-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
573 lines (477 loc) · 23.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import scipy.sparse as sp
import torch
import torch.nn as nn
import sys
import pickle as pkl
import torch.nn.functional as F
import pickle
import os
from sklearn.svm import SVC
import numpy as np
from sklearn.utils import shuffle
import networkx as nx
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def load_npz_to_sparse_graph(file_name):
with np.load(file_name) as loader:
loader = dict(loader)
adj_matrix = sp.csr_matrix((loader['adj_data'], loader['adj_indices'], loader['adj_indptr']), shape=loader['adj_shape'])
if 'attr_data' in loader:
attr_matrix = sp.csr_matrix((loader['attr_data'], loader['attr_indices'], loader['attr_indptr']), shape=loader['attr_shape'])
elif 'attr_matrix' in loader:
attr_matrix = loader['attr_matrix']
else:
attr_matrix = None
if 'labels_data' in loader:
labels = sp.csr_matrix((loader['labels_data'], loader['labels_indices'], loader['labels_indptr']), shape=loader['labels_shape'])
elif 'labels' in loader:
labels = loader['labels']
else:
labels = None
node_names = loader.get('node_names')
attr_names = loader.get('attr_names')
class_names = loader.get('class_names')
metadata = loader.get('metadata')
return SparseGraph(adj_matrix, attr_matrix, labels, node_names, attr_names, class_names, metadata)
class SparseGraph:
def __init__(self, adj_matrix, attr_matrix=None, labels=None,
node_names=None, attr_names=None, class_names=None, metadata=None):
if sp.isspmatrix(adj_matrix):
adj_matrix = adj_matrix.tocsr().astype(np.float32)
else:
raise ValueError("Adjacency matrix must be in sparse format (got {0} instead)".format(type(adj_matrix)))
if adj_matrix.shape[0] != adj_matrix.shape[1]:
raise ValueError("Dimensions of the adjacency matrix don't agree")
if attr_matrix is not None:
if sp.isspmatrix(attr_matrix):
attr_matrix = attr_matrix.tocsr().astype(np.float32)
elif isinstance(attr_matrix, np.ndarray):
attr_matrix = attr_matrix.astype(np.float32)
else:
raise ValueError("Attribute matrix must be a sp.spmatrix or a np.ndarray (got {0} instead)".format(type(attr_matrix)))
if attr_matrix.shape[0] != adj_matrix.shape[0]:
raise ValueError("Dimensions of the adjacency and attribute matrices don't agree")
if labels is not None:
if labels.shape[0] != adj_matrix.shape[0]:
raise ValueError("Dimensions of the adjacency matrix and the label vector don't agree")
if node_names is not None:
if len(node_names) != adj_matrix.shape[0]:
raise ValueError("Dimensions of the adjacency matrix and the node names don't agree")
if attr_names is not None:
if len(attr_names) != attr_matrix.shape[1]:
raise ValueError("Dimensions of the attribute matrix and the attribute names don't agree")
self.adj_matrix = adj_matrix
self.attr_matrix = attr_matrix
self.labels = labels
self.node_names = node_names
self.attr_names = attr_names
self.class_names = class_names
self.metadata = metadata
def num_nodes(self):
return self.adj_matrix.shape[0]
def num_edges(self):
if self.is_directed():
return int(self.adj_matrix.nnz)
else:
return int(self.adj_matrix.nnz / 2)
def get_neighbors(self, idx):
return self.adj_matrix[idx].indices
def is_directed(self):
return (self.adj_matrix != self.adj_matrix.T).sum() != 0
def to_undirected(self):
if self.is_weighted():
raise ValueError("Convert to unweighted graph first.")
