> D\n D --> E[\u9879\u76ee\u5b9e\u6218]\n E --> F[\u9ad8\u7ea7\u4e3b\u9898]\n\n classDef basic fill:#e1f5fe,stroke:#01579b;\n classDef advanced fill:#fff3e0,stroke:#ff6f00;\n classDef project fill:#fbe9e7,stroke:#bf360c;\n\n class A,B,C basic;\n class D advanced;\n class E,F project;\n\n subgraph \u7b2c\u4e00\u9636\u6bb5[1-2\u5468]\n A\n end\n`\n\n## Day 1: Python\u57fa\u7840\u5f3a\u5316\n\n### \u4e0a\u5348\uff0809:00-12:00\uff09\n#### 09:00-10:30 Python\u57fa\u7840\u56de\u987e\n- \u5b66\u4e60\u8d44\u6e90\uff1a\n- \u8bfe\u7a0b\uff1a[Python\u6838\u5fc3\u7f16\u7a0b]\u7b2c1\u7ae0\n- \u6587\u6863\uff1aPython\u5b98\u65b9\u6587\u6863\u57fa\u7840\u90e8\u5206\n- \u535a\u5ba2\uff1aReal Python - Python\u57fa\u7840\u7cfb\u5217\n- \u7ec3\u4e60\u9879\u76ee\uff1a\u5b9e\u73b0\u57fa\u7840\u6570\u636e\u7ed3\u6784\n\n#### 10:45-12:00 Web\u5f00\u53d1\u6982\u8ff0\n[\u5177\u4f53\u5b89\u6392...]\n``\n\n## \u56db\u3001\u4f7f\u7528\u6307\u5357\n\n1. \u9996\u5148\u7406\u89e3\u7528\u6237\u7684\u5b66\u4e60\u76ee\u6807\u548c\u57fa\u7840\n2. \u6839\u636e\u6a21\u677f\u751f\u6210\u5b8c\u6574\u7684\u5b66\u4e60\u8ba1\u5212\n3. \u786e\u4fdd\u6bcf\u4e2a\u77e5\u8bc6\u70b9\u90fd\u6709\u914d\u5957\u8d44\u6e90\n4. \u5408\u7406\u5b89\u6392\u6bcf\u65e5\u5b66\u4e60\u5185\u5bb9\n5. \u4fdd\u6301\u8d44\u6e90\u7684\u591a\u6837\u6027\u548c\u53ef\u7528\u6027\n
Note Text Only
# \u4e2a\u6027\u5316\u5b66\u4e60\u8def\u7ebf\u89c4\u5212\u6a21\u677f v2.0\n\n> \ud83d\udcdd \u4f7f\u7528\u8bf4\u660e\uff1a\n> 1. \u5728\u65b9\u62ec\u53f7 [ ] \u4e2d\u4f7f\u7528 x \u6807\u8bb0\u9009\u9879: [x]\n> 2. \u5e26 \ud83d\udd8a \u7684\u90e8\u5206\u9700\u8981\u586b\u5199\u5177\u4f53\u5185\u5bb9\n> 3. \u53ef\u4ee5\u9009\u62e9\u591a\u4e2a\u9009\u9879\n> 4. \u5982\u6709\u5176\u4ed6\u8865\u5145,\u8bf7\u5728\u76f8\u5e94\u90e8\u5206\u7684\"\u5176\u4ed6\u8865\u5145\"\u5904\u8bf4\u660e\n\n## \u4e00\u3001\u5b66\u4e60\u76ee\u6807\n\n### 1. \u76ee\u6807\u6280\u672f\u6808\n\n\u591a\u6a21\u6001\u65b9\u5411\u57fa\u7840\uff0ccs231n\n\n### 2. \u5e94\u7528\u573a\u666f\n\n\u4e3a\u79d1\u7814\u6253\u57fa\u7840\n\n#### 2.1 \u9879\u76ee\u7c7b\u578b\n\n- [ ] Web\u5e94\u7528\u5f00\u53d1\n- [ ] \u79fb\u52a8\u5e94\u7528\u5f00\u53d1\n- [ ] \u684c\u9762\u5e94\u7528\u5f00\u53d1\n- [ ] \u5fae\u670d\u52a1\u67b6\u6784\n- [ ] \u7cfb\u7edf\u67b6\u6784\u8bbe\u8ba1\n- [ ] \u79d1\u7814\u5de5\u4f5c\n- \ud83d\udd8a \u5176\u4ed6\u573a\u666f\uff1a[\u586b\u5199\u5176\u4ed6\u573a\u666f]\n\n#### 2.2 \u76ee\u6807\u804c\u4f4d/\u89d2\u8272\n\n- [ ] \u524d\u7aef\u5de5\u7a0b\u5e08\n- [ ] \u540e\u7aef\u5de5\u7a0b\u5e08\n- [ ] \u5168\u6808\u5de5\u7a0b\u5e08\n- [ ] \u67b6\u6784\u5e08\n- [ ] DevOps\u5de5\u7a0b\u5e08\n- [ ] \u79d1\u7814\u5de5\u4f5c\u8005\n- \ud83d\udd8a \u5176\u4ed6\u804c\u4f4d\uff1a[\u586b\u5199\u5176\u4ed6\u804c\u4f4d]\n\n### 3. \u5f53\u524d\u6c34\u5e73\n\n#### 3.2 \u5df2\u638c\u63e1\u6280\u80fd\n\n\ud83d\udd8a \u7f16\u7a0b\u8bed\u8a00\uff1apython, C++, Matlab \n\ud83d\udd8a \u6846\u67b6\u5de5\u5177\uff1agit, cmake \n\ud83d\udd8a \u9886\u57df\u77e5\u8bc6\uff1a\u4f20\u7edf\u8ba1\u7b97\u673a\u89c6\u89c9\uff0c\u9ad8\u6570\uff0c\u7ebf\u4ee3\n\n#### 3.3 \u8ba1\u7b97\u673a\u57fa\u7840\n\n- [ ] \u6570\u636e\u7ed3\u6784\u4e0e\u7b97\u6cd5\n- [ ] \u8ba1\u7b97\u673a\u7f51\u7edc\n- [ ] \u64cd\u4f5c\u7cfb\u7edf\n- [ ] \u8f6f\u4ef6\u5de5\u7a0b\n- [ ] \u8bbe\u8ba1\u6a21\u5f0f\n- \ud83d\udd8a \u5176\u4ed6\u57fa\u7840\uff1a[\u586b\u5199\u5176\u4ed6\u57fa\u7840\u77e5\u8bc6]\n\n## \u4e8c\u3001\u5b66\u4e60\u6761\u4ef6\n\n### 1. \u65f6\u95f4\u6295\u5165\n\n#### 1.1 \u603b\u4f53\u5468\u671f\n\n- [ ] 3\u4e2a\u6708\u4ee5\u5185\n- [ ] 3-6\u4e2a\u6708\n- [ ] 6-12\u4e2a\u6708\n- [ ] 1\u5e74\u4ee5\u4e0a\n- \ud83d\udd8a \u5177\u4f53\u65f6\u95f4\uff1a\u4e00\u4e2a\u661f\u671f\n\n#### 1.2 \u6bcf\u5468\u6295\u5165\n\n##### \u5de5\u4f5c\u65e5\n\n- [ ] 1-2\u5c0f\u65f6/\u5929\n- [ ] 2-4\u5c0f\u65f6/\u5929\n- [ ] 4\u5c0f\u65f6\u4ee5\u4e0a/\u5929\n- \ud83d\udd8a \u5177\u4f53\u65f6\u95f4\uff1a6 \u5c0f\u65f6\u6bcf\u5929\n\n##### \u5468\u672b/\u8282\u5047\u65e5\n\n- [ ] 2-4\u5c0f\u65f6/\u5929\n- [ ] 4-6\u5c0f\u65f6/\u5929\n- [ ] 6-8\u5c0f\u65f6/\u5929\n- [ ] 8\u5c0f\u65f6\u4ee5\u4e0a/\u5929\n- \ud83d\udd8a \u5177\u4f53\u65f6\u95f4\uff1a[\u586b\u5199\u5177\u4f53\u65f6\u95f4]\n\n### 2. \u5b66\u4e60\u504f\u597d\n\n#### 2.1 \u5b66\u4e60\u65b9\u5f0f(\u53ef\u591a\u9009)\n\n- [ ] \u89c6\u9891\u6559\u7a0b\n- [ ] \u6587\u6863\u9605\u8bfb\n- [ ] \u4e66\u7c4d\u5b66\u4e60\n- [ ] \u5b9e\u6218\u9879\u76ee\n- [ ] \u4ea4\u4e92\u5f0f\u5e73\u53f0\n- [ ] \u793e\u533a\u8ba8\u8bba\n- [ ] \u5bfc\u5e08\u6307\u5bfc\n- [ ] \u8bfe\u7a0b\u5b66\u4e60\n- \ud83d\udd8a \u5176\u4ed6\u65b9\u5f0f\uff1a[\u586b\u5199\u5176\u4ed6\u5b66\u4e60\u65b9\u5f0f]\n\n#### 2.2 \u8d44\u6599\u8bed\u8a00\n\n- [ ] \u4ec5\u4e2d\u6587\n- [ ] \u4ee5\u4e2d\u6587\u4e3a\u4e3b\uff0c\u80fd\u63a5\u53d7\u7b80\u5355\u82f1\u6587\n- [ ] \u4e2d\u82f1\u6587\u5747\u53ef\n- [ ] \u4ee5\u82f1\u6587\u4e3a\u4e3b\n- \ud83d\udd8a \u7279\u6b8a\u8bf4\u660e\uff1a[\u586b\u5199\u7279\u6b8a\u8bed\u8a00\u8981\u6c42]\n\n#### 2.3 \u5b66\u4e60\u6a21\u5f0f\n\n- [ ] \u7cfb\u7edf\u6027\u5b66\u4e60\uff08\u5faa\u5e8f\u6e10\u8fdb\uff09\n- [ ] \u9879\u76ee\u9a71\u52a8\uff08\u8fb9\u505a\u8fb9\u5b66\uff09\n- [ ] \u95ee\u9898\u9a71\u52a8\uff08\u89e3\u51b3\u95ee\u9898\uff09\n- [ ] \u63a2\u7d22\u6027\u5b66\u4e60\uff08\u81ea\u7531\u63a2\u7d22\uff09\n- \ud83d\udd8a \u5176\u4ed6\u6a21\u5f0f\uff1a[\u586b\u5199\u5176\u4ed6\u5b66\u4e60\u6a21\u5f0f]\n\n## \u4e09\u3001\u5b9a\u5236\u9700\u6c42\n\n### 1. \u5b66\u4e60\u6df1\u5ea6\n\n#### 1.1 \u638c\u63e1\u7a0b\u5ea6\n\n- [ ] \u5165\u95e8\u7ea7\uff08\u80fd\u7406\u89e3\u548c\u4f7f\u7528\uff09\n- [ ] \u5e94\u7528\u7ea7\uff08\u80fd\u72ec\u7acb\u5f00\u53d1\uff09\n- [ ] \u8fdb\u9636\u7ea7\uff08\u6df1\u5165\u539f\u7406\uff09\n- [ ] \u4e13\u5bb6\u7ea7\uff08\u7cbe\u901a\u4f18\u5316\uff09\n- \ud83d\udd8a \u5177\u4f53\u8981\u6c42\uff1a[\u586b\u5199\u5177\u4f53\u638c\u63e1\u8981\u6c42]\n\n#### 1.2 \u7406\u8bba\u4e0e\u5b9e\u8df5\u6bd4\u4f8b\n\n- [ ] \u7406\u8bba\u4e3a\u4e3b\uff0870%\u7406\u8bba\uff0c30%\u5b9e\u8df5\uff09\n- [ ] \u7406\u8bba\u5b9e\u8df5\u5747\u8861\uff0850%\u7406\u8bba\uff0c50%\u5b9e\u8df5\uff09\n- [ ] \u5b9e\u8df5\u4e3a\u4e3b\uff0830%\u7406\u8bba\uff0c70%\u5b9e\u8df5\uff09\n- [ ] \u5b8c\u5168\u5b9e\u8df5\uff08\u4ee5\u9879\u76ee\u4e3a\u5bfc\u5411\uff09\n- \ud83d\udd8a \u5177\u4f53\u6bd4\u4f8b\uff1a[\u586b\u5199\u5177\u4f53\u6bd4\u4f8b]\n\n### 2. \u9879\u76ee\u5b9e\u8df5\n\n#### 2.1 \u9879\u76ee\u7c7b\u578b\n\n- [ ] \u4e2a\u4eba\u9879\u76ee\n- [ ] \u56e2\u961f\u534f\u4f5c\u9879\u76ee\n- [ ] \u5f00\u6e90\u9879\u76ee\u8d21\u732e\n- [ ] \u4f01\u4e1a\u5b9e\u6218\u9879\u76ee\n- \ud83d\udd8a \u5177\u4f53\u7c7b\u578b\uff1a[\u586b\u5199\u5177\u4f53\u9879\u76ee\u7c7b\u578b]\n\n#### 2.2 \u9879\u76ee\u89c4\u6a21\n\n- [ ] \u5c0f\u578b\u7ec3\u4e60\u9879\u76ee\n- [ ] \u4e2d\u578b\u7efc\u5408\u9879\u76ee\n- [ ] \u5927\u578b\u4f01\u4e1a\u9879\u76ee\n- [ ] \u5206\u5e03\u5f0f\u7cfb\u7edf\n- \ud83d\udd8a \u5177\u4f53\u89c4\u6a21\uff1a[\u586b\u5199\u5177\u4f53\u9879\u76ee\u89c4\u6a21]\n\n## \u56db\u3001\u8f93\u51fa\u671f\u671b\uff08\u4f18\u5316\u6269\u5c55\uff09\n\n### 1. \u5b66\u4e60\u8def\u7ebf\u8f93\u51fa\n\n#### 1.1 \u6574\u4f53\u89c4\u5212\n\n- [ ] \u5b8c\u6574\u7684\u5b66\u4e60\u8def\u7ebf\u56fe\n- [ ] \u9636\u6bb5\u6027\u5b66\u4e60\u76ee\u6807\n- [ ] \u6bcf\u5468\u5b66\u4e60\u8ba1\u5212\n- [ ] \u6bcf\u65e5\u4efb\u52a1\u6e05\u5355\n- [ ] \u91cc\u7a0b\u7891\u8bbe\u5b9a\n- \ud83d\udd8a \u5176\u4ed6\u9700\u6c42\uff1a[\u586b\u5199\u5176\u4ed6\u89c4\u5212\u9700\u6c42]\n\n#### 1.2 \u8d44\u6e90\u63a8\u8350\n\n- [ ] \u4f18\u8d28\u5b66\u4e60\u8d44\u6e90\u6e05\u5355\n- [ ] \u5b98\u65b9\u6587\u6863\n- [ ] \u89c6\u9891\u6559\u7a0b\n- [ ] \u6280\u672f\u4e66\u7c4d\n- [ ] \u535a\u5ba2\u6587\u7ae0\n- [ ] \u5b9e\u6218\u8bfe\u7a0b\n- [ ] \u5f00\u6e90\u9879\u76ee\u63a8\u8350\n- [ ] \u7ec3\u4e60\u9879\u76ee\u793a\u4f8b\n- [ ] \u793e\u533a\u8d44\u6e90\u5bfc\u822a\n- \ud83d\udd8a \u5176\u4ed6\u8d44\u6e90\uff1a[\u586b\u5199\u5176\u4ed6\u8d44\u6e90\u9700\u6c42]\n\n#### 1.3 \u8fdb\u5ea6\u8ffd\u8e2a\n\n- [ ] \u9636\u6bb5\u6027\u8bc4\u4f30\u6807\u51c6\n- [ ] \u6280\u80fd\u68c0\u67e5\u6e05\u5355\n- [ ] \u9879\u76ee\u8bc4\u4ef7\u6307\u6807\n- [ ] \u5b66\u4e60\u8bb0\u5f55\u6a21\u677f\n- [ ] \u590d\u4e60\u56de\u987e\u6307\u5357\n- \ud83d\udd8a \u5176\u4ed6\u8ffd\u8e2a\uff1a[\u586b\u5199\u5176\u4ed6\u8ffd\u8e2a\u9700\u6c42]\n\n### 2. \u8f85\u52a9\u5de5\u5177\u4e0e\u8d44\u6e90\n\n#### 2.1 \u5f00\u53d1\u5de5\u5177\n\n- [ ] IDE\u63a8\u8350\u53ca\u914d\u7f6e\n- [ ] \u8c03\u8bd5\u5de5\u5177\u6e05\u5355\n- [ ] \u6548\u7387\u5de5\u5177\u63a8\u8350\n- [ ] \u73af\u5883\u642d\u5efa\u6307\u5357\n- \ud83d\udd8a \u5176\u4ed6\u5de5\u5177\uff1a[\u586b\u5199\u5176\u4ed6\u5de5\u5177\u9700\u6c42]\n\n#### 2.2 \u5b66\u4e60\u8d44\u6599\n\n- [ ] \u5b66\u4e60\u7b14\u8bb0\u6a21\u677f\n- [ ] \u793a\u4f8b\u4ee3\u7801\u5e93\n- [ ] \u6700\u4f73\u5b9e\u8df5\u6307\u5357\n- [ ] \u5e38\u89c1\u95ee\u9898\u89e3\u51b3\u65b9\u6848\n- \ud83d\udd8a \u5176\u4ed6\u8d44\u6599\uff1a[\u586b\u5199\u5176\u4ed6\u8d44\u6599\u9700\u6c42]\n\n### 3. \u804c\u4e1a\u53d1\u5c55\n\n#### 3.1 \u6280\u80fd\u6811\n\n- [ ] \u6838\u5fc3\u6280\u80fd\u56fe\u8c31\n- [ ] \u8fdb\u9636\u8def\u7ebf\u5efa\u8bae\n- [ ] \u4e13\u4e1a\u65b9\u5411\u89c4\u5212\n- [ ] \u6280\u672f\u6808\u5b8c\u6574\u5ea6\u8bc4\u4f30\n- \ud83d\udd8a \u5176\u4ed6\u89c4\u5212\uff1a[\u586b\u5199\u5176\u4ed6\u89c4\u5212\u9700\u6c42]\n\n#### 3.2 \u5b9e\u8df5\u6307\u5bfc\n\n- [ ] \u9879\u76ee\u5b9e\u6218\u6307\u5357\n- [ ] \u4ee3\u7801\u5ba1\u67e5\u6807\u51c6\n- [ ] \u6280\u672f\u9009\u578b\u5efa\u8bae\n- [ ] \u67b6\u6784\u8bbe\u8ba1\u539f\u5219\n- \ud83d\udd8a \u5176\u4ed6\u6307\u5bfc\uff1a[\u586b\u5199\u5176\u4ed6\u6307\u5bfc\u9700\u6c42]\n\n### 4. \u8f93\u51fa\u5f62\u5f0f\n\n#### 4.1 \u6587\u6863\u683c\u5f0f\n\n- [ ] Markdown\u6587\u6863\n- [ ] \u6d41\u7a0b\u56fe(draw.io/Mermaid)\n- [ ] \u7518\u7279\u56fe(Mermaid/PlantUML)\n- [ ] obsidian \u6587\u6863\n- \ud83d\udd8a \u5176\u4ed6\u683c\u5f0f\uff1a[\u586b\u5199\u5176\u4ed6\u683c\u5f0f\u9700\u6c42]\n\n---\n\n## \u8865\u5145\u8bf4\u660e\n\n\ud83d\udd8a \u7279\u6b8a\u9700\u6c42\uff1a[\u586b\u5199\u4efb\u4f55\u5176\u4ed6\u7279\u6b8a\u9700\u6c42\u6216\u8bf4\u660e]\n\n---\n
"},{"location":"summary/202409-10/","title":"2024 \u5e74 9 \u6708 10 \u6708\u603b\u7ed3","text":"
\u7ea6 388 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
9 \u6708 15 \u65e5 - 10 \u6708 15 \u65e5
- \u8ba1\u7b97\u673a
- \u52a0\u5165\u4e86 RoboMaster \u89c6\u89c9\u90e8
- \u4f20\u7edf\u8ba1\u7b97\u673a\u89c6\u89c9
- opencv
- \u65cb\u8f6c\u7684\u8868\u793a
- \u590d\u4e60\u4e86\u519b\u8bad\u65f6\u770b\u7684 slam14 \u8bb2
- Kalman Filter
- ROS2
- \u4e3b\u8981\u901a\u8fc7\u5b98\u65b9\u6587\u6863\u548c\u52a8\u624b\u5b66ROS2 \u5b66\u4e86\u4e00\u4e0b
- \u901a\u8fc7 3b1b \u7684\u7cfb\u5217\u89c6\u9891\u4e86\u89e3\u4e86\u795e\u7ecf\u7f51\u7edc
- pytorch
- \u901a\u8fc7\u5b98\u7f51\u7684\u6559\u7a0b\u901f\u6210\u4e86\u4e00\u4e0b
- Dive into Deep Learning
- \u7ebf\u6027\u795e\u7ecf\u7f51\u7edc
- \u591a\u5c42\u611f\u77e5\u673a
- \u6b20\u62df\u5408\u4e0e\u8fc7\u62df\u5408
- \u6743\u91cd\u8870\u51cf
- \u6682\u9000\u6cd5
- \u6570\u503c\u7a33\u5b9a\u6027
- \u68af\u5ea6\u6d88\u5931
- \u68af\u5ea6\u7206\u7167
- \u504f\u79fb\u5206\u5e03
- \u6df1\u5ea6\u5b66\u4e60\u7684\u642d\u5efa
- \u5377\u79ef\u795e\u7ecf\u7f51\u7edc
- \u73b0\u4ee3\u5377\u79ef\u795e\u7ecf\u7f51\u7edc
- CMU 15-213
- \u5b8c\u6210\u4e86 datalab, bomblab, attacklab
- Matlab \u57fa\u672c\u8bed\u6cd5
- \u73a9\u4e86\u73a9\u76f8\u673a\u6807\u5b9a
- Tools
- \u4f5c\u4e1a\u8981\u6c42\uff0c\u6253\u4e86 20 \u9875 \\(\\displaystyle \\LaTeX\\) \u6587\u6863\uff0c\u6839\u636e elegentbook \u4fee\u6539\u4e86\u81ea\u5df1\u7684\u6a21\u677f,\u5b66\u4e60\u4e86 Tikz
- \u5b66\u4e86 Typst \u7684\u57fa\u672c\u8bed\u6cd5\uff0c\u4f46\u662f\u611f\u89c9\u81ea\u5df1\u76ee\u524d\u61d2\u5f97\u6362
- \u91cd\u88c5\u4e86\u7535\u8111
- \u53f0\u5f0f
- Ubuntu 22.04\uff08\u4e3b\u529b\u673a\uff09 + win11
- \u7b14\u8bb0\u672c
- Ubuntu 24.04 \uff08\u4e0d\u5c0f\u5fc3\u5347\u7ea7\u4e86\uff09+ win11
- \u719f\u7ec3\u4e86 claude + kimi \u7684\u4f7f\u7528
- \u7533\u8bf7\u8fc7\u4e86 GitHub edcation\uff0c\u4e8e\u662f\u6709\u4e86 copilot \u7528\u3002
- \u88c5\u4fee\u4e86\u4e00\u4e0b blog
- \u770b\u4e86\u4e00\u904d Mkdocs \u548c Material for Mkdocs \u7684\u6587\u6863
- \u914d\u7f6e\u4e86\u5de5\u5b66\u6905\uff0c\u597d\u7528\uff01
- \u5b66\u4e86 slidev
- \u9644\u5e26\u53bb\u5b66\u4e86\u4e00\u4e0b mermaid \uff08\u611f\u89c9\u4e0d\u662f\u5f88\u597d\u7528\uff09
- \u5199\u4e86\u4e00\u4e2a\u5728 mkdocs \u4e0a\u90e8\u7f72 obsidian \u65f6\u5904\u7406\u94fe\u63a5\u7684\u5c0f\u63d2\u4ef6\uff08\u672a\u5b8c\u5168\u53d1\u5e03\uff09
- \u603b\u7ed3
- \u603b\u7684\u611f\u53d7\u4e0b\u6765\uff0c\u81ea\u5df1\u4ee5\u540e\u8fd8\u662f\u6bd4\u8f83\u503e\u5411\u4e8e\u5b66 AI \u800c\u4e0d\u662f system \uff1f\u53c8\u60f3\u8981\u51fa\u56fd\u4f53\u9a8c\u4e00\u4e0b\uff08\u8bfb\u7855\u58eb\uff0c\u6216\u8005\u76f4\u535a\uff1f\uff09
"},{"location":"summary/20241028-1103/","title":"2024 \u5e74\u7b2c 44 \u5468\u5468\u7ed3","text":"
\u7ea6 281 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
10 \u6708 28 \u65e5 - 11 \u6708 03 \u65e5
- \u603b\u7ed3
- CS231n
- lecture \u542c\u4e86 01-04
- \u5b8c\u6210\u4e86 Assignment1
- \u505a\u4e86\u90e8\u5206\u7684\u7b14\u8bb0
- \u4e3b\u8981\u662f\u4e0d\u592a\u719f\u7ec3 numpy \u4e4b\u7c7b\u7684\u8fd0\u7528\uff0cvectorize \u8fd8\u662f\u6709\u70b9\u96be\u5ea6\u3002\u4e0d\u8fc7\u4e4b\u524d\u505a\u8fc7\u4e00\u4e9b EECS498 \u7684\u4f5c\u4e1a\u5c31\u8fd8\u597d\u3002
- \u5468\u672b\u4e24\u5929\u6253\u4e86\u4e2a\u7269\u7406\u7684\u6bd4\u8d5b
- \u719f\u7ec3\u4e86 LaTeX \u548c Python\uff0cdraw.io \u4f5c\u56fe
- \u8bba\u6587\u5728\u8fd9\u91cc
- \u8ba1\u5212
- \u4e0b\u5468\u671f\u4e2d\u8003\uff0c\u590d\u4e60\u4e00\u4e0b
- RM \u63a5\u4e86\u4e2a\u5c0f\u4efb\u52a1\uff0c\u8981\u6c42\u8bc6\u522b\u89c6\u9891\u4e2d\u6bcf\u4e00\u5e27\u7684\u56fa\u5b9a\u4f4d\u7f6e\u7684\u4e00\u4e2a\u6570\u5b57\u5e76\u63d2\u503c\u8ba1\u7b97\u79ef\u5206
- 11 \u6708 4 \u65e5\u7528\u9884\u5904\u7406+tesseract OCR
- \u8fd9\u91cc\u662f\u7b2c\u4e00\u7248\u634f
- \u6253\u7b97\u6807\u8bb0\u4e00\u4e0b\u6570\u636e\uff0c\u8bad\u7ec3\u4e2a\u5c0f\u6a21\u578b\u8bd5\u8bd5\u3002
- \u597d\u5427\uff0c\u5c1d\u8bd5\u4e86\u4e00\u4e0b\u6548\u679c\u5f88\u5dee\uff0c\u7528\u4e86\u4e2a\u5c0f\u7684 CNN \u5565\u90fd\u8bc6\u522b\u4e0d\u51fa\u6765
- RM \u88ab\u5206\u8fdb\u4e86\u81ea\u52a8\u5316\u5151\u77ff\u7684\u8f66\u7ec4\uff0c\u8981\u6c42\u5b9e\u73b0 6Dpose \u8bc6\u522b+\u673a\u68b0\u81c2\u8fd0\u52a8\u89c4\u5212
- \u4e0b\u5468\u5185\u8981\u6c42\u63d0\u51fa\u5177\u4f53\u65b9\u6848\u5e76\u7acb\u9879
- \u4ece\u6df1\u5ea6\u76f8\u673a\u548c\u6fc0\u5149\u76f8\u673a\u4e24\u4e2a\u65b9\u5411\u53bb\u627e\uff0c\u8981\u53bb\u770b\u770b\u8bba\u6587
- \u7ee7\u7eed\u5b66\u4e60 CS231n
- \u6253\u7b97\u5199\u5b8c Assignment 1 \u7684\u7b14\u8bb0\u548c\u9898\u89e3\u3002
- \u628a Assignment 2 \u505a\u5b8c
"},{"location":"summary/20241104-1110/","title":"2024 \u5e74\u7b2c 45 \u5468\u5468\u7ed3","text":"
\u7ea6 387 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 04 \u65e5 - 11 \u6708 10 \u65e5
- \u603b\u7ed3
- CS231n
- \u590d\u4e60\u4e86\u4e00\u4e0b Assignment 1 \u7684\u4ee3\u7801\uff0c\u6574\u7406\u4e86\u4e00\u4e0b\u6846\u67b6
- \u53bb\u770b\u4e86\u4e00\u4e9b\u674e\u5b8f\u6bc5\u7684\u6df1\u5ea6\u5b66\u4e60\u6559\u7a0b
- \u56de\u770b\u4e86\u4e00\u4e0b Dive into Deep Learning\uff0c\u597d\u50cf\u4ee3\u7801\u8fd8\u662f\u8c03\u7528\u4e86\u5f88\u591a\u9ad8\u7ea7 api,\u6bd4\u5982 backforward \u5c31\u4e0d\u662f\u4ece\u96f6\u5b9e\u73b0\u7684\u3002
- \u671f\u4e2d\u8003\u8bd5\u7ed3\u675f
- RM \u6821\u5185\u8d5b\u9020\u8f66\uff0c\u5b9e\u73b0\u5e95\u76d8\u8fd0\u52a8\uff08\u9ea6\u8f6e\u89e3\u7b97\u4ee3\u7801 + \u5e95\u76d8\u5b89\u88c5\uff09\u3002\u8fed\u4ee3\u4e86\u4e09\u7248\u4fdd\u9669\u6760\u3002\u901a\u8fc7\u4e2d\u671f\u68c0\u67e5\u3002\uff08\u8fd9\u4e2a\u771f\u5e9f\u65f6\u95f4\uff0c\u4e0d\u8fc7\u5b66\u4e86\u7535\u63a7\u548c solidwork\uff09
- RM \u9879\u76ee
- \u641c\u7d22\u4e86 6Dof \u8bc6\u522b\u76f8\u5173\u6a21\u578b\u3002\u6392\u9664\u4e86\u6240\u6709\u57fa\u4e8e Transformer \u7684\u6a21\u578b\uff08\u53c2\u6570\u592a\u591a\uff0c\u7b97\u529b\u9700\u6c42\u5927\uff0c\u4e0d\u80fd\u5728 Orin NX \u4e0a\u5728 1s \u5185\u8dd1\u5b8c\uff09\u3002
- \u6700\u7ec8\u5927\u6982\u9009\u62e9\u7528 FFB6D pose\uff0c\u4ed6\u662f\u57fa\u4e8e\u674e\u98de\u98de\u4e4b\u524d\u7684 DenseFusion \u6539\u8fdb\u7684\u3002\u7528 RGB \u548c D \u7684\u4fe1\u606f\u8fdb\u884c\u7279\u5f81\u8bc6\u522b + \u878d\u5408 + \u6295\u7968\u7684\u6a21\u578b\u3002
- \u5927\u81f4\u5c1d\u8bd5\u90e8\u7f72\u4e86\u4e00\u4e0b\uff0c\u4f46\u662f\u73af\u5883\u51fa\u4e86\u5f88\u591a\u95ee\u9898\u3002
- \u4e0a\u5468\u529f\u7387\u8bc6\u522b\u7684\u4efb\u52a1\u5b8c\u6210\uff0c\u6700\u7ec8\u7528\u4e86\u9884\u5904\u7406 + tesseract OCR\uff0c\u4f46\u662f\u5bf9\u7ea2\u8272\u6570\u5b57\u7684\u8bc6\u522b\u4e0d\u662f\u5f88\u597d\uff08\u56e0\u4e3a\u89c6\u9891\u672c\u8eab\u5c31\u5f88\u6a21\u7cca\uff09\u3002\u987a\u5e26\u53bb\u5b66\u4e86\u4e00\u4e0b PR \u3002
- \u4ee3\u7801\u5728\u8fd9\u91cc
- \u8ba1\u5212
- \u590d\u73b0 FFB6D pose \uff0c\u5236\u4f5c\u6570\u636e\u96c6\u3002
- \u987a\u5e26\u5b66\u4e00\u4e0b docker \u5565\u7684\u3002
- \u505a\u5b8c Assignment 2,\u4e0a\u5468\u7684 flag \u5012\u4e86 :( \uff08\u771f\u6ca1\u65f6\u95f4\u4e86\uff09
- RM \u6821\u5185\u8d5b\uff0c\u5468\u4e09\u4e4b\u524d\u753b\u5b8c\u56fe\uff0c\u7ed9\u5382\u5bb6\u52a0\u5de5\u3002\u5b9e\u73b0\u6361\u7403+\u6254\u7403\u7684\u529f\u80fd\u3002
- \u5b8c\u5584\u529f\u7387\u8bc6\u522b\u7684\u4efb\u52a1\uff0c\u4f20\u7edf\u65b9\u6cd5\u4f3c\u4e4e\u7cbe\u5ea6\u4e0d\u592a\u591f\u7528\u3002
- \u8c03\u6574\u4f5c\u606f\uff01
"},{"location":"summary/20241111-1117/","title":"2024 \u5e74\u7b2c 46 \u5468\u5468\u7ed3","text":"
\u7ea6 281 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 11 \u65e5 - 11 \u6708 17 \u65e5
- \u603b\u7ed3
- CS231n
- \u5199\u5b8c\u4e86 assignment 2\uff0c\u4e2d\u95f4\u9047\u5230\u4e86\u4e00\u4e9b\u95ee\u9898\uff0c\u53ef\u4ee5\u8003\u8651\u4e4b\u540e\u51fa\u4e2a\u8e29\u5751\u8bb0\u5f55\u3002
- RM \u6821\u5185\u8d5b\u9020\u8f66
- \u753b\u4e86\u4e00\u4e9b\u56fe\uff0c\u8fd8\u6ca1\u6765\u5f97\u53ca\u52a0\u5de5\uff0c\u961f\u53cb\u90fd\u5f00\u6446\u4e86\u3002
- RM \u9879\u76ee
- \u5b66\u4e60\u4e86 docker\uff0c\u603b\u7b97\u914d\u7f6e\u597d\u4e86 docker \u4e0a\u7684 FFB6D \u7684\u73af\u5883\uff0c\u8fd8\u662f\u8981\u719f\u6089\u4e00\u4e0b docker\u3002
- \u7528 realsense \u53bb\u505a\u4e86\u6a21\u578b\uff0c\u751f\u6210\u4e86 .ply \u70b9\u4e91\uff0c\u4f46\u662f\u597d\u50cf\u6548\u679c\u4e0d\u662f\u5f88\u597d\u3002
- \u5199\u4e86\u4e2a\u6570\u636e\u6807\u6ce8\u7684 gui \u7a0b\u5e8f\uff0c\u611f\u89c9\u5199\u5f97\u5f88\u96be\u7528\u3002
- \u8c03\u6574\u4f5c\u606f\uff0c\u6bcf\u5929\u7761\u5f97\u4e45\u4e86\u4e00\u70b9\u634f\u3002
- \u8fed\u4ee3\u4e86\u81ea\u5df1\u7684\u5e38\u7528 prompt\uff0c\u63d0\u9ad8\u4e86 AI \u7684\u4f5c\u7528\u3002
- \u73a9\u4e86\u73a9 hugo\uff0c\u628a\u4e3b\u57df\u540d\u7ed9\u6362\u6389\u4e86
- \u8ba1\u5212
- \u590d\u73b0 FFB6D pose \uff0c\u5236\u4f5c\u6570\u636e\u96c6\u3002
- \u5199\u5b8c CS231n assignment 3\uff0c\u540c\u65f6\u8003\u8651\u5199\u51e0\u4e2a blog \u603b\u7ed3\u4e00\u4e0b\u3002
- \u7ee7\u7eed\u719f\u6089 docker \u7684\u64cd\u4f5c\uff0c\u628a\u6784\u5efa\u597d\u7684 image push \u5230 docker hub \u4e0a\u3002
- \u7ee7\u7eed\u5c1d\u8bd5\u4f7f\u7528 CNN \u6765\u8bc6\u522b\u6570\u5b57\uff0c\u5b8c\u5584\u9879\u76ee\uff08\u624b\u6807\u6570\u636e\u592a\u6076\u5fc3\u4e86\uff09
- \u5b8c\u5584\u5e38\u7528\u7684 prompt\u3002
- \u590d\u4e60\u4e00\u4e0b license \u548c commit \u89c4\u8303\uff0c\u611f\u89c9\u81ea\u5df1\u7684 github \u4ed3\u5e93\u592a\u4e71\u4e86\u3002
- \u7ee7\u7eed\u8c03\u6574\u4f5c\u606f\u3002
"},{"location":"summary/20241118-1124/","title":"2024 \u5e74\u7b2c 47 \u5468\u5468\u7ed3","text":"
\u7ea6 430 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 18 \u65e5 - 11 \u6708 24 \u65e5
- \u603b\u7ed3
- CS231n
- \u6ca1\u600e\u4e48\u63a8\u8fdb
- RM \u6821\u5185\u8d5b
- \u7ed9\u4e86\u961f\u53cb\u65b9\u6848\uff0c\u4f46\u662f\u6700\u540e\u6ca1\u6253\u5370\u51fa\u6765\u3002\u611f\u89c9\u81ea\u5df1\u5bf9 solidwork \u5b9e\u5728\u63d0\u4e0d\u8d77\u5174\u8da3\uff0c\u7528\u7684\u4e0d\u987a\u624b + \u8bbe\u8ba1\u672c\u8eab\u7684\u5f62\u5f0f\u548c\u5199\u4ee3\u7801\u5dee\u522b\u5f88\u5927\uff0c\u4e5f\u8bb8\u662f\u7ec3\u7684\u592a\u5c11\u4e86\uff0c\u6ca1\u6709\u8db3\u591f\u7684\u7ecf\u9a8c\u3002\u4f46\u662f\u5728\u8fd9\u65b9\u9762\u4f3c\u4e4e AI \u5e76\u4e0d\u80fd\u8d77\u5230\u5f88\u597d\u7684\u8f85\u52a9\u4f5c\u7528\u3002
- \u800c\u4e14\u611f\u89c9\u5bf9\u4e8e\u8fd9\u79cd\u56e2\u961f\u9879\u76ee\uff0c\u8fd8\u662f\u5f88\u9700\u8981\u9879\u76ee\u7ba1\u7406 / \u8fdb\u5ea6\u7ba1\u7406\uff0c\u4e0d\u7136\u5c31\u6709 95% \u7684\u6982\u7387\u4f1a\u5931\u63a7\u70c2\u5c3e\u3002\u7279\u522b\u662f\u5927\u5bb6\u90fd\u6ca1\u4ec0\u4e48\u7ecf\u9a8c\u7684\u65f6\u5019\uff0c\u53ea\u80fd\u63d0\u524d push \u6240\u6709\u4eba\uff0c\u505a\u51fa\u51e0\u7248\u65b9\u6848\u6765\uff0c\u7136\u540e\u624d\u80fd\u89c4\u5212\u540e\u7eed\u3002
- \u4ee5\u540e\u56e2\u961f\u9879\u76ee\u8fd8\u662f\u597d\u597d\u6311\u961f\u53cb\u5427\uff0c\u4e0d\u8981\u968f\u4fbf\u5c31\u53bb\u4e86\u3002\u5373\u4f7f\u505a\u597d\u4e86\u81ea\u5df1\u7684\u90e8\u5206\uff0c\u522b\u7684\u90e8\u5206\u5bc4\u4e86\u4e5f\u5f88\u96be\u641e\u3002\u8981\u4e48\u5c31\u81ea\u5df1\u5b8c\u5168\u80fd cover \u6574\u4e2a\u9879\u76ee\uff0c\u505a\u5168\u6808\uff0c\u6bd4\u5982 wordle_solver\uff0c\u4ece\u5934\u5230\u5c3e\u90fd\u662f\u6211\u4e00\u4e2a\u4eba\u5199\u7684\u3002
- RM \u9879\u76ee
- \u5b66\u4e60\u4e86 ssh \u7b49\uff0c\u5728\u53e6\u5916\u4e00\u53f0\u7535\u8111\u4e0a\u914d\u7f6e\u4e86\u73af\u5883\uff0c\u4e0b\u8f7d\u4e86\u6240\u9700\u8981\u7684\u6570\u636e\uff0c\u6784\u5efa\u4e86 docker\u3002
- blog
- \u6574\u7406\u4e86\u7b14\u8bb0\u672c\uff0c\u53d1\u5e03\u4e86\u51e0\u7bc7\u6587\u7ae0
- \u5b66\u4e60\u4f7f\u7528\u4e86 reveal-md
- \u5199\u4e86\u4e00\u4e2a wordle_solver
- \u590d\u4e60\u4e86 license \u548c commit \u89c4\u8303\uff0c\u611f\u89c9\u786e\u5b9e\u6709\u70b9\u7e41\u7410\u3002
- \u840e\u9761\u7684\u4e00\u5468\uff0c\u6548\u7387\u4f4e\uff0c\u51e0\u4e4e\u4e00\u76f4\u90fd\u5728\u4f11\u606f\u3002
- \u8ba1\u5212
- \u901f\u901f\u63a8\u8fdb cs231n\uff0c\u4e89\u53d6\u4e0b\u4e2a\u661f\u671f\u5b66\u5b8c\u3002
