forked from lucasjinreal/yolov7_d2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_lazyconfig.py
226 lines (193 loc) · 7.53 KB
/
demo_lazyconfig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import glob
import multiprocessing as mp
import os
import time
import cv2
from numpy.core.fromnumeric import sort
import tqdm
import torch
import time
import random
from detectron2.data.detection_utils import read_image
from detectron2.utils.logger import setup_logger
import numpy as np
from detectron2.data.catalog import MetadataCatalog
from detectron2.config import get_cfg
from detectron2.modeling import build_model
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
from detectron2.engine import default_setup
from yolov7.config import add_yolo_config
from alfred.vis.image.mask import label2color_mask, vis_bitmasks, vis_bitmasks_with_classes
from alfred.vis.image.seg import vis_semantic_seg
from alfred.vis.image.det import visualize_det_cv2_part, visualize_det_cv2_fancy
"""
Lazyconfig version of demo
"""
# constants
WINDOW_NAME = "COCO detections"
coco_stuff_colors = MetadataCatalog.get('coco_2017_val_panoptic_separated').stuff_colors
coco_stuff_colors[40] = [86, 150, 252] # sky
class DefaultPredictor:
def __init__(self, cfg):
self.model = instantiate(cfg.model)
print(cfg.train.device)
self.model.to(cfg.train.device)
self.model.eval()
checkpointer = DetectionCheckpointer(self.model)
checkpointer.load(cfg.train.init_checkpoint)
self.aug = T.ResizeShortestEdge(short_edge_length=800, max_size=1333)
# self.aug = T.ResizeShortestEdge(short_edge_length=2000, max_size=3333)
self.input_format = cfg.model.input_format
assert self.input_format in ["RGB", "BGR"], self.input_format
def __call__(self, original_image):
with torch.no_grad():
if self.input_format == "RGB":
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = self.aug.get_transform(
original_image).apply_image(original_image)
print('image after transform: ', image.shape)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
tic = time.time()
predictions = self.model([inputs])[0]
c = time.time() - tic
print('cost: {}, fps: {}'.format(c, 1/c))
return predictions
q
def setup_cfg(cfg, args):
# load config from file and command-line arguments
# only for 2 stage
cfg.model.roi_heads.box_predictor.test_score_thresh = 0.56
cfg.model.roi_heads.box_predictor.test_nms_thresh = 0.65
# cfg.test.detections_per_img = 100
# cfg.INPUT.MIN_SIZE_TEST = 672 # 90ms
# cfg.INPUT.MAX_SIZE_TEST = 768 # 90ms
# # cfg.INPUT.MIN_SIZE_TEST = 512 # 70ms
# # cfg.INPUT.MIN_SIZE_TEST = 1080 # 40ms
# # cfg.INPUT.MAX_SIZE_TEST = 512 # 40ms
# # cfg.INPUT.MAX_SIZE_TEST = 1080 # 70ms
# cfg.freeze()
return cfg
def get_parser():
parser = argparse.ArgumentParser(
description="Detectron2 demo for builtin configs")
parser.add_argument(
"--config-file",
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--webcam", action="store_true",
help="Take inputs from webcam.")
parser.add_argument("--video-input", help="Path to video file.")
parser.add_argument(
"--input",
# nargs="+",
help="A list of space separated input images; "
"or a single glob pattern such as 'directory/*.jpg'",
)
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
'-c', "--confidence-threshold",
type=float,
default=0.21,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
'-n', "--nms-threshold",
type=float,
default=0.6,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
return parser
def vis_res_fast(res, img, meta, colors):
ins = res['instances']
if 'sem_seg' in res.keys():
seg = res['sem_seg']
seg = seg.argmax(dim=0)
seg = seg.cpu().numpy()
print(seg.shape)
img, color_seg = vis_semantic_seg(img, seg, override_colormap=coco_stuff_colors)
bboxes = ins.pred_boxes.tensor.cpu().numpy()
scores = ins.scores.cpu().numpy()
clss = ins.pred_classes.cpu().numpy()
if ins.has('pred_masks'):
bit_masks = ins.pred_masks
# img = vis_bitmasks_with_classes(img, clss, bit_masks)
img = vis_bitmasks_with_classes(
img, clss, bit_masks, force_colors=colors, mask_border_color=(255, 255, 255), thickness=2)
# print('img shape: ', img.shape)
thickness = 1
font_scale = 0.3
img = visualize_det_cv2_part(
img, scores, clss, bboxes, force_color=colors, line_thickness=thickness, font_scale=font_scale)
# img = cv2.addWeighted(img, 0.9, m, 0.6, 0.9)
return img
if __name__ == "__main__":
# mp.set_start_method("spawn", force=True)
# setup_logger(name="fvcore")
# logger = setup_logger()
# logger.info("Arguments: " + str(args))
args = get_parser().parse_args()
cfg = LazyConfig.load(args.config_file)
cfg = LazyConfig.apply_overrides(cfg, args.opts)
default_setup(cfg, args)
setup_cfg(cfg, args)
metadata = MetadataCatalog.get(cfg.dataloader.test.dataset.names)
predictor = DefaultPredictor(cfg)
colors = [[random.randint(0, 255) for _ in range(3)]
for _ in range(100)]
if args.input:
if os.path.isdir(args.input):
imgs = glob.glob(os.path.join(args.input, '*.jpg'))
imgs = sorted(imgs)
for path in imgs:
# use PIL, to be consistent with evaluation
img = cv2.imread(path)
print('ori img shape: ', img.shape)
res = predictor(img)
res = vis_res_fast(res, img, metadata, colors)
# cv2.imshow('frame', res)
cv2.imshow('frame', res)
if cv2.waitKey(0) & 0xFF == ord('q'):
break
else:
img = cv2.imread(args.input)
res = predictor(img)
res = vis_res_fast(res, img, metadata, colors)
# cv2.imshow('frame', res)
cv2.imshow('frame', res)
cv2.waitKey(0)
elif args.webcam:
print('Not supported.')
elif args.video_input:
video = cv2.VideoCapture(args.video_input)
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames_per_second = video.get(cv2.CAP_PROP_FPS)
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
basename = os.path.basename(args.video_input)
while(video.isOpened()):
ret, frame = video.read()
# frame = cv2.resize(frame, (640, 640))
res = predictor(frame)
res = vis_res_fast(res, frame, metadata, colors)
# cv2.imshow('frame', res)
cv2.imshow('frame', res)
if cv2.waitKey(1) & 0xFF == ord('q'):
break