else:
self.adj_matrix = self.adj_matrix + self.adj_matrix.T
self.adj_matrix[self.adj_matrix != 0] = 1
return self
def is_weighted(self):
return np.any(np.unique(self.adj_matrix[self.adj_matrix != 0].A1) != 1)
def to_unweighted(self):
self.adj_matrix.data = np.ones_like(self.adj_matrix.data)
return self
def unpack(self):
return self.adj_matrix, self.attr_matrix, self.labels
def load_data(args):
print('loading dataset: {}'.format(args.dataset))
if args.dataset in ['cora', 'citeseer']:
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("./data/{}/ind.{}.{}".format(args.dataset, args.dataset, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("./data/{}/ind.{}.test.index".format(args.dataset, args.dataset))
test_idx_range = np.sort(test_idx_reorder)
if args.dataset == 'citeseer':
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
labels = np.argmax(labels, 1)
labels = torch.from_numpy(labels).long()
if not args.generative_flag:
features = normalize_features(features)
adj_norm = normalize_adj(adj + sp.eye(adj.shape[0]))
indices_norm = torch.from_numpy(np.stack([adj_norm.tocoo().row, adj_norm.tocoo().col], axis=0).astype(float)).long()
values_norm = torch.from_numpy(adj_norm.tocoo().data.astype(float)).float()
adj_norm = torch.sparse.FloatTensor(indices_norm, values_norm, torch.Size(adj_norm.shape))
indices = torch.from_numpy(np.stack([adj.tocoo().row, adj.tocoo().col], axis=0).astype(float)).long()
values = torch.from_numpy(adj.tocoo().data.astype(float)).float()
adj = torch.sparse.FloatTensor(indices, values, torch.Size(adj.shape))
features = torch.from_numpy(np.array(features.todense())).float()
elif args.dataset in ['amac']:
data = load_npz_to_sparse_graph(os.path.join(os.getcwd(), 'data', 'amac', 'amazon_electronics_computers.npz'))
features = data.attr_matrix.todense()
if not args.generative_flag:
features = normalize_features(features)
features = torch.from_numpy(features).float()
adj = data.adj_matrix
adj = adj + adj.T
adj.data = np.ones_like(adj.data)
adj = adj.tocoo()
adj_norm = normalize_adj(adj + sp.eye(adj.shape[0]))
indices_norm = torch.from_numpy(np.stack([adj_norm.tocoo().row, adj_norm.tocoo().col], axis=0).astype(float)).long()
values_norm = torch.from_numpy(adj_norm.tocoo().data.astype(float)).float()
adj_norm = torch.sparse.FloatTensor(indices_norm, values_norm, torch.Size(adj_norm.shape))
indices = torch.from_numpy(np.stack([adj.tocoo().row, adj.tocoo().col], axis=0).astype(float)).long()
values = torch.from_numpy(adj.data).float()
adj = torch.sparse.FloatTensor(indices, values, torch.Size(adj.shape))
labels = torch.from_numpy(data.labels).long()
elif args.dataset in ['amap']:
data = load_npz_to_sparse_graph(os.path.join(os.getcwd(), 'data', 'amap', 'amazon_electronics_photo.npz'))
features = data.attr_matrix.todense()
if not args.generative_flag:
features = normalize_features(features)
features = torch.from_numpy(features).float()
adj = data.adj_matrix
adj = adj + adj.T
adj.data = np.ones_like(adj.data)
adj = adj.tocoo()
adj_norm = normalize_adj(adj + sp.eye(adj.shape[0]))
indices_norm = torch.from_numpy(np.stack([adj_norm.tocoo().row, adj_norm.tocoo().col], axis=0).astype(float)).long()
values_norm = torch.from_numpy(adj_norm.tocoo().data.astype(float)).float()
adj_norm = torch.sparse.FloatTensor(indices_norm, values_norm, torch.Size(adj_norm.shape))
indices = torch.from_numpy(np.stack([adj.tocoo().row, adj.tocoo().col], axis=0).astype(float)).long()
values = torch.from_numpy(adj.data).float()
adj = torch.sparse.FloatTensor(indices, values, torch.Size(adj.shape))
labels = torch.from_numpy(data.labels).long()
else:
print('Cannot process this dataset!')
