From f26bf8448ca80a7c74a96faffa559aa40508e317 Mon Sep 17 00:00:00 2001 From: Daniel Tinsley Date: Sun, 9 Nov 2025 13:47:02 -0600 Subject: [PATCH] Fix typos --- .../digInComputationsForGraphingFunctions.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/computationsForGraphingFunctions/digInComputationsForGraphingFunctions.tex b/computationsForGraphingFunctions/digInComputationsForGraphingFunctions.tex index f221891..a72676e 100644 --- a/computationsForGraphingFunctions/digInComputationsForGraphingFunctions.tex +++ b/computationsForGraphingFunctions/digInComputationsForGraphingFunctions.tex @@ -198,7 +198,7 @@ This is only a \textbf{possible} inflection point; we still have to check whether concavity changes there.\\ We have that $f''(x)<0$ for $x<\frac{1}{2}$, therefore -$f$ is concave \wordChoice{\choice{up} \choice[correct]{down}}on $\left(-\infty,\frac{1}{2}\right)$.\\ +$f$ is concave \wordChoice{\choice{up} \choice[correct]{down}} on $\left(-\infty,\frac{1}{2}\right)$.\\ Similarly, $f''(x)>0$ for $x>\frac{1}{2}$, therefore $f$ is concave \wordChoice{\choice[correct]{up} \choice{down}} on $\left(\frac{1}{2},\infty\right)$. @@ -475,12 +475,12 @@ On $(-\infty, 0)$, $f''$ has one zero, namely $x = \answer[given]{-2}$. The sign of $f''$ changes from \wordChoice{\choice{positive to negative} \choice[correct]{negative to - positive}]} at this point. + positive}} at this point. On $(0, \infty)$, $f''$ has one zero, namely $x = \answer[given]{\frac{1}{\sqrt{6}}}$. The sign of $f''$ changes from \wordChoice{\choice{positive to - negative} \choice[correct]{negative to positive}]} through + negative} \choice[correct]{negative to positive}} through this point. \begin{image}