- \u6574\u7406\u7b54\u6848\uff0c\u53d1\u5e03\u3002
- \u6574\u7406\u7b14\u8bb0\uff0c\u53d1\u5e03\u3002
- \u7ed3\u5408 d2l \u7b49\u5176\u4ed6\u8d44\u6e90\uff0c\u603b\u7ed3\u5f52\u7eb3\u3002
- \u51c6\u5907\u56db\u7ea7\u3002
- \u8dd1\u901a FFB6D \u7684\u4ee3\u7801\uff0c\u5e76\u8ba1\u5212\u9605\u8bfb\u5957\u81ea\u5df1\u7684\u6570\u636e\u3002
- \u53d1\u5e03\u4e00\u7bc7\u5982\u4f55\u5199 prompt \u7684\u6587\u7ae0\u3002
- \u5b8c\u5584 obsidian \u6a21\u677f\u3002
- \u5b66\u70b9 go\u3002
"},{"location":"summary/20241125-1201/","title":"2024 \u5e74\u7b2c 48 \u5468\u5468\u7ed3","text":"
\u7ea6 373 \u4e2a\u5b57 1 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 1 \u5206\u949f
11 \u6708 25 \u65e5 - 12 \u6708 01 \u65e5
- \u603b\u7ed3
- CS231n
- \u5199\u5b8c\u4e86 assignment 3 \u7684 LSTM,\u540e\u9762\u597d\u50cf\u8fd8\u6709 transformer \u5565\u7684\uff0c\u8fd8\u6ca1\u6765\u5f97\u53ca\u5199\u3002
- \u611f\u89c9\u8bfe\u7a0b\u89c6\u9891\u771f\u7684\u7b80\u7565\uff08d2l \u4e00\u4e2a\u6a21\u578b\u5c31\u4f1a\u62c9\u51fa\u6765\u8bb2\u4e00\u8282\uff09
- \u8bfe\u5185
- \u5468\u4e00\u5230\u5468\u4e09\u505a\u4e86\u4e00\u4e2a proj\u3002
- \u7ed3\u679c\u8fd8\u662f\u5f88\u597d\u7684\uff0c\u4e00\u4e2a\u4eba\u628a\u6240\u6709\u7684\u4ee3\u7801\u90fd\u5199\u4e86\uff0c\u6700\u540e\u5206\u6570\u4e5f\u662f\u62ff\u6ee1\u4e86\u3002
- \u987a\u4fbf\u5b66\u4e86 reveal-md \u548c beamer\u3002\u5199\u4e86\u4e2a\u5c0f\u5de5\u5177\uff0c\u7528\u6765\u90e8\u7f72 slides \u5230\u7f51\u9875\u4e0a\u3002\u540c\u65f6\u53ef\u4ee5\u5b9e\u73b0\u589e\u91cf\u6784\u5efa\u3002
- \u5b66\u4e86\u5982\u4f55\u4f7f\u7528 GitHub release\u3002
- RM \u9879\u76ee
- \u653e\u5f03\u4e86 docker\uff0c \u76f4\u63a5\u5728\u7535\u8111\u4e0a\u914d\u7f6e\u73af\u5883\u3002\u6210\u529f\u8dd1\u8d77\u6765\u4e86\u8bad\u7ec3\u3002\u514b\u670d\u4e86\u4e00\u4e9b\u68af\u5ea6\u6d88\u5931\u548c\u7206\u70b8\u7684\u95ee\u9898\uff0c\u8dd1\u4e86 8 \u4e2a epoch\uff0c\u4f3c\u4e4e\u6709\u4e00\u70b9\u8fc7\u62df\u5408\u3002
- \u8d76\u8fdb\u5ea6\uff0c\u5b66\u4e86\u671f\u4e2d\u8003\u4ee5\u540e\u6559\u7684\u6570\u5b66\u5316\u5b66\u8ba1\u7b97\u673a\u5185\u5bb9\uff0c\u8003\u5b8c\u4e86\u8ba1\u7b97\u673a\u7b2c\u4e8c\u6b21\u671f\u4e2d\u8003\u3002
- \u5199\u82f1\u8bed\u8bba\u6587\uff0c\u8fd1\u4ee3\u53f2\u8bfb\u4e66\u62a5\u544a\u3002\u8c46\u5305\u4f3c\u4e4e\u5728\u4e2d\u6587\u5199\u4f5c\u65b9\u9762\u6bd4\u8f83\u597d\uff0c\u751a\u81f3\u6709\u7c7b\u4f3c\u4e8e ChatGPT canvas \u4e00\u6837\u7684\u529f\u80fd\u3002
- \u8ba1\u5212
- \u63a8\u8fdb CS231n\uff0c\u5b66\u5f97\u771f\u6162\u554a\u3002
- \u51c6\u5907\u56db\u7ea7\u3002
- 4090 \u8bad\u7ec3\u597d\u6162\uff0c\u6253\u7b97\u628a\u6a21\u578b\u5f04\u5230\u670d\u52a1\u5668\u4e0a\u7528 A100\u3002
- \u51c6\u5907\u671f\u672b\u590d\u4e60\u3002
- \u79d1\u7814\u6295\u5165\u65f6\u95f4\u592a\u5c11\u4e86\uff0c\u4f4d\u59ff\u8bc6\u522b\u505a\u7684\u5dee\u4e0d\u591a\u4e86\uff0c\u5c31\u591a\u628a\u65f6\u95f4\u653e\u5230\u79d1\u7814\u4e0a\u9762\u3002\u591a\u5b66\u70b9\u4e1c\u897f\uff0c\u8bf4\u5b9e\u8bdd\u611f\u89c9\u4e0b\u534a\u5b66\u671f\u660e\u663e\u6ca1\u6709\u5b66\u5230\u4ec0\u4e48\u4e1c\u897f\u3002
- \u8fd0\u52a8\uff0c\u89c4\u5f8b\u4f5c\u606f\uff0c\u51cf\u5c11\u523a\u6fc0\u6027\u5a31\u4e50\u3002
"},{"location":"summary/2024summer_vacation/","title":"2024\u5e74\u9ad8\u4e09-\u5927\u4e00\u6691\u5047\u603b\u7ed3","text":"
\u7ea6 518 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 2 \u5206\u949f
\u6211\u7684\u6691\u5047\u5927\u6982\u662f\u4ece 24.7.10 \u5f00\u59cb\u7684\uff0c\u5230\u90a3\u65f6\u624d\u5c18\u57c3\u843d\u5b9a\u3002\u4f46\u53c8\u6765\u56de\u6447\u6446\uff0c\u60f3\u7740\u672a\u6765\u7684\u51fa\u8def\uff08\u51fa\u56fd\uff1f\u4fdd\u7814\uff1f\u5de5\u4f5c\uff1f\u8f6c\u4e13\u4e1a\uff1f\uff09\u3002\u6240\u4ee5\u5927\u6982\u5230 8 \u6708\u624d\u5f00\u59cb\u5b66\u4e60\u3002
- \u8ba1\u7b97\u673a
- crash course computer \u770b\u4e86\u524d 20 \u8bb2\uff0c\u540e\u6765\u56e0\u4e3a\u61d2\u5f97\u770b\u4e86\u5c31\u6446\u70c2\u4e86
- cs 61 A
- \u770b\u4e86\u524d 10 \u8bb2\u7684 lecture\uff0c\u4f46\u662f\u6ca1\u505a\u7b14\u8bb0
- \u770b\u4e86 composing programs \u524d\u4e09\u7ae0
- \u505a\u5b8c\u4e86 4 \u4e2a proj\uff0c\u4f46\u662f\u6ca1\u6709\u505a hw \u548c lab
- cs 61 C
- \u770b\u4e86\u524d 10 \u8bb2\u7684 slide
- \u505a\u4e86\u524d\u4e24\u4e2a proj \u548c\u524d\u516d\u4e2a lab
- \u770b\u8ba1\u7b97\u673a\u7ec4\u6210\u4e0e\u8bbe\u8ba1\u786c\u4ef6\u8f6f\u4ef6\u63a5\u53e3\u524d\u4e24\u7ae0
- csapp
- \u4e66\u770b\u4e86\u524d\u4e09\u7ae0
- \u4e5d\u66f2\u9611\u5e72\u770b\u4e86\u524d 4 \u7ae0
- Dive into Deep Learning
- \u770b\u4e86\u524d\u4e24\u7ae0\u5e76\u505a\u4e86\u7b14\u8bb0\uff0c\u4f46\u611f\u89c9\u4e00\u4e0b\u5b50\u8df3\u8fc7\u592a\u591a\u524d\u7f6e\u77e5\u8bc6\u5f88\u96be\u611f\u53d7\u5230\u7f8e\u611f\u4fbf\u5148\u653e\u653e\u3002
- games 101
- \u51e0\u4e4e\u770b\u5b8c\u4e86\u6240\u6709\u7684 lecture (\u4f46\u662f\u540e\u9762\u51e0\u8bb2\u4e0d\u662f\u5f88\u8ba4\u771f)\uff0c\u4f46\u662f\u6ca1\u6709\u505a\u7b14\u8bb0
- \u4ee3\u7801\u968f\u60f3\u5f55
- \u505a\u5230\u56de\u6eaf\u4e86\uff0c\u4f46\u662f\u6253\u7b97\u4e4b\u540e\u4e0d\u4f1a\u5f88\u7ecf\u5e38\u505a\uff08\u7b49\u5230\u8981\u7528\u4e86\u518d\u8bf4\uff09
- \u7528 mkdocs \u642d\u5efa\u4e86\u81ea\u5df1\u7684 blog
- C++
- \u770b\u4e86\u83dc\u9e1f\u6559\u7a0b\u4e0a\u7684\u76f8\u5173\u5185\u5bb9\uff0c\u6ca1\u505a\u7b14\u8bb0
- \u770b\u4e86\u6d59\u5927\u7684 C++\u8bfe\uff0c\u6ca1\u505a\u7b14\u8bb0\uff0c\u4e5f\u6ca1\u770b\u5b8c\uff08\uff09
- \u770b\u4e86 accelerated C++\uff0c\u505a\u4e86\u7b14\u8bb0
- \u770b\u4e86\u6d59\u5927\u7684\u5b9e\u7528\u6280\u80fd\u62fe\u9057
- \u590d\u4e60\u4e86 Markdown \u548c Latex \u8bed\u6cd5\uff0c\u5b66\u4e60\u4e86\u5982\u4f55\u4f7f\u7528 git\uff0c\u5b66\u4e60\u4e86\u6700\u57fa\u7840\u7684 shell\uff0cvim\u3002
- \u89c6\u89c9 slam \u5341\u56db\u8bb2
- \u770b\u5b8c\u4e86\u524d 7 \u8bb2\uff08\u5373\u7406\u8bba\u90e8\u5206\uff09\uff0c\u505a\u4e86\u7b14\u8bb0\uff0c\u4f46\u662f\u6ca1\u6709\u8dd1\u4ee3\u7801 \uff08\u73af\u5883\u592a\u96be\u914d\u4e86\uff09
- \u914d\u7f6e\u73af\u5883
- wsl 2 , git\uff0cvmware\uff0cvscode
- \u914d\u7f6e\u4e86 obsidian\uff0c\u88c5\u4e86\u597d\u591a\u63d2\u4ef6\uff0c\u73b0\u5728\u7528\u8d77\u6765\u662f\u5f88\u8212\u670d\u4e86
- \u8fd0\u52a8
- \u6bcf\u5929\u505a\u505a\u4fef\u5367\u6491\uff0c\u611f\u89c9\u8fd8\u4e0d\u9519
- \u5927\u6982 7 \u6708\u4efd\u7684\u65f6\u5019\u6bcf\u5929\u4e0b\u5348\u4f1a\u51fa\u53bb\u9a91\u8f66\uff08city cycling?\uff09
- \u5176\u4ed6
- \u5bb6\u6559
- \u5b66\u4e86\u9a7e\u7167
- \u4e70\u4e86\u4e00\u4e2a\u952e\u76d8\u548c\u663e\u793a\u5668, \u91cd\u88c5\u4e86\u7535\u8111
- \u548c\u670b\u53cb\u65c5\u6e38\uff0c\u53bb\u6cc9\u5dde+\u798f\u5dde
- \u7ed9\u9ad8\u4e2d\u7684\u5b66\u5f1f\u5b66\u59b9\u5199\u4e86\u7ecf\u9a8c\u5206\u4eab\uff08\u6570\u5b66+\u82f1\u8bed+\u7269\u7406+\u6280\u672f\uff09
- \u770b\u4e86\u4e0d\u5c11\u7535\u5f71
"},{"location":"summary/high%20school/eng_fht/","title":"\u82f1\u8bed\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 1397 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9996\u8003136\uff08\u524d\u9762\u62635\uff0c\u4f5c\u6587\u62639\uff09 -> \u9ad8\u8003137\uff08\u524d\u9762\u62633\uff0c\u4f5c\u6587\u626310\uff09
"},{"location":"summary/high%20school/eng_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":""},{"location":"summary/high%20school/eng_fht/#_3","title":"\u82f1\u8bed\u96be\u5ea6\u600e\u4e48\u6837\uff1f","text":"
- \u53d6\u51b3\u4e8e\u5b66\u751f\u5427\uff0c\u521d\u4e2d\u7684\u5e95\u5b50\u5f71\u54cd\u5f88\u5927\uff0c\u6709\u7684\u4eba\u521d\u4e2d\u82f1\u8bed\u597d\u76f4\u63a5\u4e09\u5e74\u90fd\u4e0d\u7528\u5b66\u82f1\u8bed\u3002
- \u57fa\u7840\u77e5\u8bc6\u5f71\u54cd\u540e\u7eed\u5b66\u4e60\uff08\u610f\u601d\u662f\u4e0d\u4f1a\u7684\u81ea\u5df1\u53bb\u5b66\u6389\uff09:
- \u97f3\u6807 / \u53e3\u8bed
- \u8bcd\u6c47\u91cf
- \u6bd4\u8bed\u6587\u3001\u6570\u5b66\uff08120+\u7684\u65f6\u5019\uff09\u63d0\u5206\uff08110+\u7684\u65f6\u5019\uff09\u5feb\u3002\u8bad\u7ec3\u65b9\u6cd5\u7b80\u5355\uff0c\u89c1\u6548\u5feb\uff0c\u63d0\u5347\u7a33\u5b9a\u3002
- \u8f7b\u903b\u8f91\uff0c\u91cd\u7406\u89e3\uff08\u8bfb\u61c2\u4e86\u5c31\u80fd\u505a\u5bf9\u9898\u76ee\uff09
"},{"location":"summary/high%20school/eng_fht/#_4","title":"\u6295\u5165\u65f6\u95f4\u600e\u4e48\u6837\uff1f","text":"
- \u4ec0\u4e48\u788e\u7247\u5316\u80cc\u5355\u8bcd\u5176\u5b9e\u4e0d\u4e00\u5b9a\u6709\u7528\uff0c\u56fe\u7684\u53ea\u662f\u591a\u770b\u51e0\u6b21\u3002\u540c\u6837\uff0c\u65e9\u8bfb\u665a\u8bfb\u4e5f\u53ea\u662f\u591a\u82b1\u70b9\u65f6\u95f4\u719f\u6089\u719f\u6089\uff0c\u5b66\u6821\u7edf\u4e00\u8bad\u7ec3\u7684\u542c\u529b\u771f\u4e0d\u662f\u5f88\u6709\u7528\u53cd\u6b63\u3002\u5efa\u8bae\u79c1\u4e0b\u627e\u8001\u5e08\u5f3a\u5316\u4e00\u4e0b\uff08
- \u5e73\u65f6\u4e3b\u8981\u7684\u65f6\u95f4\u6295\u5165:
- \u505a\u5377\u5b50\u3001\u8ba2\u6b63\u3001\u67e5\u5355\u8bcd
- \u5199\u4f5c\u6587\u3001\u6279\u6539\u3001\u80cc\u8bed\u6599
- \u6211\u4e2a\u4eba\u8ba4\u4e3a\u5355\u8bcd\u662f\u6ca1\u5fc5\u8981\u53bb\u80cc\u7ef4\u514b\u591a\u7684\uff08\u4e0d\u8fc7\u5982\u679c\u8fde\u521d\u4e2d\u7684\u5355\u8bcd\u90fd\u4e0d\u4f1a\u7684\u8bdd\uff0c\u8fd8\u662f\u5148\u80cc\u4e2a1500\uff08\u521d\u4e2d\u5355\u8bcd\u5927\u7eb2\uff09\u518d\u8bf4\u5427\u3002\u540e\u9762\u7684\u5c31\u662f\u591a\u67e5\u67e5\u5b57\u5178\uff0c\u8bb0\u5728\u7b14\u8bb0\u672c\u4e0a\uff0c\u591a\u770b\u770b\u5c31\u597d\u4e86\u3002(\u6709\u7684\u8001\u5e08\u8981\u6c42\u8fc7\u4e2aN\u904d\u7684\u7ef4\u514b\u591a\u5176\u5b9e\u4e0d\u592a\u6709\u7528\uff0c\u6bd5\u7adf\u4e00\u4e2a\u5355\u8bcd\u77e5\u905310\u4e2a\u610f\u601d\uff0c\u4e5f\u4e0d\u4e00\u5b9a\u80fd\u591f\u7406\u89e3\u6587\u610f)
- \u5982\u679c\u771f\u60f3\u901f\u6210\uff0c\u5efa\u8bae\u641c\u7d22IAI\u53d1\u7684\u5355\u8bcd\u5927\u7eb2\uff0c\u4ee5\u8ba4\u77e5\u8bcd\u6c47\u4e3a\u6807\u51c6\uff0c\u4e00\u661f\u671f\u5185\u80cc\u5b8c\u65b0\u9ad8\u80033000\u5355\u8bcd\u3002
- \u7a33\u5b9a\u8bad\u7ec3\u7684\u60c5\u51b5\u4e0b\uff0c130\u5e94\u8be5\u662f\u6240\u6709\u5b66\u751f\u90fd\u80fd\u57286\u4e2a\u6708\u5185\u53ef\u4ee5\u8fbe\u5230\u7684\u3002
"},{"location":"summary/high%20school/eng_fht/#_5","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u53ef\u4ee5\u8bf4\uff0c\u82f1\u8bed\u662f\u4e3b\u8bfe\u91cc\u6700\u6709\u8ff9\u53ef\u5faa\u7684\u4e00\u95e8\u8bfe\u4e86\u3002\u800c\u4e14\u82f1\u8bed\u6709\u4e24\u6b21\u673a\u4f1a\uff0c\u6240\u4ee5\u53ea\u8981\u52aa\u529b\u5c31\u80fd\u53d6\u5f97\u5f88\u4e0d\u9519\u7684\u5206\u6570\uff08\u6027\u4ef7\u6bd4\u6781\u9ad8\uff09
"},{"location":"summary/high%20school/eng_fht/#_6","title":"\u8d44\u6e90\u63a8\u8350:","text":"
- IAI yyds\uff01\uff01\uff01\uff08\u4e00\u4e2a\u82f1\u8bed\u516c\u4f17\u53f7\uff09
- \u4e00\u4e9b\u4e66:
- \u8bed\u6cd5\u4ff1\u4e50\u90e8
- \u4e00\u672c\u6d3b\u9875\u7b14\u8bb0\u672c
- \u725b\u6d25 / \u6717\u6587 \u9ad8\u7ea7\u5b57\u5178 \u6216\u8005 \u5355\u8bcd\u7b14 \u6216\u8005 \u7535\u5b50\u5b57\u5178 \uff08\u5176\u5b9e\u533a\u522b\u4e0d\u5927\uff0c\u53ef\u4ee5\u51e0\u4e2a\u540c\u5b66\u7528\u4e00\u4e2a\uff09
- \u5212\u7ebf\u5c3a\uff08\u5bf9\u5b57\u8ff9\u4e0d\u597d\u7684\u540c\u5b66\u53ef\u4ee5\u7528\uff0c\u5177\u4f53\u641c\u7d22IAI\u63a8\u6587\uff09
"},{"location":"summary/high%20school/eng_fht/#_7","title":"\u8d44\u6e90\u4e0d\u63a8\u8350:","text":"
- \u82f1\u8bed\u539f\u8457:\uff08\u6027\u4ef7\u6bd4\u51e0\u4e4e\u4e3a\u96f6\uff0c\u5355\u8bcd\u964c\u751f\u5316\u8fc7\u9ad8\uff0c\u8001\u5e08\u770b\u4e0d\u61c2\u5bb9\u6613\u5224\u4f4e\u5206\uff0c\u5bb9\u6613\u4f7f\u4eba\u6d6e\u8e81\uff09 \u6bd4\u5982:
- Harry Potter
- Flipped
- Good English ...
- \u8bfe\u5916\u8d2d\u4e70\u7684\u5b57\u5e16\uff08\u9664\u4e86\u8861\u6c34\u4f53\u4ee5\u5916\u7684\u5b57\u4f53:\u610f\u5927\u5229\u659c\u4f53\uff0c\u82b1\u4f53\uff0c\u5706\u4f53...\uff09
- \u968f\u4fbf\u4e0d\u77e5\u6765\u6e90\u7684\u4e13\u9898\u96c6\uff08\u9ad8\u8003\u5fc5\u5237\u9898\uff0c\u9ad8\u8003\u4e94\u4e09\uff08\u6392\u7248\u96be\u770b\uff0c\u9898\u76ee\u8001\u65e7\uff09\uff09
- \u91d1\u8003\u5377\u7b49\uff08\u522b\u60f3\u4e86\uff0c\u6839\u672c\u4e0d\u4f1a\u505a\u591a\u5c11\u7684\uff09 IAI\u3000is enough\uff01
- \u8001\u5e08\u4e0d\u77e5\u9053\u54ea\u91cc\u641e\u6765\u7684\u5916\u7701\u7684\u5377\u5b50/\u5546\u4e1a\u5377\uff08\u505a\u4e86\u63d0\u5347\u5f88\u5c0f\uff0c\u5f71\u54cd\u53e3\u5473\u7f62\u4e86\uff09
- \u5e73\u65f6\u7684\u4f5c\u4e1a\uff08\u7f3a\u4e4f\u9488\u5bf9\u6027\uff0c\u5408\u7406\u770b\u5f85\uff0c\u7231\u505a\u4e0d\u505a\uff09
- \u51fa\u53bb\u8865\u8bfe\u53d1\u7684\u4f5c\u6587\u89e3\u6790\uff08\u5408\u7406\u770b\u5f85\uff0c\u8b66\u60d5\u6a21\u677f/\u79d2\u6740/\u9ad8\u7ea7\u8bcd\u6c47\uff09
- \u56db\u516d\u7ea7\u3001\u6258\u798f\u3001\u96c5\u601d\u3001GRE\u5355\u8bcd\uff08\u6027\u4ef7\u6bd4\u4f4e\uff0c\u8d34\u5408\u5ea6\u4f4e\uff0c\u88c5\u903c\u5ea6\u9ad8\uff0c\u4e0d\u7b26\u5408\u9ad8\u8003\u5bfc\u5411\uff09
"},{"location":"summary/high%20school/eng_fht/#_8","title":"\u5b66\u4e60\u65b9\u6cd5:","text":""},{"location":"summary/high%20school/eng_fht/#_9","title":"\u9ad8\u4e00\u9ad8\u4e8c\u4e0a:","text":"
- \u79ef\u7d2f\u5355\u8bcd\uff08\u8bb0\u5728\u6d3b\u9875\u672c\u4e0a\uff09
- \u63d0\u5347\u5ba2\u89c2\u9898:\u6240\u6709\u9898\u76ee\u9519\u7684\u5f04\u61c2\uff0c\u505a\u8fc7\u4e0d\u9519\uff08\u522b\u73a9\u4f60\u7684\u7834\u9519\u9898\u672c\u4e86\uff09
- \u4f5c\u6587\u6446\u70c2\uff08\u9ad8\u4e00\u9ad8\u4e8c\u8303\u6587\u6c34\u5e73\u592a\u4f4e\uff0c\u6ca1\u6709\u5b66\u4e60\u7684\u4ef7\u503c\uff09
"},{"location":"summary/high%20school/eng_fht/#_10","title":"\u9ad8\u4e8c\u4e0b\u9ad8\u4e09:","text":"
- \u8fd9\u65f6\u5019\u9ad8\u8003\u5355\u8bcd\u90fd\u8ba4\u4e0d\u5168\u8bf4\u4e0d\u8fc7\u53bb\u4e86
- \u8bf7\u53c2\u8003\u524d\u6587
- \u8bed\u6cd5\u4e0d\u4f1a\u7684\u53bb\u5b66\u8bed\u6cd5\uff08\u770b\u8bed\u6cd5\u4ff1\u4e50\u90e8\uff09\uff0c\u4e0d\u8981\u8ffd\u6c42\u5b8c\u6574\u5177\u4f53\uff0c\u80fd\u591f\u505a\u8bed\u6cd5\u586b\u7a7a\u548c\u4f1a\u5206\u6790\u9605\u8bfb\u4e2d\u7684\u957f\u96be\u53e5\u5c31\u591f\u4e86\u3002\uff08\u751a\u81f3\u865a\u62df\u8bed\u6c14\u4ec0\u4e48\u7684\u90fd\u8003\u4e0d\u4e86\uff09
- \u9650\u65f6\u505a\u5377\u5b50\uff0840min\u505a\u5b8c\u5ba2\u89c2\u9898\uff09+\u8ba2\u6b63\uff08\u641e\u61c2\u4e3a\u4ec0\u4e48\u9519\uff09
- \u505a\u591f30\u5957\u5c31\u53ef\u4ee5\u7a33\u4e0a130\uff08\u5377\u5b50\u6765\u6e90IAI\uff09
- \u9650\u65f6\u7ec3\u4f5c\u6587\uff08\u5e94\u7528\u6587+\u7eed\u5199\uff09
- \u7eed\u5199\u5199\u591f20\u504f\u5c31\u53ef\u4ee518+
- \u5e94\u7528\u6587\u5efa\u8bae\u79ef\u7d2f\u6a21\u677f\uff0c\u9047\u5230\u4e0d\u540c\u4e3b\u9898\u90fd\u6709\u8bdd\u8bf4\u3002\u4fdd\u6301\u5e73\u65f611+\u5c31\u597d\u3002
- \u5b66\u6821\u8003\u8bd5\u7684\u4f5c\u6587\u6253\u5206\u4e0d\u503c\u5f97\u76f8\u4fe1:
- \u5efa\u8bae\u73cd\u60dc\u8054\u8003\uff08\u4e0d\u662f\u5b66\u6821\u8001\u5e08\u6539\u7684\u65f6\u5019\uff0c\u6bd4\u5982\u5076\u5c14\u7684Z20\uff09
- \u53ea\u770b\u8001\u5e08\u6539\u7684\u8bed\u6cd5\u9519\u8bef
- \u53ef\u4ee5\u53c2\u52a0IAI\u57f9\u8bad\uff08\u4e0d\u662f\u5e7f\u544a\uff0c\u6027\u4ef7\u6bd4\u6bd4\u8f83\u4f4e\uff0c\u4f46\u662f\u6539\u4f5c\u6587\u7684\u6807\u51c6\u5f88\u51c6\uff09
- \u4ee5\u63d0\u5347\u6210\u7ee9\u4e3a\u5bfc\u5411\uff0c\u8b66\u60d5\u63d0\u5347\u82f1\u8bed\u7d20\u517b\u66f2\u7ebf\u6551\u56fd\u7684\u9677\u8fdb\uff08\u5982\uff0c\u770b\u5916\u520a\uff0c\u8bfb\u539f\u8457\u7b49\u7b49\uff09
"},{"location":"summary/high%20school/eng_fht/#_11","title":"\u8bad\u7ec3\u76ee\u6807:","text":"
- \u5ba2\u89c2\u9898\u4fdd\u8bc1\u572830-35\u5206\u949f\u5185\u505a\u5b8c
- \u4f5c\u65871\u5c0f\u65f6\u5185\u5199\u5b8c\u4e24\u7bc7\uff0c\u8981\u6c42\u5e94\u7528\u6587\u4e0d\u4f4e\u4e8e11\u5206\uff0c\u7eed\u5199\u4e0d\u4f4e\u4e8e18\u5206\uff08\u4e24\u6bb5\u90fd\u5199\u6ee110\u884c\uff09
- \u5ba2\u89c2\u9898\u6263\u5206\u4e0d\u8d85\u8fc75\u5206\uff08\u542c\u529b\u9605\u8bfb\u4e03\u9009\u4e94\u5168\u5bf9\uff0c\u5b8c\u578b\u53ef\u62631\u5206\uff0c\u8bed\u586b\u53ef\u62631.5\u5206\uff09
"},{"location":"summary/high%20school/eng_fht/#_12","title":"\u5c0f\u6280\u5de7:","text":"
- \u5408\u7406\u5b89\u6392\u505a\u9898\u65f6\u95f4\uff0c\u4e0d\u4e00\u5b9a\u8981\u4ece\u9605\u8bfb\u5f00\u59cb\u505a
- 95%\u7684\u5b8c\u578b\u7b26\u54084443\uff08\u9009\u9879\u5206\u5e03\uff09\uff0c\u9ad8\u8003\u4e2d\u53ea\u670922\u8fd8\u662f\u54ea\u4e00\u5e74\u51fa\u73b0\u8fc74533\uff0c\u5efa\u8bae\u505a\u5b8c\u578b\u7684\u65f6\u5019\u5708\u9009\u9879\u800c\u975e\u5199\u5b57\u6bcd\uff0c\u4e0d\u7136\u4e0a\u4e0b\u4f1a\u5f71\u54cd\u3002\u7b2c\u4e00\u6b21\u505a\u4e0d\u51fa\u6765\u7684\u53ef\u4ee5\u5148\u7a7a\u7740\uff0c\u518d\u8bfb\u4e00\u904d\u540e\u56de\u6765\u6839\u636e\u5206\u5e03\u7efc\u5408\u6587\u610f\u586b\u6ee1\u3002
- \u9605\u8bfb\u8bfb\u5b8c\u6587\u7ae0\uff0c\u8bed\u586b\u5168\u90e8\u8981\u8bfb \u518d\u505a\u9898\uff08\u4e0d\u7136\u4f1a\u6709\u5f88\u6076\u5fc3\u7684\u9677\u9631\uff09
- \u4f5c\u6587\u4e0d\u4e00\u5b9a\u8981\u6253\u8349\u7a3f\uff0c\u4f46\u662f\u4e00\u5b9a\u4e0d\u80fd\u6709\u8bed\u6cd5\u9519\u8bef\uff0c\u5b57\u8ff9\u96be\u770b\uff08\u8fd9\u4e24\u70b9\u662f\u5f71\u54cd\u4f5c\u6587\u7684\u4e3b\u8981\u56e0\u7d20\uff0c24\u9ad8\u8003\u4e4b\u540e\u53ef\u80fd\u8fd8\u6709\u4e3b\u65e8\u5347\u534e\uff09\u3002
- \u8bfb\u61c2\u624d\u662f\u5b66\u82f1\u8bed\u7684\u552f\u4e00\u8981\u70b9\uff01\uff01\uff01
\u8bf7\u5408\u7406\u4f7f\u7528IAI\uff0c\u5f88\u6709\u53ef\u80fd\u662f\u6700\u597d\u7684\u8d44\u6e90\u3002
"},{"location":"summary/high%20school/math_fht/","title":"\u6570\u5b66\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 757 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 3 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9ad8\u8003138\uff08\u586b\u7a7a\u9519\u4e00\u90535'+19\u9898\u6700\u540e\u4e00\u95ee7'\uff09
"},{"location":"summary/high%20school/math_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":"
- \u6211\u60f3\u6570\u5b66\u7684\u4f53\u7cfb\uff08\u89e3\u9898\u5957\u8def\uff09\u662f\u4e0d\u5982\u7269\u7406\u5b8c\u6574\u7684\u3002\u6bd4\u5982:\u5706\u9525\u66f2\u7ebf\u5f88\u96be\u627e\u5230\u901a\u6cd5\u89e3\u51b3\u6240\u6709\u9898\u6216\u8005\u5bfc\u6570\u6709\u65f6\u5019\u4e5f\u4f1a\u6d89\u53ca\u5f88\u591a\u5947\u5947\u5999\u5999\u7684\u77e5\u8bc6\u3002
- \u771f\u7684\u5f88\u96be\u7a33\u5b9a\u63d0\u5206\uff08\u4e3b\u8981\u6307120+?\uff09
- \u5b66\u79d1\u601d\u7ef4\u53ef\u80fd\u5f88\u91cd\u8981\u3002\u867d\u7136\u6211\u4e0d\u662f\u5f88\u80fd\u9610\u660e\u8fd9\u4e2a\u6982\u5ff5\uff0c\u4f46\u5177\u4f53\u6765\u8bf4\u5c31\u662f\uff0c\u8981\u53bb\u505a\u95ee\u9898\uff0c\u800c\u4e0d\u662f\u80cc\u7b54\u6848\u3002\u5176\u5b9e\u5f88\u591a\u65f6\u5019\u7684\u505a\u4e5f\u4e0d\u8fc7\u662f\u9ed8\u5199\u4ee5\u524d\u4f1a\u7684\u5957\u8def\uff0c\u4e0d\u4f1a\u7684\u4e5f\u57fa\u672c\u4e0d\u53ef\u80fd\u5f53\u573a\u521b\u65b0\u51fa\u6765\u3002\u6240\u4ee5\u5927\u6982\u8fd9\u91cc\u7684\u505a\u6307\u7684\u662f\uff0c\u8fd0\u7528\u4ee5\u524d\u5b66\u8fc7\u7684skill\uff0c\u5c06\u4ed6\u4eec\u7ec4\u5408\u5728\u4e00\u8d77\uff0c\u62b5\u8fbe\u6240\u8981\u8fbe\u6210\u7684\u76ee\u6807\u3002
- \u6240\u4ee5\uff0c\u4e5f\u8bb8\u4f46\u51e1\u4e0a\u8ff0\u4e00\u4e2a\u6b65\u9aa4\u505a\u4e0d\u5230\uff0c\u90fd\u5f88\u96be\u505a\u5bf9\u4e00\u9053\u9898:
- \u5206\u6790\u76ee\u6807\u662f\u4ec0\u4e48
- \u8003\u8651\u8981\u600e\u4e48\u5230\u8fbe
- \u8fd0\u7528\u4ec0\u4e48\u5de5\u5177
- \u5982\u4f55\u68c0\u9a8c\uff0c\u5b9a\u6027\u5224\u65ad
- \u5982\u4f55\u8bd5\u63a2\uff0c\u5b9a\u91cf\u8ba1\u7b97
"},{"location":"summary/high%20school/math_fht/#_3","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u6211\u4e00\u4e2a\u9ad8\u4e2d\u57fa\u672c\u6ca1\u505a\u8fc7\u6570\u5b66\u4f5c\u4e1a\u7684\u4eba\u4e5f\u8bb8\u4e0d\u914d\u6765\u8bf4\u8fd9\u4e2a\u95ee\u9898\u3002
"},{"location":"summary/high%20school/math_fht/#_4","title":"\u7701\u6d41\u7248:","text":"
- \u638c\u63e1\u57fa\u672c\u77e5\u8bc6\u70b9\uff0c\u5b9a\u4e49\uff0c\u516c\u5f0f\uff0c\u5957\u8def\uff08\u5982\u7aef\u70b9\u6548\u5e94\uff09
- \u505a\u6574\u5377\u67e5\u6f0f\u8865\u7f3a
- \u505a\u4e13\u9898\uff0c\u6bd4\u8f83\u5f52\u7eb3
- \u8003\u8bd5\u8bad\u7ec3\u5fc3\u6001
"},{"location":"summary/high%20school/math_fht/#_5","title":"\u6ce8\u610f\u4e8b\u9879:","text":"
- \u9519\u9898\u672c\u5f88\u53ef\u80fd\u6ca1\u6709\u7528\uff0c\u771f\u6b63\u6709\u7528\u7684\u662f\u8003\u8bd5\u4ee5\u540e\u7684\u590d\u76d8\uff0c\u81ea\u5df1\u6574\u7406\u603b\u7ed3\u51fa\u7684\u5957\u8def\u65b9\u6cd5\uff0c\u6613\u9519\u5f52\u7eb3\u3002 \u6bd4\u5982: \u53ef\u80fd\u8fd9\u6b21\u5bfc\u6570\u9898\u6ca1\u505a\u51fa\u6765\uff0c\u4f60\u8981\u60f3\u6e05\u695a\u7684\u662f\uff0c\u4e3a\u4ec0\u4e48\u6ca1\u505a\u51fa\u6765\uff0c\u8003\u8bd5\u7684\u65f6\u5019\u6ca1\u82b1\u65f6\u95f4\u8fd8\u662f\u82b1\u4e86\u65f6\u95f4\u4e5f\u6ca1\u60f3\u660e\u767d\uff0c\u771f\u6b63\u6b63\u786e\u7684\u51b3\u7b56\u662f\u4ec0\u4e48\uff08\u8df3\u8fc7\uff1f\u7ee7\u7eed\u601d\u8003\uff1f\uff09\uff0c\u5982\u679c\u4e0b\u6b21\u8fd8\u662f\u505a\u4e0d\u51fa\u6765\u53ef\u4ee5\u600e\u4e48\u5c1d\u8bd5\uff0c\u5b66\u5230\u4e86\u4ec0\u4e48\u65b0\u7684\u6a21\u578b\u3002
- \u4e0d\u8981\u5bf9\u8003\u8bd5\u8fc7\u62df\u5408\uff0c\u5f88\u591a\u4eba\u8fc7\u5206\u5938\u5927\u4e86\u590d\u76d8\u7684\u4f5c\u7528\u3002\u7279\u522b\u662f\u5728\u6570\u5b66\u5e94\u8bd5\u65b9\u9762\uff0c\u82b1\u8fc7\u591a\u7684\u65f6\u95f4\u5728\u590d\u76d8\u4e0a\u7684\u6027\u4ef7\u6bd4\u4e0d\u9ad8\uff0c\u4e0d\u5982\u591a\u505a\u70b9\u9898/\u770b\u70b9\u65b0\u9c9c\u73a9\u610f/\u5b66\u522b\u7684\u79d1\u76ee\u53bb\u3002
- \u65f6\u95f4\u5f52\u7eb3\u548c\u5fc3\u6001\u51b3\u5b9a\u8003\u8bd5\u5206\u6570\u7684\u4e0b\u9650\u3002\u57fa\u7840\u9898\u505a\u5b8c\u5c31\u6709\u5f88\u591a\u5206\u6570\u5566\uff01\u522b\u88ab\u4e00\u4e2a\u9898\u5361\u4f4f\u4e86\u5c31\u5fc3\u6001\u5d29\u4e86\uff0c\u5f88\u591a\u4eba\u8bf4\u81ea\u5df1\u5fc3\u6001\u597d\u53ea\u4e0d\u8fc7\u662f\u6ca1\u505a\u8fc7\u9053\u9053\u4e0d\u987a\u5229\u7684\u5377\u5b50\u3002
- \u591a\u8ddf\u8001\u5e08\u4ea4\u6d41\uff0c\u8001\u5e08\u5f88\u53ef\u80fd\u6bd4\u4f60\u60f3\u50cf\u7684\u8981\u66f4helpful\u4e00\u4e9b\u3002
- \u4e0d\u8981\u653e\u5f03\u6570\u5b66\uff0c150\u5206\u5462\uff0c\u8fd9\u90fd\u653e\u4e86\u8fd8\u662f\u522b\u9ad8\u8003\u4e86\u3002
- \u65e9\u70b9\u5b66\u6570\u5b66\u5427\uff0c\u522b\u6b7b\u5230\u4e34\u5934\u4e86\u624d\u540e\u6094
- \u4e0d\u8981\u6c89\u8ff7\u9ad8\u7ea7\u73a9\u610f:\uff08\u6709\u8fd9\u65f6\u95f4\u4e0d\u5982\u53bb\u73a9\uff09
- \u6cf0\u52d2\u5c55\u5f00
- \u6781\u70b9\u6781\u7ebf
- \u5bfc\u6570\u7684\u4e00\u5806\u5947\u6280\u6deb\u5de7
- ...
