imdb数据集的目标是根据电影评论的文本内容预测评论的情感标签。
训练集有20000条电影评论文本,测试集有5000条电影评论文本,其中正面评论和负面评论都各占一半。
文本数据预处理较为繁琐,包括中文切词(本示例不涉及),构建词典,编码转换,序列填充,构建数据管道等等。
在torch中预处理文本数据一般使用torchtext或者自定义Dataset,torchtext功能非常强大,可以构建文本分类,序列标注,问答模型,机器翻译等NLP任务的数据集。
下面仅演示使用它来构建文本分类数据集的方法。
较完整的教程可以参考以下知乎文章:《pytorch学习笔记—Torchtext》
https://zhuanlan.zhihu.com/p/65833208
torchtext常见API一览
- torchtext.data.Example : 用来表示一个样本,数据和标签
- torchtext.vocab.Vocab: 词汇表,可以导入一些预训练词向量
- torchtext.data.Datasets: 数据集类,
__getitem__
返回 Example实例, torchtext.data.TabularDataset是其子类。 - torchtext.data.Field : 用来定义字段的处理方法(文本字段,标签字段)创建 Example时的 预处理,batch 时的一些处理操作。
- torchtext.data.Iterator: 迭代器,用来生成 batch
- torchtext.datasets: 包含了常见的数据集.
import torch
import string,re
import torchtext
MAX_WORDS = 10000 # 仅考虑最高频的10000个词
MAX_LEN = 200 # 每个样本保留200个词的长度
BATCH_SIZE = 20
#分词方法
tokenizer = lambda x:re.sub('[%s]'%string.punctuation,"",x).split(" ")
#过滤掉低频词
def filterLowFreqWords(arr,vocab):
arr = [[x if x<MAX_WORDS else 0 for x in example]
for example in arr]
return arr
#1,定义各个字段的预处理方法
TEXT = torchtext.data.Field(sequential=True, tokenize=tokenizer, lower=True,
fix_length=MAX_LEN,postprocessing = filterLowFreqWords)
LABEL = torchtext.data.Field(sequential=False, use_vocab=False)
#2,构建表格型dataset
#torchtext.data.TabularDataset可读取csv,tsv,json等格式
ds_train, ds_valid = torchtext.data.TabularDataset.splits(
path='./data/imdb', train='train.tsv',test='test.tsv', format='tsv',
fields=[('label', LABEL), ('text', TEXT)],skip_header = False)
#3,构建词典
TEXT.build_vocab(ds_train)
#4,构建数据管道迭代器
train_iter, valid_iter = torchtext.data.Iterator.splits(
(ds_train, ds_valid), sort_within_batch=True,sort_key=lambda x: len(x.text),
batch_sizes=(BATCH_SIZE,BATCH_SIZE))
#查看example信息
print(ds_train[0].text)
print(ds_train[0].label)
['it', 'really', 'boggles', 'my', 'mind', 'when', 'someone', 'comes', 'across', 'a', 'movie', 'like', 'this', 'and', 'claims', 'it', 'to', 'be', 'one', 'of', 'the', 'worst', 'slasher', 'films', 'out', 'there', 'this', 'is', 'by', 'far', 'not', 'one', 'of', 'the', 'worst', 'out', 'there', 'still', 'not', 'a', 'good', 'movie', 'but', 'not', 'the', 'worst', 'nonetheless', 'go', 'see', 'something', 'like', 'death', 'nurse', 'or', 'blood', 'lake', 'and', 'then', 'come', 'back', 'to', 'me', 'and', 'tell', 'me', 'if', 'you', 'think', 'the', 'night', 'brings', 'charlie', 'is', 'the', 'worst', 'the', 'film', 'has', 'decent', 'camera', 'work', 'and', 'editing', 'which', 'is', 'way', 'more', 'than', 'i', 'can', 'say', 'for', 'many', 'more', 'extremely', 'obscure', 'slasher', 'filmsbr', 'br', 'the', 'film', 'doesnt', 'deliver', 'on', 'the', 'onscreen', 'deaths', 'theres', 'one', 'death', 'where', 'you', 'see', 'his', 'pruning', 'saw', 'rip', 'into', 'a', 'neck', 'but', 'all', 'other', 'deaths', 'are', 'hardly', 'interesting', 'but', 'the', 'lack', 'of', 'onscreen', 'graphic', 'violence', 'doesnt', 'mean', 'this', 'isnt', 'a', 'slasher', 'film', 'just', 'a', 'bad', 'onebr', 'br', 'the', 'film', 'was', 'obviously', 'intended', 'not', 'to', 'be', 'taken', 'too', 'seriously', 'the', 'film', 'came', 'in', 'at', 'the', 'end', 'of', 'the', 'second', 'slasher', 'cycle', 'so', 'it', 'certainly', 'was', 'a', 'reflection', 'on', 'traditional', 'slasher', 'elements', 'done', 'in', 'a', 'tongue', 'in', 'cheek', 'way', 'for', 'example', 'after', 'a', 'kill', 'charlie', 'goes', 'to', 'the', 'towns', 'welcome', 'sign', 'and', 'marks', 'the', 'population', 'down', 'one', 'less', 'this', 'is', 'something', 'that', 'can', 'only', 'get', 'a', 'laughbr', 'br', 'if', 'youre', 'into', 'slasher', 'films', 'definitely', 'give', 'this', 'film', 'a', 'watch', 'it', 'is', 'slightly', 'different', 'than', 'your', 'usual', 'slasher', 'film', 'with', 'possibility', 'of', 'two', 'killers', 'but', 'not', 'by', 'much', 'the', 'comedy', 'of', 'the', 'movie', 'is', 'pretty', 'much', 'telling', 'the', 'audience', 'to', 'relax', 'and', 'not', 'take', 'the', 'movie', 'so', 'god', 'darn', 'serious', 'you', 'may', 'forget', 'the', 'movie', 'you', 'may', 'remember', 'it', 'ill', 'remember', 'it', 'because', 'i', 'love', 'the', 'name']
