-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathRFFL_run.py
458 lines (333 loc) · 15.4 KB
/
RFFL_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
from os.path import join as oj
import sys
import json
import copy
from copy import deepcopy as dcopy
import time
import datetime
import random
from collections import defaultdict
from itertools import product
import pickle
import numpy as np
import pandas as pd
import argparse
import torch
from torch import nn, optim
from torch.linalg import norm
from torchtext.data import Batch
import torch.nn.functional as F
from utils.Data_Prepper import Data_Prepper
from utils.arguments import mnist_args, cifar_cnn_args, mr_args, sst_args
from utils.utils import compute_grad_update, add_update_to_model, add_gradient_updates,\
flatten, unflatten, train_model, evaluate, cosine_similarity, mask_grad_update_by_order
parser = argparse.ArgumentParser(description='Process which dataset to run')
parser.add_argument('-d', '--dataset', help='Dataset name', type=str, required=True)
parser.add_argument('-N', '--participants', help='The number of participants', type=int, default=-1)
# The coefficient to calculate beta = threshold * (1.0/N).
parser.add_argument('-rth', '--threshold', help='Reputation threshold coefficient.', type=float, default=1.0/3.0)
# adversary information
parser.add_argument('-A', '--adversaries', help='The number of adversaries', type=int, default=0)
# five types of attacks: fr - free rider; lf - label-flipping; re - rescaling; vi - value inverting; sr - sign-randomizing;
parser.add_argument('-atk', '--adversary_attack', help='The type of adversaries', type=str, default='fr', choices=['lf', 're', 'vi', 'sr', 'fr', 'all'])
# by default reputation is enabled, i.e., True
parser.add_argument('-nr', '--no-reputation', dest='reputation', help='Whether to use reputation mechanism: calculating cosine based reputation, and use it for aggregation.', action='store_false')
parser.add_argument('-r','--reputation', dest='reputation', help='Whether to use reputation mechanism: calculating cosine based reputation, and use it for aggregation.', action='store_true')
# by default sparsify is enabled, i.e., True
parser.add_argument('-ns', '--no-sparsify', dest='sparsify', help='Whether to use sparsification: the sparsification weight is reputation (if available), or the local dataset weights.', action='store_false')
parser.add_argument('-s','--sparsify', dest='sparsify', help='Whether to use sparsification: the sparsification weight is reputation (if available), or the local dataset weights.', action='store_true')
parser.add_argument('-cuda', dest='cuda', help='Use cuda if available.', action='store_true')
parser.add_argument('-nocuda', dest='cuda', help='Not to use cuda even if available.', action='store_false')
cmd_args = parser.parse_args()
print(cmd_args)
use_reputation = cmd_args.reputation
use_sparsify = cmd_args.sparsify
N = cmd_args.participants
A = cmd_args.adversaries
atk = cmd_args.adversary_attack
threshold = cmd_args.threshold
R_set = list(range(N+A))
if torch.cuda.is_available() and cmd_args.cuda:
device = torch.device('cuda')
else:
device = torch.device('cpu')
if cmd_args.dataset == 'mnist':
args = copy.deepcopy(mnist_args)
if N > 0:
participant_rounds = [[N, N*600]]
else:
participant_rounds = [[5, 3000], [10, 6000], [20, 12000]]
splits = ['uniform', 'classimbalance', 'powerlaw']
args['rounds'] = 100
args['E'] = 3
elif cmd_args.dataset == 'cifar10':
args = copy.deepcopy(cifar_cnn_args)
participant_rounds = [[10, 20000]]
splits = ['classimbalance', 'powerlaw', 'uniform']
args['rounds'] = 200
args['E'] = 3
# only run with N=5
elif cmd_args.dataset == 'sst':
args = copy.deepcopy(sst_args)
participant_rounds = [[5, 8000]]
splits = ['powerlaw']
args['rounds'] = 200
args['E'] = 3