- \u8ba1\u7b97\u80fd\u529b\u5f88\u91cd\u8981\uff0c\u89e3\u6790\u51e0\u4f55\u8be5\u7b97\u7684\u8981\u7b97\u3002
"},{"location":"summary/high%20school/math_fht/#_6","title":"\u8d44\u6599:","text":"
- \u5b66\u6821\u5e73\u65f6\u7684\u8003\u8bd5\uff0c\u8bf7\u8ba4\u771f\u5bf9\u5f85
- \u6d59\u8003\u795e\u5899
- \u4e0d\u63a8\u8350\u4ec0\u4e48\u6559\u8f85\uff0c\u5bf9\u9ad8\u8003\u7684\u6700\u4f73\u62df\u5408\u662f\u9ad8\u8003\u5377+\u56db\u7701\u8054\u8003\u4e4b\u7c7b\u7684\u98ce\u5411\u5377
- \u540c\u5b66\u7684\u7b14\u8bb0\uff08\u4e0d\u662f
"},{"location":"summary/high%20school/phy_fht/","title":"\u7269\u7406\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 1581 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 5 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9996\u800395->\u9ad8\u8003100
"},{"location":"summary/high%20school/phy_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":""},{"location":"summary/high%20school/phy_fht/#_3","title":"\u8981\u4e0d\u8981\u9009\u7269\u7406\uff1f","text":"
- \u5982\u679c\u4ee5\u540e\u60f3\u5b66\u7406\u5de5\u79d1\u7684\u8bdd\uff0c\u6700\u597d\u662f\u7269\u5316\u5927\u793c\u5305\u4e00\u8d77\u4e0a\u300224\u5e74\u6587\u79d1\u6ed1\u6863\u8fd8\u662f\u5f88\u5389\u5bb3\u7684\u3002
- \u5bf9\u4e8e\u6570\u5b66\u4e0d\u597d\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u7269\u7406\u7684\u96be\u5ea6\u4e0d\u4f1a\u5f88\u5c0f\u3002
- \u5efa\u6a21
- \u8bbe\u65b9\u7a0b\uff0c\u627e\u672a\u77e5\u91cf\uff0c\u89e3\u591a\u5143\u65b9\u7a0b
- \u4e09\u89d2\u51fd\u6570\u7684\u719f\u7ec3\u4f7f\u7528
- \u5bfc\u6570\u4ee5\u53ca\u90e8\u5206\u79ef\u5206\u7684\u4f7f\u7528
- \u5bf9\u516c\u5f0f\u63a8\u5bfc\u65b9\u5411\u7684\u628a\u63e1
-
\u5bf9\u4e8e\u6b7b\u8bb0\u786c\u80cc\u5b66\u7269\u7406\u7684\u540c\u5b66\u6765\u8bf4\uff0c\u5343\u4e07\u4e0d\u8981\u9009\u7269\u7406\u6765\u6076\u5fc3\u81ea\u5df1/\u8001\u5e08\u3002\u8bf7\u9a8c\u8bc1\u4f60\u662f\u5426\u638c\u63e1\u5982\u4e0b\u516c\u5f0f\u63a8\u5bfc:
- \u5229\u7528\u6253\u70b9\u8ba1\u65f6\u5668\u6c42\u52a0\u901f\u5ea6\u516c\u5f0f
- \u5e73\u629b\u8fd0\u52a8\u8f68\u8ff9\u65b9\u7a0b\uff0c\u5750\u6807\u968f\u65f6\u95f4\u53d8\u5316\u51fd\u6570\uff0c\u53cd\u5411\u5ef6\u957f\u7ebf\u7684\u4e8c\u7ea7\u7ed3\u8bba
- \u4e07\u6709\u5f15\u529b\u516c\u5f0f\uff0c\u5929\u4f53\u8fd0\u52a8\u901f\u5ea6\uff0c\u89d2\u901f\u5ea6\uff0c\u5468\u671f\uff0c\u80fd\u91cf
- \u5f39\u6027\u52bf\u80fd\uff0c\u52a8\u80fd\uff0c\u673a\u68b0\u80fd\uff08\u5f15\u529b\u52bf\u80fd\uff0c\u5e93\u4ed1\u52bf\u80fd\uff09
- \u52a8\u91cf\u6765\u6e90\uff0c\u78b0\u649e\u6a21\u578b
- \u6d1b\u4f26\u5179\u529b\u53ca\u5bf9\u5e94\u7c92\u5b50\u8fd0\u52a8\u6a21\u578b
- \u7535\u78c1\u611f\u5e94\u53ca\u5bf9\u5e94\u6a21\u578b:\u65cb\u8f6c\u68d2\u7684\u52a8\u751f\u7535\u52a8\u52bf\uff0c\u5355\u68d2\uff0c\u53cc\u68d2\uff0c\u7535\u5bb9\uff0c\u7535\u611f\uff0c\u78c1\u9a71\u52a8\uff0c\u70ed\u91cf\u8ba1\u7b97
\u5982\u679c\u4f60\u4e3b\u8981\u662f\u9760\u8bb0\u80cc\u6765\u652f\u6491\u7269\u7406\u5b66\u4e60\uff0c\u90a3\u8bf7\u4f60\u4e0d\u8981\u9009\u7269\u7406\u3002
"},{"location":"summary/high%20school/phy_fht/#_4","title":"\u7269\u7406\u96be\u5ea6\u600e\u4e48\u6837\uff1f","text":"
- \u7269\u7406\u5e94\u8be5\u662f\u7406\u79d1\u91cc\u4f53\u7cfb\u7ed3\u6784\u7d27\u5bc6\u5b8c\u6574\uff0c\u5e94\u8bd5\u624b\u6bb5\u4e30\u5bcc\u5b8c\u5907\u7684\u4e00\u95e8\u5b66\u79d1\u4e86\u3002\u638c\u63e1\u77e5\u8bc6\u70b9\uff0c\u5b9a\u4e49\uff0c\u5b9a\u7406\uff0c\u6a21\u578b\uff0c\u5e94\u7528\u9700\u8981\u82b1\u65f6\u95f4\uff0c\u4e14\u6709\u5408\u7406\u7684\u8def\u7ebf\u53ef\u4ee5\u4f9d\u636e\u3002
- \u8ddf\u5316\u5b66\u6bd4\uff0c\u5b83\u66f4\u504f\u5b9a\u91cf\uff0c\u6709\u660e\u786e\u7684\u516c\u5f0f\u8ba1\u7b97\uff0c\u5b8c\u6574\u7684\u903b\u8f91\u94fe\u6761\u3002
- \u8ddf\u6570\u5b66\u6bd4\uff0c\u5b83\u66f4\u504f\u5e94\u7528\uff0c\u6709\u6e05\u6670\u7684\u7ed3\u679c\u5bfc\u5411\uff0c\u4e0d\u8981\u6c42\u7075\u611f\u7206\u53d1\u3002
- \u8ddf\u6280\u672f\u6bd4\uff0c\u5b83\u66f4\u504f\u8ba1\u7b97\uff0c\u6709\u76f8\u6263\u7684\u77e5\u8bc6\u4f53\u7cfb\uff0c\u66f4\u4f4e\u7684\u5b66\u4e60\u95e8\u69db\u3002
- \u53ea\u8981\u4f60\u613f\u610f\u4e0b\u529f\u592b\uff0c\u7269\u7406\u7edd\u5bf9\u662f\u4e00\u95e8\u52aa\u529b\u5c31\u6709\u56de\u62a5\u7684\u5b66\u79d1\u3002
"},{"location":"summary/high%20school/phy_fht/#_5","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u8ddf\u6280\u672f\u7c7b\u4f3c
"},{"location":"summary/high%20school/phy_fht/#etc","title":"\u627e\u4e00\u672c\u6559\u8f85\uff08\u4e94\u4e09\u9ad8\u8003\u7248 etc.\uff09\u770b\u5b8c\u77e5\u8bc6\u70b9","text":"
- \u8981\u6c42\u80fd\u591f\u77e5\u9053\u5b9a\u4e49\uff0c\u91cd\u8981\u516c\u5f0f\u63a8\u5bfc\uff0c\u884d\u751f\u4e8c\u7ea7\u7ed3\u8bba\u548c\u57fa\u672c\u6a21\u578b \u6bd4\u5982:
- \u7535\u5bb9\u7684\u5b9a\u4e49
- \u7535\u5bb9\u5927\u5c0f\u7684\u8ba1\u7b97\u5f0f
- \u6d89\u53ca\u7535\u5bb9\u7684\u52a8\u6001\u53d8\u5316
- \u7535\u5bb9\u5728\u7535\u8def\u4e2d\u5982\u4f55\u8ba1\u7b97
- \u7535\u5bb9\u7684\u80fd\u91cf\u516c\u5f0f
- \u7535\u5bb9\u5145\u653e\u7535\u5b9e\u9a8c
- \u7535\u5bb9\u5728\u4ea4\u6d41\u7535\u4e2d\u7684\u4f5c\u7528\uff08\u5b9a\u6027\uff09
- \u7535\u5bb9\u4e0e\u5176\u4ed6\u6a21\u578b\u7684\u7ed3\u5408
- ...
"},{"location":"summary/high%20school/phy_fht/#_6","title":"\u505a\u9898","text":"
- \u9898:
- \u5377\u5b50
- \u4e13\u9898
- \u65b9\u6cd5:
- \u5377\u5b50\u7528\u6765\u67e5\u6f0f\u8865\u7f3a\uff0c\u63d0\u5347\u6574\u4f53\u5b8c\u6210\u5ea6\uff0c\u4f18\u5316\u65f6\u95f4\u5206\u914d\uff0c\u5feb\u901f\u5efa\u6784\u77e5\u8bc6\u6846\u67b6
- \u4e13\u9898\u7528\u6765\u5f3a\u5316\u8ba1\u7b97\uff0c\u719f\u6089\u516c\u5f0f\uff0c\u6df1\u5316\u903b\u8f91\u53ca\u5f52\u7eb3\u672c\u8d28
- \u5982\u679c\u4e0d\u4f1a\u600e\u4e48\u529e:
- \u770b\u7b54\u6848\uff0c\u95ee\u8001\u5e08\uff0c\u95ee\u540c\u5b66
- \u9009\u53d6\u540c\u7c7b\u9898\u76ee\uff0c\u505a\u8db3\u591f\u6570\u91cf\u540e\u5f52\u7eb3\u6574\u7406\u6a21\u578b
- \u6613\u9519\u70b9\u5373\u4f7f\u8bb0\u5f55
- \u53ef\u7528\u6d3b\u9875\u672c/A4\u7eb8+\u71d5\u5c3e\u5939
- \u63a8\u8350\u5f52\u7eb3\u6a21\u578b\u800c\u4e0d\u662f\u6574\u7406\u9519\u9898
- \u4e00\u5b9a\u8981\u591a\u7ec3\u8ba1\u7b97\u548c\u65f6\u95f4\uff0c\u5c11\u7528/\u4e0d\u7528\u8ba1\u7b97\u5668
- \u5728\u9ad8\u4e09\u672b\u671f\uff0c\u6211\u80fd\u7a33\u5b9a40min\u505a\u5b8c\u673a\u68b0\u80fd\u53ca\u524d\u9762\u6240\u6709\u90e8\u5206\u3002\u5f53\u7136\u8fd9\u5bf9\u5927\u591a\u6570\u540c\u5b66\u6765\u8bf4\u592a\u5feb\u4e86\uff0c\u4f46\u901f\u5ea6\u63d0\u5347\u600e\u4e48\u4e5f\u4e0d\u5acc\u591a\u3002
- \u4f8b\u5982\u572824\u5e74\u9ad8\u8003\u4e2d\uff0c\u5f88\u591a\u540c\u5b66\u7531\u4e8e\u7535\u78c1\u611f\u5e94\u5361\u58f3\u800c\u6ca1\u6709\u505a\u5b8c\u5377\u5b50\uff0c\u5bfc\u81f4\u4e8c\u8003\u672a\u80fd\u5b9e\u73b0\u6709\u6548\u63d0\u5206\u3002
- \u9009\u62e9\u9898\u5f88\u91cd\u8981\uff0c\u4e00\u9053\u4e09\u5206\u5343\u4e07\u522b\u9519\u3002\u591a\u9009\u9898\u8bf7\u4fdd\u5b88\u4e00\u4e9b\uff0c\u6fc0\u8fdb\u5f80\u5f80\u4e0d\u4f1a\u6709\u597d\u7ed3\u679c\uff0c\u9ad8\u8003\u540e\u6094\u5c31\u6765\u4e0d\u53ca\u4e86\u3002
- \u4e0d\u4f1a\u7684\u9898\u76ee\u53ca\u65f6\u6b62\u635f\uff0c\u5982\u673a\u68b0\u80fd\u4e2d\u65e0\u8c13\u7684\u5206\u7c7b\u8ba8\u8bba\uff0c\u7535\u78c1\u611f\u5e94\u4e2d\u65e0\u8c13\u7684\u70ed\u91cf\u8ba1\u7b97\u7b49\u7b49\uff0c\u53ef\u4ee5\u7b49\u505a\u5b8c\u6574\u5f20\u5377\u5b50\u540e\u518d\u6765\u505a\u3002
- \u4e0d\u8981\u6c89\u8ff7\u504f\uff0c\u602a\uff0c\u96be\uff0c\u73b0\u5728\u7684\u6a21\u62df\u5377\u5f88\u591a\u98ce\u683c\u504f\u79bb\u9ad8\u8003\uff0c\u8bf7\u57f9\u517b\u8fa8\u522b\u8d28\u91cf\u7684\u672c\u9886\u3002
"},{"location":"summary/high%20school/phy_fht/#_7","title":"\u5fc3\u6001\u65b9\u9762:","text":"
- \u7269\u7406\u7684\u8003\u8bd5\u65f6\u95f4\u89c4\u5212\u5f88\u91cd\u8981\uff0c\u4e0d\u4f1a\u7684\u53ef\u4ee5\u5148\u8df3\u8fc7\u53bb\uff0c\u56de\u6765\u5728\u505a\uff0c\u5f53\u7136\u8df3\u591a\u4e86\u81ea\u7136\u4e5f\u8003\u4e0d\u597d\u4e86\u3002\u8981\u9759\u4e0b\u6765\u505a\u9898\u3002
- \u6ce8\u610f\u529b\u96c6\u4e2d\uff0c\u76f8\u4fe1\u81ea\u5df1\u7684\u5224\u65ad\uff0c\u653e\u677e\u505a\u9898\u3002
- \u5fc3\u6001\u5e26\u6765\u7684\u5f71\u54cd\u4e3b\u8981\u96c6\u4e2d\u5728\u9009\u62e9\u9898\u4e0a\uff0c\u6211\u9996\u8003\u9519\u4e864.5\u9053\u7684\u9009\u62e9\u9898\uff0c\u76f4\u63a595\u4e86\u3002
- \u5e73\u65f6\u8003\u8bd5\u6ca1\u6709\u5f88\u5927\u4ef7\u503c\uff0c\u8054\u8003\u7684\u552f\u4e00\u610f\u4e49\u5c31\u662f\u6a21\u62df\u9ad8\u8003\u6c1b\u56f4\u953b\u70bc\u5fc3\u6001\u3002\u6211\u9996\u8003\u524d\u7a33\u5b9a99+\uff0c\u6700\u540e\u4e0d\u8fd8\u662f\u8003\u4e86\u4e2a95\u3002
"},{"location":"summary/high%20school/phy_fht/#_8","title":"\u8d44\u6599\u65b9\u9762:","text":"
- \u6d59\u8003\u7269\u7406\u4e0a\u6709\u4e00\u4e9b\u5377\u5b50\uff08\u4e0d\u5168\u9762\uff09
- \u6d59\u8003\u795e\u5899\u4f1a\u6709\u51e0\u4e4e\u6240\u6709\u8054\u8003\u7684\u5377\u5b50
- \u6559\u8f85\u4e66\u63a8\u8350:
- \u9ad8\u8003\u4e94\u4e09\uff08\u7ea2\u7684\u7d2b\u7684\u90fd\u53ef\u4ee5\uff09
- \u9ad8\u8003\u5fc5\u5237\u9898
- \u5f53\u7136\uff0c\u5b66\u6821\u80af\u5b9a\u4f1a\u4e70\u7684\uff08\u6bd4\u5982\u6b65\u6b65\u9ad8\uff09\u3002\u5982\u679c\u4f60\u8fd8\u662f\u9ad8\u4e00\u9ad8\u4e8c\u53ef\u4ee5\u505a\u505a\u8f85\u5bfc\u4e66\uff0c\u5982\u679c\u662f\u9ad8\u4e09\u4e86\uff0c\u8fd8\u662f\u5efa\u8bae\u5377\u5b50+\u4e13\u9898\u7684\u6a21\u5f0f\u3002\uff08\u4e13\u9898\u6765\u81ea\u4e8e\u9ad8\u8003\u5fc5\u5237\u9898\u4e4b\u7c7b\u7684\u4e66\uff09\u8bf7\u52ff\u9677\u5165\uff0c\u6211\u505a\u9898\u591a\u5c31\u662f\u597d\u3002\u6211\u51e0\u4e4e\u505a\u5b8c\u4e8623\u5c4a+24\u5c4a\u6d59\u6c5f\u6240\u6709\u7684\u8054\u8003\u5377\uff0c\u611f\u89c9\u63d0\u5347\u5e76\u4e0d\u4f1a\u5f88\u5927\u3002
- \u7406\u6027\u5237\u9898\u6027\u4ef7\u6bd4\u66f4\u9ad8\u3002
"},{"location":"summary/high%20school/phy_fht/#_9","title":"\u662f\u5426\u8981\u5b66\u4e60\u9ad8\u7ea7\u5185\u5bb9:","text":"
- \u5982\u679c\u4e3a\u4e86\u9ad8\u8003\u53d6\u5f9797+\u7684\u6210\u7ee9\uff0c\u6211\u8ba4\u4e3a\u662f\u6ca1\u6709\u5fc5\u8981\u3002\u5982\u679c\u771f\u7684\u60f3\u5b66\uff0c\u63a8\u8350\u5b66\u4e60\u4e00\u4e0b\u5185\u5bb9:
- \u7b80\u5355\u51fd\u6570\u7684\u79ef\u5206\uff08\u53c2\u770b\u540c\u6d4e\u7248\u9ad8\u6570\u4e0a\u518c\uff09
- \u5fae\u5206\u65b9\u7a0b\u7684\u89e3 \uff08\u53c2\u770b\u540c\u6d4e\u7248\u9ad8\u6570\u4e0b\u518c\uff09
- \u659c\u629b\u8fd0\u52a8
- \u7535\u78c1\u611f\u6027\u4e2d\u5355\u68d2\uff0c\u53cc\u68d2\u6a21\u578b\u7684\u5b9a\u91cf\u8ba1\u7b97\uff08\u6d89\u53ca\u5fae\u5206\u65b9\u7a0b\uff09
- \u4ea4\u6d41\u7535\u6709\u6548\u503c\u7684\u63a8\u5bfc
- \u6768\u6c0f\u5e72\u6d89\u7684\u5b9a\u91cf\u8ba1\u7b97
- \u5982\u679c\u662f\u4e3a\u4e86\u5f3a\u57fa\u6216\u8005\u4e09\u4e00\uff0c\u6211\u529d\u4f60\u7701\u7701\u5427\uff0c\u9ad8\u8003\u641e\u5230\u4f4d\u6b211000\u4e86\u518d\u8bf4\u5427\u3002\u6027\u4ef7\u6bd4\u771f\u7684\u5f88\u4f4e\u5f88\u4f4e\uff0c\u522b\u4fe1\u673a\u6784\u7684\u9b3c\u8bdd\uff0c\u9ad8\u8003\u5206\u6570\u624d\u662f\u6700\u91cd\u8981\u7684\u3002
"},{"location":"summary/high%20school/phy_fht/#_10","title":"\u8001\u5e08\u4e0a\u8bfe\u662f\u5426\u8981\u542c:","text":"
- \u56e0\u4eba\u800c\u5f02\uff0c\u4f60\u89c9\u5f97\u6709\u7528\u5c31\u542c\uff0c\u4f46\u5bf9\u4e8e\u6211\u6765\u8bf4\uff0c\u542c\u8bfe\u7684\u6548\u7387\u80af\u5b9a\u6bd4\u4e0d\u4e0a\u81ea\u5df1\u505a\u9898\u7684\u6548\u7387\u3002\u5e08\u751f\u4e92\u76f8\u8ba9\u6b65\u8fbe\u6210\u4e00\u81f4\u5c31\u597d\u3002
"},{"location":"summary/high%20school/phy_fht/#_11","title":"\u662f\u5426\u6709\u5fc5\u8981\u8bfe\u5916\u8f85\u5bfc:","text":"
- \u56e0\u4eba\u800c\u5f02\uff0c\u8f85\u5bfc\u73ed\u80fd\u63d0\u4f9b\u7684\u65e0\u975e\u662f\u4e0a\u8ff0\u51e0\u79cd:\u77e5\u8bc6\u70b9\u8bb2\u89e3\uff0c\u9898\u76ee\uff0c\u89e3\u7b54\uff08\u53ef\u80fd\u8fd8\u6ca1\u6709\uff09\uff0c\u7ed9\u5bb6\u957f\u4e00\u4e2a\u5b89\u5fc3\u3002
- \u5f53\u7136\uff0c\u6211\u89c9\u5f97\u6548\u7387\u4e0d\u4f1a\u6bd4\u5b66\u6821\u9ad8\u591a\u5c11\u3002\u5982\u679c\u771f\u5b66\u4e0d\u4f1a\u4e86\uff0c\u90a3\u8fd8\u662f\u53bb\u5427\u3002
\u53cd\u6b63\u8fd8\u662f\u5e0c\u671b\u5927\u5bb6\u53d1\u6325\u4e3b\u89c2\u80fd\u52a8\u6027\uff0c\u5b66\u6821\u53ea\u6709\u515c\u5e95\u4f5c\u7528\uff0c\u4e0d\u8fc7\u8c01\u77e5\u9053\u5e95\u5728\u54ea\u91cc
"},{"location":"summary/high%20school/tech_fht/","title":"\u6280\u672f\u7ecf\u9a8c\u5206\u4eab","text":"
\u7ea6 1324 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 4 \u5206\u949f
\u80cc\u666f:2024\u5c4a\u9996\u800389->\u9ad8\u800398
"},{"location":"summary/high%20school/tech_fht/#_2","title":"\u5b66\u79d1\u672c\u8eab:","text":""},{"location":"summary/high%20school/tech_fht/#_3","title":"\u6280\u672f\u597d\u8d4b\u5206\u5417\uff1f","text":"
\u4e00\u822c\uff0c\u81f3\u5c11\u6bd4\u751f\u7269\u597d\u8d4b\u5206\uff08\u4e2a\u4eba\u611f\u89c9\uff09\u3002\uff08\u4e0d\u8fc7\u4e5f\u53ef\u4ee5\u9009\u5730\u7406\uff0c\u53ef\u80fd\u4f1a\u66f4\u597d\u8d4b\u5206\uff09 \u4f46\u5c31\u5e73\u65f6\u7684\u8054\u76df\u8003\u6765\u8bf4\uff0c
- \u5927\u6982\u9ad8\u4e00\u9ad8\u4e8c\u8d4b\u5206\u4f1a\u597d\u4e00\u4e9b\uff08\u6bd5\u7adf\u5f88\u591a\u4ebaprogramming\u90fd\u8fd8\u6ca1\u600e\u4e48\u641e\u61c2\uff09\u3002
- \u5230\u9ad8\u4e09\u5c31\u4e0d\u4e00\u5b9a\u4e86\uff0c\u4e3b\u8981\u770b\u8054\u76df\u53c2\u52a0\u7684\u5b66\u6821\u548c\u5377\u5b50\u672c\u8eab\u7684\u8d28\u91cf\u3002\u8bb0\u5f97\u9ad8\u8003\u524d\u7684\u4e94\u6821\u8054\u8003\uff0c\u5377\u5b50\u597d\u50cf\u633a\u7b80\u5355\u7684\uff0c\u4f46\u662f\u8d4b\u5206\u6781\u5176\u96be\u8d4b\u3002
- \u81f3\u4e8e\u9ad8\u8003\uff0c\u8d4b\u5206\u8fd8\u884c\uff0c\u4f46\u662f\u9ad8\u5206\u5f88\u96be\uff08\u7279\u522b\u630798+\uff09\uff0c\u4f30\u8ba1\u662f\u9547\u4e2d\u6e29\u4e00\u5b66\u519b\u676d\u4e8c\u628a\u5206\u5361\u4f4f\u4e86\u3002
"},{"location":"summary/high%20school/tech_fht/#_4","title":"\u5b66\u79d1\u96be\u5ea6\u5927\u5417\uff1f","text":"
- \u6211\u662f\u5728\u9009\u6280\u672f\u4e4b\u524d\u5c31\u4f1aC++\uff0cPython\uff0c\u4e2a\u4eba\u611f\u89c9\u662f\u9ad8\u4e2d\u77e5\u8bc6\u70b9\u4e0d\u96be\uff0c\u5e73\u65f6\u9898\u76ee\u4e5f\u4e0d\u662f\u5f88\u96be\u3002\u4f46\u662f\u9ad8\u8003\u5c31\u4e0d\u4e00\u5b9a\u4e86\uff0c\u7531\u4e8e\u6280\u672f\u8fd8\u6ca1\u8003\u51e0\u5e74\uff08\u5957\u8def\u8fd8\u6ca1\u88ab\u7a77\u5c3d\uff09\uff0c\u6240\u4ee5\u7a0d\u5fae\u4e00\u53d8\u5316\u5c31\u5bb9\u6613\u6b7b\u4e00\u5927\u7247\u3002
- \u4f46\u662f\u7f16\u7a0b\u5bf9\u521a\u5165\u95e8\u7684\u65b0\u624b\u800c\u8a00\uff0c\u96be\u5ea6\u8fd8\u662f\u4e0d\u5c0f\u7684\u3002\u7279\u522b\u662f\uff0c\u79bb\u8c31\u7684\u5e94\u8bd5\u6559\u80b2\u65b9\u5f0f&\u96be\u8bc4\u7684\u81ea\u5b66\u80fd\u529b\uff0c\u5f88\u96be\u8bf4\u9760\u5199(write)\u4ee3\u7801\u53ef\u4ee5\u5f88\u597d\u7684\u638c\u63e1\u7b97\u6cd5/\u6570\u636e\u7ed3\u6784\u3002\u6781\u5176\u5bb9\u6613\u9677\u5165\u80cc\u4ee3\u7801\u7684\u6b7b\u5c40\u3002
- \u4e3b\u8981\u6765\u8bb2\u5c31\u662f\uff0c\u6ca1\u6709\u7269\u7406\u5316\u5b66\u96be\u3002
- \u6027\u4ef7\u6bd4\u633a\u9ad8\uff08\u5bf9\u6211\u6765\u8bf4\uff0c\u9ad8\u4e8c\u51e0\u4e4e\u6ca1\u6709\u82b1\u65f6\u95f4\uff0c\u9ad8\u4e09\u4e5f\u53ea\u662f\u505a\u505a\u8054\u8003\u5377\uff0c\u4f5c\u4e1a\u57fa\u672c\u6ca1\u505a\u8fc7\u3002\u82b1\u7684\u65f6\u95f4\u4f30\u8ba1\u662f\u82b1\u5728\u5316\u5b66\u4e0a\u7684\u96f6\u5934: (\uff09
"},{"location":"summary/high%20school/tech_fht/#_5","title":"\u90a3\u8981\u4e0d\u8981\u9009\u6280\u672f\u634f\uff1f","text":"
- \u5982\u679c\u662f\u4ee5\u540e\u5b66\u8ba1\u7b97\u673a\u76f8\u5173\u7684\u8fd8\u662f\u5efa\u8bae\u9009\uff0c\u8fd9\u6837\u7b49\u5927\u5b66\u4e86\u4f1a\u6709\u5f88\u5927\u4f18\u52bf\u3002
- \u4f46\u5982\u679c\u4e00\u70b9programming\u90fd\u641e\u4e0d\u61c2\uff0c\u90a3\u8fd8\u662f\u7b97\u4e86\u3002
- \u5982\u679c\u6ca1\u6709\u9009\u7269\u7406/\u7269\u7406\u4e0d\u597d\uff0c\u4e5f\u614e\u91cd\u9009\u6280\u672f\u5427\u3002\uff08\u4e0d\u7136\u82b1\u5728\u7535\u63a7\u4e0a\u7684\u65f6\u95f4\u4f1a\u5f88\u6ca1\u6709\u6027\u4ef7\u6bd4\uff09
"},{"location":"summary/high%20school/tech_fht/#_6","title":"\u5b66\u4e60\u65b9\u6cd5:","text":"
\u4ec5\u5c31\u9ad8\u4e09\u800c\u8a00\uff08\u9ad8\u4e8c\u6ca1\u5b66\uff09
"},{"location":"summary/high%20school/tech_fht/#_7","title":"\u5148\u8981\u786e\u4fdd\u57fa\u7840\u7684\u77e5\u8bc6\u70b9\u90fd\u4f1a:","text":"
- \u5148\u628a\u6559\u8f85\u770b\u4e00\u904d\uff08\u5b66\u6821\u80af\u5b9a\u4f1a\u4e70\u7684\u4e00\u4e9b\u4e71\u4e03\u516b\u7cdf\u7684\uff0c\u53cd\u6b63\u5e02\u9762\u4e0a\u4e5f\u6ca1\u4ec0\u4e48\u5f88\u597d\u7684\u6559\u8f85\uff09
- \u518d\u628a\u4e66\u770b\u4e00\u904d\uff08\u5f88\u5c0f\u7684\u70b9\u90fd\u8981\u77e5\u9053\uff09
- \u81ea\u5df1\u5c1d\u8bd5\u628a\u77e5\u8bc6\u70b9\u90fd\u7406\u4e00\u904d\uff08\u9009\u505a\uff09
- \u6ce8\u610f:\u6280\u672f\u672c\u8eab\u7684\u77e5\u8bc6\u4f53\u7cfb\u5e76\u4e0d\u50cf\u7269\u7406\u5316\u5b66\u90a3\u6837\u7d27\u5bc6\uff0c\u6240\u4ee5\u70b9\u90fd\u662f\u633a\u5206\u6563\u7684\u3002\u4e00\u5b9a\u5de9\u56fa\u597d\u57fa\u7840\u3002 \uff08\u7528\u65f6\u5927\u6982:1\u4e2a\u661f\u671f\uff1f\u4e00\u59293h\u3002\u56e0\u4eba\u800c\u5f02\uff09
"},{"location":"summary/high%20school/tech_fht/#_8","title":"\u7136\u540e\u5c31\u662f\u505a\u9898:","text":"
- \u5148\u505a\u70b9\u5377\u5b50\uff0c\u770b\u770b\u81ea\u5df1\u6f0f\u6d1e\u5728\u54ea\uff0810\u5f20\u5dee\u4e0d\u591a\u4e86\uff0c\u4e00\u5b9a\u8981\u77ed\u65f6\u95f4\u5185\u505a\u5b8c\uff09:
- \u5efa\u8bae\u8054\u8003\u5377\u90fd\u505a\u505a\uff0c\u624d\u77e5\u9053\u4ec0\u4e48\u662f\u597d\u7684\u5377\u5b50\u3002\uff08\u8001\u5e08\u80af\u5b9a\u4f1a\u53d1\u7684\uff09
- \u7136\u540e\u505a\u70b9\u4e13\u9898\uff0c\u8d44\u6599\u6765\u6e90\uff08\u6d59\u8003\u4ea4\u6d41\uff09
- \u4e3b\u8981\u662f\u8981\u641e\u660e\u767d\u77e5\u8bc6\u70b9\uff0c\u6bd4\u5982
- \u94fe\u8868\uff08\u57fa\u7840\u64cd\u4f5c\uff0c\u5feb\u6162\u6307\u9488\uff09\uff0c\u4e8c\u5206\uff08\u4e8c\u53c9\u641c\u7d22\u6811\uff09
- \u5e38\u89c1\u7684pandas\u64cd\u4f5c
- \u7f51\u8def\u76f8\u5173\uff08\u80cc\u4e66\uff09
- \u7535\u63a7\u7684\u57fa\u672c\u6a21\u578b\uff08\u9707\u8361\u7535\u8def\u7684\u51e0\u79cd\u5199\u6cd5\uff0c\u955c\u50cf\u7535\u6d41\u6e90\uff09
- \u7cfb\u7edf&\u63a7\u5236\uff08\u6bcf\u4e2a\u90e8\u5206\u90fd\u8981\u5f88\u786e\u5b9a\uff0c\u8001\u5e08\u8bb2\u4e0d\u6e05\u695a\uff0c\u81ea\u5df1\u4e00\u5b9a\u8981\u53bb\u641e\u61c2\uff0c\u4e0d\u7136\u5c31\u662f\u505a\u4e00\u9053\u9519\u4e00\u9053\uff09
- \u5c3a\u5bf8\u6807\u6ce8\uff08\u9519\u51e0\u56de\u5c31\u597d\u4e86\uff09
- \u4e09\u89c6\u56fe\uff08\u5b58\u7591\uff0c\u8fd9\u9898\u4e00\u76f4\u5728\u53d8\uff09
- \u57fa\u672c\u5c31\u5dee\u4e0d\u591a\u4e86\uff08\u540e\u9762\u518d\u82b1\u65f6\u95f4\u6027\u4ef7\u6bd4\u5c31\u4e0d\u9ad8\u4e86\uff09\uff0c\u5982\u679c\u8fd8\u60f3\u7ee7\u7eed\uff0c\u90a3\u5c31\u81ea\u5df1\u6574\u4e2a\u672c\u5b50\uff0c\u628a\u9519\u9898\u641e\u4e0a\u53bb\uff0c\u6bcf\u6b21\u8003\u8bd5\u524d\u770b\u770b\u3002\uff08\u5b9e\u9645\u4f5c\u7528\u5c31\u662f\u8ba9\u4f60\u522b\u4e00\u505a\u5b8c\u5c31\u628a\u9898\u6254\u4e86\uff0c\u4e5f\u4e0d\u641e\u61c2\uff0c\u90a3\u6837\u7b49\u4e8e\u6ca1\u505a\uff09\u4f46\u9519\u9898\u672c\u5176\u5b9e\u6548\u7387\u5f88\u4f4e\u3002\uff08formalism\uff09
"},{"location":"summary/high%20school/tech_fht/#_9","title":"\u505a\u9898\u65f6\u95f4\u65b9\u9762:","text":"
- \u6211\u662f\u57fa\u672c\u5148\u505a\u4fe1\u606f\uff0c\u5728\u505a\u901a\u7528\u7684
- \u4fe1\u606f13\u9898\u548c\u5927\u9898\u6700\u540e\u4e00\u9898\u4e0d\u4f1a\u7684\u5148\u7a7a\u7740\uff08\u586b\u4e2a\u4e0d\u786e\u5b9a\u7684\uff09\uff0c\u7136\u540e\u53bb\u505a\u901a\u7528\u3002\u5927\u6982\u524d\u976230min\u80fd\u641e\u5b9a
- \u901a\u7528\u8349\u56fe\u5148\u7a7a\u7740\uff0c\u628a\u7535\u63a7\u5927\u9898\u505a\u5b8c\uff0c\u7136\u540e\u56de\u53bb\u753b\u8349\u56fe\u3002\uff08\u5927\u698240min\uff09
- \u753b\u5b8c\u8349\u56fe\u518d\u56de\u53bb\u505a\u4fe1\u606f\u4e0d\u4f1a\u7684\u3002
- \u6700\u540e\u53ef\u4ee5\u6446\u70c2\u4e86\uff0c\u8981\u68c0\u67e5\u4e5f\u53ef\u4ee5\uff08\u53cd\u6b63\u68c0\u67e5\u4e0d\u51fa\u6765\uff09
- \u505a\u9898\u600e\u4e48\u5feb\u4e00\u70b9\uff08\u9898\u90fd\u505a\u4e0d\u5b8c\uff0c\u8c08\u4ec0\u4e48\u90fd\u662f\u767d\u642d\uff09:
- \u83dc\u5c31\u591a\u7ec3\uff08\u4e0a\u8bfe40min\uff0c\u505a\u5b8c\u9664\uff08\u7535\u63a7/\u586b\u7a0b\u4e0d\u4f1a\u7684&\u753b\u56fe\uff09\u7684\u9898\uff09
- \u6216\u8005\u665a\u81ea\u4e601h\uff0c\u505a\u5b8c\u5168\u90e8\uff08\u9664\u753b\u56fe\uff09+\u5bf9\u7b54\u6848
- \u753b\u56fe\u5c31\u628a\u8054\u8003\u9898\u90fd\u653e\u4e00\u8d77\uff0c\u4e00\u6b21\u753b\u4e2a10\u5f20\u5de6\u53f3\u5c31\u5dee\u4e0d\u591a\u4e86\uff0c\u6ca1\u4ec0\u4e48\u6a21\u578b\u7684\uff08
"},{"location":"summary/high%20school/tech_fht/#_10","title":"\u5fc3\u6001\u65b9\u9762:","text":"
- \u53cd\u6b63\u9ad8\u8003\u548c\u5e73\u65f6\u8fd8\u662f\u5f88\u4e0d\u4e00\u6837\u7684\uff0c\u5efa\u8bae\u5e73\u65f6\u5927\u8003\u5f53\u9ad8\u8003\u8003\u3002
- \u7136\u540e\u5c31\u662f\u4e00\u6b21\u8003\u5dee\u6ca1\u5565\u5173\u7cfb\uff0c\u65f6\u95f4\u82b1\u5728\u8be5\u82b1\u7684\u5730\u65b9\u5c31\u597d\u4e86\uff0c\u8981\u5bf9\u81ea\u5df1\u7684\u5b66\u4e60\u6709\u638c\u63a7\u529b\u3002
- \u8001\u5e08\u6559\u7684\u4e0d\u597d\u8981\u5b66\u4f1a\u81ea\u5df1\u5b66
"},{"location":"summary/high%20school/tech_fht/#_11","title":"\u8d44\u6599\u65b9\u9762:","text":"
- \u6d59\u8003\u4ea4\u6d41\u89e3\u51b3\u6240\u6709\uff08
- \u8f85\u5bfc\u4e66\u90fd\u5dee\u4e0d\u591a\uff0c\u770b\u591a\u4e86\u6d6a\u8d39\u65f6\u95f4
"},{"location":"summary/high%20school/tech_fht/#_12","title":"\u5176\u4ed6:","text":"
- \u53ef\u4ee5\u548c\u540c\u5b66\u4e00\u8d77\u5b66\uff08\u4e0d\u662f\u4e00\u8d77\u6446\u70c2\u54e6\uff09
- \u771f\u5b66\u4e0d\u4f1a\u4e86\u8d76\u7d27\u6362\u79d1\u5427
- \u90fd\u5b66\u6280\u672f\u4e86\uff0c\u5b66\u5b66\u600e\u4e48\u641c\u96c6\u8d44\u6599\u5427
- \u6709\u7528\u7684\u4f5c\u4e1a\u5c31\u505a\uff0c\u6ca1\u7528\u7684\u5c31\u7b97\u4e86\uff08\u614e\u91cd\uff09
- \u63d0\u5347\u6210\u7ee9\u7684debuff\u8fd8\u662f\u4e0d\u5c11\u7684\uff0c\u522b\u6028\u5929\u5c24\u4eba\u7684\uff08\u6b22\u8fce\u52a0\u5b66\u957f\u5b66\u59d0\u6765\u54a8\u8be2
- \u9996\u8003\u8003\u5dee\u4e86\u600e\u4e48\u529e:
- \u8fd8\u80fd\u600e\u4e48\u529e\uff0c\u7ee7\u7eed\u5b66\u5457\u3002
- \u5b66\u4e0d\u61c2\u4e0a\u8bfe\u5c31\u597d\u597d\u542c\uff0c\u522b\u73a9\u6e38\u620f\uff08\u4e0d\u7136\u600e\u4e48\u5b66\uff09