0
# 查看词典信息
print(len(TEXT.vocab))
#itos: index to string
print(TEXT.vocab.itos[0])
print(TEXT.vocab.itos[1])
#stoi: string to index
print(TEXT.vocab.stoi['<unk>']) #unknown 未知词
print(TEXT.vocab.stoi['<pad>']) #padding 填充
#freqs: 词频
print(TEXT.vocab.freqs['<unk>'])
print(TEXT.vocab.freqs['a'])
print(TEXT.vocab.freqs['good'])
108197
<unk>
<pad>
0
1
0
129453
11457
# 查看数据管道信息
# 注意有坑:text第0维是句子长度
for batch in train_iter:
features = batch.text
labels = batch.label
print(features)
print(features.shape)
print(labels)
break
tensor([[ 17, 31, 148, ..., 54, 11, 201],
[ 2, 2, 904, ..., 335, 7, 109],
[1371, 1737, 44, ..., 806, 2, 11],
...,
[ 6, 5, 62, ..., 1, 1, 1],
[ 170, 0, 27, ..., 1, 1, 1],
[ 15, 0, 45, ..., 1, 1, 1]])
torch.Size([200, 20])
tensor([0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0])
# 将数据管道组织成torch.utils.data.DataLoader相似的features,label输出形式
class DataLoader:
def __init__(self,data_iter):
self.data_iter = data_iter
self.length = len(data_iter)
def __len__(self):
return self.length
def __iter__(self):
# 注意:此处调整features为 batch first,并调整label的shape和dtype
for batch in self.data_iter:
yield(torch.transpose(batch.text,0,1),
torch.unsqueeze(batch.label.float(),dim = 1))
dl_train = DataLoader(train_iter)
dl_valid = DataLoader(valid_iter)
使用Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)进行封装。
此处选择使用第三种方式进行构建。
import torch
from torch import nn
from torchkeras import LightModel,summary
torch.random.seed()
import torch
from torch import nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
#设置padding_idx参数后将在训练过程中将填充的token始终赋值为0向量
self.embedding = nn.Embedding(num_embeddings = MAX_WORDS,embedding_dim = 3,padding_idx = 1)
self.conv = nn.Sequential()
self.conv.add_module("conv_1",nn.Conv1d(in_channels = 3,out_channels = 16,kernel_size = 5))
self.conv.add_module("pool_1",nn.MaxPool1d(kernel_size = 2))
self.conv.add_module("relu_1",nn.ReLU())
self.conv.add_module("conv_2",nn.Conv1d(in_channels = 16,out_channels = 128,kernel_size = 2))
self.conv.add_module("pool_2",nn.MaxPool1d(kernel_size = 2))
self.conv.add_module("relu_2",nn.ReLU())
self.dense = nn.Sequential()
self.dense.add_module("flatten",nn.Flatten())
self.dense.add_module("linear",nn.Linear(6144,1))
self.dense.add_module("sigmoid",nn.Sigmoid())
def forward(self,x):
x = self.embedding(x).transpose(1,2)
x = self.conv(x)
y = self.dense(x)
return y
net = Net()
print(net)
summary(net, input_shape = (200,),input_dtype = torch.LongTensor)
Net(
(embedding): Embedding(10000, 3, padding_idx=1)
(conv): Sequential(
(conv_1): Conv1d(3, 16, kernel_size=(5,), stride=(1,))
(pool_1): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(relu_1): ReLU()
(conv_2): Conv1d(16, 128, kernel_size=(2,), stride=(1,))
(pool_2): MaxPool1d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(relu_2): ReLU()
)
(dense): Sequential(
(flatten): Flatten()
(linear): Linear(in_features=6144, out_features=1, bias=True)
(sigmoid): Sigmoid()
)
)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Embedding-1 [-1, 200, 3] 30,000
Conv1d-2 [-1, 16, 196] 256
MaxPool1d-3 [-1, 16, 98] 0
ReLU-4 [-1, 16, 98] 0
Conv1d-5 [-1, 128, 97] 4,224
MaxPool1d-6 [-1, 128, 48] 0
ReLU-7 [-1, 128, 48] 0
Flatten-8 [-1, 6144] 0
Linear-9 [-1, 1] 6,145
Sigmoid-10 [-1, 1] 0
================================================================
Total params: 40,625
Trainable params: 40,625
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.000763
Forward/backward pass size (MB): 0.287796
Params size (MB): 0.154972
Estimated Total Size (MB): 0.443531