# only run with N=5
elif cmd_args.dataset == 'mr':
args = copy.deepcopy(mr_args)
participant_rounds = [[5, 8000]]
splits = ['powerlaw']
args['rounds'] = 200
args['E'] = 3
E = args['E']
for n_participants, sample_size_cap in participant_rounds:
args['n_participants'] = n_participants
args['sample_size_cap'] = sample_size_cap
# args['momentum'] = 1.5 / n_participants
if use_sparsify:
download_proportions = [0.2, 0.4, 0.6, 1]
else:
download_proportions = [1]
if cmd_args.adversary_attack == 'all':
atks = ['lf', 're', 'vi', 'sr', 'fr']
else:
atks = [cmd_args.adversary_attack]
for atk in atks:
args['attack'] = atk
args['n_adversaries'] = A
for split in splits:
args['split'] = split #powerlaw , classimbalance
optimizer_fn = args['optimizer_fn']
loss_fn = args['loss_fn']
print(args)
print("Data Split information for honest participants:")
data_prepper = Data_Prepper(
args['dataset'], train_batch_size=args['batch_size'], n_participants=args['n_participants'], sample_size_cap=args['sample_size_cap'],
train_val_split_ratio=args['train_val_split_ratio'], device=device, args_dict=args)
valid_loader = data_prepper.get_valid_loader()
test_loader = data_prepper.get_test_loader()
train_loaders = data_prepper.get_train_loaders(args['n_participants'], args['split'])
shard_sizes = data_prepper.shard_sizes
adv_loaders = []
if A > 0:
print("Data Split information for adversaries:")
# adversarial loaders follows the uniform split, and each has 600 examples
adv_data_prepper = Data_Prepper(
args['dataset'], train_batch_size=args['batch_size'], n_participants=A, sample_size_cap= 600 * A,
train_val_split_ratio=args['train_val_split_ratio'], device=device, args_dict=args)
adv_loaders = adv_data_prepper.get_train_loaders(A, 'uniform')
shard_sizes += adv_data_prepper.shard_sizes
shard_sizes = torch.tensor(shard_sizes).float()
relative_shard_sizes = torch.div(shard_sizes, torch.sum(shard_sizes))
print("Number of honest participants: {}. Number of adversaries: {}, type: {}.".format(N, A, atk))
print("Shard sizes are: ", shard_sizes.tolist())
if args['dataset'] in ['mr', 'sst']:
server_model = args['model_fn'](args=data_prepper.args).to(device)
else:
server_model = args['model_fn']().to(device)
D = sum([p.numel() for p in server_model.parameters()])
# ---- init honest participants ----
participant_models, participant_optimizers, participant_schedulers = [], [], []
for i in range(N):
model = copy.deepcopy(server_model)
optimizer = optimizer_fn(model.parameters(), lr=args['lr'])
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = args['lr_decay'])
participant_models.append(model)
participant_optimizers.append(optimizer)
participant_schedulers.append(scheduler)
# ---- init adversaries ----
adv_models, adv_optimizers, adv_schedulers = [], [], []
for i in range(A):
model = copy.deepcopy(server_model)
optimizer = optimizer_fn(model.parameters(), lr=args['lr'])
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma = args['lr_decay'])
adv_models.append(model)
adv_optimizers.append(optimizer)
adv_schedulers.append(scheduler)
rs = torch.zeros(N+A, device=device)
past_phis = []
adv_lf_perfs = defaultdict(list) # only used for label-flipping adversaries
valid_perfs = defaultdict(list) # validation performance results
local_perfs = defaultdict(list) # local training dataset performance results
rs_dict = []
r_threshold = []
qs_dict = []
# ---- FL begins ----
for _round in range(args['rounds']):
gradients = []
# ---- Adversaries if A != 0----
for i in range(A):
loader = adv_loaders[i]
model = adv_models[i]
optimizer = adv_optimizers[i]
scheduler = adv_schedulers[i]
if atk == 'fr':
adv_grad = []
for param in model.parameters():
adv_grad.append( (torch.rand(param.size()) * 2 -1).to(device) )
# torch.from_numpy(np.random.choice([-1, 1], size=param.shape)).to(device) )
elif atk == 'lf':