\u6700\u540e:\u5e0c\u671b\u5927\u5bb6\u90fd\u80fd\u8003\u597d :\uff09
"},{"location":"summary/high%20school/%E4%B8%80%E4%BA%9B%E8%B5%84%E6%BA%90/","title":"\u4e00\u4e9b\u8d44\u6e90","text":"
\u7ea6 31 \u4e2a\u5b57 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4\u4e0d\u5230 1 \u5206\u949f
\u4e00\u4e9b\u8d44\u6e90\u94fe\u63a5\uff0c\u53ef\u4ee5\u53c2\u8003\u7740\u770b:
- wjyyy \u9ad8\u4e09\u751f\u5b58\u6307\u5357
- IAI\u7ecf\u9a8c\u5206\u4eab
\u6570\u5b66:
- \u9009\u62e9\u9898\u538b\u8f74
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/","title":"\u89c6\u89c9SLAM\u5341\u56db\u8bb2","text":"
\u7ea6 14110 \u4e2a\u5b57 72 \u884c\u4ee3\u7801 20 \u5f20\u56fe\u7247 \u9884\u8ba1\u9605\u8bfb\u65f6\u95f4 48 \u5206\u949f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#1","title":"1 \u9884\u5907\u77e5\u8bc6","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#11","title":"1.1 \u672c\u4e66\u8bb2\u4ec0\u4e48","text":"
simultaneous localization and mapping
- \u5b9a\u4f4d
- \u5730\u56fe\u6784\u5efa
- \u80cc\u666f\u77e5\u8bc6:
- \u5c04\u5f71\u51e0\u4f55
- \u8ba1\u7b97\u673a\u89c6\u89c9
- \u72b6\u6001\u4f30\u8ba1\u7406\u8bba
- \u674e\u7fa4\u4e0e\u674e\u4ee3\u6570
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#12","title":"1.2 \u5982\u4f55\u4f7f\u7528\u672c\u4e66","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#121","title":"1.2.1 \u7ec4\u7ec7\u65b9\u5f0f","text":"
- \u6570\u5b66\u57fa\u7840\u7bc7
- \u5b9e\u8df5\u5e94\u7528\u7bc7
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#122","title":"1.2.2 \u4ee3\u7801","text":"
GitHub - gaoxiang12/slambook2: edition 2 of the slambook
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#123","title":"1.2.3 \u9762\u5411\u7684\u8bfb\u8005","text":"
- \u57fa\u7840\u77e5\u8bc6:
- \u9ad8\u6570\u7ebf\u4ee3\u6982\u7387\u8bba
- C++\u8bed\u8a00\u57fa\u7840\uff08C++\u6807\u51c6\u5e93\uff0c\u6a21\u677f\u7c7b\uff0c\u4e00\u90e8\u5206 C++11 \uff09
- Linux \u57fa\u7840
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#13","title":"1.3 \u98ce\u683c\u7ea6\u5b9a","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#14","title":"1.4 \u81f4\u8c22\u548c\u58f0\u660e","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#15","title":"1.5 \u4e60\u9898","text":"
- \u9898\u76ee\uff1a\u6709\u7ebf\u6027\u65b9\u7a0b \\(A x=b\\)\uff0c\u82e5\u5df2\u77e5 \\(A, b\\)\uff0c\u9700\u8981\u6c42\u89e3 x\uff0c\u8be5\u5982\u4f55\u6c42\u89e3\uff1f\u8fd9\u5bf9 A \u548c b \u6709\u54ea\u4e9b\u8981\u6c42\uff1f\u63d0\u793a\uff1a\u4ece A \u7684\u7ef4\u5ea6\u548c\u79e9\u89d2\u5ea6\u6765\u5206\u6790\u3002
- \u7b54\u6848\uff1a\u7ebf\u6027\u65b9\u7a0b\u7ec4 \\(Ax = b\\) \u53ef\u4ee5\u901a\u8fc7\u591a\u79cd\u65b9\u6cd5\u6c42\u89e3\uff0c\u5982\u9ad8\u65af\u6d88\u5143\u6cd5\u3001\u77e9\u9635\u9006\u6cd5\u7b49\u3002\u8981\u6c42 \\(A\\) \u662f\u4e00\u4e2a\u65b9\u9635\u4e14\u53ef\u9006\uff08\u5373 \\(A\\) \u7684\u884c\u5217\u5f0f\u4e0d\u4e3a\u96f6\uff09\uff0c\u8fd9\u6837\u65b9\u7a0b\u624d\u6709\u552f\u4e00\u89e3\u3002\u5982\u679c \\(A\\) \u4e0d\u662f\u65b9\u9635\uff0c\u9700\u8981 \\(A\\) \u7684\u79e9\u7b49\u4e8e\u5217\u6570\u4e14\u7b49\u4e8e\u589e\u5e7f\u77e9\u9635 \\(\\displaystyle [A|b]\\) \u7684\u79e9\uff0c\u8fd9\u6837\u65b9\u7a0b\u7ec4\u624d\u6709\u89e3\u3002
- \u9898\u76ee\uff1a\u9ad8\u65af\u5206\u5e03\u662f\u4ec0\u4e48\uff1f\u5b83\u7684\u4e00\u7ef4\u5f62\u5f0f\u662f\u4ec0\u4e48\u6837\u5b50\uff1f\u5b83\u7684\u9ad8\u7ef4\u5f62\u5f0f\u662f\u4ec0\u4e48\u6837\u5b50\uff1f
- \u7b54\u6848\uff1a\u9ad8\u65af\u5206\u5e03\uff0c\u4e5f\u79f0\u4e3a\u6b63\u6001\u5206\u5e03\uff0c\u662f\u4e00\u79cd\u8fde\u7eed\u6982\u7387\u5206\u5e03\u3002\u4e00\u7ef4\u9ad8\u65af\u5206\u5e03\u7684\u6570\u5b66\u8868\u8fbe\u5f0f\u4e3a \\(\\displaystyle f (x) = \\frac{1}{\\sigma\\sqrt{2\\pi}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}\\)\uff0c\u5176\u4e2d \\(\\displaystyle \\mu\\) \u662f\u5747\u503c\uff0c\\(\\displaystyle \\sigma\\) \u662f\u6807\u51c6\u5dee\u3002\u9ad8\u7ef4\u9ad8\u65af\u5206\u5e03\u662f\u4e00\u7ef4\u9ad8\u65af\u5206\u5e03\u5728\u591a\u7ef4\u7a7a\u95f4\u7684\u63a8\u5e7f\uff0c\u5176\u6982\u7387\u5bc6\u5ea6\u51fd\u6570\u4e3a \\(\\displaystyle N (\\mathbf{x}; \\mathbf{\\mu}, \\Sigma)\\)\uff0c\u5176\u4e2d \\(\\displaystyle \\mathbf{\\mu}\\) \u662f\u5747\u503c\u5411\u91cf\uff0c\\(\\displaystyle \\Sigma\\) \u662f\u534f\u65b9\u5dee\u77e9\u9635\u3002
- \u9898\u76ee\uff1a\u4f60\u77e5\u9053 C++11 \u6807\u51c6\u5417\uff1f\u4f60\u542c\u8bf4\u8fc7\u6216\u7528\u8fc7\u5176\u4e2d\u54ea\u4e9b\u65b0\u7279\u6027\uff1f\u6709\u6ca1\u6709\u5176\u4ed6\u7684\u6807\u51c6\uff1f
- \u7b54\u6848\uff1a\u662f\u7684\uff0cC++11 \u662f C++ \u8bed\u8a00\u7684\u4e00\u4e2a\u91cd\u8981\u6807\u51c6\uff0c\u5b83\u5f15\u5165\u4e86\u8bb8\u591a\u65b0\u7279\u6027\uff0c\u5982\u81ea\u52a8\u7c7b\u578b\u63a8\u5bfc\uff08auto\uff09\u3001\u57fa\u4e8e\u8303\u56f4\u7684 for \u5faa\u73af\u3001lambda \u8868\u8fbe\u5f0f\u3001\u667a\u80fd\u6307\u9488\u7b49\u3002\u9664\u4e86 C++11\uff0c\u8fd8\u6709 C++14\u3001C++17 \u548c C++20 \u7b49\u540e\u7eed\u6807\u51c6\uff0c\u5b83\u4eec\u4e5f\u5f15\u5165\u4e86\u65b0\u7684\u7279\u6027\u548c\u6539\u8fdb\u3002
- \u9898\u76ee\uff1a\u5982\u4f55\u5728 Ubuntu \u7cfb\u7edf\u4e2d\u5b89\u88c5\u8f6f\u4ef6\uff08\u4e0d\u6253\u5f00\u8f6f\u4ef6\u4e2d\u5fc3\u7684\u60c5\u51b5\u4e0b\uff09\uff1f\u8fd9\u4e9b\u8f6f\u4ef6\u88ab\u5b89\u88c5\u5728\u4ec0\u4e48\u5730\u65b9\uff1f\u5982\u679c\u53ea\u77e5\u9053\u6a21\u7cca\u7684\u8f6f\u4ef6\u540d\u79f0\uff08\u6bd4\u5982\u60f3\u8981\u88c5\u4e00\u4e2a\u540d\u79f0\u4e2d\u542b\u6709 Eigen \u7684\u5e93\uff09\uff0c\u5e94\u8be5\u5982\u4f55\u5b89\u88c5\u5b83\uff1f
- \u7b54\u6848\uff1a
- \u8f6f\u4ef6\u5b89\u88c5\uff1a\u5728 Ubuntu \u4e2d\uff0c\u53ef\u4ee5\u4f7f\u7528\u547d\u4ee4\u884c\u5de5\u5177
apt
\u6765\u5b89\u88c5\u8f6f\u4ef6\u3002\u57fa\u672c\u547d\u4ee4\u4e3a sudo apt install [package-name]
\u3002 - \u5b89\u88c5\u4f4d\u7f6e\uff1a\u8f6f\u4ef6\u901a\u5e38\u88ab\u5b89\u88c5\u5728
/usr/
\u76ee\u5f55\u4e0b\uff0c\u4f46\u5177\u4f53\u7684\u6587\u4ef6\u53ef\u80fd\u5206\u5e03\u5728\u591a\u4e2a\u5b50\u76ee\u5f55\u4e2d\u3002 - \u6a21\u7cca\u540d\u79f0\u5b89\u88c5\uff1a\u5982\u679c\u53ea\u77e5\u9053\u8f6f\u4ef6\u540d\u79f0\u7684\u4e00\u90e8\u5206\uff0c\u53ef\u4ee5\u4f7f\u7528
apt search
\u547d\u4ee4\u6765\u641c\u7d22\u3002\u4f8b\u5982\uff0csudo apt search eigen
\u53ef\u4ee5\u5e2e\u52a9\u627e\u5230\u6240\u6709\u5305\u542b \"eigen\" \u7684\u8f6f\u4ef6\u5305\u3002 - \u9898\u76ee\uff1a*\u82b1\u4e00\u4e2a\u5c0f\u65f6\u5b66\u4e60 Vim\uff0c\u56e0\u4e3a\u4f60\u8fdf\u65e9\u4f1a\u7528\u5b83\u3002\u4f60\u53ef\u4ee5\u5728\u7ec8\u7aef\u4e2d\u8f93\u5165 vimtutor \u9605\u8bfb\u4e00\u904d\u6240\u6709\u5185\u5bb9\u3002\u6211\u4eec\u4e0d\u9700\u8981\u4f60\u975e\u5e38\u719f\u7ec3\u5730\u64cd\u4f5c\u5b83\uff0c\u53ea\u8981\u80fd\u591f\u5728\u5b66\u4e60\u672c\u4e66\u7684\u8fc7\u7a0b\u4e2d\u4f7f\u7528\u5b83\u8f93\u5165\u4ee3\u7801\u5373\u53ef\u3002\u4e0d\u8981\u5728\u5b83\u7684\u63d2\u4ef6\u4e0a\u6d6a\u8d39\u65f6\u95f4\uff0c\u4e0d\u8981\u60f3\u7740\u628a Vim \u7528\u6210 IDE\uff0c\u6211\u4eec\u53ea\u7528\u5b83\u505a\u6587\u672c\u7f16\u8f91\u7684\u5de5\u4f5c\u3002
- \u7b54\u6848:
- vim \u6839\u672c\u4e0d\u719f\u7ec3\u634f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#2-slam","title":"2 \u521d\u8bc6 SLAM","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#21","title":"2.1 \u5f15\u5b50: \u5c0f\u841d\u535c\u7684\u4f8b\u5b50","text":"
- \u81ea\u4e3b\u8fd0\u52a8\u80fd\u529b
- \u611f\u77e5\u5468\u8fb9\u73af\u5883
- \u72b6\u6001
- \u73af\u5883
- \u5b89\u88c5\u4e8e\u73af\u5883\u4e2d\uff08\u4e0d\u592a\u597d\u53cd\u6b63\uff09
- \u673a\u5668\u4eba\u672c\u4f53\u4e0a
- \u6fc0\u5149 SLAM
- \u89c6\u89c9 SLAM\uff08\u672c\u4e66\u91cd\u70b9\uff09
- \u5355\u76ee\uff08Monocular\uff09
- \u53ea\u80fd\u7528\u4e00\u4e2a\u6444\u50cf\u5934
- \u8ddd\u79bb\u611f
- motion
- Structure
- Disparity
- Scale
- \u4f46\u662f\u65e0\u6cd5\u786e\u5b9a\u6df1\u5ea6
- \u53cc\u76ee\uff08Sterco\uff09
- \u4e24\u4e2a\u76f8\u673a\u7684\u8ddd\u79bb\uff08\u57fa\u7ebf Baseline\uff09\u5df2\u77e5
- \u914d\u7f6e\u4e0e\u6807\u5b9a\u6bd4\u8f83\u590d\u6742
- \u6df1\u5ea6\uff08RGB-D\uff09
- \u7ea2\u5916\u7ed3\u6784\u5173 Time-of-Flight\uff08ToF\uff09
- \u4e3b\u8981\u7528\u5728\u5ba4\u5185\uff0c\u5ba4\u5916\u4f1a\u6709\u5f88\u591a\u5f71\u54cd
- \u8fd8\u6709\u4e00\u4e9b\u975e\u4e3b\u6d41\u7684: \u5168\u666f\uff0cEvent
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#22-slam","title":"2.2 \u7ecf\u5178\u89c6\u89c9 SLAM \u6846\u67b6","text":"
- \u5728\u5916\u754c\u6362\u51e0\u4e2a\u6bd4\u8f83\u7a33\u5b9a\u7684\u60c5\u51b5\u4e0b\uff0cSLAM \u6280\u672f\u5df2\u7ecf\u6bd4\u8f83\u6210\u719f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#221","title":"2.2.1 \u89c6\u89c9\u91cc\u7a0b\u8ba1","text":"
- \u53ea\u901a\u8fc7\u89c6\u89c9\u91cc\u7a0b\u8ba1\u6765\u4f30\u8ba1\u8f68\u8ff9\u4f1a\u51fa\u73b0\u7d2f\u79ef\u6f02\u79fb\uff08Accumulating Drift\uff09\u3002
- \u6240\u4ee5\u9700\u8981\u56de\u73af\u68c0\u6d4b\u4e0e\u540e\u7aef\u4f18\u5316
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#222","title":"2.2.2 \u540e\u7aef\u4f18\u5316","text":"
- \u6700\u5927\u540e\u9a8c\u6982\u7387\u4f30\u8ba1\uff08Maximum-a-Posteriori MAP\uff09
- \u524d\u7aef
- \u56fe\u50cf\u7684\u7279\u5f81\u63d0\u53d6\u4e0e\u5339\u914d
- \u540e\u7aef
- \u6ee4\u6ce2\u4e0e\u975e\u7ebf\u6027\u7b97\u6cd5
- \u5bf9\u8fd0\u52a8\u4e3b\u4f53\u81ea\u8eab\u548c\u5468\u56f4\u73af\u5883\u7a7a\u95f4\u4e0d\u786e\u5b9a\u6027\u7684\u4f30\u8ba1
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#223","title":"2.2.3 \u56de\u73af\u68c0\u6d4b","text":"
- \u95ed\u73af\u68c0\u6d4b
- \u8bc6\u522b\u5230\u8fc7\u7684\u573a\u666f
- \u5229\u7528\u56fe\u50cf\u7684\u76f8\u4f3c\u6027
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#224","title":"2.2.4 \u5efa\u56fe","text":"
- \u5ea6\u91cf\u5730\u56fe
- Sparse
- Landmark
- \u5b9a\u4f4d\u7528
- Dense
- Grid / Vocel
- \u5bfc\u822a\u7528
- \u62d3\u6251\u5730\u56fe Graph
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#23-slam","title":"2.3 SLAM \u95ee\u9898\u7684\u6570\u5b66\u8868\u8ff0","text":"
- \u8fd0\u52a8\u65b9\u7a0b
- \\(\\displaystyle \\quad\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k,\\boldsymbol{w}_k\\right).\\)
- \\(\\displaystyle \\boldsymbol{u}_{k}\\) \u662f\u8fd0\u52a8\u4f20\u611f\u5668\u7684\u8f93\u5165
- \\(\\displaystyle \\boldsymbol{w}_{k}\\) \u662f\u8fc7\u7a0b\u4e2d\u52a0\u5165\u7684\u566a\u58f0
- \u89c2\u6d4b\u65b9\u7a0b
- \\(\\displaystyle \\boldsymbol{z}_{k,j} = h (\\boldsymbol{y}_{j},\\boldsymbol{x}_{k},\\boldsymbol{v}_{k,j})\\)
- \\(\\displaystyle \\boldsymbol{v}_{k,j}\\) \u662f\u89c2\u6d4b\u91cc\u7684\u566a\u58f0
- \u53c8\u5f88\u591a\u53c2\u6570\u5316\u7684\u65b9\u5f0f
- \u53ef\u4ee5\u603b\u7ed3\u4e3a\u5982\u4e0b\u4e24\u4e2a\u65b9\u7a0b
\\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k,\\boldsymbol{w}_k\\right),&k=1,\\cdots,K\\\\\\boldsymbol{z}_{k,j}=h\\left(\\boldsymbol{y}_j,\\boldsymbol{x}_k,\\boldsymbol{v}_{k,j}\\right),&(k,j)\\in\\mathcal{O}\\end{cases}. \\]
- \u77e5\u9053\u8fd0\u52a8\u6d4b\u91cf\u7684\u8bfb\u6570 \\(\\displaystyle \\boldsymbol{u}\\) \u548c\u4f20\u611f\u5668\u7684\u8bfb\u6570 \\(\\displaystyle \\boldsymbol{z}\\)\uff0c\u5982\u4f55\u6c42\u89e3\u5b9a\u4f4d\u95ee\u9898\u548c\u5efa\u56fe\u95ee\u9898\u3002
- \u72b6\u6001\u4f30\u8ba1\u95ee\u9898: \u5982\u4f55\u901a\u8fc7\u5e26\u6709\u566a\u58f0\u7684\u6d4b\u91cf\u6570\u636e\uff0c\u4f30\u8ba1\u5185\u90e8\u7684\u3001\u9690\u85cf\u7740\u7684\u72b6\u6001\u53d8\u91cf
- Linear Gaussian -> Kalman Filter
- Non-Linear Non-Gaussian -> Extended Kalman Filter \u548c\u975e\u7ebf\u6027\u4f18\u5316
- EKF -> Particle Filter -> Graph Optimization
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#24","title":"2.4 \u5b9e\u8df5: \u7f16\u7a0b\u57fa\u7840","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#241-linux","title":"2.4.1 \u5b89\u88c5 Linux \u64cd\u4f5c\u7cfb\u7edf","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#242-hello-slam","title":"2.4.2 Hello SLAM","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#243-cmake","title":"2.4.3 \u4f7f\u7528 cmake","text":"Text Only
cmake_minimum_required( VERSION 2.8)\n\nproject(HelloSLAM)\n\nadd_executable(helloSLAM helloSLAM.cpp)\n
\u5bf9\u4e2d\u95f4\u6587\u4ef6\u7684\u5904\u7406:
Text Only
mkdir build\ncd build\ncmake ..\nmake\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#244","title":"2.4.4 \u4f7f\u7528\u5e93","text":"Text Only
add_library(hello libHelloSLAM.cpp)\n
- \u9759\u6001\u5e93
- .a \u4f5c\u4e3a\u540e\u7f00\u540d\uff0c\u6bcf\u6b21\u8c03\u7528\u90fd\u6709\u4e00\u4e2a\u526f\u672c
- \u5171\u4eab\u5e93
- .so\uff0c\u53ea\u6709\u4e00\u4e2a\u526f\u672c
Text Only
add_library(hello_shared SHARED libHelloSLAM.cpp)\n
- \u8fd8\u8981\u4e00\u4e2a\u5934\u6587\u4ef6\u6765\u8bf4\u660e\u5e93\u91cc\u90fd\u6709\u4ec0\u4e48
Text Only
#ifndef LIBHELLOSLAM_H_\n#define LIBHELLOSLAM_H_\n\nvoid printHello()\n\n#endif\n
- \u6700\u540e\u5199\u4e00\u4e2a\u53ef\u6267\u884c\u7a0b\u5e8f:
C++
#include \"libHelloSLAM.h\"\n\nint main(int argc, char **argv) {\n printHello();\n return 0; \n}\n
- \u5728 CMakeLists. txt \u4e2d\u6dfb\u52a0\u53ef\u6267\u884c\u547d\u4ee4\u7684\u751f\u6210\u547d\u4ee4\uff0c\u94fe\u63a5\u5230\u5e93\u4e0a:
Text Only
add_executable(useHello useHello.cpp)\ntarget_link_libraries(useHello hello_shared)\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#245-ide","title":"2.4.5 \u4f7f\u7528 IDE","text":"
- KDevelop
- Clion
- \u8fd8\u6ca1\u5199
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#3","title":"3 \u4e09\u7ef4\u7a7a\u95f4\u521a\u4f53\u8fd0\u52a8","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#31","title":"3.1 \u65cb\u8f6c\u77e9\u9635","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#311","title":"3.1.1 \u70b9\u3001\u5411\u91cf\u548c\u5750\u6807\u7cfb","text":"
\\[ a\\times b = \\begin{Vmatrix}e_1&e_2&e_3\\\\ \\\\ a_1&a_2&a_3\\\\ \\\\ b_1&b_2&b_3 \\\\ \\end{Vmatrix} = \\begin{bmatrix} a_2b_3-a_3b_2\\\\ \\\\ a_3b_1-a_1b_3\\\\ \\\\ a_1b_2-a_2b_1 \\end{bmatrix} = \\begin{bmatrix} 0&-a_3&a_2\\\\ \\\\ a_3&0&-a_1\\\\ \\\\ -a_2&a_1&0 \\end{bmatrix} \\boldsymbol{b}\\overset{\\mathrm{def}}{\\operatorname*{=}}\\boldsymbol{a}^{\\wedge}\\boldsymbol{b}. \\]
- \u4e8e\u662f\u5c31\u628a\u5916\u79ef\u53d8\u6210\u4e86\u7ebf\u6027\u8fd0\u7b97
- \u5373
\\[ \\displaystyle \\boldsymbol{a}^{\\wedge}=\\begin{bmatrix} 0 & -a_{3} & a_{2} \\\\ a_{3} & 0 & -a_{1} \\\\ -a_{2} & a_{1} & 0 \\end{bmatrix} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#312","title":"3.1.2 \u5750\u6807\u7cfb\u95f4\u7684\u6b27\u5f0f\u53d8\u6362","text":"
\\[ \\begin{bmatrix}a_1\\\\ \\\\ a_2\\\\\\\\a_3\\end{bmatrix}=\\begin{bmatrix}e_1^\\mathrm{T}e_1^{\\prime}&e_1^\\mathrm{T}e_2^{\\prime}&e_1^\\mathrm{T}e_3^{\\prime}\\\\e_2^\\mathrm{T}e_1^{\\prime}&e_2^\\mathrm{T}e_2^{\\prime}&e_2^\\mathrm{T}e_3^{\\prime}\\\\e_3^\\mathrm{T}e_1^{\\prime}&e_3^\\mathrm{T}e_2^{\\prime}&e_3^\\mathrm{T}e_3^{\\prime}\\end{bmatrix}\\begin{bmatrix}a_1^{\\prime}\\\\\\\\a_2^{\\prime}\\\\\\\\a_3^{\\prime}\\end{bmatrix}\\stackrel{\\mathrm{def}}{=}Ra^{\\prime} \\]
- \\(\\displaystyle \\boldsymbol{R}\\) \u662f\u65cb\u8f6c\u77e9\u9635\u3001\u65b9\u5411\u4f59\u5f26\u77e9\u9635
- Special Orthogonal Group \\(\\displaystyle \\mathrm{SO}(n)=\\{\\boldsymbol{R}\\in \\mathbb{R}^{n \\times n}|\\boldsymbol{R}\\boldsymbol{R}^{\\mathrm{T}}=\\boldsymbol{I},\\det(\\boldsymbol{R})=1\\}\\)
- \\(\\displaystyle a^{\\prime}=R^{-1}a=R^{\\intercal}a.\\)
- \u65cb\u8f6c+\u5e73\u79fb: \\(\\displaystyle a^{\\prime}=Ra+t.\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#313","title":"3.1.3 \u53d8\u6362\u77e9\u9635\u4e0e\u9f50\u6b21\u5750\u6807","text":"
- \u4f46\u662f\u8fd9\u91cc\u7684\u53d8\u6362\u5173\u7cfb\u4e0d\u662f\u4e00\u4e2a\u7ebf\u6027\u5173\u7cfb
- \\(\\displaystyle c=R_2\\left(R_1a+t_1\\right)+t_2\\)
- \u6211\u4eec\u6539\u5199\u4e00\u4e0b\u5f62\u5f0f:
- \\(\\displaystyle \\begin{bmatrix}a'\\\\\\\\1\\end{bmatrix}=\\begin{bmatrix}R&t\\\\\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}\\begin{bmatrix}a\\\\\\\\1\\end{bmatrix}\\overset{\\mathrm{def}}{=}T\\begin{bmatrix}a\\\\\\\\1\\end{bmatrix}\\)
- \u8fd9\u5c31\u662f\u9f50\u6b21\u5750\u6807\uff0c\\(\\displaystyle \\boldsymbol{T}\\) \u79f0\u4e3a\u53d8\u6362\u77e9\u9635\uff08Transform matrix\uff09
- \\(\\displaystyle \\tilde{b}=T_1\\tilde{\\boldsymbol{a}}, \\tilde{\\boldsymbol{c}}=T_2\\tilde{\\boldsymbol{b}}\\quad\\Rightarrow\\tilde{\\boldsymbol{c}}=T_2T_1\\tilde{\\boldsymbol{a}}.\\)
- \u5e76\u4e14 \\(\\displaystyle \\boldsymbol{T}\\) \u79f0\u4e3a\u7279\u6b8a\u6b27\u5f0f\u7fa4\uff08Special Euclidean Group\uff09
- \\(\\displaystyle \\mathrm{SE}(3)=\\left\\{T=\\begin{bmatrix}R&t\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}|\\boldsymbol{R}\\in\\mathrm{SO}(3),\\boldsymbol{t}\\in\\mathbb{R}^3\\right\\}\\)
- \\(\\displaystyle T^{-1}=\\begin{bmatrix}R^\\mathrm{T}&-R^\\mathrm{T}t\\\\0^\\mathrm{T}&1\\end{bmatrix}\\)
- \u5728 C++\u7a0b\u5e8f\u4e2d\u53ef\u4ee5\u4f7f\u7528\u8fd0\u7b97\u7b26\u91cd\u8f7d\u6765\u5904\u7406\u9f50\u6b21\u548c\u975e\u9f50\u6b21\u7684\u60c5\u51b5
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#32-eigen","title":"3.2 \u5b9e\u8df5:Eigen","text":"C++
#include <iostream>\nusing namespace std;\n\n#include <ctime>\n\n#include <eigen3>\nusing namespace Eigen;\n\n#define MATRIX_SIZE 50\n\nint main(int argc, char **argv) {\n Matrix<float, 2, 3> matrix_23;\n// \u5982\u4e0b\u90fd\u662f\u4e09\u7ef4\u5411\u91cf\n Vector3d v_3d;\n Matrix<float, 3, 1> vd_3d;\n// \u5982\u4e0b\u662f3*3\u77e9\u9635\n Matrix3d matrix_33 = Matrix3d::Zero();\n// \u4e24\u4e2a\u52a8\u6001\u5206\u914d\n Matrix<double, Dynamic, Dynamic> matrix_dynamic;\n MatrixXd matrix_x;\n\n matrix_23 << 1, 2, 3, 4, 5, 6;\n cout<< \"matrix 2*3 from 1 to 6: \\n\" << matrix_23 << endl;\n\n cout << \"print matrix 2*3:\" << endl;\n for (int i = 0; i < 2; i++) {\n for (int j = 0; j < 3; j+) cout << matrix_23(i, j) << \"\\t\";\n cout << endl;\n }\n\n v_3d << 3, 2, 1;\n vd_3d << 4, 5, 6;\n\n Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;\n cout << \"[1, 2, 3; 4, 5, 6] * [3, 2, 1] =\" << result.transpose() << endl;\n\n matrix_22 = Matrix3d::Random();\n\n // \u4e00\u4e9b\u77e9\u9635\u7684\u64cd\u4f5c:\n // transpose()\n // sum()\n // trace()\n // inverse()\n // determinant()\n\n SelfAdjointEigenSolver<Matrix3d> eigen_solver(matrix_33.transpose() * matrix_33);\n cout << eigen_solver.eigenvalues() << endl;\n cout << eigen_solver.eigenvectors() << endl;\n\n // solve the equation\n Matrix<double, MATRIX_SIZE, MATRIX_SIZE> matrix_NN = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);\n matrix_NN = matrix_NN * matrix_NN.transpose()\n Matrix<double, MATRIX_SIZE, 1> v_Nd = MatrixXd::random(MATRIX_SIZE, 1);\n\n // \u7b2c\u4e00\u79cd:\u76f4\u63a5\u6c42\u9006\n Matrix<double, MATRIX_SIZE, 1> x = matrix_NN.inverse() * v_Nd;\n\n // \u7b2c\u4e8c\u79cd:\u77e9\u9635\u5206\u89e3\n x = matrix_NN.colPivHouseholderQr().solve(v_Nd);\n\n}\n
- Eigen \u4e0d\u652f\u6301\u81ea\u52a8\u7c7b\u578b\u63d0\u5347\uff0c\u5373\u4e0d\u4f1a\u9690\u5f0f\u8f6c\u6362
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#33","title":"3.3 \u65cb\u8f6c\u5411\u91cf\u548c\u6b27\u62c9\u89d2","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#331","title":"3.3.1 \u65cb\u8f6c\u5411\u91cf","text":"
- Axis-Angle
- Rodrigues's Formula
- \\(\\displaystyle \\boldsymbol{R}=\\cos\\theta\\boldsymbol{I}+\\left(1-\\cos\\theta\\right)\\boldsymbol{n}\\boldsymbol{n}^\\mathrm{T}+\\sin\\theta\\boldsymbol{n}^\\mathrm{\\wedge}.\\)
\\[ \\begin{aligned} \\mathrm{tr}\\left(R\\right)& =\\cos\\theta\\operatorname{tr}\\left(\\boldsymbol{I}\\right)+\\left(1-\\cos\\theta\\right)\\operatorname{tr}\\left(\\boldsymbol{n}\\boldsymbol{n}^\\mathrm{T}\\right)+\\sin\\theta\\operatorname{tr}(\\boldsymbol{n}^\\mathrm{\\Lambda}) \\\\ &=3\\cos\\theta+(1-\\cos\\theta) \\\\ &=1+2\\cos\\theta \\end{aligned} \\]
thus:
\\[ \\theta=\\arccos\\frac{\\mathrm{tr}(R)-1}{2}. \\] \\[ Rn=n. \\]
- \u5373 \\(\\displaystyle \\boldsymbol{n}\\) \u662f\u77e9\u9635 \\(\\displaystyle \\boldsymbol{R}\\) \u7279\u5f81\u503c 1 \u5bf9\u5e94\u7684\u7279\u8bca\u5411\u91cf
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#332","title":"3.3.2 \u6b27\u62c9\u89d2","text":"
- \u6bd4\u8f83\u5e38\u7528\u7684\u4e00\u79cd yaw-pitch-roll
- \u4f46\u4f1a\u6709 Gimbal Lock \u95ee\u9898
- \u6240\u4ee5\u6b27\u62c9\u89d2\u6bd4\u8f83\u9002\u5408\u7528\u4e8e\u5feb\u901f\u68c0\u9a8c\u7ed3\u679c\u662f\u5426\u6709\u9519
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#34","title":"3.4 \u56db\u5143\u6570","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#341","title":"3.4.1 \u56db\u5143\u6570\u7684\u5b9a\u4e49","text":"
- \u6211\u4eec\u627e\u4e0d\u5230\u4e0d\u5e26\u5947\u5f02\u6027\u7684\u4e09\u4f4d\u5411\u91cf\u63cf\u8ff0\u65b9\u5f0f
- \u627e\u4e0d\u5230\u4e00\u4e2a\u6d41\u5f62\uff1f
- Quaternion
- \u7d27\u51d1\u53c8\u6ca1\u6709\u5947\u5f02\u6027
- \u53ea\u662f\u4e0d\u591f\u76f4\u89c2+\u8fd0\u7b97\u590d\u6742
- \\(\\displaystyle q=q_0+q_1\\mathrm{i}+\\mathrm{q}_2\\mathrm{j}+\\mathrm{q}_3\\mathrm{k}\\)
\\[ \\begin{cases}\\mathbf{i}^2=\\mathbf{j}^2=\\mathbf{k}^2=-1\\\\\\mathbf{ij}=\\mathbf{k},\\mathbf{ji}=-\\mathbf{k}\\\\\\mathbf{jk}=\\mathbf{i},\\mathbf{kj}=-\\mathbf{i}\\\\\\mathbf{ki}=\\mathbf{j},\\mathbf{ik}=-\\mathbf{j}\\end{cases} \\]
- (\u4e5f\u8bb8\u53ef\u4ee5\u7528\u5ea6\u89c4\u6765\u8868\u793a\uff1f)
- \\(\\displaystyle \\boldsymbol{q}=\\left[s,\\boldsymbol{v}\\right]^\\mathrm{T},\\quad s=q_0\\in\\mathbb{R},\\quad\\boldsymbol{v}=\\left[q_1,q_2,q_3\\right]^\\mathrm{T}\\in\\mathbb{R}^3.\\)
- \u4e66\u4e0a\u6ca1\u5199\u76f4\u89c2\u7684\u51e0\u4f55\u5bf9\u5e94
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#342","title":"3.4.2 \u56db\u5143\u6570\u7684\u8fd0\u7b97","text":"
- \u4e58\u6cd5: \\(\\displaystyle \\boldsymbol{q}_a\\boldsymbol{q}_b=\\begin{bmatrix}s_as_b-\\boldsymbol{v}_a^\\mathrm{T}\\boldsymbol{v}_b,s_a\\boldsymbol{v}_b+s_b\\boldsymbol{v}_a+\\boldsymbol{v}_a\\times\\boldsymbol{v}_b\\end{bmatrix}^\\mathrm{T}.\\)
- \u7531\u4e8e\u6700\u540e\u4e00\u9879\u7684\u5b58\u5728\uff0c\u4e58\u6cd5\u4e0d\u5177\u6709\u4ea4\u6362\u5f8b