----------------------------------------------------------------
训练Pytorch通常需要用户编写自定义训练循环,训练循环的代码风格因人而异。
有3类典型的训练循环代码风格:脚本形式训练循环,函数形式训练循环,类形式训练循环。
此处介绍一种类形式的训练循环。
我们利用Pytorch-Lightning定义了一个高阶的模型接口LightModel, 封装在torchkeras中, 可以非常方便地训练模型。
import pytorch_lightning as pl
from torchkeras import LightModel
class Model(LightModel):
#loss,and optional metrics
def shared_step(self,batch)->dict:
x, y = batch
prediction = self(x)
loss = nn.BCELoss()(prediction,y)
preds = torch.where(prediction>0.5,torch.ones_like(prediction),torch.zeros_like(prediction))
acc = pl.metrics.functional.accuracy(preds, y)
dic = {"loss":loss,"accuracy":acc}
return dic
#optimizer,and optional lr_scheduler
def configure_optimizers(self):
optimizer= torch.optim.Adagrad(self.parameters(),lr = 0.02)
return optimizer
pl.seed_everything(1234)
net = Net()
model = Model(net)
ckpt_cb = pl.callbacks.ModelCheckpoint(monitor='val_loss')
# set gpus=0 will use cpu,
# set gpus=1 will use 1 gpu
# set gpus=2 will use 2gpus
# set gpus = -1 will use all gpus
# you can also set gpus = [0,1] to use the given gpus
# you can even set tpu_cores=2 to use two tpus
trainer = pl.Trainer(max_epochs=20,gpus = 0, callbacks=[ckpt_cb])
trainer.fit(model,dl_train,dl_valid)
================================================================================2021-01-16 21:47:29
epoch = 0
{'val_loss': 0.6834630966186523, 'val_accuracy': 0.5546000003814697}
{'accuracy': 0.5224003791809082, 'loss': 0.7246873378753662}
================================================================================2021-01-16 21:48:07
epoch = 1
{'val_loss': 0.6371415257453918, 'val_accuracy': 0.63319993019104}
{'accuracy': 0.6110503673553467, 'loss': 0.6552867889404297}
================================================================================2021-01-16 21:48:50
epoch = 2
{'val_loss': 0.5896139740943909, 'val_accuracy': 0.6798002123832703}
{'accuracy': 0.6910000443458557, 'loss': 0.5874115824699402}
================================================================================2021-01-16 21:49:32
epoch = 3
{'val_loss': 0.5726749300956726, 'val_accuracy': 0.6971999406814575}
{'accuracy': 0.7391000390052795, 'loss': 0.5251786112785339}
================================================================================2021-01-16 21:50:13
epoch = 4
{'val_loss': 0.5328916311264038, 'val_accuracy': 0.7326000332832336}
{'accuracy': 0.7705488801002502, 'loss': 0.4773417115211487}
================================================================================2021-01-16 21:50:54
epoch = 5
{'val_loss': 0.5194208025932312, 'val_accuracy': 0.7413997650146484}
{'accuracy': 0.7968998551368713, 'loss': 0.43944093585014343}
================================================================================2021-01-16 21:51:35
epoch = 6
{'val_loss': 0.5199333429336548, 'val_accuracy': 0.7429998517036438}
{'accuracy': 0.8130489587783813, 'loss': 0.4102325737476349}
================================================================================2021-01-16 21:52:16
epoch = 7
{'val_loss': 0.5124538540840149, 'val_accuracy': 0.7517998814582825}
{'accuracy': 0.8314500451087952, 'loss': 0.3849221169948578}
================================================================================2021-01-16 21:52:58
epoch = 8
{'val_loss': 0.510671079158783, 'val_accuracy': 0.7554002404212952}
{'accuracy': 0.8438503742218018, 'loss': 0.3616768419742584}
================================================================================2021-01-16 21:53:39
epoch = 9
{'val_loss': 0.5184627771377563, 'val_accuracy': 0.7530001997947693}
{'accuracy': 0.8568001985549927, 'loss': 0.34138554334640503}
================================================================================2021-01-16 21:54:20
epoch = 10
{'val_loss': 0.5105863809585571, 'val_accuracy': 0.7580001354217529}