raise Exception
pickle.dump(adj.to_dense().numpy(), open(os.path.join(os.getcwd(), 'features', '{}_sp_adj.pkl'.format(args.dataset)), 'wb'))
if args.dataset in ['cora', 'citeseer', 'amap', 'amac']:
pickle.dump(labels.numpy(), open(os.path.join(os.getcwd(), 'data', args.dataset, '{}_labels.pkl'.format(args.dataset)), 'wb'))
return adj, adj_norm, features, labels
def load_generated_features(path):
fts = pkl.load(open(path, 'rb'))
norm_fts = normalize_features(fts)
norm_fts = torch.from_numpy(norm_fts).float()
return norm_fts
def normalize_adj(mx):
rowsum = np.array(mx.sum(1))
r_inv_sqrt = np.power(rowsum, -0.5).flatten()
r_inv_sqrt[np.isinf(r_inv_sqrt)] = 0.
r_mat_inv_sqrt = sp.diags(r_inv_sqrt)
return mx.dot(r_mat_inv_sqrt).transpose().dot(r_mat_inv_sqrt)
def normalize_features(mx):
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def cal_accuracy(train_fts, train_lbls, test_fts, test_lbls):
clf = SVC(gamma='auto')
clf.fit(train_fts, train_lbls)
preds_lbls = clf.predict(test_fts)
acc = accuracy(preds_lbls, test_lbls)
return acc
def RECALL_NDCG(estimated_fts, true_fts, topN=10):
preds = np.argsort(-estimated_fts, axis=1)
preds = preds[:, :topN]
gt = [np.where(true_fts[i, :] != 0)[0] for i in range(true_fts.shape[0])]
recall_list = []
ndcg_list = []
for i in range(preds.shape[0]):
if len(gt[i]) != 0:
if np.sum(estimated_fts[i, :]) != 0:
recall = len(set(preds[i, :]) & set(gt[i])) * 1.0 / len(set(gt[i]))
recall_list.append(recall)
intersec = np.array(list(set(preds[i, :]) & set(gt[i])))
if len(intersec) > 0:
dcg = [np.where(preds[i, :] == ele)[0] for ele in intersec]
dcg = np.sum([1.0 / (np.log2(x + 1 + 1)) for x in dcg])
idcg = np.sum([1.0 / (np.log2(x + 1 + 1)) for x in range(len(gt[i]))])
ndcg = dcg * 1.0 / idcg
else:
ndcg = 0.0
ndcg_list.append(ndcg)
else:
temp_preds = shuffle(np.arange(estimated_fts.shape[1]))[:topN]
recall = len(set(temp_preds) & set(gt[i])) * 1.0 / len(set(gt[i]))
recall_list.append(recall)
intersec = np.array(list(set(temp_preds) & set(gt[i])))
if len(intersec) > 0:
dcg = [np.where(temp_preds == ele)[0] for ele in intersec]
dcg = np.sum([1.0 / (np.log2(x + 1 + 1)) for x in dcg])
idcg = np.sum([1.0 / (np.log2(x + 1 + 1)) for x in range(len(gt[i]))])
ndcg = dcg * 1.0 / idcg
else:
ndcg = 0.0
ndcg_list.append(ndcg)
avg_recall = np.mean(recall_list)
avg_ndcg = np.mean(ndcg_list)
return avg_recall, avg_ndcg
class MLP(nn.Module):
def __init__(self, fts_dim, hidden_dim, output_dim):
super(MLP, self).__init__()
self.fc1 = nn.Linear(fts_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, input_fts):
h1 = F.relu(self.fc1(input_fts))
h2 = self.fc2(h1)
return F.log_softmax(h2, dim=1)
def class_eva(train_fts, train_lbls, test_fts, test_lbls):
test_featured_idx = np.where(test_fts.sum(1) != 0)[0]
test_non_featured_idx = np.where(test_fts.sum(1) == 0)[0]
featured_test_fts = test_fts[test_featured_idx]
featured_test_lbls = test_lbls[test_featured_idx]
non_featured_test_lbls = test_lbls[test_non_featured_idx]
fts_dim = train_fts.shape[1]
hid_dim = 64
n_class = int(max(max(train_lbls), max(test_lbls)) + 1)
is_cuda = torch.cuda.is_available()
model = MLP(fts_dim, hid_dim, n_class)
if is_cuda:
model.cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
featured_test_lbls_arr = featured_test_lbls.copy()
train_fts = torch.from_numpy(train_fts).float()
train_lbls = torch.from_numpy(train_lbls).long()
featured_test_fts = torch.from_numpy(featured_test_fts).float()
featured_test_lbls = torch.from_numpy(featured_test_lbls).long()
if is_cuda:
train_fts = train_fts.cuda()
train_lbls = train_lbls.cuda()
featured_test_fts = featured_test_fts.cuda()
featured_test_lbls = featured_test_lbls.cuda()