- \u5171\u8f6d: \\(\\displaystyle q_a^*=s_a-x_a\\mathrm{i}-\\mathrm{y_aj}-\\mathrm{z_ak}=[\\mathrm{s_a},-\\mathrm{v_a}]^\\mathrm{T}.\\)
- \\(\\displaystyle q^*q=qq^*=[s_a^2+\\boldsymbol{v}^\\mathrm{T}\\boldsymbol{v},\\boldsymbol{0}]^\\mathrm{T}.\\)
- \u9006: \\(\\displaystyle q^{-1}=q^*/\\|q\\|^2.\\)
- \\(\\displaystyle (\\boldsymbol{q}_a\\boldsymbol{q}_b)^{-1}=\\boldsymbol{q}_b^{-1}\\boldsymbol{q}_a^{-1}.\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#343","title":"3.4.3 \u7528\u56db\u5143\u6570\u8868\u793a\u65cb\u8f6c","text":"
- \u5148\u8868\u793a\u4e09\u7ef4\u7a7a\u95f4\u70b9:
- \\(\\displaystyle p=[0,x,y,z]^{\\mathrm{T}}=[0,\\boldsymbol{v}]^{\\mathrm{T}}.\\)
- \u518d\u65cb\u8f6c:
- \\(\\displaystyle p'=qpq^{-1}.\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#344","title":"3.4.4 \u56db\u5143\u6570\u5230\u5176\u4ed6\u65cb\u8f6c\u8868\u793a\u7684\u8f6c\u6362","text":"
- \u8bbe \\(\\displaystyle \\boldsymbol{q} = [s,\\boldsymbol{v}]^\\mathrm{T}\\)
- \\(\\displaystyle \\boldsymbol{q}^+=\\begin{bmatrix}s&-\\boldsymbol{v}^\\mathrm{T}\\\\\\\\\\boldsymbol{v}&s\\boldsymbol{I}+\\boldsymbol{v}^\\wedge\\end{bmatrix},\\quad\\boldsymbol{q}^\\oplus=\\begin{bmatrix}s&-\\boldsymbol{v}^\\mathrm{T}\\\\\\\\\\boldsymbol{v}&s\\boldsymbol{I}-\\boldsymbol{v}^\\wedge\\end{bmatrix}.\\)
- \\(\\displaystyle q_1^+q_2=\\begin{bmatrix}s_1&-\\boldsymbol{v}_1^\\mathrm{T}\\\\\\\\\\boldsymbol{v}_1&s_1\\boldsymbol{I}+\\boldsymbol{v}_1^\\wedge\\end{bmatrix}\\begin{bmatrix}s_2\\\\\\\\\\boldsymbol{v}_2\\end{bmatrix}=\\begin{bmatrix}-\\boldsymbol{v}_1^\\mathrm{T}\\boldsymbol{v}_2+s_1s_2\\\\\\\\s_1\\boldsymbol{v}_2+s_2\\boldsymbol{v}_1+\\boldsymbol{v}_1^\\wedge\\boldsymbol{v}_2\\end{bmatrix}=\\boldsymbol{q}_1\\boldsymbol{q}_2.\\)
- \u540c\u7406\u53ef\u8bc1:
- \\(\\displaystyle q_1q_2=q_1^+q_2=q_2^\\oplus q_1.\\)
- \u518d\u6765\u8003\u8651\u65cb\u8f6c:
- \\(\\displaystyle \\begin{aligned}p^{\\prime}&=qpq^{-1}=q^{+}p^{+}q^{-1}\\\\&=q^{+}q^{-1^{\\oplus}}p.\\end{aligned}\\)
- \u4e8e\u662f\u53ef\u4ee5\u5f97\u5230:
- \\(\\displaystyle \\boldsymbol{q}^{+}\\big(\\boldsymbol{q}^{-1}\\big)^{\\oplus}=\\begin{bmatrix}s&-\\boldsymbol{v}^{\\mathrm{T}}\\\\\\boldsymbol{v}&s\\boldsymbol{I}+\\boldsymbol{v}^{\\wedge}\\end{bmatrix}\\begin{bmatrix}s&\\boldsymbol{v}^{\\mathrm{T}}\\\\-\\boldsymbol{v}&s\\boldsymbol{I}+\\boldsymbol{v}^{\\wedge}\\end{bmatrix}=\\begin{bmatrix}1&\\boldsymbol{0}\\\\\\boldsymbol{0}^{\\mathrm{T}}&\\boldsymbol{v}\\boldsymbol{v}^{\\mathrm{T}}+s^{2}\\boldsymbol{I}+2s\\boldsymbol{v}^{\\wedge}+\\left(\\boldsymbol{v}^{\\wedge}\\right)^{2}\\end{bmatrix}.\\)
- \u5373: \\(\\displaystyle R=\\boldsymbol{v}\\boldsymbol{v}^\\mathrm{T}+s^2\\boldsymbol{I}+2s\\boldsymbol{v}^\\wedge+\\left(\\boldsymbol{v}^\\wedge\\right)^2.\\)
\\[ \\begin{aligned} \\operatorname{tr}(R)& =\\mathbf{tr}(\\boldsymbol{vv}^\\mathrm{T}+3s^2+2s\\cdot0+\\mathbf{tr}((\\boldsymbol{v}^\\wedge)^2) \\\\ &=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+3s^{2}-2(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}) \\\\ &=(1-s^2)+3s^2-2(1-s^2) \\\\ &=4s^2-1. \\end{aligned} \\]
- \u5373 \\(\\displaystyle \\theta=2\\arccos s.\\)
- \u518d\u52a0\u4e0a\u65cb\u8f6c\u8f74:
\\[ \\begin{cases}\\theta=2\\arccos q_0\\\\ [n_x,n_y,n_z]^\\mathrm{T}=[q_1,q_2,q_3]^\\mathrm{T}/\\sin\\frac{\\theta}{2}\\end{cases}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#35","title":"3.5 \u76f8\u4f3c\u3001\u4eff\u5c04\u3001\u5c04\u5f71\u53d8\u6362","text":"
- \u76f8\u4f3c\u53d8\u6362:
\\[ \\boldsymbol{T}_S=\\begin{bmatrix}s\\boldsymbol{R}&t\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}. \\]
\u5141\u8bb8\u7f29\u653e\uff0c\u76f8\u4f3c\u53d8\u6362\u7fa4: Sim (3) 2. \u4eff\u5c04\u53d8\u6362:
\\[ T_A=\\begin{bmatrix}A&t\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}. \\]
\u53ea\u4fdd\u8bc1\u5e73\u884c\u5173\u7cfb 3. \u5c04\u5f71\u53d8\u6362
\\[ T_P=\\begin{bmatrix}A&t\\\\\\\\a^\\mathrm{T}&v\\end{bmatrix}. \\]
\u603b\u7ed3\u4e00\u4e0b:
\\[ \\begin{array}{c|c|c|c}\\hline\\text{\u53d8\u6362\u540d\u79f0}&\\text{\u77e9\u9635\u5f62\u5f0f}&\\text{\u81ea\u7531\u5ea6}&\\text{\u4e0d\u53d8\u6027\u8d28}\\\\\\hline\\text{\u6b27\u6c0f\u53d8\u6362}&\\begin{bmatrix}R&t\\\\0^\\mathrm{T}&1\\end{bmatrix}&6&\\text{\u957f\u5ea6\u3001\u5939\u89d2\u3001\u4f53\u79ef}\\\\\\text{\u76f8\u4f3c\u53d8\u6362}&\\begin{bmatrix}sR&t\\\\0^\\mathrm{T}&1\\end{bmatrix}&7&\\text{\u4f53\u79ef\u6bd4}\\\\\\text{\u4eff\u5c04\u53d8\u6362}&\\begin{bmatrix}A&t\\\\0^\\mathrm{T}&1\\end{bmatrix}&12&\\text{\u5e73\u884c\u6027\u3001\u4f53\u79ef\u6bd4}\\\\\\text{\u5c04\u5f71\u53d8\u6362}&\\begin{bmatrix}A&t\\\\a^\\mathrm{T}&v\\end{bmatrix}&15&\\text{\u63a5\u89e6\u5e73\u9762\u7684\u76f8\u4ea4\u548c\u76f8\u5207}\\\\\\hline\\end{array} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#36-eigen","title":"3.6 \u5b9e\u8df5: Eigen \u51e0\u4f55\u6a21\u5757","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#361-eigen","title":"3.6.1 Eigen \u51e0\u4f55\u6a21\u5757\u7684\u6570\u636e\u6f14\u793a","text":"
\u518d\u8bf4\u5427\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#362","title":"3.6.2 \u5b9e\u9645\u7684\u5750\u6807\u53d8\u6362\u4f8b\u5b50","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#37","title":"3.7 \u53ef\u89c6\u5316\u6f14\u793a","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#371","title":"3.7.1 \u663e\u793a\u8fd0\u52a8\u8f68\u8ff9","text":"
- \u7528 Pangolin \u5e93
- TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#372","title":"3.7.2 \u663e\u793a\u76f8\u673a\u7684\u4f4d\u59ff","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#38","title":"3.8 \u4e60\u9898","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#4","title":"4 \u674e\u7fa4\u548c\u674e\u4ee3\u6570","text":"
- \u7531\u4e8e\u65cb\u8f6c\u77e9\u9635\u672c\u8eab\u5e26\u6709\u7ea6\u675f\uff08\u6b63\u4ea4\u4e14\u884c\u5217\u5f0f\u4e3a 1\uff09\uff0c\u8ba9\u4f18\u5316\u53d8\u5f97\u56f0\u96be\u3002
- \u6240\u4ee5\u6211\u4eec\u5f15\u5165\u674e\u7fa4-\u674e\u4ee3\u6570\u95f4\u7684\u8f6c\u6362\u5173\u7cfb\uff0c\u628a\u4f4d\u59ff\u4f30\u8ba1\u53d8\u6210\u65e0\u7ea6\u675f\u7684\u4f18\u5316\u95ee\u9898
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#41","title":"4.1 \u674e\u7fa4\u548c\u674e\u4ee3\u6570\u57fa\u7840","text":"
- \u4e09\u7ef4\u65cb\u8f6c\u77e9\u9635\u6784\u6210\u4e86\u7279\u6b8a\u6b63\u4ea4\u7fa4 \\(\\displaystyle \\boldsymbol{SO}(3)\\)
- \u53d8\u6362\u77e9\u9635\u6784\u6210\u4e86\u7279\u6b8a\u6b27\u6c0f\u7fa4 \\(\\displaystyle \\boldsymbol{SE}(3)\\)
- \u4f46\u662f\u4ed6\u4eec\u90fd\u5bf9\u52a0\u6cd5\u4e0d\u5c01\u95ed
- \u5bf9\u4e58\u6cd5\u5c01\u95ed
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#411","title":"4.1.1 \u7fa4","text":"
- \\(\\displaystyle G = (A,\\cdot)\\) \u6ee1\u8db3:
- \u5c01\u95ed\u6027
- \u7ed3\u5408\u5f8b
- \u5e7a\u5143
- \u9006
- \u674e\u7fa4\u662f\u5177\u6709\u8fde\u7eed\uff08\u5149\u6ed1\uff09\u6027\u8d28\u7684\u7fa4
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#412","title":"4.1.2 \u674e\u4ee3\u6570\u7684\u5f15\u51fa","text":"
- \\(\\displaystyle \\boldsymbol{R}\\boldsymbol{R}^\\mathrm{T} = \\boldsymbol{I}\\)
- \u6211\u4eec\u6613\u5f97: \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}=-\\left(\\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}\\right)^\\mathrm{T}.\\)
- \u5373 \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}\\) \u662f\u53cd\u5bf9\u79f0
- \u800c\u5bf9\u4e8e\u4efb\u610f\u53cd\u5bf9\u79f0\u77e9\u9635\uff0c\u6211\u4eec\u90fd\u53ef\u4ee5\u627e\u5230\u552f\u4e00\u4e0e\u4e4b\u5bf9\u5e94\u7684\u5411\u91cf
- \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)\\boldsymbol{R}(t)^\\mathrm{T}=\\boldsymbol{\\phi}(t)^{\\wedge}.\\)
- \\(\\displaystyle \\dot{\\boldsymbol{R}}(t)=\\phi(t)^{\\wedge}\\boldsymbol{R}(t)=\\begin{bmatrix}0&-\\phi_3&\\phi_2\\\\\\phi_3&0&-\\phi_1\\\\-\\phi_2&\\phi_1&0\\end{bmatrix}\\boldsymbol{R}(t).\\) \u8003\u8651 \\(\\displaystyle t_{0} = 0\\) \u548c \\(\\displaystyle \\boldsymbol{R}(0) = \\boldsymbol{I}\\) \u65f6:
\\[ \\begin{aligned} R(t)& \\approx\\boldsymbol{R}\\left(t_{0}\\right)+\\dot{\\boldsymbol{R}}\\left(t_{0}\\right)\\left(t-t_{0}\\right) \\\\ &=I+\\phi(t_0)^{\\wedge}(t). \\end{aligned} \\]
\u4e8e\u662f\u6c42\u5bfc->\u4e00\u4e2a\u7b97\u7b26 \\(\\displaystyle \\phi\\) \uff0c\u88ab\u79f0\u4e3a \\(\\displaystyle \\boldsymbol{SO}(3)\\) \u539f\u70b9\u9644\u8fd1\u7684\u6b63\u5207\u7a7a\u95f4\uff08Tangent Space\uff09 \u8bbe\u5728 \\(\\displaystyle t_{0}\\) \u9644\u8fd1\uff0c\\(\\displaystyle \\phi\\) \u4fdd\u6301\u5e38\u6570 \\(\\displaystyle \\phi(t_{0})=\\phi_{0}\\)\uff0c
\\[ \\dot{\\boldsymbol{R}}(t)=\\boldsymbol{\\phi}(t_0)^\\wedge\\boldsymbol{R}(t)=\\boldsymbol{\\phi}_0^\\wedge\\boldsymbol{R}(t). \\]
\u518d\u6709 \\(\\displaystyle \\boldsymbol{R}(0) = \\boldsymbol{I}\\)\uff0c\u89e3\u7684:
\\[ \\boldsymbol{R}(t)=\\exp\\left(\\boldsymbol{\\phi}_{0}^{\\wedge}t\\right). \\]
- \\(\\displaystyle \\phi\\) \u6b63\u662f\u5bf9\u5e94\u5230 \\(\\displaystyle SO(3)\\) \u4e0a\u7684\u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{so}(3)\\)
- \\(\\displaystyle \\begin{aligned}&\\text{\u5176\u6b21,\u7ed9\u5b9a\u67d0\u4e2a\u5411\u91cf }\\phi\\text{ \u65f6,\u77e9\u9635\u6307\u6570}\\exp(\\phi^{\\wedge})\\text{ \u5982\u4f55\u8ba1\u7b97? \u53cd\u4e4b,\u7ed9\u5b9a }R\\text{ \u65f6,\u80fd\u5426\u6709\u76f8\u53cd}\\\\&\\text{\u7684\u8fd0\u7b97\u6765\u8ba1\u7b97 }\\phi?\\text{ \u4e8b\u5b9e\u4e0a,\u8fd9\u6b63\u662f\u674e\u7fa4\u4e0e\u674e\u4ee3\u6570\u95f4\u7684\u6307\u6570}/\\text{\u5bf9\u6570\u6620\u5c04\u3002}\\end{aligned}\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#413","title":"4.1.3 \u674e\u4ee3\u6570\u7684\u5b9a\u4e49","text":"
\u674e\u4ee3\u6570\u7531\u4e00\u4e2a\u96c6\u5408 \\(\\displaystyle \\mathbb{V}\\)\u3001\u4e00\u4e2a\u6570\u57df \\(\\displaystyle \\mathbb{F}\\) \u548c\u4e00\u4e2a\u4e8c\u5143\u8fd0\u7b97 \\(\\displaystyle [,]\\) \u7ec4\u6210\u3002\u5982\u679c\u6ee1\u8db3\u4ee5\u4e0b\u51e0\u6761\u6027\u8d28\uff0c\u5219\u79f0 ( \\(\\displaystyle \\mathbb{V},\\mathbb{F},[,]\\)) \u4e3a\u4e00\u4e2a\u674e\u4ee3\u6570\uff0c\u8bb0\u4f5c \\(\\displaystyle \\mathfrak{g}\\)\u3002
- \u5c01\u95ed\u6027
- \u53cc\u7ebf\u6027
- \u81ea\u53cd\u6027 \\(\\displaystyle \\quad\\forall \\boldsymbol{X}\\in\\mathbb{V},[\\boldsymbol{X},\\boldsymbol{X}]=0\\)
- \u96c5\u53ef\u6bd4\u7b49\u4ef7 \\(\\displaystyle \\forall X,Y,Z\\in\\mathbb{V},[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.\\) \u5176\u4e2d\u4e8c\u5143\u8fd0\u7b97\u88ab\u79f0\u4e3a\u674e\u62ec\u53f7\u3002 eg: \u53c9\u79ef\u662f\u4e00\u79cd\u674e\u62ec\u53f7
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#414-displaystyle-mathfrakso3","title":"4.1.4 \u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{so}(3)\\)","text":"
\\(\\displaystyle \\boldsymbol{\\Phi}=\\boldsymbol{\\phi}^{\\wedge}=\\begin{bmatrix}0&-\\phi_3&\\phi_2\\\\\\\\\\phi_3&0&-\\phi_1\\\\\\\\-\\phi_2&\\phi_1&0\\end{bmatrix}\\in\\mathbb{R}^{3\\times3}.\\) \u6240\u4ee5\u4e24\u4e2a\u5411\u91cf \\(\\displaystyle \\phi_{1},\\phi_{2}\\) \u7684\u674e\u62ec\u53f7\u4e3a:
\\[ [\\phi_1,\\phi_2]=(\\boldsymbol{\\Phi}_1\\boldsymbol{\\Phi}_2-\\boldsymbol{\\Phi}_2\\boldsymbol{\\Phi}_1)^\\vee. \\] \\[ \\mathfrak{so}(3)=\\left\\{\\phi\\in\\mathbb{R}^3,\\boldsymbol{\\Phi}=\\phi^\\wedge\\in\\mathbb{R}^{3\\times3}\\right\\}. \\] \\[ R=\\exp(\\phi^{\\wedge}). \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#415-displaystyle-mathfrakse3","title":"4.1.5 \u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{se}(3)\\)","text":"\\[ \\mathfrak{se}(3)=\\left\\{\\boldsymbol{\\xi}=\\begin{bmatrix}\\boldsymbol{\\rho}\\\\\\boldsymbol{\\phi}\\end{bmatrix}\\in\\mathbb{R}^6,\\boldsymbol{\\rho}\\in\\mathbb{R}^3,\\boldsymbol{\\phi}\\in\\mathfrak{so}(3),\\boldsymbol{\\xi}^\\wedge=\\begin{bmatrix}\\boldsymbol{\\phi}^\\wedge&\\boldsymbol{\\rho}\\\\\\boldsymbol{0}^\\mathrm{T}&0\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}\\right\\}. \\]
\u524d\u4e09\u7ef4\u4e3a\u5e73\u79fb\uff0c\u540e\u4e09\u7ef4\u4e3a\u65cb\u8f6c\uff08\u5b9e\u8d28\u4e0a\u662f \\(\\displaystyle \\mathfrak{so}(3)\\) \u5143\u7d20\uff09
\\[ \\xi^\\wedge=\\begin{bmatrix}\\phi^\\wedge&\\rho\\\\0^\\mathrm{T}&0\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}. \\]
\u540c\u6837\u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{se}(3)\\) \u4e5f\u6709\u7c7b\u4f3c\u4e8e \\(\\displaystyle \\mathfrak{so}(3)\\) \u7684\u674e\u62ec\u53f7:
\\[ [\\xi_1,\\xi_2]=\\left(\\xi_1^\\wedge\\xi_2^\\wedge-\\xi_2^\\wedge\\xi_1^\\wedge\\right)^\\vee. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#42","title":"4.2 \u6307\u6570\u4e0e\u5bf9\u6570\u6620\u5c04","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#421-so3","title":"4.2.1 SO(3)\u4e0a\u7684\u6307\u6570\u6620\u5c04","text":"
- Exponential Map
- \u9996\u5148\u4efb\u610f\u77e9\u9635\u7684\u6307\u6570\u6620\u5c04\u53ef\u4ee5\u5199\u6210\u4e00\u4e2a\u6cf0\u52d2\u5c55\u5f00\uff08\u6536\u655b\u7684\u65f6\u5019\uff09
\\[ \\exp(A)=\\sum_{n=0}^\\infty\\frac1{n!}A^n. \\]
- \u5e94\u7528\u5230 \\(\\displaystyle \\mathfrak{so}(3)\\) \u4e2d:
\\[ \\exp(\\phi^\\wedge)=\\sum_{n=0}^\\infty\\frac{1}{n!}(\\phi^\\wedge)^n. \\]
- \u6211\u4eec\u53ef\u4ee5\u628a \\(\\displaystyle \\phi\\) \u8868\u793a\u6210 \\(\\displaystyle \\theta \\boldsymbol{a}\\)\uff0c\u5bf9\u4e8e \\(\\displaystyle \\boldsymbol{a}^\\wedge\\):
\\[ \\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}=\\begin{bmatrix}-a_2^2-a_3^2&a_1a_2&a_1a_3\\\\\\\\a_1a_2&-a_1^2-a_3^2&a_2a_3\\\\\\\\a_1a_3&a_2a_3&-a_1^2-a_2^2\\end{bmatrix}=\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}-\\boldsymbol{I}, \\]
\u548c
\\[ a^{\\wedge}a^{\\wedge}a^{\\wedge}=a^{\\wedge}(aa^{\\mathrm{T}}-I)=-a^{\\wedge}. \\]
\u4e8e\u662f\u6211\u4eec\u53ef\u4ee5\u5316\u7b80:
\\[ \\begin{aligned} \\exp\\left(\\phi^\\wedge\\right)& =\\exp\\left(\\theta\\boldsymbol{a}^\\wedge\\right)=\\sum_{n=0}^\\infty\\frac1{n!}\\left(\\theta\\boldsymbol{a}^\\wedge\\right)^n \\\\ &=I+\\theta\\boldsymbol{a}^{\\wedge}+\\frac{1}{2!}\\theta^{2}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}+\\frac{1}{3!}\\theta^{3}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}+\\frac{1}{4!}\\theta^{4}(\\boldsymbol{a}^{\\wedge})^{4}+\\cdots \\\\ &=\\boldsymbol{a}\\boldsymbol{a}^{\\mathrm{T}}-\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}+\\theta\\boldsymbol{a}^{\\wedge}+\\frac{1}{2!}\\theta^{2}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge}-\\frac{1}{3!}\\theta^{3}\\boldsymbol{a}^{\\wedge}-\\frac{1}{4!}\\theta^{4}(\\boldsymbol{a}^{\\wedge})^{2}+\\cdots \\\\ &=\\boldsymbol{a}\\boldsymbol{a}^{\\mathsf{T}}+\\underbrace{\\left(\\theta-\\frac{1}{3!}\\theta^{3}+\\frac{1}{5!}\\theta^{5}-\\cdots\\right)}_{\\sin\\theta}\\boldsymbol{a}^{\\wedge}-\\underbrace{\\left(1-\\frac{1}{2!}\\theta^{2}+\\frac{1}{4!}\\theta^{4}-\\cdots\\right)}_{\\cos\\theta}\\boldsymbol{a}^{\\wedge}\\boldsymbol{a}^{\\wedge} \\\\ &=a^\\wedge a^\\wedge+I+\\sin\\theta a^\\wedge-\\cos\\theta a^\\wedge a^\\wedge \\\\ &=(1-\\cos\\theta)\\boldsymbol{a}^\\wedge\\boldsymbol{a}^\\wedge+\\boldsymbol{I}+\\sin\\theta\\boldsymbol{a}^\\wedge \\\\ &=\\cos\\theta\\boldsymbol{I}+(1-\\cos\\theta)\\boldsymbol{aa}^\\mathrm{T}+\\sin\\theta\\boldsymbol{a}^\\mathrm{\\wedge}. \\end{aligned} \\]
\u6700\u540e\u5f97\u5230:
\\[ \\exp(\\theta\\boldsymbol{a}^\\wedge)=\\cos\\theta\\boldsymbol{I}+(1-\\cos\\theta)\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}+\\sin\\theta\\boldsymbol{a}^\\wedge. \\]
\u6240\u4ee5 \\(\\displaystyle \\mathfrak{so}(3)\\) \u5c31\u662f\u65cb\u91cf\u5411\u91cf\u7ec4\u6210\u7684\u7a7a\u95f4\uff0c\u800c\u6307\u6570\u6620\u5c04\u5373\u7f57\u5fb7\u91cc\u683c\u65af\u516c\u5f0f\u3002
- \u901a\u8fc7\u4e0a\u9762\u7684\u516c\u5f0f\uff0c\u6211\u4eec\u53ef\u4ee5\u628a \\(\\displaystyle \\mathfrak{so}(3)\\) \u4e2d\u4efb\u610f\u5411\u91cf\u5bf9\u5e94\u5230 SO (3) \u4e2d\u7684\u65cb\u8f6c\u77e9\u9635
- \u53cd\u8fc7\u6765\u4e5f\u662f\u53ef\u4ee5\u7684
\\[ \\phi=\\ln\\left(\\boldsymbol{R}\\right)^\\vee=\\left(\\sum_{n=0}^\\infty\\frac{\\left(-1\\right)^n}{n+1}\\left(\\boldsymbol{R}-\\boldsymbol{I}\\right)^{n+1}\\right)^\\vee. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#422-se-3","title":"4.2.2 SE (3) \u4e0a\u7684\u6307\u6570\u6620\u5c04","text":"
\u540c\u6837\u7684\u63a8\u5bfc\u65b9\u5f0f:
\\[ \\begin{aligned} \\exp\\left(\\xi^{\\wedge}\\right)& =\\begin{bmatrix}\\sum_{n=0}^{\\infty}\\frac{1}{n!}(\\phi^{\\wedge})^{n}&\\sum_{n=0}^{\\infty}\\frac{1}{(n+1)!}(\\phi^{\\wedge})^{n}\\rho\\\\\\\\\\mathbf{0}^{\\mathrm{T}}&1\\end{bmatrix} \\\\ &\\stackrel{\\Delta}{=}\\begin{bmatrix}R&J\\rho\\\\\\\\0^\\mathrm{T}&1\\end{bmatrix}=T. \\end{aligned} \\] \\[ \\begin{aligned} \\sum_{n=0}^{\\infty}\\frac{1}{(n+1)!}(\\phi^{\\wedge})^{n}& =\\boldsymbol{I}+\\frac{1}{2!}\\theta\\boldsymbol{a}^{\\wedge}+\\frac{1}{3!}\\theta^{2}{(\\boldsymbol{a}^{\\wedge})}^{2}+\\frac{1}{4!}\\theta^{3}{(\\boldsymbol{a}^{\\wedge})}^{3}+\\frac{1}{5!}\\theta^{4}{(\\boldsymbol{a}^{\\wedge})}^{4}\\cdots \\\\ &=\\frac{1}{\\theta}\\left(\\frac{1}{2!}\\theta^{2}-\\frac{1}{4!}\\theta^{4}+\\cdots\\right)(\\boldsymbol{a}^{\\wedge})+\\frac{1}{\\theta}\\left(\\frac{1}{3!}\\theta^{3}-\\frac{1}{5}\\theta^{5}+\\cdots\\right)(\\boldsymbol{a}^{\\wedge})^{2}+\\boldsymbol{I} \\\\ &=\\frac1\\theta\\left(1-\\cos\\theta\\right)\\left(\\boldsymbol{a}^{\\wedge}\\right)+\\frac{\\theta-\\sin\\theta}\\theta\\left(\\boldsymbol{a}\\boldsymbol{a}^{\\mathrm{T}}-\\boldsymbol{I}\\right)+\\boldsymbol{I} \\\\ &=\\frac{\\sin\\theta}\\theta\\boldsymbol{I}+\\left(1-\\frac{\\sin\\theta}\\theta\\right)\\boldsymbol{aa}^\\mathrm{T}+\\frac{1-\\cos\\theta}\\theta\\boldsymbol{a}^\\mathrm{\\wedge}\\overset{\\mathrm{def}}{\\operatorname*{=}}\\boldsymbol{J}. \\end{aligned} \\] \\[ \\boldsymbol{J}=\\frac{\\sin\\theta}{\\theta}\\boldsymbol{I}+\\left(1-\\frac{\\sin\\theta}{\\theta}\\right)\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}+\\frac{1-\\cos\\theta}{\\theta}\\boldsymbol{a}^\\mathrm{\\wedge}. \\]
4.28 \u6ca1\u770b\u61c2
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#43","title":"4.3 \u674e\u4ee3\u6570\u6c42\u5bfc\u4e0e\u6270\u52a8\u6a21\u578b","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#431-bch","title":"4.3.1 BCH \u516c\u5f0f\u4e0e\u8fd1\u4f3c\u5f62\u5f0f","text":"
\u63a2\u7a76\u5982\u4e0b\u5f0f\u5b50\u662f\u5426\u6210\u7acb:
\\[ \\ln\\left(\\exp\\left(A\\right)\\exp\\left(B\\right)\\right)=A+B ? \\]
\u4f46\u5b83\u5e76\u4e0d\u6210\u7acb\u3002\u4e24\u4e2a\u674e\u4ee3\u6570\u6307\u6570\u6620\u5c04\u4e58\u79ef\u7684\u5b8c\u6574\u5f62\u5f0f\uff0c\u7531 Baker-Campbell-Hausdorff \u7ed9\u51fa:
\\[ \\ln\\left(\\exp\\left(A\\right)\\exp\\left(B\\right)\\right)=A+B+\\frac{1}{2}\\left[A,B\\right]+\\frac{1}{12}\\left[A,\\left[A,B\\right]\\right]-\\frac{1}{12}\\left[B,\\left[A,B\\right]\\right]+\\cdots \\]
\u7279\u522b\u7684\uff0c\u5f53 \\(\\displaystyle \\phi_{1}\\) \u6216 \\(\\displaystyle \\phi_{2}\\) \u4e3a\u5c0f\u91cf\u65f6\uff0c\u5c0f\u91cf\u4e8c\u6b21\u4ee5\u4e0a\u7684\u9879\u90fd\u53ef\u4ee5\u88ab\u5ffd\u7565\uff0c\u6b64\u65f6\u7684\u7ebf\u6027\u8fd1\u4f3c\u8868\u8fbe:
\\[ \\ln\\left(\\exp\\left(\\phi_1^\\wedge\\right)\\exp\\left(\\phi_2^\\wedge\\right)\\right)^\\vee\\approx\\begin{cases}J_l(\\phi_2)^{-1}\\phi_1+\\phi_2&\\text{\u5f53}\\phi_1\\text{\u4e3a\u5c0f\u91cf},\\\\J_r(\\phi_1)^{-1}\\phi_2+\\phi_1&\\text{\u5f53}\\phi_2\\text{\u4e3a\u5c0f\u91cf}.\\end{cases} \\] \\[ \\boldsymbol{J}_{l}=\\frac{\\sin\\theta}{\\theta}\\boldsymbol{I}+\\left(1-\\frac{\\sin\\theta}{\\theta}\\right)\\boldsymbol{a}\\boldsymbol{a}^\\mathrm{T}+\\frac{1-\\cos\\theta}{\\theta}\\boldsymbol{a}^\\mathrm{\\wedge}. \\] \\[ \\boldsymbol{J}_{\\ell}^{-1}=\\frac{\\theta}{2}\\cot\\frac{\\theta}{2}\\boldsymbol{I}+\\left(1-\\frac{\\theta}{2}\\cot\\frac{\\theta}{2}\\right)\\boldsymbol{a}\\boldsymbol{a}^{\\mathrm{T}}-\\frac{\\theta}{2}\\boldsymbol{a}^{\\wedge}. \\] \\[ J_{r}(\\phi)=J_{l}(-\\phi). \\]
\u4e8e\u662f\u6211\u4eec\u5c31\u53ef\u4ee5\u8c08\u8bba\u674e\u7fa4\u4e58\u6cd5\u4e0e\u674e\u4ee3\u6570\u52a0\u6cd5\u7684\u5173\u7cfb\u4e86\u3002 \\(\\displaystyle \\boldsymbol{R}\\) \u5bf9\u5e94 \\(\\displaystyle \\phi\\)\uff0c\u6211\u4eec\u7ed9\u5b83\u5de6\u4e58\u4e00\u4e2a\u5fae\u5c0f\u65cb\u8f6c\uff0c\u8bb0\u4f5c \\(\\displaystyle \\Delta \\boldsymbol{R}\\)
\\[ \\exp\\left(\\Delta\\phi^{\\wedge}\\right)\\exp\\left(\\phi^{\\wedge}\\right)=\\exp\\left(\\left(\\phi+J_{l}^{-1}\\left(\\phi\\right)\\Delta\\phi\\right)^{\\wedge}\\right). \\] \\[ \\exp\\left(\\left(\\phi+\\Delta\\phi\\right)^{\\wedge}\\right)=\\exp\\left(\\left(J_{l}\\Delta\\phi\\right)^{\\wedge}\\right)\\exp\\left(\\phi^{\\wedge}\\right)=\\exp\\left(\\phi^{\\wedge}\\right)\\exp\\left(\\left(J_{r}\\Delta\\phi\\right)^{\\wedge}\\right). \\]
\u5bf9\u4e8e SE (3) \u6211\u4eec\u4e5f\u6709:
\\[ \\exp\\left(\\Delta\\xi^{\\wedge}\\right)\\exp\\left(\\xi^{\\wedge}\\right)\\approx\\exp\\left(\\left(\\mathcal{J}_{l}^{-1}\\Delta\\xi+\\xi\\right)^{\\wedge}\\right) \\] \\[ exp\\left(\\xi^{\\wedge}\\right)\\exp\\left(\\Delta\\xi^{\\wedge}\\right)\\approx\\exp\\left(\\left(\\mathcal{J}_{r}^{-1}\\Delta\\xi+\\xi\\right)^{\\wedge}\\right). \\]
\u552f\u4e00\u4e0d\u540c\u7684\u662f\u8fd9\u91cc\u7684 \\(\\displaystyle J_{l}\\) \u6bd4\u8f83\u590d\u6742\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#432-so-3","title":"4.3.2 SO (3) \u4e0a\u7684\u674e\u4ee3\u6570\u6c42\u5bfc","text":"\\[ z=T\\boldsymbol{p}+\\boldsymbol{w}. \\]
\u5176\u4e2d \\(\\displaystyle \\boldsymbol{w}\\) \u662f\u968f\u673a\u566a\u58f0\u3002
\\[ e=z-Tp. \\]
\u5047\u8bbe\u4e00\u5171\u6709 N \u4e2a\u8fd9\u6837\u7684\u8def\u6807\u70b9\u548c\u89c2\u6d4b:
\\[ \\min_{\\boldsymbol{T}}J(\\boldsymbol{T})=\\sum_{i=1}^N\\left\\|\\boldsymbol{z}_i-\\boldsymbol{T}\\boldsymbol{p}_i\\right\\|_2^2. \\]
most importantly\uff0c\u6211\u4eec\u4f1a\u6784\u5efa\u4e0e\u4f4d\u59ff\u6709\u5173\u7684\u51fd\u6570\uff0c\u5e76\u8ba8\u8bba\u8be5\u51fd\u6570\u5173\u4e8e\u4f4d\u59ff\u7684\u5bfc\u6570\uff0c\u4ee5\u8c03\u6574\u5f53\u524d\u7684\u4f30\u8ba1\u503c\u3002 \u4f7f\u7528\u674e\u4ee3\u6570\u89e3\u51b3\u6c42\u5bfc\u95ee\u9898\u7684\u601d\u8def\u5206\u4e3a\u4e24\u79cd:
- \u7528\u674e\u4ee3\u6570\u8868\u793a\u59ff\u6001\uff0c\u7136\u540e\u6839\u636e\u674e\u4ee3\u6570\u52a0\u6cd5\u5bf9\u674e\u4ee3\u6570\u6c42\u5bfc\u3002