{'accuracy': 0.865899920463562, 'loss': 0.32265418767929077}
================================================================================2021-01-16 21:55:02
epoch = 11
{'val_loss': 0.5222727656364441, 'val_accuracy': 0.7586002349853516}
{'accuracy': 0.8747013211250305, 'loss': 0.306064248085022}
================================================================================2021-01-16 21:55:43
epoch = 12
{'val_loss': 0.5208917856216431, 'val_accuracy': 0.7597998976707458}
{'accuracy': 0.8820013403892517, 'loss': 0.29068493843078613}
================================================================================2021-01-16 21:56:24
epoch = 13
{'val_loss': 0.5236031413078308, 'val_accuracy': 0.7603999376296997}
{'accuracy': 0.889351487159729, 'loss': 0.2765159606933594}
================================================================================2021-01-16 21:57:04
epoch = 14
{'val_loss': 0.5428195595741272, 'val_accuracy': 0.7572000622749329}
{'accuracy': 0.8975020051002502, 'loss': 0.26261812448501587}
================================================================================2021-01-16 21:57:45
epoch = 15
{'val_loss': 0.5340956449508667, 'val_accuracy': 0.7602002024650574}
{'accuracy': 0.9049026966094971, 'loss': 0.25028231739997864}
================================================================================2021-01-16 21:58:25
epoch = 16
{'val_loss': 0.5380828380584717, 'val_accuracy': 0.7612000107765198}
{'accuracy': 0.9085531234741211, 'loss': 0.23980091512203217}
================================================================================2021-01-16 21:59:05
epoch = 17
{'val_loss': 0.5447139739990234, 'val_accuracy': 0.7638000249862671}
{'accuracy': 0.9168024659156799, 'loss': 0.22760336101055145}
================================================================================2021-01-16 21:59:45
epoch = 18
{'val_loss': 0.5505074858665466, 'val_accuracy': 0.7636001110076904}
{'accuracy': 0.921653687953949, 'loss': 0.21746191382408142}
================================================================================2021-01-16 22:00:26
epoch = 19
{'val_loss': 0.5615255236625671, 'val_accuracy': 0.7634001970291138}
{'accuracy': 0.9263033270835876, 'loss': 0.2077799290418625}
import pandas as pd
history = model.history
dfhistory = pd.DataFrame(history)
dfhistory
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
def plot_metric(dfhistory, metric):
train_metrics = dfhistory[metric]
val_metrics = dfhistory['val_'+metric]
epochs = range(1, len(train_metrics) + 1)
plt.plot(epochs, train_metrics, 'bo--')
plt.plot(epochs, val_metrics, 'ro-')
plt.title('Training and validation '+ metric)
plt.xlabel("Epochs")
plt.ylabel(metric)
plt.legend(["train_"+metric, 'val_'+metric])
plt.show()
plot_metric(dfhistory,"loss")
plot_metric(dfhistory,"accuracy")
# 评估
results = trainer.test(model, test_dataloaders=dl_valid, verbose = False)
print(results[0])
{'val_loss': 0.5056138457655907, 'val_accuracy': 0.7948000040054322}
def predict(model,dl):
model.eval()
result = torch.cat([model.forward(t[0].to(model.device)) for t in dl])
return(result.data)
result = predict(model,dl_valid)
result
tensor([[0.0357],
[0.8699],
[0.3303],
...,
[0.9962],
[0.5566],
[0.0491]])
print(ckpt_cb.best_model_score)
model.load_from_checkpoint(ckpt_cb.best_model_path)
best_net = model.net
torch.save(best_net.state_dict(),"./data/net.pt")
net_clone = Net()
net_clone.load_state_dict(torch.load("./data/net.pt"))
model_clone = Model(net_clone)
trainer = pl.Trainer()
result = trainer.test(model_clone,test_dataloaders=dl_valid, verbose = False)
print(result)
[{'test_loss': 0.4958915710449219, 'test_accuracy': 0.75}]
如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star⭐️,并分享给你的朋友们喔😊!
如果对本书内容理解上有需要进一步和作者交流的地方,欢迎在公众号"算法美食屋"下留言。作者时间和精力有限,会酌情予以回复。
也可以在公众号后台回复关键字:加群,加入读者交流群和大家讨论。