acc_list = []
for i in range(1000):
model.train()
optimizer.zero_grad()
outputs = model(train_fts)
loss = F.nll_loss(outputs, train_lbls)
loss.backward()
optimizer.step()
model.eval()
featured_test_outputs = model(featured_test_fts)
test_loss = F.nll_loss(featured_test_outputs, featured_test_lbls)
if is_cuda:
featured_test_outputs = featured_test_outputs.data.cpu().numpy()
else:
featured_test_outputs = featured_test_outputs.data.numpy()
featured_preds = np.argmax(featured_test_outputs, axis=1)
random_preds = np.random.choice(n_class, len(test_non_featured_idx))
preds = np.concatenate((featured_preds, random_preds))
lbls = np.concatenate((featured_test_lbls_arr, non_featured_test_lbls))
acc = np.sum(preds == lbls) * 1.0 / len(lbls)
acc_list.append(acc)
print('Epoch: {}, train loss: {:.4f}, test loss: {:.4f}, test acc: {:.4f}'.format(i, loss.item(), test_loss.item(), acc))
print('Best epoch:{}, best acc: {:.4f}'.format(np.argmax(acc_list), np.max(acc_list)))
return np.max(acc_list)
def observed_data_process(args, adj, train_fts_idx, true_features):
adj_train = sp.csr_matrix(adj.to_dense()[train_fts_idx, :][:, train_fts_idx])
adj_train = normalize_adj(adj_train + sp.eye(adj_train.shape[0]))
indices = torch.from_numpy(np.stack([adj_train.tocoo().row, adj_train.tocoo().col], axis=0).astype(float)).long()
values = torch.from_numpy(adj_train.tocoo().data.astype(float)).float()
adj_train = torch.sparse.FloatTensor(indices, values, torch.Size(adj_train.shape))
X_o = true_features[train_fts_idx]
if args.cuda:
X_o = X_o.cuda()
adj_train = adj_train.cuda()
else:
X_o = X_o
adj_train = adj_train
return X_o, adj_train
def adj_loss_process(args, norm_adj):
n_pos = len(norm_adj._values())
norm_adj_arr = norm_adj.to_dense().numpy()
if args.cuda:
pos_indices = norm_adj._indices().cpu().numpy()
else:
pos_indices = norm_adj._indices().numpy()
pos_indices = list(zip(pos_indices[0, :], pos_indices[1, :]))
if not os.path.exists(os.path.join(os.getcwd(), 'data', args.dataset, '{}_{}_neg_indices.pkl'.format(args.dataset, args.train_fts_ratio))):
zero_indices = np.where(norm_adj_arr == 0)
neg_indices = list(zip(zero_indices[0], zero_indices[1]))
neg_indices = shuffle(neg_indices, random_state=args.seed)[:args.neg_times * n_pos]
pickle.dump(neg_indices, open(os.path.join(os.getcwd(), 'data', args.dataset, '{}_{}_neg_indices.pkl'.format(args.dataset, args.train_fts_ratio)), 'wb'))
else:
neg_indices = pickle.load(open(os.path.join(os.getcwd(), 'data', args.dataset, '{}_{}_neg_indices.pkl'.format(args.dataset, args.train_fts_ratio)), 'rb'))
if args.cuda:
neg_indices = torch.LongTensor(neg_indices).cuda()
neg_values = torch.zeros(size=[len(neg_indices)]).cuda()
pos_values = torch.ones(size=[len(pos_indices)]).cuda()
pos_indices = torch.LongTensor(pos_indices).cuda()
else:
neg_indices = torch.LongTensor(neg_indices)
neg_values = torch.zeros(size=[len(neg_indices)])
pos_values = torch.ones(size=[len(pos_indices)])
pos_indices = torch.LongTensor(pos_indices)
return neg_indices, neg_values, pos_values, pos_indices
def data_split(args, adj):
shuffled_nodes = shuffle(np.arange(adj.shape[0]), random_state=args.seed)
train_fts_idx = torch.from_numpy(shuffled_nodes[:int(args.train_fts_ratio * adj.shape[0])]).long()
vali_fts_idx = torch.from_numpy(
shuffled_nodes[
int(args.train_fts_ratio * adj.shape[0]):int((args.train_fts_ratio + 0.1) * adj.shape[0])]).long()
test_fts_idx = torch.from_numpy(shuffled_nodes[int((args.train_fts_ratio + 0.1) * adj.shape[0]):]).long()
vali_test_fts_idx = torch.from_numpy(shuffled_nodes[int(args.train_fts_ratio * adj.shape[0]):]).long()
print("Dataset loading done!")