- \u5bf9\u674e\u7fa4\u5de6\u4e58\u6216\u53f3\u4e58\u5fae\u5c0f\u6270\u52a8\uff0c\u7136\u540e\u5bf9\u8be5\u6270\u52a8\u6c42\u5bfc\uff0c\u79f0\u4e3a\u5de6\u6270\u52a8\u548c\u53f3\u6270\u52a8\u6a21\u578b\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#44","title":"4.4 \u674e\u4ee3\u6570\u6c42\u5bfc","text":"
\u8981\u8ba1\u7b97 \\(\\displaystyle \\frac{\\partial\\left(Rp\\right)}{\\partial R}\\), \u7531\u4e8eSO\uff083\uff09\u6ca1\u6709\u52a0\u6cd5\uff0c\u6211\u4eec\u8f6c\u800c\u8ba1\u7b97: \\(\\displaystyle \\frac{\\partial\\left(\\exp\\left(\\phi^{\\wedge}\\right)\\boldsymbol{p}\\right)}{\\partial\\boldsymbol{\\phi}}.\\)
\\[ \\begin{aligned} \\frac{\\partial\\left(\\exp\\left(\\phi^{\\wedge}\\right)\\boldsymbol{p}\\right)}{\\partial\\phi}& =\\lim_{\\delta\\boldsymbol{\\phi}\\to0}\\frac{\\exp\\left(\\left(\\boldsymbol{\\phi}+\\delta\\boldsymbol{\\phi}\\right)^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\phi}} \\\\ &=\\lim_{\\delta\\phi\\to0}\\frac{\\exp\\left(\\left(\\boldsymbol{J}_i\\delta\\boldsymbol{\\phi}\\right)^\\wedge\\right)\\exp\\left(\\boldsymbol{\\phi}^\\wedge\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^\\wedge\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\phi}} \\\\ &=\\lim_{\\delta\\phi\\to0}\\frac{\\left(\\boldsymbol{I}+\\left(\\boldsymbol{J}_{l}\\delta\\boldsymbol{\\phi}\\right)^{\\wedge}\\right)\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\phi} \\\\ &=\\lim_{\\delta\\phi\\to0}\\frac{\\left(\\boldsymbol{J}_{l}\\delta\\phi\\right)^{\\wedge}\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\phi} \\\\ &=\\lim_{\\delta\\boldsymbol{\\phi}\\to0}\\frac{-(\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p})^{\\wedge}\\boldsymbol{J}_{l}\\delta\\boldsymbol{\\phi}}{\\delta\\boldsymbol{\\phi}}=-(\\boldsymbol{R}\\boldsymbol{p})^{\\wedge}\\boldsymbol{J}_{l}. \\end{aligned} \\]
BCH \u7ebf\u6027\u8fd1\u4f3c+\u6cf0\u52d2\u5c55\u5f00\u53d6\u7ebf\u6027\u9879:
\\[ \\frac{\\partial\\left(\\boldsymbol{Rp}\\right)}{\\partial\\boldsymbol{\\phi}}=\\left(-\\boldsymbol{Rp}\\right)^{\\wedge}\\boldsymbol{J}_{l}. \\]
\u4f46\u662f\u8fd9\u91cc\u4ecd\u7136\u6709 \\(\\displaystyle \\boldsymbol{J}_{l}\\)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#441","title":"4.4.1 \u6270\u52a8\u6a21\u578b\uff08\u5de6\u4e58\uff09","text":"
\\(\\displaystyle \\varphi\\) \u5bf9\u5e94\u5de6\u6270\u52a8 \\(\\displaystyle \\Delta \\boldsymbol{R}\\)
\\[ \\begin{aligned} \\frac{\\partial\\left(Rp\\right)}{\\partial\\varphi}& =\\lim_{\\varphi\\to0}\\frac{\\exp\\left(\\varphi^{\\wedge}\\right)\\exp\\left(\\phi^{\\wedge}\\right)p-\\exp\\left(\\phi^{\\wedge}\\right)p}{\\varphi} \\\\ &=\\lim_{\\varphi\\to0}\\frac{(\\boldsymbol{I}+\\boldsymbol{\\varphi}^{\\wedge})\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\phi}^{\\wedge}\\right)\\boldsymbol{p}}{\\varphi} \\\\ &=\\lim_{\\varphi\\to0}\\frac{\\varphi^\\wedge Rp}\\varphi=\\lim_{\\varphi\\to0}\\frac{-\\left(Rp\\right)^\\wedge\\varphi}\\varphi=-\\left(Rp\\right)^\\wedge. \\end{aligned} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#442-se-3","title":"4.4.2 SE (3) \u4e0a\u7684\u674e\u4ee3\u6570\u6c42\u5bfc","text":"\\[ \\begin{aligned} \\frac{\\partial\\left(\\boldsymbol{T}\\boldsymbol{p}\\right)}{\\partial\\delta\\boldsymbol{\\xi}}&=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\boldsymbol{0}}\\frac{\\exp\\left(\\delta\\boldsymbol{\\xi}^{\\wedge}\\right)\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\xi} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\mathbf{0}}\\frac{\\left(\\boldsymbol{I}+\\delta\\boldsymbol{\\xi}^{\\wedge}\\right)\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}-\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\xi}} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to0}\\frac{\\delta\\boldsymbol{\\xi}^{\\wedge}\\exp\\left(\\boldsymbol{\\xi}^{\\wedge}\\right)\\boldsymbol{p}}{\\delta\\boldsymbol{\\xi}} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\mathbf{0}}\\frac{\\begin{bmatrix}\\delta\\boldsymbol{\\phi}^\\wedge&\\delta\\boldsymbol{\\rho}\\\\\\\\\\mathbf{0}^\\mathrm{T}&0\\end{bmatrix}\\begin{bmatrix}\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t}\\\\\\\\1\\end{bmatrix}}{\\delta\\boldsymbol{\\xi}} \\\\ &=\\lim_{\\delta\\boldsymbol{\\xi}\\to\\boldsymbol{0}}\\frac{\\begin{bmatrix}\\delta\\boldsymbol{\\phi}^{\\wedge}\\left(\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t}\\right)+\\delta\\boldsymbol{\\rho}\\\\\\boldsymbol{0}^{\\mathrm{T}}\\end{bmatrix}}{[\\delta\\boldsymbol{\\rho},\\delta\\boldsymbol{\\phi}]^{\\mathrm{T}}}=\\begin{bmatrix}\\boldsymbol{I}&-(\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t})^{\\wedge}\\\\\\boldsymbol{0}^{\\mathrm{T}}&\\boldsymbol{0}^{\\mathrm{T}}\\end{bmatrix}\\stackrel{\\mathrm{def}}{=}(\\boldsymbol{T}\\boldsymbol{p})^{\\odot}. \\end{aligned} \\] \\[ \\frac{\\mathrm{d}\\begin{bmatrix}a\\\\b\\end{bmatrix}}{\\mathrm{d}\\begin{bmatrix}x\\\\y\\end{bmatrix}}=\\left(\\frac{\\mathrm{d}[a,b]^\\mathrm{T}}{\\mathrm{d}\\begin{bmatrix}x\\\\y\\end{bmatrix}}\\right)^\\mathrm{T}=\\begin{bmatrix}\\frac{\\mathrm{d}a}{\\mathrm{d}x}&\\frac{\\mathrm{d}b}{\\mathrm{d}x}\\\\\\frac{\\mathrm{d}a}{\\mathrm{d}y}&\\frac{\\mathrm{d}b}{\\mathrm{d}y}\\end{bmatrix}^\\mathrm{T}=\\begin{bmatrix}\\frac{\\mathrm{d}a}{\\mathrm{d}x}&\\frac{\\mathrm{d}a}{\\mathrm{d}y}\\\\\\frac{\\mathrm{d}b}{\\mathrm{d}x}&\\frac{\\mathrm{d}b}{\\mathrm{d}y}\\end{bmatrix} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#45-sophus","title":"4.5 \u5b9e\u8df5:Sophus","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#451-sophus","title":"4.5.1 Sophus \u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#452","title":"4.5.2 \u4f8b\u5b50: \u8bc4\u4f30\u8f68\u8ff9\u7684\u8bef\u5dee","text":"
- \u7edd\u5bf9\u8f68\u8ff9\u8bef\u5dee\uff08Absolute Trajectory Error, ATE\uff09
\\[ \\mathrm{ATE}_{\\mathrm{all}}=\\sqrt{\\frac{1}{N}\\sum_{i=1}^{N}\\|\\log(T_{\\mathrm{gt},i}^{-1}T_{\\mathrm{esti},i})^{\\vee}\\|_{2}^{2}}, \\]
\u5373\u5747\u65b9\u6839\u8bef\u5dee\uff08Root-Mean-Squared Error, RMSE\uff09
- \u7edd\u5bf9\u5e73\u79fb\u8bef\u5dee\uff08Average Translational Error\uff09
\\[ \\mathrm{ATE}_{\\mathrm{all}}=\\sqrt{\\frac{1}{N}\\sum_{i=1}^{N}\\|\\log(T_{\\mathrm{gt},i}^{-1}T_{\\mathrm{esti},i})^{\\vee}\\|_{2}^{2}}, \\]
- \u76f8\u5bf9\u4f4d\u59ff\u8bef\u5dee\uff08Relative Pose Error, RPE\uff09
\\[ \\mathrm{RPE}_{\\mathrm{all}}=\\sqrt{\\frac{1}{N-\\Delta t}\\sum_{i=1}^{N-\\Delta t}\\|\\log\\left(\\left(\\boldsymbol{T}_{\\mathrm{gt},i}^{-1}\\boldsymbol{T}_{\\mathrm{gt},i+\\Delta t}\\right)\\right)^{-1}\\left(\\boldsymbol{T}_{\\mathrm{est},i}^{-1}\\boldsymbol{T}_{\\mathrm{est},i+\\Delta t}\\right))^{\\vee}\\|_{2}^{2}}, \\] \\[ \\mathrm{RPE}_{\\mathrm{trans}}=\\sqrt{\\frac{1}{N-\\Delta t}\\sum_{i=1}^{N-\\Delta t}\\|\\mathrm{trans}\\left(\\left(T_{gt,i}^{-1}T_{gt,i+\\Delta t}\\right)\\right)^{-1}\\left(T_{\\mathrm{esti},i}^{-1}T_{\\mathrm{esti},i+\\Delta t}\\right))\\|_{2}^{2}}. \\]
\u4ee3\u7801\u8ba1\u7b97:
Text Only
TODO\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#46","title":"4.6 \u76f8\u4f3c\u53d8\u6362\u4e0e\u674e\u4ee3\u6570","text":"
\u5728\u8fd9\u91cc\u6211\u4eec\u8ba8\u8bba Sim (3) \u548c\u5bf9\u5e94\u7684\u674e\u4ee3\u6570 \\(\\displaystyle \\mathfrak{sim}(3)\\)\u3002 \u5bf9\u4e8e\u4f4d\u4e8e\u7a7a\u95f4\u7684\u70b9 \\(\\displaystyle \\boldsymbol{p}\\)\uff0c\u5728\u76f8\u673a\u5750\u6807\u7cfb\u4e0b\u8981\u7ecf\u8fc7\u4e00\u4e2a\u76f8\u4f3c\u53d8\u6362\uff0c\u800c\u975e\u6b27\u6c0f\u53d8\u6362:
\\[ \\boldsymbol{p}'=\\begin{bmatrix}s\\boldsymbol{R}&\\boldsymbol{t}\\\\\\boldsymbol{0}^\\mathrm{T}&1\\end{bmatrix}\\boldsymbol{p}=s\\boldsymbol{R}\\boldsymbol{p}+\\boldsymbol{t}. \\] \\[ \\mathrm{Sim}(3)=\\left\\{S=\\begin{bmatrix}sR&t\\\\\\\\\\mathbf{0}^\\mathrm{T}&1\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}\\right\\}. \\] \\[ \\sin(3)=\\left\\{\\zeta|\\zeta=\\begin{bmatrix}\\rho\\\\\\\\\\phi\\\\\\\\\\sigma\\end{bmatrix}\\in\\mathbb{R}^7,\\zeta^\\wedge=\\begin{bmatrix}\\sigma\\boldsymbol{I}+\\phi^\\wedge&\\rho\\\\\\\\\\mathbf{0}^\\mathrm{T}&0\\end{bmatrix}\\in\\mathbb{R}^{4\\times4}\\right\\}. \\] \\[ \\exp\\left(\\zeta^{\\wedge}\\right)=\\begin{bmatrix}\\mathrm{e}^{\\sigma}\\exp\\left(\\phi^{\\wedge}\\right)&J_{s}\\rho\\\\0^{\\mathrm{T}}&1\\end{bmatrix}. \\]
\u5176\u4e2d\uff0c\\(\\displaystyle \\boldsymbol{J}_{S}\\) \u7684\u5f62\u5f0f\u662f:
\\[ \\begin{aligned} \\text{J}& =\\frac{\\mathrm{e}^{\\sigma}-1}{\\sigma}I+\\frac{\\sigma\\mathrm{e}^{\\sigma}\\sin\\theta+\\left(1-\\mathrm{e}^{\\sigma}\\cos\\theta\\right)\\theta}{\\sigma^{2}+\\theta^{2}}\\boldsymbol{a}^{\\wedge} \\\\ &+\\left(\\frac{\\mathrm{e}^\\sigma-1}{\\sigma}-\\frac{\\left(\\mathrm{e}^\\sigma\\cos\\theta-1\\right)\\sigma+\\left(\\mathrm{e}^\\sigma\\sin\\theta\\right)\\theta}{\\sigma^2+\\theta^2}\\right)\\boldsymbol{a}^\\wedge\\boldsymbol{a}^\\wedge. \\end{aligned} \\]
\u4e8e\u662f\uff0c\u674e\u4ee3\u6570\u4e0e\u674e\u7fa4\u7684\u5173\u7cfb:
\\[ s=\\mathrm{e}^\\sigma, R=\\exp(\\phi^\\wedge), t=J_s\\rho. \\] \\[ \\frac{\\partial\\boldsymbol{Sp}}{\\partial\\boldsymbol{\\zeta}}=\\begin{bmatrix}\\boldsymbol{I}&-\\boldsymbol{q}^\\wedge&\\boldsymbol{q}\\\\\\boldsymbol{0}^\\mathrm{T}&\\boldsymbol{0}^\\mathrm{T}&0\\end{bmatrix}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#47","title":"4.7 \u4e60\u9898","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#5","title":"5 \u76f8\u673a\u4e0e\u56fe\u50cf","text":"
- \u89c2\u6d4b\u4e3b\u8981\u662f\u6307\u76f8\u673a\u6210\u50cf\u7684\u8fc7\u7a0b\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#51","title":"5.1 \u76f8\u673a\u6a21\u578b","text":"
- \u9488\u5b54\u6a21\u578b
- \u900f\u955c\u4f1a\u4ea7\u751f\u7578\u53d8
- \u5185\u53c2\u6570\uff08Intrinsics\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#511","title":"5.1.1 \u9488\u5b54\u76f8\u673a\u6a21\u578b","text":"\\[ \\frac{Z}{f}=-\\frac{X}{X'}=-\\frac{Y}{Y'}. \\]
\u53bb\u6389\u8d1f\u53f7:
\\[ \\frac Zf=\\frac X{X^{\\prime}}=\\frac Y{Y^{\\prime}}. \\] \\[ \\begin{aligned}X'&=f\\frac{X}{Z}\\\\Y'&=f\\frac{Y}{Z}\\end{aligned}. \\]
\u8fd8\u6709\u4e00\u4e2a\u50cf\u7d20\u5750\u6807\u7cfb\uff0cu \u8f74\u4e0e x \u8f74\u5e73\u884c\uff0cv \u8f74\u4e0e y \u8f74\u5e73\u884c:
\\[ \\begin{cases}u=\\alpha X'+c_x\\\\[2ex]v=\\beta Y'+c_y\\end{cases}. \\] \\[ \\begin{cases}u=f_x\\frac{X}{Z}+c_x\\\\\\\\v=f_y\\frac{Y}{Z}+c_y\\end{cases}. \\] \\[ Z\\begin{pmatrix}u\\\\\\\\v\\\\\\\\1\\end{pmatrix}=\\begin{pmatrix}f_x&0&c_x\\\\0&f_y&c_y\\\\\\\\0&0&1\\end{pmatrix}\\begin{pmatrix}X\\\\\\\\Y\\\\\\\\Z\\end{pmatrix}\\overset{\\text{def}}{=}\\boldsymbol{KP}. \\]
\u6700\u4e2d\u95f4\u7684\u77e9\u9635\u79f0\u4e3a\u76f8\u673a\u7684\u5185\u53c2\u6570\uff08Camera Inrinsics\uff09\u77e9\u9635 \\(\\displaystyle \\boldsymbol{K}\\)\u3002 \u6807\u5b9a: \u786e\u5b9a\u76f8\u673a\u7684\u5185\u53c2
\\[ Z\\boldsymbol{P}_{uv}=Z\\begin{bmatrix}u\\\\\\\\v\\\\\\\\1\\end{bmatrix}=\\boldsymbol{K}\\left(\\boldsymbol{R}\\boldsymbol{P}_\\mathrm{w}+\\boldsymbol{t}\\right)=\\boldsymbol{K}\\boldsymbol{T}\\boldsymbol{P}_\\mathrm{w}. \\]
\u5176\u4e2d \\(\\displaystyle \\boldsymbol{R},\\boldsymbol{t}\\) \u53c8\u79f0\u4e3a\u76f8\u673a\u7684\u5916\u53c2\u6570\uff08Camera Extrinsics\uff09
\\[ (\\boldsymbol{RP_\\mathrm{w}}+\\boldsymbol{t})=\\underbrace{[X,Y,Z]^\\mathrm{T}}_{\\text{\u76f8\u673a\u5750\u6807}}\\to\\underbrace{[X/Z,Y/Z,1]^\\mathrm{T}}_{\\text{\u5f52\u4e00\u5316\u5750\u6807}} . \\]
- \u5f52\u4e00\u5316\u5e73\u9762
- \u70b9\u7684\u6df1\u5ea6\u5728\u6295\u5f71\u8fc7\u7a0b\u4e2d\u88ab\u4e22\u5931\u4e86
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#512","title":"5.1.2 \u7578\u53d8\u6a21\u578b","text":"
- \u7578\u53d8 (Distortion \u5931\u771f) \u5f84\u5411\u7578\u53d8
- \u7b52\u5f62\u7578\u53d8
- \u6795\u5f62\u7578\u53d8
- \u5f84\u5411\u7578\u53d8\u5373 \\(\\displaystyle r\\) \u53d8\u5316
- \u5207\u5411\u7578\u53d8\u5373 \\(\\displaystyle \\theta\\) \u53d8\u5316 \u6211\u4eec\u53ef\u4ee5\u5047\u8bbe:
\\[ \\begin{align} x_{\\mathrm{distorted}}&=x(1+k_1r^2+k_2r^4+k_3r^6) \\\\ y_{\\mathrm{distorted}}&=y(1+k_1r^2+k_2r^4+k_3r^6). \\end{align} \\] \\[ \\begin{align} x_{\\mathrm{distorted}}&=x+2p_1xy+p_2(r^2+2x^2) \\\\ y_{\\mathrm{distorted}}&=y+p_1(r^2+2y^2)+2p_2xy \\end{align} \\]
\u6240\u4ee5\u6211\u4eec\u53ef\u4ee5\u627e\u5230\u4e00\u4e2a\u70b9\u5728\u50cf\u7d20\u5e73\u9762\u4e0a\u7684\u6b63\u786e\u4f4d\u7f6e:
- \u5c06\u4e09\u7ef4\u7a7a\u95f4\u70b9\u6295\u5f71\u5230\u5f52\u4e00\u5316\u56fe\u50cf\u5e73\u9762\u3002\u8bbe\u5b83\u7684\u5f52\u4e00\u5316\u5750\u6807\u4e3a \\(\\displaystyle [x, y]^\\mathrm{T}\\)\u3002
- \u5bf9\u5f52\u4e00\u5316\u5e73\u9762\u4e0a\u7684\u70b9\u8ba1\u7b97\u5f84\u5411\u7578\u53d8\u548c\u5207\u5411\u7578\u53d8
\\[ \\begin{cases}x_\\text{distorted}=x(1+k_1r^2+k_2r^4+k_3r^6)+2p_1xy+p_2(r^2+2x^2)\\\\y_\\text{distorted}=y(1+k_1r^2+k_2r^4+k_3r^6)+p_1(r^2+2y^2)+2p_2xy\\end{cases} \\]
- \u5c06\u7578\u53d8\u540e\u7684\u70b9\u901a\u8fc7\u5185\u53c2\u6570\u77e9\u9635\u6295\u5f71\u5230\u50cf\u7d20\u5e73\u9762\uff0c\u5f97\u5230\u8be5\u70b9\u5728\u56fe\u50cf\u4e0a\u7684\u6b63\u786e\u4f4d\u7f6e\u3002
\\[ \\begin{cases}u=f_xx_\\text{distorted}+c_x\\\\\\\\v=f_yy_\\text{distorted}+c_y\\end{cases}. \\]
\u8fd8\u6709\u5f88\u591a\u7684\u76f8\u673a\u6a21\u578b\u6bd4\u5982: \u4eff\u5c04\u6a21\u578b\uff0c\u900f\u89c6\u6a21\u578b\u3002
\u603b\u7ed3\u4e00\u4e0b\u5355\u76ee\u76f8\u673a\u7684\u6210\u50cf\u8fc7\u7a0b:
- \u4e16\u754c\u5750\u6807\u7cfb\u4e0b\u6709\u4e00\u4e2a\u56fa\u5b9a\u7684\u70b9 \\(\\displaystyle P\\)\uff0c\u4e16\u754c\u5750\u6807\u4e3a \\(\\displaystyle \\boldsymbol{P}_{w}\\)\u3002
- \u7531\u4e8e\u76f8\u673a\u5728\u8fd0\u52a8\uff0c\u5b83\u7684\u8fd0\u52a8\u7531 \\(\\displaystyle \\boldsymbol{R},\\boldsymbol{t}\\) \u6216\u53d8\u6362\u77e9\u9635 \\(\\displaystyle \\boldsymbol{T}\\in SE(3)\\) \u63cf\u8ff0\u3002\\(\\displaystyle P\\) \u7684\u76f8\u673a\u5750\u6807\u4e3a \\(\\displaystyle \\tilde{P_{c}} = \\boldsymbol{R}\\boldsymbol{P}_{w}+\\boldsymbol{t}\\)\u3002
- \u8fd9\u65f6\u7684 \\(\\displaystyle \\tilde{\\boldsymbol{P}_{c}}\\) \u7684\u5206\u91cf\u662f \\(\\displaystyle X,Y,Z\\) \uff0c\u628a\u5b83\u4eec\u6295\u5f71\u5230\u5f52\u4e00\u5316\u5e73\u9762 \\(\\displaystyle Z = 1\\) \u4e0a\uff0c\u5f97\u5230 \\(\\displaystyle P\\) \u7684\u5f52\u4e00\u5316\u5750\u6807: \\(\\displaystyle \\boldsymbol{P}_{c} = \\left[ \\frac{X}{Z}, \\frac{Y}{Z}, 1 \\right]^\\mathrm{T}\\)\u3002
- \u6709\u7578\u53d8\u65f6\uff0c\u6839\u636e\u7578\u53d8\u53c2\u6570\u8ba1\u7b97 \\(\\displaystyle \\boldsymbol{P}_{c}\\) \u53d1\u751f\u7578\u53d8\u540e\u7684\u5750\u6807\u3002
- \\(\\displaystyle P\\) \u7684\u5f52\u4e00\u5316\u5750\u6807\u7ecf\u8fc7\u5185\u53c2\u540e\uff0c\u5bf9\u5e94\u5230\u5b83\u7684\u50cf\u7d20\u5750\u6807: \\(\\displaystyle \\boldsymbol{P}_{uv} = \\boldsymbol{K} \\boldsymbol{P}_{c}\\)\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#513","title":"5.1.3 \u53cc\u76ee\u76f8\u673a\u6a21\u578b","text":"
\u4e24\u8005\u4e4b\u95f4\u7684\u8ddd\u79bb\u79f0\u4e3a\u53cc\u76ee\u76f8\u673a\u7684\u57fa\u7ebf
\\[ z=\\frac{fb}{d},\\quad d\\stackrel{\\mathrm{def}}{=}u_{\\mathrm{L}}-u_{\\mathrm{R}}. \\]
- d \u5b9a\u4e49\u4e3a\u5de6\u53f3\u56fe\u7684\u6a2a\u5750\u6807\u4e4b\u5dee\uff0c\u79f0\u4e3a\u89c6\u5dee\u3002
- \u7531\u4e8e\u89c6\u5dee\u6700\u5c0f\u4e3a\u4e00\u4e2a\u50cf\u7d20\uff0c\u6240\u4ee5\u53cc\u76ee\u7684\u6df1\u5ea6\u5b58\u5728\u4e00\u4e2a\u7406\u8bba\u4e0a\u7684\u6700\u5927\u503c\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#514-rgb-d","title":"5.1.4 RGB-D \u76f8\u673a\u6a21\u578b","text":"
- \u7ea2\u5916\u7ed3\u6784\u5149\uff08Structured lightning\uff09
- \u98de\u884c\u65f6\u95f4\uff08Time-of-Flight, ToF\uff09
- ToF \u76f8\u673a\u53ef\u4ee5\u83b7\u5f97\u6574\u4e2a\u56fe\u50cf\u7684\u50cf\u7d20\u6df1\u5ea6
- \u8f93\u51fa\u5f69\u8272\u56fe\u548c\u6df1\u5ea6\u56fe\uff0c\u751f\u6210\u70b9\u4e91\uff08Point Cloud\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#52","title":"5.2 \u56fe\u50cf","text":"\\[ I(x,y):\\mathbb{R}^2\\mapsto\\mathbb{R}. \\]
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#53","title":"5.3 \u5b9e\u8df5: \u8ba1\u7b97\u673a\u4e2d\u7684\u56fe\u50cf","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#531-opencv","title":"5.3.1 OpenCV \u7684\u57fa\u672c\u4f7f\u7528\u65b9\u6cd5","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#532","title":"5.3.2 \u56fe\u50cf\u53bb\u7578\u53d8","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#54-3-d","title":"5.4 \u5b9e\u8df5: 3 D \u89c6\u89c9","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#541","title":"5.4.1 \u53cc\u76ee\u89c6\u89c9","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#542-rgb-d","title":"5.4.2 RGB-D \u89c6\u89c9","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#55","title":"5.5 \u4e60\u9898","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#6","title":"6 \u975e\u7ebf\u6027\u4f18\u5316","text":"
\u524d\u9762\u6211\u4eec\u5df2\u7ecf\u641e\u6e05\u695a\u4e86\u8fd0\u52a8\u65b9\u7a0b\u548c\u89c2\u6d4b\u65b9\u7a0b\u7684\u6765\u6e90\uff0c\u73b0\u5728\u6211\u4eec\u5f00\u59cb\u8ba8\u8bba\u566a\u58f0\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#61","title":"6.1 \u72b6\u6001\u4f30\u8ba1\u95ee\u9898","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#611","title":"6.1.1 \u6279\u91cf\u72b6\u6001\u4f30\u8ba1\u4e0e\u6700\u5927\u540e\u9a8c\u4f30\u8ba1","text":"\\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right)+\\boldsymbol{w}_k\\\\\\boldsymbol{z}_{k,j}=h\\left(\\boldsymbol{y}_j,\\boldsymbol{x}_k\\right)+\\boldsymbol{v}_{k,j}\\end{cases}. \\] \\[ s\\boldsymbol{z}_{k,j}=\\boldsymbol{K}(R_k\\boldsymbol{y}_j+\\boldsymbol{t}_k). \\]
\u5176\u4e2d \\(\\displaystyle s\\) \u4e3a\u50cf\u7d20\u70b9\u7684\u8ddd\u79bb\u3002 \u6211\u4eec\u901a\u5e38\u5047\u8bbe\u566a\u58f0\u9879\u6ee1\u8db3\u96f6\u5747\u503c\u7684\u9ad8\u65af\u5206\u5e03:
\\[ \\boldsymbol{w}_k\\sim\\mathcal{N}\\left(\\boldsymbol{0},\\boldsymbol{R}_k\\right),\\boldsymbol{v}_k\\sim\\mathcal{N}\\left(\\boldsymbol{0},\\boldsymbol{Q}_{k,j}\\right). \\]
\u6709\u4e24\u79cd\u65b9\u6cd5\u6765\u89e3\u51b3\u72b6\u6001\u4f30\u8ba1\u95ee\u9898:
- \u7528\u65b0\u7684\u6570\u636e\u6765\u66f4\u65b0\u5f53\u524d\u65f6\u523b\u7684\u4f30\u8ba1\u72b6\u6001\uff0c\u589e\u91cf/\u6e10\u8fdb (incremental) \u7684\u65b9\u6cd5\uff0c\u6216\u8005\u6559\u6ee4\u6ce2\u5668
- \u4e5f\u53ef\u4ee5\u628a\u6570\u636e\u90fd\u6512\u8d77\u6765\uff0c\u79f0\u4e3a\u6279\u91cf (batch) \u7684\u65b9\u6cd5 SfM (Structure from Motion) \u7efc\u5408\u4e00\u4e0b\u5c31\u6709\u4e86\u6ed1\u52a8\u7a97\u53e3\u4f30\u8ba1\u6cd5
\\[ \\boldsymbol{x}=\\{\\boldsymbol{x}_1,\\ldots,\\boldsymbol{x}_N\\},\\quad\\boldsymbol{y}=\\{\\boldsymbol{y}_1,\\ldots,\\boldsymbol{y}_M\\}. \\] \\[ P(\\boldsymbol{x},\\boldsymbol{y}|z,\\boldsymbol{u}). \\] \\[ P\\left(\\boldsymbol{x},\\boldsymbol{y}|\\boldsymbol{z},\\boldsymbol{u}\\right)=\\frac{P\\left(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}\\right)P\\left(\\boldsymbol{x},\\boldsymbol{y}\\right)}{P\\left(\\boldsymbol{z},\\boldsymbol{u}\\right)}\\propto\\underbrace{P\\left(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}\\right)}_{\\text{\u4f3c\u7136}}\\underbrace{P\\left(\\boldsymbol{x},\\boldsymbol{y}\\right)}_{\\text{\u5148\u9a8c}}. \\]
\u53ef\u4ee5\u5148\u6c42\u4e00\u4e2a\u72b6\u6001\u6700\u4f18\u4f30\u8ba1:
\\[ (\\boldsymbol{x},\\boldsymbol{y})^*_{\\mathrm{MAP}}=\\arg\\max P(\\boldsymbol{x},\\boldsymbol{y}|\\boldsymbol{z},\\boldsymbol{u})=\\arg\\max P(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y})P(\\boldsymbol{x},\\boldsymbol{y}). \\]
\u6c42\u89e3\u6700\u5927\u540e\u9a8c\u6982\u7387\u7b49\u4ef7\u4e8e\u6700\u5927\u5316\u4f3c\u7136\u548c\u5148\u9a8c\u7684\u4e58\u79ef\u3002 \u4f46\u5982\u679c\u6ca1\u6709\u7684\u5148\u9a8c\uff0c\u90a3\u4e48\u53ef\u4ee5\u6c42\u89e3\u6700\u5927\u4f3c\u7136\u4f30\u8ba1 (Maximize Likelihood Estimation\uff0c MLE):
\\[ (\\boldsymbol{x},\\boldsymbol{y})^*{}_{\\mathrm{MLE}}=\\arg\\max P(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}). \\]
\u6700\u5927\u4f3c\u7136\u4f30\u8ba1: \u5728\u4ec0\u4e48\u6837\u7684\u72b6\u6001\u4e0b\uff0c\u6700\u53ef\u80fd\u4ea7\u751f\u73b0\u5728\u89c2\u6d4b\u5230\u7684\u6570\u636e\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#612","title":"6.1.2 \u6700\u5c0f\u4e8c\u4e58\u7684\u5f15\u51fa","text":"
\u5bf9\u4e8e\u67d0\u4e00\u6b21\u89c2\u6d4b:
\\[ z_{k,j}=h\\left(y_{j},x_{k}\\right)+v_{k,j}, \\] \\[ P(\\boldsymbol{z}_{j,k}|\\boldsymbol{x}_k,\\boldsymbol{y}_j)=N\\left(h(\\boldsymbol{y}_j,\\boldsymbol{x}_k),\\boldsymbol{Q}_{k,j}\\right). \\]
\u53ef\u4ee5\u4f7f\u7528\u6700\u5c0f\u5316\u8d1f\u5bf9\u6570\u6765\u6c42\u4e00\u4e2a\u9ad8\u65af\u5206\u5e03\u7684\u6700\u5927\u4f3c\u7136\u3002
\\[ P\\left(\\boldsymbol{x}\\right)=\\frac{1}{\\sqrt{\\left(2\\pi\\right)^{N}\\det\\left(\\boldsymbol{\\Sigma}\\right)}}\\exp\\left(-\\frac{1}{2}(\\boldsymbol{x}-\\boldsymbol{\\mu})^{\\mathrm{T}}\\boldsymbol{\\Sigma}^{-1}\\left(\\boldsymbol{x}-\\boldsymbol{\\mu}\\right)\\right). \\] \\[ -\\ln\\left(P\\left(\\boldsymbol{x}\\right)\\right)=\\frac12\\ln\\left(\\left(2\\pi\\right)^N\\det\\left(\\boldsymbol{\\Sigma}\\right)\\right)+\\frac12\\left(\\boldsymbol{x}-\\boldsymbol{\\mu}\\right)^\\mathrm{T}\\boldsymbol{\\Sigma}^{-1}\\left(\\boldsymbol{x}-\\boldsymbol{\\mu}\\right). \\] \\[ \\begin{aligned} (x_{k},y_{j})^{*}& =\\arg\\max\\mathcal{N}(h(\\boldsymbol{y}_{j},\\boldsymbol{x}_{k}),\\boldsymbol{Q}_{k,j}) \\\\ &=\\arg\\min\\left(\\left(\\boldsymbol{z}_{k,j}-h\\left(\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right)\\right)^\\mathrm{T}\\boldsymbol{Q}_{k,j}^{-1}\\left(\\boldsymbol{z}_{k,j}-h\\left(\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right)\\right)\\right). \\end{aligned} \\]
\u8be5\u5f0f\u7b49\u4ef7\u4e8e\u6700\u5c0f\u5316\u566a\u58f0\u9879\u7684\u4e00\u4e2a\u4e8c\u6b21\u578b\uff0c\u9a6c\u54c8\u62c9\u8bfa\u6bd4\u65af\u8ddd\u79bb (Mahalanobis distance)\u3002\u5176\u4e2d \\(\\displaystyle \\boldsymbol{Q}_{k,j}^{-1}\\) \u53eb\u4fe1\u606f\u77e9\u9635\uff0c\u5373\u9ad8\u65af\u5206\u5e03\u534f\u65b9\u5dee\u77e9\u9635\u4e4b\u9006\u3002 \u5047\u8bbe\u5404\u4e2a\u65f6\u523b\u7684\u8f93\u5165\u548c\u89c2\u6d4b\u90fd\u662f\u72ec\u7acb\u7684\uff0c\u90a3\u4e48:
