-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathapp.py
494 lines (433 loc) · 18 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import argparse
import hashlib
import json
import os
import time
from threading import Thread
import logging
import gradio as gr
import torch
from tinychart.model.builder import load_pretrained_model
from tinychart.mm_utils import (
KeywordsStoppingCriteria,
load_image_from_base64,
process_images,
tokenizer_image_token,
get_model_name_from_path,
)
from PIL import Image
from io import BytesIO
import base64
import torch
from transformers import StoppingCriteria
from tinychart.constants import (
DEFAULT_IM_END_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from tinychart.conversation import SeparatorStyle, conv_templates, default_conversation
from tinychart.eval.eval_metric import parse_model_output, evaluate_cmds
from transformers import TextIteratorStreamer
from pathlib import Path
DEFAULT_MODEL_PATH = "mPLUG/TinyChart-3B-768"
DEFAULT_MODEL_NAME = "TinyChart-3B-768"
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
title_markdown = """
# TinyChart: Efficient Chart Understanding with Visual Token Merging and Program-of-Thoughts Learning
🔗 [[Code](https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/TinyChart)] | 📚 [[Paper](https://arxiv.org/abs/2404.16635)]
**Note:**
1. Currently, this demo only supports English chart understanding and may not work well with other languages.
2. To use Program-of-Thoughts answer, please append "Answer with detailed steps." to your question.
"""
tos_markdown = """
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
"""
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None)
def clear_history():
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None)
def add_text(state, text, image, image_process_mode):
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None)
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if "<image>" not in text:
# text = '<Image><image></Image>' + text
# text = text + "\n<image>"
text = "<image>\n"+text
text = (text, image, image_process_mode)
if len(state.get_images(return_pil=True)) > 0:
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None)
def load_demo():
state = default_conversation.copy()
return state
def is_float(value):
try:
float(value)
return True
except ValueError:
return False
@torch.inference_mode()
def get_response(params):
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError(
"Number of images does not match number of <image> tokens in prompt"
)
images = [load_image_from_base64(image) for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [
image.to(model.device, dtype=torch.float16) for image in images
]
else:
images = images.to(model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
if getattr(model.config, "mm_use_im_start_end", False):
replace_token = (
DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
if hasattr(model.get_vision_tower().config, "tome_r"):
num_image_tokens = (
prompt.count(replace_token) * model.get_vision_tower().num_patches - 26 * model.get_vision_tower().config.tome_r
)
else:
num_image_tokens = (
prompt.count(replace_token) * model.get_vision_tower().num_patches
)
else:
images = None
image_args = {"images": images}
else:
images = None
image_args = {}
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, "max_position_embeddings", 2048)
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
do_sample = True if temperature > 0.001 else False
logger.info(prompt)
input_ids = (
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.to(model.device)
)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15
)
max_new_tokens = min(
max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens
)
if max_new_tokens < 1:
yield json.dumps(
{
"text": ori_prompt
+ "Exceeds max token length. Please start a new conversation, thanks.",
"error_code": 0,
}
).encode() + b"\0"
return
# local inference
# BUG: If stopping_criteria is set, an error occur:
# RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 0
generate_kwargs = dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
# stopping_criteria=[stopping_criteria],
use_cache=True,
**image_args,
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
logger.debug(ori_prompt)
logger.debug(generate_kwargs)
generated_text = ori_prompt
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[: -len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
if '<step>' in generated_text and '</step>' in generated_text and '<comment>' in generated_text and '</comment>' in generated_text:
program = generated_text
program = '<comment>#' + program.split('ASSISTANT: <comment>#')[-1]
print(program)
try:
execuate_result = evaluate_cmds(parse_model_output(program))
if is_float(execuate_result):
execuate_result = round(float(execuate_result), 4)
generated_text += f'\n\nExecute result: {execuate_result}'
yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0"
except:
generated_text += f'\n\nIt seems the execution of the above code encounters bugs. I\'m trying to answer this question directly...'