model_before = dcopy(model)
for epoch in range(E):
for i, batch in enumerate(loader):
if isinstance(batch, Batch):
batch_data, batch_target = batch.text, batch.label
batch_data = batch_data.permute(1, 0)
else:
batch_data, batch_target = batch[0], batch[1]
batch_data, batch_target = batch_data.to(device), batch_target.to(device)
from_to = ['1', '7']
# self.adversary.split('_')[1].split('-')
from_target, to_target = int(from_to[0]), int(from_to[1])
for i, target in enumerate(batch_target):
batch_target[i] = to_target if target == from_target else target
optimizer.zero_grad()
loss_fn(model(batch_data), batch_target).backward()
optimizer.step()
scheduler.step()
adv_grad = compute_grad_update(model_before, model)
elif atk in ['sr', 'vi', 're']:
model_before = dcopy(model)
model = train_model(model, loader, loss_fn, optimizer, device=device, E=E, scheduler=scheduler)
adv_grad = compute_grad_update(model_before, model)
if atk == 're':
noise = 10
# multiply by a random noise from [-noise, noise] of the elements in gradient, element-wise
for grad in adv_grad:
grad.data *= (noise * 2) * torch.rand(size=grad.shape, device=grad.device) - noise
grad.data *= noise
elif atk == 'sr':
# randomly flip the signs of the elements in gradient, element-wise
for grad in adv_grad:
grad.data *= torch.from_numpy(np.random.choice([-1, 1], size=grad.shape)).to(grad.device)
# (torch.rand(size=grad.shape, device=grad.device) - 0.5).sign()
elif atk == 'vi':
# randomly flip inverts the elements in gradient, element-wise
for grad in adv_grad:
random_bits = torch.rand(size=grad.shape, device=grad.device) < 0.5
grad.data[random_bits] = (grad.data[random_bits] + 1e-10).pow_(-1)
flattened = flatten(adv_grad)
norm_value = norm(flattened) + 1e-7 # to prevent division by zero
if norm_value > args['Gamma']:
adv_grad = unflatten(torch.multiply(torch.tensor(args['Gamma']), torch.div(flattened, norm_value)), adv_grad)
gradients.append(adv_grad)
# ---- Honest participants ----
for i in range(N):
loader = train_loaders[i]
model = participant_models[i]
optimizer = participant_optimizers[i]
scheduler = participant_schedulers[i]
model.train()
model = model.to(device)
backup = copy.deepcopy(model)
model = train_model(model, loader, loss_fn, optimizer, device=device, E=E, scheduler=scheduler)
gradient = compute_grad_update(old_model=backup, new_model=model, device=device)
flattened = flatten(gradient)
norm_value = norm(flattened) + 1e-7 # to prevent division by zero
if norm_value > args['Gamma']:
gradient = unflatten(torch.multiply(torch.tensor(args['Gamma']), torch.div(flattened, norm_value)), gradient)
model.load_state_dict(backup.state_dict())
add_update_to_model(model, gradient, device=device)
gradients.append(gradient)
# ---- Server Aggregate ----
aggregated_gradient = [torch.zeros(param.shape).to(device) for param in server_model.parameters()]
if not use_reputation:
# fedavg
for gradient, weight in zip(gradients, relative_shard_sizes):
add_gradient_updates(aggregated_gradient, gradient, weight=weight)
else:
if _round == 0:
weights = torch.div(shard_sizes, torch.sum(shard_sizes))
else:
weights = rs
for gradient, weight in zip(gradients, weights):
add_gradient_updates(aggregated_gradient, gradient, weight=weight)
flat_aggre_grad = flatten(aggregated_gradient)
phis = torch.zeros( N + A, device=device)
for i, gradient in enumerate(gradients):
phis[i] = F.cosine_similarity(flatten(gradient), flat_aggre_grad, 0, 1e-10)
past_phis.append(phis)
rs = args['alpha'] * rs + (1-args['alpha']) * phis
for i in range(N + A):
if i not in R_set:
rs[i] = 0
rs = torch.div(rs, rs.sum())
# --- reputation threshold
# start removing participants only after 10 rounds
if _round >= 10:
R_set_copy = dcopy(R_set)
curr_threshold = threshold * (1.0/ len(R_set_copy))
for i in range(N + A):