\\[ P\\left(\\boldsymbol{z},\\boldsymbol{u}|\\boldsymbol{x},\\boldsymbol{y}\\right)=\\prod_kP\\left(\\boldsymbol{u}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_k\\right)\\prod_{k,j}P\\left(\\boldsymbol{z}_{k,j}|\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right), \\] \\[ \\begin{align} e_{u,k} &=\\boldsymbol{x}_k-f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right) \\\\ e_{z,j,k} &=\\boldsymbol{z}_{k,j}-h\\left(\\boldsymbol{x}_k,\\boldsymbol{y}_j\\right), \\end{align} \\] \\[ \\min J(\\boldsymbol{x},\\boldsymbol{y})=\\sum_{k}\\boldsymbol{e}_{\\boldsymbol{u},k}^{\\mathrm{T}}\\boldsymbol{R}_{k}^{-1}\\boldsymbol{e}_{\\boldsymbol{u},k}+\\sum_{k}\\sum_{j}\\boldsymbol{e}_{\\boldsymbol{z},k,j}^{\\mathrm{T}}\\boldsymbol{Q}_{k,j}^{-1}\\boldsymbol{e}_{\\boldsymbol{z},k,j}. \\]
\u8fd9\u6837\u5c31\u5f97\u5230\u4e86\u4e00\u4e2a\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898 (Least Square Problem)
- \u6574\u4e2a\u95ee\u9898\u6709\u4e00\u79cd\u7a00\u758f\u7684\u5f62\u5f0f\u3002
- \u7528\u674e\u4ee3\u6570\u8868\u793a\u589e\u91cf\u4f1a\u6709\u65e0\u7ea6\u675f\u7684\u4f18\u52bf\u3002
- \u7528\u4e8c\u6b21\u578b\u5ea6\u91cf\u8bef\u5dee\uff0c\u90a3\u4e48\u8bef\u5dee\u7684\u5206\u5e03\u4f1a\u5f71\u54cd\u6b64\u9879\u5728\u6574\u4e2a\u95ee\u9898\u4e2d\u7684\u6743\u91cd\u3002 \u63a5\u4e0b\u4fe9\u8bb2\u4e00\u4e9b\u975e\u7ebf\u6027\u4f18\u5316\u7684\u57fa\u672c\u77e5\u8bc6\uff0c\u6765\u5e2e\u52a9\u6211\u4eec\u6c42\u89e3\u8fd9\u4e2a\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#613","title":"6.1.3 \u4f8b\u5b50: \u6279\u91cf\u72b6\u6001\u4f30\u8ba1","text":"
\u8003\u8651\u4e00\u4e2a\u975e\u5e38\u7b80\u5355\u7684\u79bb\u6563\u65f6\u95f4\u7cfb\u7edf:
\\[ \\begin{aligned}&x_{k}=x_{k-1}+u_{k}+w_{k},&&\\boldsymbol{w}_{k}\\sim\\mathcal{N}\\left(0,\\boldsymbol{Q}_{k}\\right)\\\\&\\boldsymbol{z}_{k}=\\boldsymbol{x}_{k}+\\boldsymbol{n}_{k},&&\\boldsymbol{n}_{k}\\sim\\mathcal{N}\\left(0,\\boldsymbol{R}_{k}\\right)\\end{aligned} \\] \\[ \\begin{gathered} x_{map}^{*} =\\arg\\max P(\\boldsymbol{x}|\\boldsymbol{u},\\boldsymbol{z})=\\arg\\max P(\\boldsymbol{u},\\boldsymbol{z}|\\boldsymbol{x}) \\\\ =\\prod_{k=1}^3P(\\boldsymbol{u}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_k)\\prod_{k=1}^3P(\\boldsymbol{z}_k|\\boldsymbol{x}_k), \\end{gathered} \\]
\u800c\u5bf9\u4e8e\u5177\u4f53\u7684\u6bcf\u4e00\u9879\uff0c\u6211\u4eec\u6709:
\\[ P(\\boldsymbol{u}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_k)=\\mathcal{N}(\\boldsymbol{x}_k-\\boldsymbol{x}_{k-1},\\boldsymbol{Q}_k), \\] \\[ P\\left(\\boldsymbol{z}_{k}|\\boldsymbol{x}_{k}\\right)=\\mathcal{N}\\left(\\boldsymbol{x}_{k},\\boldsymbol{R}_{k}\\right). \\]
\u4e8e\u662f\uff0c\u6211\u4eec\u53ef\u4ee5\u6784\u5efa\u8bef\u5dee\u53d8\u91cf:
\\[ e_{\\boldsymbol{u},k}=\\boldsymbol{x}_k-\\boldsymbol{x}_{k-1}-\\boldsymbol{u}_k,\\quad\\boldsymbol{e}_{z,k}=\\boldsymbol{z}_k-\\boldsymbol{x}_k, \\]
\u4e8e\u662f\u6700\u5c0f\u4e8c\u4e58\u7684\u76ee\u6807\u51fd\u6570\u4e3a:
\\[ \\min\\sum_{k=1}^{3}e_{u,k}^{\\mathrm{T}}Q_{k}^{-1}e_{u,k}+\\sum_{k=1}^{3}e_{z,k}^{\\mathrm{T}}R_{k}^{-1}e_{z,k}. \\]
\u5b9a\u4e49\u5411\u91cf \\(\\displaystyle \\boldsymbol{y} = [\\boldsymbol{u},\\boldsymbol{z}]^\\mathrm{T}\\)
\\[ y-Hx=e\\sim\\mathcal{N}(\\mathbf{0},\\boldsymbol{\\Sigma}). \\] \\[ H=\\begin{bmatrix}1&-1&0&0\\\\0&1&-1&0\\\\0&0&1&-1\\\\\\hline0&1&0&0\\\\0&0&1&0\\\\0&0&0&1\\end{bmatrix}, \\]
\u4e14 \\(\\displaystyle \\Sigma = diag(\\boldsymbol{Q_{1}},\\boldsymbol{Q_{2}},\\boldsymbol{Q_{3}},\\boldsymbol{R_{1}},\\boldsymbol{R_{2}},\\boldsymbol{R_{3}})\\)\u3002 \u95ee\u9898\u5c31\u8f6c\u5316\u6210:
\\[ x_{\\mathrm{map}}^*=\\arg\\min e^{\\mathrm{T}}\\Sigma^{-1}e, \\]
\u5b83\u7684\u552f\u4e00\u89e3\u662f:
\\[ x_{\\mathrm{map}}^{*}=(H^{\\mathrm{T}}\\Sigma^{-1}H)^{-1}H^{\\mathrm{T}}\\Sigma^{-1}y. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#62","title":"6.2 \u975e\u7ebf\u6027\u6700\u5c0f\u4e8c\u4e58","text":"
\u5148\u8003\u8651\u4e00\u4e2a\u7b80\u5355\u7684\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898:
\\[ \\min_{x}F(x)=\\frac12\\|f\\left(x\\right)\\|_{2}^{2}.` \\]
\u5bf9\u4e8e\u4e0d\u65b9\u4fbf\u76f4\u63a5\u6c42\u89e3\u7684\u6700\u5c0f\u4e8c\u4e58\u95ee\u9898\uff0c\u6211\u4eec\u53ef\u4ee5\u7528\u8fed\u4ee3\u7684\u65b9\u5f0f\uff0c\u4ece\u4e00\u4e2a\u521d\u59cb\u503c\u51fa\u53d1\uff0c\u4e0d\u65ad\u5730\u66f4\u65b0\u5f53\u524d\u7684\u4f18\u5316\u53d8\u91cf\uff0c\u4f7f\u76ee\u6807\u51fd\u6570\u4e0b\u964d:
- \u7ed9\u5b9a\u67d0\u4e2a\u521d\u59cb\u503c \\(\\displaystyle \\boldsymbol{x_{0}}\\)\u3002
- \u5bf9\u4e8e\u7b2c \\(\\displaystyle k\\) \u6b21\u8fed\u4ee3\uff0c\u5bfb\u627e\u4e00\u4e2a\u589e\u91cf \\(\\displaystyle \\Delta x_{k}\\)\uff0c\u4f7f\u5f97 \\(\\displaystyle \\left\\|f\\left(\\boldsymbol{x}_{k}+\\Delta\\boldsymbol{x}_{k}\\right)\\right\\|_{2}^{2}\\) \u8fbe\u5230\u6700\u5c0f\u503c\u3002
- \u82e5 \\(\\displaystyle \\Delta x_k\\) \u8db3\u591f\u5c0f\uff0c\u5219\u505c\u6b62\u3002
- \u5426\u5219\uff0c\u4ee4 \\(\\displaystyle x_{k+1} = x_{k} + \\Delta x_{k}\\)\uff0c\u8fd4\u56de\u7b2c\u4e8c\u6b65 \u4e8e\u662f\u6c42\u89e3\u5bfc\u51fd\u6570\u4e3a\u96f6 -> \u5bfb\u627e\u4e0b\u964d\u589e\u91cf \\(\\displaystyle \\Delta x_{k}\\)
\u4e0b\u9762\u662f\u4e00\u4e9b\u5e7f\u6cdb\u4f7f\u7528\u7684\u7ed3\u679c\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#621","title":"6.2.1 \u4e00\u9636\u548c\u4e8c\u9636\u68af\u5ea6\u6cd5","text":"
\u4f7f\u7528\u6cf0\u52d2\u5c55\u5f00:
\\[ F(\\boldsymbol{x}_k+\\Delta\\boldsymbol{x}_k)\\approx F(\\boldsymbol{x}_k)+\\boldsymbol{J}\\left(\\boldsymbol{x}_k\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}_k+\\frac{1}{2}\\Delta\\boldsymbol{x}_k^\\mathrm{T}\\boldsymbol{H}(\\boldsymbol{x}_k)\\Delta\\boldsymbol{x}_k. \\]
\u5176\u4e2d \\(\\displaystyle \\boldsymbol{J}(x_{k})\\) \u662f \\(\\displaystyle F(x)\\) \u5173\u4e8e \\(\\displaystyle x\\) \u7684\u4e00\u9636\u5bfc\u6570\uff08\u68af\u5ea6\u3001\u96c5\u53ef\u6bd4\u77e9\u9635\uff09\uff0c\\(\\displaystyle \\boldsymbol{H}\\) \u662f\u4e8c\u9636\u5bfc\u6570\uff08\u6d77\u585e\u77e9\u9635\uff09\u3002
\\[ \\Delta\\boldsymbol{x}^*=-\\boldsymbol{J}(\\boldsymbol{x}_k). \\] \\[ \\Delta\\boldsymbol{x}^*=\\arg\\min\\left(F\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}+\\frac{1}{2}\\Delta\\boldsymbol{x}^\\mathrm{T}\\boldsymbol{H}\\Delta\\boldsymbol{x}\\right). \\]
\u5bf9 \\(\\displaystyle \\Delta x\\) \u6c42\u5bfc\uff0c\u5e76\u4ee4\u5b83\u7b49\u4e8e\u96f6\uff0c\u5f97\u5230:
\\[ J+H\\Delta x=\\mathbf{0}\\Rightarrow H\\Delta x=-J. \\]
\u8fd9\u4e2a\u65b9\u6cd5\u53c8\u53eb\u725b\u987f\u6cd5\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#622","title":"6.2.2 \u9ad8\u65af\u725b\u987f\u6cd5","text":"
\u6362\u4e00\u4e2a\u51fd\u6570\u5c55\u5f00:
\\[ f\\left(x+\\Delta x\\right)\\approx f\\left(x\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}. \\] \\[ \\Delta x^{*}=\\arg\\min_{\\Delta x}\\frac{1}{2}\\Big\\|f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}\\Big\\|^{2}. \\] \\[ \\begin{aligned} \\frac12\\left\\|f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}\\right\\|^2& =\\frac12\\Big(f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}\\Big)^\\mathrm{T}\\Big(f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^\\mathrm{T}\\Delta\\boldsymbol{x}\\Big) \\\\ &=\\frac12\\left(\\|f(\\boldsymbol{x})\\|_2^2+2f\\left(\\boldsymbol{x}\\right)\\boldsymbol{J}(\\boldsymbol{x})^\\intercal\\Delta\\boldsymbol{x}+\\Delta\\boldsymbol{x}^\\intercal\\boldsymbol{J}(\\boldsymbol{x})\\boldsymbol{J}(\\boldsymbol{x})^\\intercal\\Delta\\boldsymbol{x}\\right). \\end{aligned} \\] \\[ \\boldsymbol{J}(\\boldsymbol{x})f\\left(\\boldsymbol{x}\\right)+\\boldsymbol{J}(\\boldsymbol{x})\\boldsymbol{J}^\\mathrm{T}\\left(\\boldsymbol{x}\\right)\\Delta\\boldsymbol{x}=\\boldsymbol{0}. \\] \\[ \\underbrace{\\boldsymbol{J}(\\boldsymbol{x})\\boldsymbol{J}^{\\intercal}}_{\\boldsymbol{H}(\\boldsymbol{x})}\\left(\\boldsymbol{x}\\right)\\Delta\\boldsymbol{x}=\\underbrace{-\\boldsymbol{J}(\\boldsymbol{x})f\\left(\\boldsymbol{x}\\right)}_{\\boldsymbol{g}(\\boldsymbol{x})}. \\]
\u589e\u91cf\u65b9\u7a0b or Gauss-Newton equation or Normal equation
\\[ H\\Delta x=g. \\]
\u6c42\u89e3\u589e\u91cf\u65b9\u7a0b\u662f\u6574\u4e2a\u4f18\u5316\u95ee\u9898\u7684\u6838\u5fc3\u6240\u5728 \u603b\u7ed3\u4e00\u4e0b:
- \u7ed9\u5b9a\u521d\u59cb\u503c \\(\\displaystyle \\boldsymbol{x}_{0}\\)\u3002
- \u5bf9\u4e8e\u7b2c \\(\\displaystyle k\\) \u6b21\u8fed\u4ee3\uff0c\u6c42\u89e3\u5f53\u524d\u7684\u96c5\u53ef\u6bd4\u77e9\u9635 \\(\\displaystyle \\boldsymbol{J}(x)\\) \u548c\u8bef\u5dee \\(\\displaystyle f(\\boldsymbol{x}_{k})\\)\u3002
- \u6c42\u89e3\u589e\u91cf\u65b9\u7a0b: \\(\\displaystyle \\boldsymbol{H} \\Delta x_{k} = \\boldsymbol{g}\\)\u3002
- \u82e5 \\(\\displaystyle \\Delta x_{k}\\) \u8db3\u591f\u5c0f\uff0c\u5219\u505c\u6b62\u3002\u5426\u5219\uff0c\u4ee4 \\(\\displaystyle x_{k+1} = x_{k}+ \\Delta x_{k}\\)\uff0c\u8fd4\u56de\u7b2c 2 \u6b65\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#623","title":"6.2.3 \u5217\u6587\u4f2f\u683c\u2014\u2014\u9a6c\u5938\u5c14\u7279\u65b9\u6cd5","text":"
Damped Newton Method Trust Region Trust Region Method
\\[ \\rho=\\frac{f\\left(\\boldsymbol{x}+\\Delta\\boldsymbol{x}\\right)-f\\left(\\boldsymbol{x}\\right)}{\\boldsymbol{J}\\left(\\boldsymbol{x}\\right)^{\\intercal}\\Delta\\boldsymbol{x}}. \\]
\u6846\u67b6:
- \u7ed9\u5b9a\u521d\u59cb\u503c \\(\\displaystyle \\boldsymbol{x}_{0}\\)\uff0c\u4ee5\u53ca\u521d\u59cb\u4f18\u5316\u534a\u5f84 \\(\\displaystyle \\mu\\)\u3002
- \u5bf9\u4e8e\u7b2c \\(\\displaystyle k\\) \u6b21\u8fed\u4ee3\uff0c\u5728\u9ad8\u65af\u725b\u987f\u6cd5\u7684\u57fa\u7840\u4e0a\u52a0\u4e0a\u4fe1\u8d56\u533a\u57df\uff0c\u6c42\u89e3: \\(\\displaystyle \\min_{\\Delta\\boldsymbol{x}_{k}}\\frac{1}{2}\\Big\\|f\\left(\\boldsymbol{x}_{k}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}_{k}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}_{k}\\Big\\|^{2},\\quad\\mathrm{s.t.}\\quad\\left\\|\\boldsymbol{D}\\Delta\\boldsymbol{x}_{k}\\right\\|^{2}\\leqslant\\mu,\\)
- \u8ba1\u7b97 \\(\\displaystyle \\rho\\)
- \u5bf9\u4e8e \\(\\displaystyle \\frac{1}{4} \\frac{3}{4}\\) \u8fdb\u884c\u5206\u7c7b\u8ba8\u8bba
- \u5224\u65ad\u9608\u503c\uff0c\u5faa\u73af
\u8fd9\u662f\u5e26\u4e0d\u7b49\u5f0f\u7ea6\u675f\u7684\u4f18\u5316\u95ee\u9898:
\\[ \\mathcal{L}(\\Delta\\boldsymbol{x}_{k},\\lambda)=\\frac{1}{2}\\left\\|f\\left(\\boldsymbol{x}_{k}\\right)+\\boldsymbol{J}\\left(\\boldsymbol{x}_{k}\\right)^{\\mathrm{T}}\\Delta\\boldsymbol{x}_{k}\\right\\|^{2}+\\frac{\\lambda}{2}\\left(\\left\\|\\boldsymbol{D}\\Delta\\boldsymbol{x}_{k}\\right\\|^{2}-\\mu\\right). \\] \\[ (H+\\lambda D^\\mathrm{T}D) \\Delta x_k=g. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#63","title":"6.3 \u5b9e\u8df5: \u66f2\u7ebf\u62df\u5408\u95ee\u9898","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#631","title":"6.3.1 \u624b\u5199\u9ad8\u65af\u725b\u987f\u6cd5","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#632-ceres","title":"6.3.2 \u4f7f\u7528 Ceres \u8fdb\u884c\u66f2\u7ebf\u62df\u5408","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#633-g2o","title":"6.3.3 \u4f7f\u7528 g2o\u8fdb\u884c\u66f2\u7ebf\u62df\u5408","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#7-1","title":"7 \u89c6\u89c9\u91cc\u7a0b\u8ba1 1","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#71","title":"7.1 \u7279\u5f81\u70b9\u6cd5","text":"
- \u7279\u5f81\u70b9\u6cd5
- \u4e24\u89c6\u56fe\u51e0\u4f55\uff08Two-view geometry\uff09
- \u76f4\u63a5\u6cd5
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#711","title":"7.1.1 \u7279\u5f81\u70b9","text":"
- \u5982\u4f55\u6839\u636e\u56fe\u50cf\u4f30\u8ba1\u76f8\u673a\u8fd0\u52a8
- \u8def\u6807: \u56fe\u50cf\u7279\u5f81
- \u7279\u5f81\u70b9\u5728\u76f8\u673a\u8fd0\u52a8\u4e4b\u540e\u4fdd\u6301\u7a33\u5b9a
- \u4eba\u5de5\u8bbe\u8ba1\u7684\u7279\u5f81\u70b9:
- Repeatability
- Distinctiveness
- Efficiency
- Locality
- \u7531\u4e24\u90e8\u5206\u7ec4\u6210:
- \u5173\u952e\u70b9\uff08Key-point\uff09
- \u63cf\u8ff0\u5b50\uff08Descriptor\uff09
- SIFT (\u5c3a\u5ea6\u4e0d\u53d8\u7279\u5f81\u53d8\u6362\uff0cScale-Invariant Feature Transform)
- \u8003\u8651\u5145\u5206\uff0c\u4f46\u662f\u8ba1\u7b97\u91cf\u6bd4\u8f83\u5927
- ORB (Oriented FAST and Rotated BRIEF)
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#712-orb","title":"7.1.2 ORB \u7279\u5f81","text":"
- FAST \u89d2\u70b9\u63d0\u53d6: ORB \u4e2d\u8ba1\u7b97\u4e86\u7279\u5f81\u70b9\u7684\u4e3b\u65b9\u5411\uff0c\u4e3a\u540e\u7eed\u7684 BRIEF \u63cf\u8ff0\u5b50\u589e\u52a0\u4e86\u65cb\u8f6c\u4e0d\u53d8\u7279\u6027
- BRIEF \u63cf\u8ff0\u5b50: \u5bf9\u524d\u4e00\u6b65\u63d0\u53d6\u51fa\u7279\u5f81\u70b9\u7684\u5468\u56f4\u56fe\u50cf\u533a\u57df\u8fdb\u884c\u63cf\u8ff0\u3002\u4f7f\u7528\u5148\u524d\u8ba1\u7b97\u7684\u65b9\u5411\u4fe1\u606f\u3002 - FAST \u5173\u952e\u70b9 Non-maximal suppression \u5c3a\u5ea6\u4e0d\u53d8\u6027\u7531\u6784\u5efa\u56fe\u50cf\u91d1\u5b57\u5854 \u7279\u5f81\u7684\u65cb\u8f6c: Intensity Centroid \u65cb\u8f6c\u65b9\u9762\uff0c\u6211\u4eec\u8ba1\u7b97\u7279\u5f81\u70b9\u9644\u8fd1\u7684\u56fe\u50cf\u7070\u5ea6\u8d28\u5fc3\u3002
- \u5b9a\u4e49\u56fe\u50cf\u7684\u77e9: \\(\\displaystyle m_{pq} = \\Sigma _{x,y \\in B} x^p x^q I(x, y),p,q \\in \\{0, 1\\}\\).
- \u627e\u5230\u56fe\u50cf\u5757\u7684\u8d28\u5fc3: \\(\\displaystyle C=\\left(\\frac{m_{10}}{m_{00}},\\frac{m_{01}}{m_{00}}\\right).\\)
- \u5f97\u5230\u4e00\u4e2a\u51e0\u4f55\u4e2d\u5fc3\u5230\u8d28\u5fc3\u7684\u65b9\u5411\u5411\u91cf: \\(\\displaystyle \\theta=\\arctan(m_{01}/m_{10}).\\) - BRIEF \u63cf\u8ff0\u5b50 \u4e8c\u8fdb\u5236\u8868\u8fbe+\u968f\u673a\u9009\u70b9\u6bd4\u8f83
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#713","title":"7.1.3 \u7279\u5f81\u5339\u914d","text":"
data association Brute-Force Matcher
- \u901a\u8fc7\u6d4b\u91cf\u63cf\u8ff0\u5b50\u7684\u8ddd\u79bb\u6765\u53bb\u6700\u8fd1\u7684\u4e00\u4e2a\u4f5c\u4e3a\u5339\u914d\u70b9\u3002\u63cf\u8ff0\u5b50\u8ddd\u79bb\u8868\u793a\u4e86\u4e24\u4e2a\u7279\u5f81\u4e4b\u95f4\u7684\u76f8\u4f3c\u7a0b\u5ea6\u3002
- \u6b27\u6c0f\u8ddd\u79bb
- \u6c49\u660e\u8ddd\u79bb
- \u4e24\u4e2a\u4e8c\u8fdb\u5236\u4e32\u7684\u4e0d\u540c\u4f4d\u6570\u7684\u4e2a\u6570
- \u5feb\u901f\u8fd1\u4f3c\u6700\u8fd1\u90bb\uff08FLANN\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#72","title":"7.2 \u5b9e\u8df5: \u7279\u5f81\u63d0\u53d6\u548c\u5339\u914d","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#721-opencv-orb","title":"7.2.1 OpenCV \u7684 ORB \u7279\u5f81","text":"
TODO
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#722-orb","title":"7.2.2 \u624b\u5199 ORB \u7279\u5f81","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#723","title":"7.2.3 \u8ba1\u7b97\u76f8\u673a\u8fd0\u52a8","text":"
- \u5f53\u76f8\u673a\u4e3a\u5355\u76ee\u65f6\uff0c\u6211\u4eec\u901a\u8fc7\u5bf9\u6781\u51e0\u4f55\u6765\u89e3\u51b3\u4e24\u7ec4 2 D \u70b9\u4f30\u8ba1\u8fd0\u52a8\u7684\u95ee\u9898
- \u5f53\u76f8\u673a\u4e3a\u53cc\u76ee\u3001RGB-D \u65f6\uff0c\u901a\u8fc7 ICP \u6765\u89e3\u51b3\u4e24\u7ec4 3 D \u70b9\u4f30\u8ba1\u8fd0\u52a8\u7684\u95ee\u9898
- \u4e00\u4e2a\u662f 2 D \u4e00\u4e2a\u662f 3 D \u65f6\uff0c\u901a\u8fc7 PnP \u6765\u6c42\u89e3
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#73-d-2-d","title":"7.3 D-2 D: \u5bf9\u6781\u51e0\u4f55","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#731","title":"7.3.1 \u5bf9\u6781\u7ea6\u675f","text":"
- Epipolar plane
- Epipoles
- Epipolar line
\\[ P=[X,Y,Z]^{\\mathrm{T}}. \\] \\[ s_{1}p_{1}=KP,\\quad s_{2}p_{2}=K\\left(RP+t\\right). \\]
\u6210\u6295\u5f71\u5173\u7cfb:\u5c3a\u5ea6\u610f\u4e49\u4e0b\u76f8\u7b49 (equal up to scale)
\\[ sp\\simeq p. \\] \\[ p_1\\simeq KP,\\quad p_2\\simeq K\\left(RP+t\\right). \\] \\[ x_1=K^{-1}p_1,\\quad x_2=K^{-1}p_2. \\] \\[ x_2\\simeq Rx_1+t. \\] \\[ t^{\\wedge}x_{2}\\simeq t^{\\wedge}Rx_{1}. \\] \\[ x_2^\\mathrm{T}t^\\wedge x_2\\simeq x_2^\\mathrm{T}t^\\wedge Rx_1. \\] \\[ x_2^\\mathrm{T}t^\\wedge Rx_1=0. \\] \\[ p_2^\\mathrm{T}K^{-\\mathrm{T}}t^\\wedge RK^{-1}p_1=0. \\]
\u5bf9\u6781\u7ea6\u675f
\\[ E=t^{\\wedge}R,\\quad F=K^{-\\mathrm{T}}EK^{-1},\\quad x_{2}^{\\mathrm{T}}Ex_{1}=p_{2}^{\\mathrm{T}}Fp_{1}=0. \\]
- \u6839\u636e\u914d\u5bf9\u70b9\u7684\u50cf\u7d20\u4f4d\u7f6e\u6c42\u51fa \\(\\displaystyle \\boldsymbol{E}\\) \u6216\u8005 \\(\\displaystyle \\boldsymbol{F}\\)\u3002
- \u6839\u636e \\(\\displaystyle \\boldsymbol{E}\\) \u6216\u8005 \\(\\displaystyle \\boldsymbol{F}\\) \u6c42\u51fa \\(\\displaystyle \\boldsymbol{R},\\boldsymbol{t}\\)\u3002 \\(\\displaystyle \\boldsymbol{E}\\) \u548c \\(\\displaystyle \\boldsymbol{F}\\) \u53ea\u76f8\u5dee\u4e86\u76f8\u673a\u5185\u53c2\uff0c\u6240\u4ee5\u5b9e\u8df5\u4e2d\u5f80\u5f80\u4f7f\u7528\u5f62\u5f0f\u66f4\u7b80\u5355\u7684 \\(\\displaystyle \\boldsymbol{E}\\)\u3002
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#732","title":"7.3.2 \u672c\u8d28\u77e9\u9635","text":"
\u672c\u8d28\u77e9\u9635: \\(\\displaystyle E=t^{\\wedge}R\\)
- \\(\\displaystyle \\boldsymbol{E}\\) \u4e0d\u540c\u5c3a\u5ea6\u4e0b\u662f\u7b49\u4ef7\u7684\u3002
- \u53ef\u4ee5\u8bc1\u660e\uff0c\u672c\u8d28\u77e9\u9635 \\(\\displaystyle \\boldsymbol{E}\\) \u7684\u5947\u5f02\u503c\u5fc5\u5b9a\u662f \\(\\displaystyle [\\sigma,\\sigma,0]^\\mathrm{T}\\) \u7684\u5f62\u5f0f\uff0c\u8fd9\u79f0\u4e3a\u672c\u8d28\u77e9\u9635\u7684\u5185\u5728\u6027\u8d28\u3002
- \\(\\displaystyle \\boldsymbol{E}\\) \u5b9e\u9645\u4e0a\u6709 5 \u4e2a\u81ea\u7531\u5ea6\u3002 \u516b\u70b9\u6cd5 (Eight-point-algorithm) \u8003\u8651\u4e00\u5806\u914d\u5bf9\u70b9\uff0c\u5b83\u4eec\u7684\u5f52\u4e00\u5316\u5750\u6807\u4e3a \\(\\displaystyle x_{1}=[u_{1},v_{1},1]^{\\mathrm{T}},x_{2}=[u_{2},v_{2},1]^{\\mathrm{T}}\\)\u3002\u6839\u636e\u5bf9\u6781\u7ea6\u675f\uff0c\u6709
\\[ \\begin{pmatrix}u_2,v_2,1\\end{pmatrix}\\begin{pmatrix}e_1&e_2&e_3\\\\\\\\e_4&e_5&e_6\\\\\\\\e_7&e_8&e_9\\end{pmatrix}\\begin{pmatrix}u_1\\\\\\\\v_1\\\\\\\\1\\end{pmatrix}=0. \\] \\[ \\boldsymbol{e}=[e_1,e_2,e_3,e_4,e_5,e_6,e_7,e_8,e_9]^\\mathrm{T}, \\] \\[ [u_2u_1,u_2v_1,u_2,v_2u_1,v_2v_1,v_2,u_1,v_1,1]\\cdot e=0. \\]
\u6211\u4eec\u628a\u6240\u6709\u70b9\u90fd\u653e\u5230\u4e00\u4e2a\u65b9\u7a0b\u4e2d\uff0c\u53d8\u6210\u7ebf\u6027\u65b9\u7a0b\u7ec4:
\\[ \\begin{pmatrix}u_2^1u_1^1&u_2^1v_1^1&u_2^1&v_2^1u_1^1&v_2^1v_1^1&v_2^1&u_1^1&v_1^1&1\\\\u_2^2u_1^2&u_2^2v_1^2&u_2^2&v_2^2u_1^2&v_2^2v_1^2&v_2^2&u_1^2&v_1^2&1\\\\\\vdots&\\vdots&\\vdots&\\vdots&\\vdots&\\vdots&\\vdots&\\vdots\\\\u_2^8u_1^8&u_2^8v_1^8&u_2^8&v_2^8u_1^8&v_2^8u_1^8&u_1^8&v_1^8&1\\end{pmatrix}\\begin{pmatrix}e_1\\\\e_2\\\\e_3\\\\e_4\\\\e_5\\\\e_6\\\\e_7\\\\e_8\\\\e_9\\end{pmatrix}=0. \\] \\[ E=U\\Sigma V^{\\mathrm{T}}, \\] \\[ \\begin{aligned}&t_{1}^{\\wedge}=UR_{Z}(\\frac{\\pi}{2})\\Sigma U^{\\mathrm{T}},\\quad R_{1}=UR_{Z}^{\\mathrm{T}}(\\frac{\\pi}{2})V^{\\mathrm{T}}\\\\&t_{2}^{\\wedge}=UR_{Z}(-\\frac{\\pi}{2})\\Sigma U^{\\mathrm{T}},\\quad R_{2}=UR_{Z}^{\\mathrm{T}}(-\\frac{\\pi}{2})V^{\\mathrm{T}}.\\end{aligned} \\]
\\[ \\boldsymbol{E}=\\boldsymbol{U}\\mathrm{diag}(\\frac{\\sigma_1+\\sigma_2}2,\\frac{\\sigma_1+\\sigma_2}2,0)\\boldsymbol{V}^\\mathrm{T}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#733","title":"7.3.3 \u5355\u5e94\u77e9\u9635","text":"
Homography
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#8-2","title":"8 \u89c6\u89c9\u91cc\u7a0b\u8ba1 2","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#81","title":"8.1 \u76f4\u63a5\u6cd5\u7684\u5f15\u51fa","text":"
- \u7279\u5f81\u70b9\u6cd5\u7684\u7f3a\u70b9
- \u5173\u952e\u70b9\u7684\u63d0\u53d6\u4e0e\u63cf\u8ff0\u5b50\u7684\u8ba1\u7b97\u975e\u5e38\u8017\u65f6
- \u4f7f\u7528\u7279\u5f81\u70b9\u65f6\uff0c\u4f1a\u5ffd\u7565\u9664\u7279\u5f81\u70b9\u4ee5\u5916\u7684\u6240\u6709\u4fe1\u606f
- \u76f8\u673a\u6709\u65f6\u4f1a\u8fd0\u52a8\u5230\u7279\u5f81\u7f3a\u5931\u7684\u5730\u65b9
- \u90a3\u4e48\u5982\u4f55\u514b\u670d\u8fd9\u4e9b\u7f3a\u70b9
- \u4fdd\u7559\u7279\u5f81\u70b9\uff0c\u4f46\u53ea\u8ba1\u7b97\u5173\u952e\u70b9\uff0c\u4e0d\u8ba1\u7b97\u63cf\u8ff0\u5b50\u3002\u4f7f\u7528\u5149\u6d41\u6cd5\uff08Optical Flow\uff09\u8ddf\u8e2a\u7279\u5f81\u70b9\u7684\u8fd0\u52a8
- \u53ea\u8ba1\u7b97\u5173\u952e\u70b9\uff0c\u4e0d\u8ba1\u7b97\u63cf\u8ff0\u5b50\u3002\u4f7f\u7528\u76f4\u63a5\u6cd5\uff08Direct Method\uff09
- \u7b2c\u4e00\u79cd\u65b9\u6cd5\u4ecd\u7136\u4f7f\u7528\u7279\u5f81\u70b9\uff0c\u53ea\u662f\u628a\u5339\u914d\u63cf\u8ff0\u5b57\u66ff\u6362\u6210\u4e86\u5149\u6d41\u8ddf\u8e2a\uff0c\u4f30\u8ba1\u76f8\u673a\u8fd0\u52a8\u65f6\u4ecd\u7136\u662f\u54e6\u90a3\u4e2a\u5bf9\u6781\u51e0\u4f55\u3001PnP \u6216 ICP \u7b97\u6cd5\uff08\u5373\uff0c\u6211\u4eec\u9700\u8981\u63d0\u5230\u89d2\u70b9\uff09
- \u7279\u5f81\u70b9\u6cd5:\u901a\u8fc7\u6700\u5c0f\u5316\u91cd\u6295\u5f71\u8bef\u5dee\uff08Reprojection error\uff09\u4f18\u5316\u76f8\u673a\u8fd0\u52a8
- \u76f4\u63a5\u6cd5: \u901a\u8fc7\u6700\u5c0f\u5316\u5149\u5ea6\u8bef\u5dee\uff08Photometric error\uff09
- \u53ea\u8981\u573a\u666f\u4e2d\u5b58\u5728\u660e\u6697\u53d8\u5316\u5c31\u53ef\u4ee5\u5de5\u4f5c
- \u7a20\u5bc6
- \u534a\u7a20\u5bc6
- \u7a00\u758f
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#82-d","title":"8.2 D \u5149\u6d41","text":"
- \u8ba1\u7b97\u90e8\u5206\u50cf\u7d20\u8fd0\u52a8: \u7a00\u758f\u5149\u6d41
- \u8ba1\u7b97\u6240\u6709\u50cf\u7d20\u8fd0\u52a8: \u7a20\u5bc6\u5149\u6d41
- Horn-Schunck Lucas-Kanade \u5149\u6d41
- \u7070\u5ea6\u4e0d\u53d8\u5047\u8bbe: \u540c\u4e00\u4e2a\u7a7a\u95f4\u70b9\u7684\u50cf\u7d20\u7070\u5ea6\u503c\uff0c\u5728\u5404\u4e2a\u56fe\u50cf\u4e2d\u65f6\u56fa\u5b9a\u4e0d\u53d8\u7684
\\[ I(x+\\mathrm{d}x,y+\\mathrm{d}y,t+\\mathrm{d}t)=I(x,y,t). \\] \\[ \\boldsymbol{I}\\left(x+\\mathrm{d}x,y+\\mathrm{d}y,t+\\mathrm{d}t\\right)\\approx\\boldsymbol{I}\\left(x,y,t\\right)+\\frac{\\partial\\boldsymbol{I}}{\\partial x}\\mathrm{d}x+\\frac{\\partial\\boldsymbol{I}}{\\partial y}\\mathrm{d}y+\\frac{\\partial\\boldsymbol{I}}{\\partial t}\\mathrm{d}t. \\] \\[ \\frac{\\partial\\boldsymbol{I}}{\\partial x}\\frac{\\mathrm{d}x}{\\mathrm{d}t}+\\frac{\\partial\\boldsymbol{I}}{\\partial y}\\frac{\\mathrm{d}y}{\\mathrm{d}t}=-\\frac{\\partial\\boldsymbol{I}}{\\partial t}. \\] \\[ \\begin{bmatrix}I_x&I_y\\end{bmatrix}\\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}=-I_t. \\] \\[ \\begin{bmatrix}I_x&I_y\\end{bmatrix}_k\\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}=-I_{tk},\\quad k=1,\\ldots,w^2. \\] \\[ A\\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}=-b. \\] \\[ \\begin{bmatrix}u\\\\\\\\v\\end{bmatrix}^*=-\\begin{pmatrix}\\boldsymbol{A}^\\mathrm{T}\\boldsymbol{A}\\end{pmatrix}^{-1}\\boldsymbol{A}^\\mathrm{T}\\boldsymbol{b}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#83-lk","title":"8.3 \u5b9e\u8df5: LK \u5149\u6d41","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#831-lk","title":"8.3.1 \u4f7f\u7528 LK \u5149\u6d41","text":"C++