ori_generated_text = generated_text + '\nDirect Answer: '
direct_prompt = ori_prompt.replace(' Answer with detailed steps.', '')
direct_input_ids = (
tokenizer_image_token(direct_prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.to(model.device)
)
generate_kwargs = dict(
inputs=direct_input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
**image_args,
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
generated_text = ori_generated_text
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[: -len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
def http_bot(state, temperature, top_p, max_new_tokens):
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot())
return
if len(state.messages) == state.offset + 2:
# First round of conversation
template_name = 'phi'
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
# Make requests
# pload = {"model": model_name, "prompt": prompt, "temperature": float(temperature), "top_p": float(top_p),
# "max_new_tokens": min(int(max_new_tokens), 1536), "stop": (
# state.sep
# if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
# else state.sep2
# ), "images": state.get_images()}
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": (
state.sep
if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT]
else state.sep2
), "images": state.get_images()}
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot())
# for stream
output = get_response(pload)
for chunk in output:
if chunk:
data = json.loads(chunk.decode().replace('\x00',''))
if data["error_code"] == 0:
output = data["text"][len(prompt) :].strip()
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot())
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot())
return
time.sleep(0.03)
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot())
def build_demo():
textbox = gr.Textbox(
show_label=False, placeholder="Enter text and press ENTER", container=False
)
with gr.Blocks(title="TinyChart", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=5):
with gr.Row(elem_id="Model ID"):
gr.Dropdown(
choices=[DEFAULT_MODEL_NAME],
value=DEFAULT_MODEL_NAME,
interactive=True,
label="Model ID",
container=False,
)
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image",
visible=False,
)
cur_dir = Path(__file__).parent
gr.Examples(
examples=[
[
f"{cur_dir}/images/market.png",
"What is the highest number of companies in the domestic market? Answer with detailed steps.",
],
[
f"{cur_dir}/images/college.png",
"What is the difference between Asians and Whites degree distribution? Answer with detailed steps."
],
[
f"{cur_dir}/images/immigrants.png",
"How many immigrants are there in 1931?",
],
[
f"{cur_dir}/images/sails.png",
"By how much percentage wholesale is less than retail? Answer with detailed steps."
],
[
f"{cur_dir}/images/diseases.png",
"Is the median value of all the bars greater than 30? Answer with detailed steps.",
],
[
f"{cur_dir}/images/economy.png",
"Which team has higher economy in 28 min?"
],
[
f"{cur_dir}/images/workers.png",
"Generate underlying data table for the chart."
],
[
f"{cur_dir}/images/sports.png",
"Create a brief summarization or extract key insights based on the chart image."
],
[
f"{cur_dir}/images/albums.png",
"Redraw the chart with Python code."
]
],
inputs=[imagebox, textbox],
)
with gr.Accordion("Parameters", open=False) as _:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=0,
maximum=1024,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(elem_id="chatbot", label="Chatbot", height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as _:
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear", interactive=True)
gr.Markdown(tos_markdown)
regenerate_btn.click(
regenerate,
[state, image_process_mode],
[state, chatbot, textbox, imagebox],
queue=False,
).then(
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
)
clear_btn.click(
clear_history, None, [state, chatbot, textbox, imagebox], queue=False
)
textbox.submit(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox],
queue=False,
).then(
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
)
submit_btn.click(
add_text,
[state, textbox, imagebox, image_process_mode],
[state, chatbot, textbox, imagebox],
queue=False,
).then(
http_bot, [state, temperature, top_p, max_output_tokens], [state, chatbot]
)
demo.load(load_demo, None, [state], queue=False)
return demo
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=None)
parser.add_argument("--share", default=None)
parser.add_argument("--model-path", type=str, default=DEFAULT_MODEL_PATH)
parser.add_argument("--model-name", type=str, default=DEFAULT_MODEL_NAME)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
logger.info(gr.__version__)
args = parse_args()
model_name = args.model_name
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=args.model_path,
model_base=None,
model_name=args.model_name,
load_4bit=args.load_4bit,
load_8bit=args.load_8bit
)
demo = build_demo()
demo.queue()
demo.launch(server_name=args.host, server_port=args.port, share=args.share)