pickle.dump(test_fts_idx,
open(os.path.join(os.getcwd(), 'features', '{}_{}_test_fts_idx.pkl'.format(
args.dataset, args.train_fts_ratio)), 'wb'))
return train_fts_idx, vali_fts_idx, test_fts_idx, vali_test_fts_idx
def loss_weight(args, true_features, train_fts_idx):
if args.dataset in ['cora', 'citeseer', 'amac', 'amap']:
fts_loss_func = fts_loss_discrete
pos_weight = torch.sum(true_features[train_fts_idx] == 0.0).item() / (
torch.sum(true_features[train_fts_idx] != 0.0).item())
else:
fts_loss_func = None
pos_weight = None
print("Error!")
if args.cuda:
pos_weight_tensor = torch.from_numpy(np.array([pos_weight])).float().cuda()
neg_weight_tensor = torch.from_numpy(np.array([1.0])).float().cuda()
else:
pos_weight_tensor = torch.from_numpy(np.array([pos_weight])).float()
neg_weight_tensor = torch.from_numpy(np.array([1.0])).float()
return fts_loss_func, pos_weight_tensor, neg_weight_tensor
def input_matrix(args, adj, norm_adj, true_features):
indices = torch.from_numpy(np.stack([np.arange(adj.shape[0]), np.arange(adj.shape[0])], axis=0)).long()
values = torch.from_numpy(np.ones(indices.shape[1])).float()
diag_fts = torch.sparse.FloatTensor(indices, values, torch.Size([adj.shape[0], adj.shape[0]]))
if args.cuda:
A = norm_adj.cuda()
D = diag_fts.to_dense().cuda()
true_features = true_features.cuda()
else:
A = norm_adj
D = diag_fts.to_dense()
true_features = true_features
A_temp = A
return A, D, true_features, A_temp
def model_optimizer(args, Model, optim):
model = Model(n_nodes=args.n_nodes,
n_fts=args.feat,
n_hid1=args.hidden1,
n_hid2=args.hidden2,
dropout=args.dropout,
args=args)
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr,
weight_decay=args.weight_decay)
if args.cuda:
model = model.cuda()
else:
model = model
return model, optimizer
def graph_loss_func(graph_recon=None, pos_indices=None, neg_indices=None, pos_values=None, neg_values=None):
BCE = torch.nn.BCEWithLogitsLoss(reduction='none')
loss_indices = torch.cat([pos_indices, neg_indices], dim=0)
preds_logits = graph_recon[loss_indices[:, 0], loss_indices[:, 1]]
labels = torch.cat([pos_values, neg_values])
loss_bce = torch.mean(BCE(preds_logits, labels))
return loss_bce
def fts_loss_discrete(recon_x=None, x=None, p_weight=None, n_weight=None):
BCE = torch.nn.BCEWithLogitsLoss(reduction='none')
output_fts_reshape = torch.reshape(recon_x, shape=[-1])
out_fts_lbls_reshape = torch.reshape(x, shape=[-1])
weight_mask = torch.where(out_fts_lbls_reshape != 0.0, p_weight, n_weight)
loss_bce = torch.mean(BCE(output_fts_reshape, out_fts_lbls_reshape) * weight_mask)
return loss_bce
def train_loss(args, X_hat, A_hat, T, fts_loss_func, train_fts_idx,
pos_weight_tensor, neg_weight_tensor, pos_indices, neg_indices, pos_values, neg_values):
L_x = args.lambda_xr * fts_loss_func(X_hat[train_fts_idx], T[train_fts_idx],