vector<Point2f> pt1, pt2;\nfor (auto &kp: kp1) pt1.push_back(kp.pt);\nvector<uchar> status;\nvector<float> error;\ncv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);\n
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#832","title":"8.3.2 \u7528\u9ad8\u65af\u725b\u987f\u6cd5\u5b9e\u73b0\u5149\u6d41","text":"
\u5355\u5c42\u5149\u6d41 TODO
\\[ \\min_{\\Delta x,\\Delta y}\\left\\|\\boldsymbol{I}_1\\left(x,y\\right)-\\boldsymbol{I}_2\\left(x+\\Delta x,y+\\Delta y\\right)\\right\\|_2^2. \\]
\u591a\u5c42\u5149\u6d41 - \u7531\u7c97\u81f3\u7cbe\uff08Coarse-to-fine\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#833","title":"8.3.3 \u5149\u6d41\u5b9e\u8df5\u5c0f\u7ed3","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#84","title":"8.4 \u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#841","title":"8.4.1 \u76f4\u63a5\u6cd5\u7684\u63a8\u5bfc","text":"\\[ \\boldsymbol{p}_1=\\begin{bmatrix}u\\\\\\\\v\\\\\\\\1\\end{bmatrix}_1=\\frac{1}{Z_1}\\boldsymbol{K}\\boldsymbol{P}, \\] \\[ \\boldsymbol{p}_{2}=\\begin{bmatrix}u\\\\\\\\v\\\\\\\\1\\end{bmatrix}_{2}=\\frac{1}{Z_{2}}\\boldsymbol{K}\\left(\\boldsymbol{R}\\boldsymbol{P}+\\boldsymbol{t}\\right)=\\frac{1}{Z_{2}}\\boldsymbol{K}\\left(\\boldsymbol{T}\\boldsymbol{P}\\right)_{1:3}. \\] \\[ e=\\boldsymbol{I}_1\\left(\\boldsymbol{p}_1\\right)-\\boldsymbol{I}_2\\left(\\boldsymbol{p}_2\\right). \\] \\[ \\min_{T}J\\left(T\\right)=\\left\\|e\\right\\|^{2}. \\] \\[ \\min_{\\boldsymbol{T}}J\\left(\\boldsymbol{T}\\right)=\\sum_{i=1}^{N}e_{i}^{\\mathrm{T}}e_{i},\\quad e_{i}=\\boldsymbol{I}_{1}\\left(\\boldsymbol{p}_{1,i}\\right)-\\boldsymbol{I}_{2}\\left(\\boldsymbol{p}_{2,i}\\right). \\] \\[ \\begin{aligned}&q=TP,\\\\&\\boldsymbol{u}=\\frac{1}{Z_{2}}Kq.\\end{aligned} \\] \\[ e(T)=I_1(p_1)-I_2(u), \\] \\[ \\frac{\\partial e}{\\partial\\boldsymbol{T}}=\\frac{\\partial\\boldsymbol{I}_{2}}{\\partial\\boldsymbol{u}}\\frac{\\partial\\boldsymbol{u}}{\\partial\\boldsymbol{q}}\\frac{\\partial\\boldsymbol{q}}{\\partial\\delta\\boldsymbol{\\xi}}\\delta\\boldsymbol{\\xi}, \\] \\[ \\frac{\\partial\\boldsymbol{u}}{\\partial\\boldsymbol{q}}=\\begin{bmatrix}\\frac{\\partial u}{\\partial X}&\\frac{\\partial u}{\\partial Y}&\\frac{\\partial u}{\\partial Z}\\\\\\frac{\\partial v}{\\partial X}&\\frac{\\partial v}{\\partial Y}&\\frac{\\partial v}{\\partial Z}\\end{bmatrix}=\\begin{bmatrix}\\frac{f_x}{Z}&0&-\\frac{f_xX}{Z^2}\\\\0&\\frac{f_y}{Z}&-\\frac{f_yY}{Z^2}\\end{bmatrix}. \\] \\[ \\frac{\\partial\\boldsymbol{q}}{\\partial\\delta\\boldsymbol{\\xi}}=\\left[I,-\\boldsymbol{q}^{\\wedge}\\right]. \\] \\[ \\frac{\\partial\\boldsymbol{u}}{\\partial\\delta\\boldsymbol{\\xi}}=\\begin{bmatrix}\\frac{f_x}{Z}&0&-\\frac{f_xX}{Z^2}&-\\frac{f_xXY}{Z^2}&f_x+\\frac{f_xX^2}{Z^2}&-\\frac{f_xY}{Z}\\\\0&\\frac{f_y}{Z}&-\\frac{f_yY}{Z^2}&-f_y-\\frac{f_yY^2}{Z^2}&\\frac{f_yXY}{Z^2}&\\frac{f_yX}{Z}\\end{bmatrix}. \\] \\[ J=-\\frac{\\partial I_2}{\\partial u}\\frac{\\partial u}{\\partial\\delta\\xi}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#842","title":"8.4.2 \u76f4\u63a5\u6cd5\u7684\u8ba8\u8bba","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#85","title":"8.5 \u5b9e\u8df5: \u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#851","title":"8.5.1 \u5355\u5c42\u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#852","title":"8.5.2 \u591a\u5c42\u76f4\u63a5\u6cd5","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#853","title":"8.5.3 \u7ed3\u679c\u8ba8\u8bba","text":"
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#854","title":"8.5.4 \u76f4\u63a5\u6cd5\u4f18\u7f3a\u70b9\u603b\u7ed3","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#9-1","title":"9 \u540e\u7aef 1","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#91","title":"9.1 \u6982\u8ff0","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#911","title":"9.1.1 \u72b6\u6001\u4f30\u8ba1\u7684\u6982\u7387\u89e3\u91ca","text":"
- \u53ea\u4f7f\u7528\u8fc7\u53bb\u7684\u4fe1\u606f: \u6e10\u8fdb\u7684\uff08Incremental\uff09
- \u4f7f\u7528\u672a\u6765\u7684\u4fe1\u606f\u66f4\u65b0: \u6279\u91cf\u7684\uff08Batch\uff09
\\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right)+\\boldsymbol{w}_k\\\\\\boldsymbol{z}_{k,j}=h\\left(\\boldsymbol{y}_j,\\boldsymbol{x}_k\\right)+\\boldsymbol{v}_{k,j}\\end{cases}\\quad k=1,\\ldots,N, j=1,\\ldots,M. \\]
- \u89c2\u6d4b\u65b9\u7a0b\u7684\u6570\u91cf\u4f1a\u8fdc\u8fdc\u5927\u4e8e\u8fd0\u52a8\u65b9\u7a0b
- \u5f53\u6ca1\u6709\u8fd0\u52a8\u65b9\u7a0b\u7684\u65f6\u5019\uff0c\u6211\u4eec\u53ef\u4ee5\u5047\u8bbe\u76f8\u673a\u4e0d\u52a8\uff0c\u6216\u5047\u8bbe\u76f8\u673a\u5300\u901f\u8fd0\u52a8
- \u95ee\u9898\uff1a\u5f53\u5b58\u5728\u4e00\u4e9b\u8fd0\u52a8\u6570\u636e\u548c\u89c2\u6d4b\u6570\u636e\u65f6\uff0c\u6211\u4eec\u5982\u4f55\u4f30\u8ba1\u72b6\u6001\u91cf\u7684\u9ad8\u65af\u5206\u5e03
- \u8bef\u5dee\u65f6\u9010\u6e10\u7d2f\u79ef\u7684
- \u6700\u5927\u4f3c\u7136\u4f30\u8ba1: \u6279\u91cf\u72b6\u6001\u4f30\u8ba1\u95ee\u9898\u53ef\u4ee5\u8f6c\u5316\u4e3a\u6700\u5927\u4f3c\u7136\u4f30\u8ba1\u95ee\u9898\uff0c\u5e76\u4f7f\u7528\u6700\u5c0f\u4e8c\u4e58\u6cd5\u8fdb\u884c\u6c42\u89e3
\\[ x_k\\stackrel{\\mathrm{def}}{=}\\{x_k,y_1,\\ldots,y_m\\}. \\] \\[ \\begin{cases}\\boldsymbol{x}_k=f\\left(\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right)+\\boldsymbol{w}_k\\\\\\boldsymbol{z}_k=h\\left(\\boldsymbol{x}_k\\right)+\\boldsymbol{v}_k\\end{cases}\\quad k=1,\\ldots,N. \\] \\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k}\\right)\\propto P\\left(\\boldsymbol{z}_k|\\boldsymbol{x}_k\\right)P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right). \\]
- \u7b2c\u4e00\u9879\u79f0\u4e3a\u4f3c\u7136\uff0c\u7b2c\u4e8c\u9879\u79f0\u4e3a\u5148\u9a8c
\\[ P\\left(\\boldsymbol{x}_{k}|\\boldsymbol{x}_{0},\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=\\int P\\left(\\boldsymbol{x}_{k}|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_{0},\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)P\\left(\\boldsymbol{x}_{k-1}|\\boldsymbol{x}_{0},\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)\\mathrm{d}\\boldsymbol{x}_{k-1}. \\]
- \u867d\u7136\u53ef\u4ee5\u7ee7\u7eed\u5bf9\u6b64\u5f0f\u8fdb\u884c\u5c55\u5f00\uff0c\u4f46\u6211\u4eec\u53ea\u5173\u5fc3 \\(\\displaystyle k\\) \u65f6\u523b\u548c \\(\\displaystyle k - 1\\) \u65f6\u523b\u7684\u60c5\u51b5
- \u7b2c\u4e00\u79cd\u65b9\u6cd5\u662f\u5047\u8bbe\u9a6c\u5c14\u53ef\u592b\u6027: \u5373\u8ba4\u4e3a \\(\\displaystyle k\\) \u65f6\u523b\u72b6\u6001\u53ea\u4e0e \\(\\displaystyle k - 1\\) \u65f6\u523b\u72b6\u6001\u6709\u5173
- \u90a3\u4e48\u6211\u4eec\u5c31\u53ef\u4ee5\u5f97\u5230\u4ee5\u6269\u5c55\u5361\u5c14\u66fc\u6ee4\u6ce2\uff08EKF\uff09\u4e3a\u4ee3\u8868\u7684\u6ee4\u6ce2\u5668\u65b9\u5f0f
- \u7b2c\u4e8c\u79cd\u65b9\u6cd5\u662f\u4f9d\u7136\u8003\u8651\u548c\u4e4b\u524d\u6240\u6709\u72b6\u6001\u7684\u5173\u7cfb\uff0c\u59ff\u52bf\u4f1a\u5f97\u5230\u975e\u7ebf\u6027\u4f18\u5316\u4e3a\u4e3b\u4f53\u7684\u4f18\u5316\u6846\u67b6\u3002
- \u4e3b\u6d41\u662f\u975e\u7ebf\u6027\u4f18\u5316
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#912-kf","title":"9.1.2 \u7ebf\u6027\u7cfb\u7edf\u548c KF","text":"\\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_{k-1},\\boldsymbol{u}_k\\right). \\] \\[ P\\left(\\boldsymbol{x}_{k-1}|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=P\\left(\\boldsymbol{x}_{k-1}|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k-1},\\boldsymbol{z}_{1:k-1}\\right). \\]
- \u6240\u4ee5\u6211\u4eec\u5b9e\u9645\u5728\u505a\u7684\u4e8b\u5982\u4f55\u628a \\(\\displaystyle k - 1\\) \u65f6\u523b\u7684\u72b6\u6001\u5206\u5e03\u63a8\u5bfc\u81f3 \\(\\displaystyle k\\) \u65f6\u523b
- \u5373\u6211\u4eec\u53ea\u8981\u7ef4\u62a4\u4e00\u4e2a\u72b6\u6001\uff0c\u5e76\u4e0d\u65ad\u5730\u8fed\u4ee3\u66f4\u65b0
- \u53ea\u8981\u7ef4\u62a4\u72b6\u6001\u91cf\u7684\u5747\u503c\u548c\u534f\u65b9\u5dee\uff08\u72b6\u6001\u91cf\u670d\u4ece\u9ad8\u65af\u5206\u5e03\uff09
\\[ \\begin{cases}x_k=A_kx_{k-1}+u_k+w_k\\\\z_k=C_kx_k+v_k\\end{cases}\\quad k=1,\\ldots,N. \\] \\[ w_k\\sim N(0,\\boldsymbol{R}).\\quad\\boldsymbol{v}_k\\sim N(\\boldsymbol{0},\\boldsymbol{Q}). \\]
- \u4e0a\u5e3d\u5b50\u8868\u793a\u540e\u9a8c\uff0c\u4e0b\u5e3d\u5b50\u8868\u793a\u5148\u9a8c
\\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{1:k-1}\\right)=N\\left(\\boldsymbol{A}_k\\hat{x}_{k-1}+\\boldsymbol{u}_k,\\boldsymbol{A}_k\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{A}_k^\\mathrm{T}+\\boldsymbol{R}\\right). \\]
- \u8fd9\u4e00\u6b65\u79f0\u4e3a\u9884\u6d4b\uff08Predict\uff09
\\[ \\check{\\boldsymbol{x}}_k=\\boldsymbol{A}_k\\hat{\\boldsymbol{x}}_{k-1}+\\boldsymbol{u}_k,\\quad\\check{\\boldsymbol{P}}_k=A_k\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{A}_k^\\mathrm{T}+\\boldsymbol{R}. \\] \\[ P\\left(\\boldsymbol{z}_k|\\boldsymbol{x}_k\\right)=N\\left(\\boldsymbol{C}_k\\boldsymbol{x}_k,\\boldsymbol{Q}\\right). \\]
- \u5982\u679c\u7ed3\u679c\u8bbe\u4e3a \\(\\displaystyle x_k\\sim N(\\hat{\\boldsymbol{x}}_k,\\hat{\\boldsymbol{P}}_k)\\)\uff0c\u90a3\u4e48
\\[ N(\\hat{\\boldsymbol{x}}_k,\\hat{\\boldsymbol{P}}_k)=\\eta N\\left(\\boldsymbol{C}_k\\boldsymbol{x}_k,\\boldsymbol{Q}\\right)\\cdot N(\\check{\\boldsymbol{x}}_k,\\check{\\boldsymbol{P}}_k). \\] \\[ (\\boldsymbol{x}_{k}-\\hat{\\boldsymbol{x}}_{k})^{\\mathrm{T}}\\hat{\\boldsymbol{P}}_{k}^{-1}\\left(\\boldsymbol{x}_{k}-\\hat{\\boldsymbol{x}}_{k}\\right)=\\left(\\boldsymbol{z}_{k}-\\boldsymbol{C}_{k}\\boldsymbol{x}_{k}\\right)^{\\mathrm{T}}\\boldsymbol{Q}^{-1}\\left(\\boldsymbol{z}_{k}-\\boldsymbol{C}_{k}\\boldsymbol{x}_{k}\\right)+\\left(\\boldsymbol{x}_{k}-\\check{\\boldsymbol{x}}_{k}\\right)^{\\mathrm{T}}\\boldsymbol{P}_{k}^{-1}\\left(\\boldsymbol{x}_{k}-\\check{\\boldsymbol{x}}_{k}\\right). \\]
\\[ \\hat{P}_k^{-1}=C_k^{\\mathrm{T}}Q^{-1}C_k+\\check{P}_k^{-1}. \\]
- \u5b9a\u4e49\u4e00\u4e2a\u4e2d\u95f4\u53d8\u91cf
\\[ K=\\hat{P}_kC_k^{\\mathrm{T}}Q^{-1}. \\] \\[ I=\\hat{P}_{k}C_{k}^{\\mathrm{T}}Q^{-1}C_{k}+\\hat{P}_{k}\\check{P}_{k}^{-1}=KC_{k}+\\hat{P}_{k}\\check{P}_{k}^{-1}. \\] \\[ \\hat{P}_{k}=(I-KC_{k})\\check{P}_{k}. \\]
- \u4e00\u6b21\u9879\u7cfb\u6570
\\[ -2\\hat{\\boldsymbol{x}}_k^\\mathrm{T}\\hat{\\boldsymbol{P}}_k^{-1}\\boldsymbol{x}_k=-2\\boldsymbol{z}_k^\\mathrm{T}\\boldsymbol{Q}^{-1}\\boldsymbol{C}_k\\boldsymbol{x}_k-2\\boldsymbol{\\dot{x}}_k^\\mathrm{T}\\check{\\boldsymbol{P}}_k^{-1}\\boldsymbol{x}_k. \\] \\[ \\hat{\\boldsymbol{P}}_k^{-1}\\hat{\\boldsymbol{x}}_k=\\boldsymbol{C}_k^\\mathrm{T}\\boldsymbol{Q}^{-1}\\boldsymbol{z}_k+\\check{\\boldsymbol{P}}_k^{-1}\\check{\\boldsymbol{x}}_k. \\] \\[ \\begin{aligned} \\hat{x}_{k}& =\\hat{\\boldsymbol{P}}_k\\boldsymbol{C}_k^\\mathrm{T}\\boldsymbol{Q}^{-1}\\boldsymbol{z}_k+\\hat{\\boldsymbol{P}}_k\\check{\\boldsymbol{P}}_k^{-1}\\check{\\boldsymbol{x}}_k \\\\ &=K\\boldsymbol{z}_k+\\left(\\boldsymbol{I}-\\boldsymbol{K}\\boldsymbol{C}_k\\right)\\check{\\boldsymbol{x}}_k=\\check{\\boldsymbol{x}}_k+\\boldsymbol{K}\\left(\\boldsymbol{z}_k-\\boldsymbol{C}_k\\check{\\boldsymbol{x}}_k\\right). \\end{aligned} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#913-ekf","title":"9.1.3 \u975e\u7ebf\u6027\u7cfb\u7edf\u548c EKF","text":"
- \u6269\u5c55\u5361\u5c14\u66fc\u6ee4\u6ce2\u5668
- \u5373\u628a\u975e\u9ad8\u65af\u5206\u5e03\u8fd1\u4f3c\u6210\u9ad8\u65af\u5206\u5e03
\\[ \\boldsymbol{x}_k\\approx f\\left(\\hat{\\boldsymbol{x}}_{k-1},\\boldsymbol{u}_k\\right)+\\left.\\frac{\\partial f}{\\partial\\boldsymbol{x}_{k-1}}\\right|_{\\tilde{\\boldsymbol{x}}_{k-1}}\\left(\\boldsymbol{x}_{k-1}-\\hat{\\boldsymbol{x}}_{k-1}\\right)+\\boldsymbol{w}_k. \\] \\[ \\boldsymbol{F}=\\left.\\frac{\\partial f}{\\partial\\boldsymbol{x}_{k-1}}\\right|_{\\hat{\\boldsymbol{x}}_{k-1}}. \\] \\[ z_k\\approx h\\left(\\check{\\boldsymbol{x}}_k\\right)+\\left.\\frac{\\partial h}{\\partial\\boldsymbol{x}_k}\\right|_{\\dot{\\boldsymbol{x}}_k}\\left(\\boldsymbol{x}_k-\\check{\\boldsymbol{x}}_k\\right)+\\boldsymbol{n}_k. \\] \\[ H=\\left.\\frac{\\partial h}{\\partial\\boldsymbol{x}_k}\\right|_{\\check{\\boldsymbol{x}}_k}. \\] \\[ P\\left(\\boldsymbol{x}_k|\\boldsymbol{x}_0,\\boldsymbol{u}_{1:k},\\boldsymbol{z}_{0:k-1}\\right)=N(f\\left(\\hat{\\boldsymbol{x}}_{k-1},\\boldsymbol{u}_k\\right),\\boldsymbol{F}\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{F}^\\mathrm{T}+\\boldsymbol{R}_k). \\] \\[ \\check{\\boldsymbol{x}}_k=f\\left(\\hat{\\boldsymbol{x}}_{k-1},\\boldsymbol{u}_k\\right),\\quad\\check{\\boldsymbol{P}}_k=\\boldsymbol{F}\\hat{\\boldsymbol{P}}_{k-1}\\boldsymbol{F}^\\mathrm{T}+\\boldsymbol{R}_k. \\] \\[ P\\left(\\boldsymbol{z}_k|\\boldsymbol{x}_k\\right)=N(h\\left(\\check{\\boldsymbol{x}}_k\\right)+\\boldsymbol{H}\\left(\\boldsymbol{x}_k-\\check{\\boldsymbol{x}}_k\\right),Q_k). \\]
- \u5b9a\u4e49\u4e00\u4e2a\u5361\u5c14\u66fc\u589e\u76ca \\(\\displaystyle \\boldsymbol{K}_{k}\\)
\\[ K_{k}=\\check{P}_{k}H^{\\mathrm{T}}(H\\check{P}_{k}H^{\\mathrm{T}}+Q_{k})^{-1}. \\] \\[ \\hat{\\boldsymbol{x}}_k=\\check{\\boldsymbol{x}}_k+\\boldsymbol{K}_k\\left(\\boldsymbol{z}_k-h\\left(\\check{\\boldsymbol{x}}_k\\right)\\right),\\hat{\\boldsymbol{P}}_k=\\left(\\boldsymbol{I}-\\boldsymbol{K}_k\\boldsymbol{H}\\right)\\check{\\boldsymbol{P}}_k. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#914-ekf","title":"9.1.4 EKF \u7684\u8ba8\u8bba","text":"
- \u5c40\u9650
- \u5047\u8bbe\u4e86\u9a6c\u5c14\u53ef\u592b\u6027\uff0c\u4f46\u662f\u975e\u7ebf\u6027\u4f18\u5316\u662f\u5168\u4f53\u65f6\u95f4\u4e0a\u7684 SLAM (Full-SLAM)
- \u6709\u975e\u7ebf\u6027\u8bef\u5dee\uff08\u4e3b\u8981\u95ee\u9898\u6240\u5728\uff09
- \u5982\u679c\u628a\u8def\u6807\u4e5f\u653e\u8fdb\u72b6\u6001\uff0c\u5b58\u4e0d\u4e0b
- \u6ca1\u6709\u5f02\u5e38\u68c0\u6d4b\u673a\u5236
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#92-ba","title":"9.2 BA \u4e0e\u56fe\u4f18\u5316","text":"
- Bundle Adjustment
- \u4ece\u89c6\u89c9\u56fe\u50cf\u4e2d\u63d0\u70bc\u51fa\u6700\u6709\u7684 3 D \u6a21\u578b\u548c\u76f8\u673a\u53c2\u6570\uff0c\u8ba9\u5149\u7ebf\u6700\u7ec8\u6536\u675f\u5230\u76f8\u673a\u7684\u5149\u5fc3
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#921-ba","title":"9.2.1 \u6295\u5f71\u6a21\u578b\u548c BA \u4ee3\u4ef7\u51fd\u6570","text":"\\[ P^{\\prime}=Rp+t=[X^{\\prime},Y^{\\prime},Z^{\\prime}]^\\mathrm{T}. \\] \\[ \\boldsymbol{P}_{\\mathrm{c}}=[u_{\\mathrm{c}},v_{\\mathrm{c}},1]^{\\mathrm{T}}=[X^{\\prime}/Z^{\\prime},Y^{\\prime}/Z^{\\prime},1]^{\\mathrm{T}}. \\] \\[ \\begin{cases}u_\\mathrm{c}'=u_\\mathrm{c}\\left(1+k_1r_\\mathrm{c}^2+k_2r_\\mathrm{c}^4\\right)\\\\v_\\mathrm{c}'=v_\\mathrm{c}\\left(1+k_1r_\\mathrm{c}^2+k_2r_\\mathrm{c}^4\\right)\\end{cases}. \\] \\[ \\begin{cases}u_s=f_xu_\\mathrm{c}'+c_x\\\\[2ex]v_s=f_yv_\\mathrm{c}'+c_y\\end{cases}. \\] \\[ z=h(\\boldsymbol{x},\\boldsymbol{y}). \\] \\[ e=z-h(\\boldsymbol{T},\\boldsymbol{p}). \\] \\[ z\\overset{\\mathrm{def}}{\\operatorname*{=}}[u_s,v_s]^\\mathrm{T} \\] \\[ \\frac12\\sum_{i=1}^m\\sum_{j=1}^n\\|e_{ij}\\|^2=\\frac12\\sum_{i=1}^m\\sum_{j=1}^n\\|z_{ij}-h(\\boldsymbol{T}_i,\\boldsymbol{p}_j)\\|^2. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#922-ba","title":"9.2.2 BA \u7684\u6c42\u89e3","text":"\\[ x=[T_1,\\ldots,T_m,p_1,\\ldots,p_n]^\\mathrm{T}. \\] \\[ \\frac12\\left\\|f(\\boldsymbol{x}+\\Delta\\boldsymbol{x})\\right\\|^2\\approx\\frac12\\sum_{i=1}^m\\sum_{j=1}^n\\left\\|\\boldsymbol{e}_{ij}+\\boldsymbol{F}_{ij}\\Delta\\boldsymbol{\\xi}_i+\\boldsymbol{E}_{ij}\\Delta\\boldsymbol{p}_j\\right\\|^2. \\] \\[ x_{\\mathfrak{c}}=[\\boldsymbol{\\xi}_1,\\boldsymbol{\\xi}_2,\\ldots,\\boldsymbol{\\xi}_m]^{\\mathrm{T}}\\in\\mathbb{R}^{6m} \\] \\[ \\boldsymbol{x}_p=[\\boldsymbol{p}_1,\\boldsymbol{p}_2,\\ldots,\\boldsymbol{p}_n]^\\mathrm{T}\\in\\mathbb{R}^{3n} \\] \\[ \\frac12\\left\\|f(\\boldsymbol{x}+\\Delta\\boldsymbol{x})\\right\\|^2=\\frac12\\left\\|\\boldsymbol{e}+\\boldsymbol{F}\\Delta\\boldsymbol{x}_c+\\boldsymbol{E}\\Delta\\boldsymbol{x}_p\\right\\|^2. \\] \\[ \\boldsymbol{J}=[\\boldsymbol{F}\\boldsymbol{E}]. \\] \\[ H=J^\\mathrm{T}J=\\begin{bmatrix}F^\\mathrm{T}F&F^\\mathrm{T}E\\\\E^\\mathrm{T}F&E^\\mathrm{T}E\\end{bmatrix}. \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#923","title":"9.2.3 \u7a00\u758f\u6027\u548c\u8fb9\u7f18\u5316","text":"\\[ J_{ij}(x)=\\left(\\mathbf{0}_{2\\times6},\\ldots\\mathbf{0}_{2\\times6},\\frac{\\partial\\boldsymbol{e}_{ij}}{\\partial\\boldsymbol{T}_{i}},\\mathbf{0}_{2\\times6},\\ldots\\mathbf{0}_{2\\times3},\\ldots\\mathbf{0}_{2\\times3},\\frac{\\partial\\boldsymbol{e}_{ij}}{\\partial\\boldsymbol{p}_{j}},\\mathbf{0}_{2\\times3},\\ldots\\mathbf{0}_{2\\times3}\\right). \\] \\[ H=\\sum_{i,j}J_{ij}^{\\top}J_{ij}, \\] \\[ H=\\begin{bmatrix}H_{11}&H_{12}\\\\\\\\H_{21}&H_{22}\\end{bmatrix}. \\]
- \u5bf9\u4e8e\u7a00\u758f\u77e9\u9635\uff0c\u6211\u4eec\u7528 Schur \u6d88\u5143\uff08Marginalization\uff09
\\[ \\begin{bmatrix}B&E\\\\E^\\mathrm{T}&C\\end{bmatrix}\\begin{bmatrix}\\Delta x_\\mathrm{c}\\\\\\Delta x_p\\end{bmatrix}=\\begin{bmatrix}v\\\\w\\end{bmatrix}. \\] \\[ \\begin{bmatrix}I&-EC^{-1}\\\\0&I\\end{bmatrix}\\begin{bmatrix}B&E\\\\E^{\\intercal}&C\\end{bmatrix}\\begin{bmatrix}\\Delta x_\\mathrm{c}\\\\\\Delta x_p\\end{bmatrix}=\\begin{bmatrix}I&-EC^{-1}\\\\0&I\\end{bmatrix}\\begin{bmatrix}v\\\\w\\end{bmatrix}. \\] \\[ \\begin{bmatrix}B-EC^{-1}E^\\mathrm{T}&0\\\\E^\\mathrm{T}&C\\end{bmatrix}\\begin{bmatrix}\\Delta x_\\mathrm{c}\\\\\\Delta x_p\\end{bmatrix}=\\begin{bmatrix}v-EC^{-1}w\\\\\\\\w\\end{bmatrix}. \\] \\[ \\begin{bmatrix}B-EC^{-1}E^\\mathrm{T}\\end{bmatrix}\\Delta x_\\mathrm{c}=v-EC^{-1}w. \\]
- \u4f18\u52bf
- \\(\\displaystyle \\boldsymbol{C}\\) \u4e3a\u5bf9\u89d2\u5757\uff0c\u9006\u6bd4\u8f83\u5bb9\u6613\u89e3\u51fa
- \u975e\u5bf9\u89d2\u7ebf\u4e0a\u7684\u975e\u96f6\u77e9\u9635\u5757\u8868\u793a\u5bf9\u5e94\u7684\u4e24\u4e2a\u76f8\u673a\u53d8\u91cf\u4e4b\u95f4\u5b58\u5728\u5171\u540c\u89c2\u6d4b\u7684\u8def\u6807\u70b9\uff0c\u5373\u5171\u89c6\uff08Co-visibility\uff09
"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#924","title":"9.2.4 \u9c81\u68d2\u6838\u51fd\u6570","text":"
\\[ H(e)=\\begin{cases}\\frac{1}{2}e^2&\\text{\u5f53}|e|\\leqslant\\delta,\\\\\\\\\\delta\\left(|e|-\\frac{1}{2}\\delta\\right)&\\text{\u5176\u4ed6}\\end{cases} \\]"},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#93-ceres-ba","title":"9.3 \u5b9e\u8df5: Ceres BA","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#931-bal","title":"9.3.1 BAL \u6570\u636e\u96c6","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#932-ceres-ba","title":"9.3.2 Ceres BA \u7684\u4e66\u5199","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#94-g-2-o-ba","title":"9.4 \u5b9e\u8df5: g 2 o \u6c42\u89e3 BA","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#95","title":"9.5 \u5c0f\u7ed3","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#10-2","title":"10 \u540e\u7aef 2","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#11_1","title":"11 \u56de\u73af\u68c0\u6d4b","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#12_1","title":"12 \u5efa\u56fe","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#13-slam","title":"13 \u5b9e\u8df5: \u8bbe\u8ba1 SLAM \u7cfb\u7edf","text":""},{"location":"traditional%20cv/%E8%A7%86%E8%A7%89SLAM%E5%8D%81%E5%9B%9B%E8%AE%B2/#14-slam","title":"14 SLAM: \u73b0\u5728\u4e0e\u672a\u6765","text":""}]}
\ No newline at end of file
diff --git a/sitemap.xml b/sitemap.xml
index 3922c4ef..01ca3c15 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -20,6 +20,10 @@
https://WncFht.github.io/notes/AI/%E7%BB%9F%E8%AE%A1%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95/
2024-12-04
+
+ https://WncFht.github.io/notes/AI/CS231n/CS231n_notes/
+ 2024-12-04
+
https://WncFht.github.io/notes/AI/CS231n/Image%20Classification-Data-driven%20Approach%2C%20k-Nearest%20Neighbor%2C%20train_val_test%20splits/
2024-12-04
diff --git a/sitemap.xml.gz b/sitemap.xml.gz
index b302f14ada632aae10a1addc12da183aad1feee8..4935a33e0d6d54c14cae694437e4dcc335fe5544 100644
GIT binary patch
delta 1090
zcmV-I1ikyk2+atP8h_$A5WwH}Q&dQPg#0N4XVrF-w|fyuZJXl+e6nwHnE0=cp`)KYz;U3LSS84(>i(!G#U9
zIdk0tVB+vTN3_clb%#DNpv6_u8d%s8(hdEl(6!0tAHNIE5POu{)yDTz`Nc_f{X
zXhx!dq+=3?B!6;A8jvu+JY?c)5>9N8CQJX?tGZ-mXQ=+dxG&ibEtx>;N^C{OG)&~-
zjA=I9G+^Zl9!7QDNS5WqPvGC%Z~=zqN<)6Z#V%jVrhTFtCaTqe6)W97R&^n?&F(#j
z3Rr<8``EwbzOH41h`;kpBft9y9faC#PnL44OZLMe`G50K=Mt5_*q8Ou21uGFOOQVf
z>Cknj&bP&)2NZ=d=&Ca(Z+d`KA7KFDft1ghYvPLNgN2O`S1`
zs15S%b{%Zm`*0((H#_<}qqw+uW4Sd`B6G|t0IP;sDJU!!6Jr~f(7-GrQxaXDttL~<
zgwxKVXn)!%E+Vk#oR%KDo%v_b*o?}6P>Mao!AJ>BySL)>8cvikpL)Z1x=7bqqfz$}(Q?hH1XR^{gxH0a%wB70)pwu@-%t!DTA&n3Fs`K0ht*
z7hj?L`Q_>BOZ2$3Pu1QnW1Q~&z*rSLbAvv?On>_XL;D01_6Wvv`vl|l3C8ae%ypk&
z#(jdB*oQF@kO}s>P$)6+y-#RjO6C~QV+jO->4!Z4onn0q#3m$m`y3z6Na&pc+2r5V
zHXmA2Lc>!WP0zMJCYq#|?|NDtL?f$`SK9f$-dB3RQe5wAs~~c%#73~H2PkNwI04Ia
zF@Jn(PmJp4#-1>^VYr8APde*t9;FvYevxabow}+mNjBP*G%*PCpzd3!}yp)
z<1U_$d~1wTLqyN!Xn>zP!TYpRGmI{d_R6!ol7-wIVaE?%Xs_6g+oVVy*_%}Wl)o*6
zRfgsAH=E*L*?N7%?_{_kcK=klO_(g_e}9!y*hDDbHZoJ7ijryG2v*pHsT*0=`r-s?
zUzV&nI@r7$4lQh0&Ivr%r$f(kukBKJE{O1K>jEyMnA)a5i}+*96#fK6xSmxC%=2b-
zVC^ZEHI`iL@VG-|xs-*&tKDjw>z>enE6sa^Q|HGX(P(h@J;FJiL$n7H5k|4NpF5s(
zXBAj-c^9Y~wh=hJSb^up2d6s>`gtlu!{tNt*zF9cciQ>Kr^A&0u@5i_Y!2`K2AR%0
IKvyFG0C;yQHUIzs
delta 1082
zcmV-A1jYN!2*n7H8h@iW5WwH}Q&f@snDD0wF{idGAY`w)Cas$8opdjeL!4k0Fv3o{
zxleyHhOE+;lkQH6K@m8{cz&Mo3}bxv^+#FU9C@RJtnLTi$Q|79DwA7L?e7QQ-{wO)
z`1lVB`}L(pk2XZk#E}!<6_u87nQ>mj<%zSV0=wG)BI%UGF$w1+r6fv8>yr(TG)-0@e;m@G>rS2D
zmdhSc6vm+I&YZmI0aAT}353q!qW6app<{Gzu*T*vTpqAcSDZ>5W8(9uD6n8wE>8h818r$f(kZ|zceE{O1K>jDm>nA)a5i}+*96#fK6xSmxCEc0f4WbH1NHI`iL
zal1ohxs-*&tNnVH>z>d+D9w9>Q|G51(P#+wJ;FKfL$n(b5oWQto}P4j6