# only operation is to remove a reputable participant, if necessary. All others left untouched.
if i in R_set_copy and rs[i] < curr_threshold:
rs[i] = 0
R_set.remove(i)
print("---- in round {} removing {}. ".format(_round, i))
rs = torch.div(rs, rs.sum())
r_threshold.append( threshold * (1.0 / len(R_set)) )
q_ratios = torch.div(rs, torch.max(rs))
rs_dict.append(rs)
qs_dict.append(q_ratios)
for i in range(N+A):
if use_sparsify and use_reputation:
q_ratio = q_ratios[i]
reward_gradient = mask_grad_update_by_order(aggregated_gradient, mask_percentile=q_ratio, mode='layer')
elif use_sparsify and not use_reputation:
# relative_shard_sizes[i] the relative dataset weight of the local dataset
reward_gradient = mask_grad_update_by_order(aggregated_gradient, mask_percentile=relative_shard_sizes[i], mode='layer')
else: # not use_sparsify
# the reward_gradient is the whole gradient
reward_gradient = aggregated_gradient
if i < N:
add_update_to_model(participant_models[i], reward_gradient)
else: # N<= i < N+A:
add_update_to_model(adv_models[i-N], reward_gradient)
for i, model in enumerate(participant_models):
loss, accuracy = evaluate(model, valid_loader, loss_fn=loss_fn, device=device)
if A > 0 and atk == 'lf':
loss, target_accuracy, attack_success_rate = evaluate(model, valid_loader, loss_fn=loss_fn, device=device, label_flip='1-7')
adv_lf_perfs[str(i)+'_target_accu'].append(target_accuracy.item())
adv_lf_perfs[str(i)+'_attack_success'].append(attack_success_rate.item())
valid_perfs[str(i)+'_loss'].append(loss.item())
valid_perfs[str(i)+'_accu'].append(accuracy.item())
fed_loss, fed_accu = 0, 0
for j, train_loader in enumerate(train_loaders):
loss, accuracy = evaluate(model, train_loader, loss_fn=loss_fn, device=device)
if j == i:
local_perfs[str(i)+'_loss'].append(loss.item())
local_perfs[str(i)+'_accu'].append(accuracy.item())
# ---- Results saving ----
participant_str = '{}-{}-{}'.format(
args['split'][:3].upper(),
'N'+str(N),
'A'+str(A)+atk)
folder = oj('RFFL_results',
args['dataset'],
participant_str,
'r{}s{}'.format(str(int(use_reputation)), str(int(use_sparsify)) ) )
os.makedirs(folder, exist_ok=True)
if use_reputation:
rs_dict = torch.stack(rs_dict).detach().cpu().numpy()
df = pd.DataFrame(rs_dict)
df.to_csv(oj(folder, 'rs.csv'), index=False)
qs_dict = torch.stack(qs_dict).detach().cpu().numpy()
df = pd.DataFrame(qs_dict)
df.to_csv(oj(folder, 'qs.csv'), index=False)
# print("Past phis:", (torch.stack(past_phis)).reshape(-1, args['n_participants']))
df = pd.DataFrame(valid_perfs)
# print("Validation performance:")
df.to_csv(oj(folder, 'valid.csv'), index=False)
if A > 0 and atk == 'lf':
df = pd.DataFrame(adv_lf_perfs)
df.to_csv(oj(folder, 'adv_lf.csv'), index=False)
df = pd.DataFrame(local_perfs)
df.to_csv(oj(folder, 'local.csv'), index=False)
with open(oj(folder, 'settings_dict.txt'), 'w') as file:
[file.write(key + ' : ' + str(value) + '\n') for key, value in args.items()]
with open(oj(folder, 'settings_dict.pickle'), 'wb') as f:
pickle.dump(args, f)
# pickle - loading
# with open(oj(folder,'settings_dict.pickle'), 'rb') as f:
# args = pickle.load(f)