pos_weight_tensor, neg_weight_tensor)
L_a = args.lambda_ar * graph_loss_func(graph_recon=A_hat, pos_indices=pos_indices, neg_indices=neg_indices,
pos_values=pos_values, neg_values=neg_values)
return L_x+L_a
def adj_update(args, A, Z_f, cosine_similarity):
A_f = normalize_adj(
sp.csr_matrix(cosine_similarity(Z_f.data.cpu().numpy(), Z_f.data.cpu().numpy())).tocoo())
indices = torch.from_numpy(np.stack([A_f.tocoo().row, A_f.tocoo().col], axis=0).astype(float)).long()
values = torch.from_numpy(A_f.tocoo().data.astype(float)).float()
A_f = torch.sparse.FloatTensor(indices, values, torch.Size(A_f.shape))
A_temp = (0.5 * A.cpu() + 0.5 * A_f).to_dense()
if args.cuda:
A_temp = A_temp.cuda()
else:
A_temp = A_temp
return A_temp
def save_generative_fts(args, gene_X, T, train_fts_idx, vali_fts_idx, test_fts_idx):
if args.dataset in ['cora', 'citeseer', 'amap', 'amac']:
output_fts = 1.0 / (1.0 + np.exp(-gene_X))
else:
output_fts = None
print("Error!")
if args.cuda:
train_fts = T[train_fts_idx].data.cpu().numpy()
vali_fts = T[vali_fts_idx].data.cpu().numpy()
train_fts_idx_arr = train_fts_idx.cpu().numpy()
vali_fts_idx_arr = vali_fts_idx.cpu().numpy()
test_fts_idx_arr = test_fts_idx.cpu().numpy()
else:
train_fts = T[train_fts_idx].data.numpy()
vali_fts = T[vali_fts_idx].data.numpy()
train_fts_idx_arr = train_fts_idx.numpy()
vali_fts_idx_arr = vali_fts_idx.numpy()
test_fts_idx_arr = test_fts_idx.numpy()
save_fts = np.zeros(shape=T.shape)
save_fts[train_fts_idx_arr] = train_fts
save_fts[vali_fts_idx_arr] = vali_fts
save_fts[test_fts_idx_arr] = output_fts
pickle.dump(save_fts, open(os.path.join(os.getcwd(), 'features', 'final_gene_fts_train_ratio_{}_{}.pkl'.format(args.dataset, args.train_fts_ratio, )), 'wb'))
def test_model(args, model, T, X_o, A_o, D, A, A_temp, train_id, vali_id, vali_test_id, test_id):
print('Loading well-trained model'.format(args.epoch))
model.load_state_dict(
torch.load(os.path.join(os.getcwd(), 'model', 'final_model_{}_{}.pkl'.format(args.dataset, args.train_fts_ratio))))
model.eval()
X_hat, _, _ = model(X_o, A_o, D, A, A_temp, train_id, vali_test_id)
gene_fts = X_hat[test_id]
print('Profiling performance on {}:'.format(args.dataset))
if args.cuda:
gene_fts = gene_fts.data.cpu().numpy()
gt_fts = T[test_id].cpu().numpy()
else:
gene_fts = gene_fts.data.numpy()
gt_fts = T[test_id].numpy()
for topK in args.topK_list:
avg_recall, avg_ndcg = RECALL_NDCG(gene_fts, gt_fts, topN=topK)
print('tpoK: {}, recall: {}, ndcg: {}'.format(topK, avg_recall, avg_ndcg))
save_generative_fts(args, gene_fts, T, train_id, vali_id, test_id)
if args.cuda:
T = T.cpu().data.numpy()
else:
T = T.data.numpy()
pickle.dump(T, open(os.path.join(os.getcwd(), 'features', '{}_true_features.pkl'.format(args.dataset)), 'wb'))