-
Notifications
You must be signed in to change notification settings - Fork 0
/
stmmr.h
324 lines (324 loc) · 10.1 KB
/
stmmr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//----------------------------------------------------------------
//
// Few features added by Bhathiya Perera
//
// Added stmmr_realloc, stmmr_calloc
// Should not crash if NULL is passed to stmmr_free
//----------------------------------------------------------------
// Statically-allocated memory manager
//
// by Eli Bendersky ([email protected])
//
// This code is in the public domain.
//----------------------------------------------------------------
#ifndef STMMR_H
#define STMMR_H
#include <stdint.h>
//
// Memory manager: dynamically allocates memory from
// a fixed pool that is allocated statically at link-time.
//
// Usage: after calling stmmr_init() in your
// initialization routine, just use stmmr_alloc() instead
// of malloc() and stmmr_free() instead of free().
// Naturally, you can use the preprocessor to define
// malloc() and free() as aliases to stmmr_alloc() and
// stmmr_free(). This way the manager will be a drop-in
// replacement for the standard C library allocators, and can
// be useful for debugging memory allocation problems and
// leaks.
//
// Preprocessor flags you can define to customize the
// memory manager:
//
// STMMR_DEBUG_FATAL
// Allow printing out a message when allocations fail
//
// STMMR_DEBUG_SUPPORT_STATS
// Allow printing out of stats in function
// stmmr_print_stats When this is disabled,
// stmmr_print_stats does nothing.
//
// Note that in production code on an embedded system
// you'll probably want to keep those undefined, because
// they cause printf to be called.
//
//
// STMMR_CUSTOM_POOL
// Allow for a custom pool to be provided. (must be of size STMMR_POOL_SIZE)
//
// STMMR_POOL_SIZE
// Size of the pool for new allocations. This is
// effectively the heap size of the application, and can
// be changed in accordance with the available memory
// resources.
//
// STMMR_MIN_POOL_ALLOC_QUANTAS
// Internally, the memory manager allocates memory in
// quantas roughly the size of two ulong objects. To
// minimize pool fragmentation in case of multiple allocations
// and deallocations, it is advisable to not allocate
// blocks that are too small.
// This flag sets the minimal ammount of quantas for
// an allocation. If the size of a ulong is 4 and you
// set this flag to 16, the minimal size of an allocation
// will be 4 * 2 * 16 = 128 bytes
// If you have a lot of small allocations, keep this value
// low to conserve memory. If you have mostly large
// allocations, it is best to make it higher, to avoid
// fragmentation.
//
// Notes:
// 1. This memory manager is *not thread safe*. Use it only
// for single thread/task applications.
//
#ifndef STMMR_POOL_SIZE
#define STMMR_POOL_SIZE 8 * 1024
#endif
#ifndef STMMR_MIN_POOL_ALLOC_QUANTAS
#define STMMR_MIN_POOL_ALLOC_QUANTAS 16
#endif
typedef uint64_t stmmr_int_t;
// Initialize the memory manager. This function should be called
// only once in the beginning of the program.
//
#ifndef STMMR_CUSTOM_POOL
void stmmr_init();
#else
void stmmr_init(uint8_t* free_memory_chunk);
#endif
// 'malloc' clone
//
void *stmmr_alloc(stmmr_int_t nbytes);
// realloc clone
//
void *stmmr_realloc(void *p, stmmr_int_t nbytes);
// calloc clone
//
void *stmmr_calloc(stmmr_int_t num, stmmr_int_t nbytes);
// 'free' clone
//
void stmmr_free(void *ap);
// Prints statistics about the current state of the memory
// manager
//
void stmmr_print_stats();
#ifdef STMMR_IMPL
#include <memory.h>
#include <stdio.h>
union stmmr_mem_header_union {
struct {
// Pointer to the next block in the free list
//
union stmmr_mem_header_union *next;
// Size of the block (in quantas of sizeof(stmmr_mem_header_t))
//
stmmr_int_t size;
} s;
// Used to align headers in memory to a boundary
//
stmmr_int_t align_dummy_;
};
typedef union stmmr_mem_header_union stmmr_mem_header_t;
// Initial empty list
//
static stmmr_mem_header_t stmmr_base;
// Start of free list
//
static stmmr_mem_header_t *stmmr_freep = 0;
// Static pool for new allocations
//
static stmmr_int_t stmmr_pool_free_pos = 0;
#ifndef STMMR_CUSTOM_POOL
static uint8_t stmmr_real_pool[STMMR_POOL_SIZE] = {0};
static uint8_t *stmmr_pool = stmmr_real_pool;
void stmmr_init() {
stmmr_base.s.next = 0;
stmmr_base.s.size = 0;
stmmr_freep = 0;
stmmr_pool_free_pos = 0;
}
#else
static uint8_t *stmmr_pool = NULL;
void stmmr_init(uint8_t* free_memory_chunk) {
stmmr_base.s.next = 0;
stmmr_base.s.size = 0;
stmmr_freep = 0;
stmmr_pool_free_pos = 0;
stmmr_pool = free_memory_chunk;
}
#endif
void stmmr_print_stats() {
#ifdef STMMR_DEBUG_SUPPORT_STATS
stmmr_mem_header_t *p;
printf("------ Memory manager stats ------\n\n");
printf("Pool: free_pos = %llu (%llu bytes left)\n\n", stmmr_pool_free_pos,
STMMR_POOL_SIZE - stmmr_pool_free_pos);
p = (stmmr_mem_header_t *) stmmr_pool;
while (p < (stmmr_mem_header_t *) (stmmr_pool + stmmr_pool_free_pos)) {
printf(" * Addr: %p; Size: %8llu\n", p, p->s.size);
p += p->s.size;
}
printf("\nFree list:\n\n");
if (stmmr_freep) {
p = stmmr_freep;
while (1) {
printf(" * Addr: %p; Size: %8llu; Next: %p\n", p, p->s.size, p->s.next);
p = p->s.next;
if (p == stmmr_freep) break;
}
} else {
printf("Empty\n");
}
printf("\n");
#endif// STMMR_DEBUG_SUPPORT_STATS
}
static stmmr_mem_header_t *stmmr_get_mem_from_pool(stmmr_int_t nquantas) {
stmmr_int_t total_req_size;
if (nquantas < STMMR_MIN_POOL_ALLOC_QUANTAS)
nquantas = STMMR_MIN_POOL_ALLOC_QUANTAS;
total_req_size = nquantas * sizeof(stmmr_mem_header_t);
if (stmmr_pool_free_pos + total_req_size <= STMMR_POOL_SIZE) {
stmmr_mem_header_t *h;
h = (stmmr_mem_header_t *) (stmmr_pool + stmmr_pool_free_pos);
h->s.size = nquantas;
stmmr_free((void *) (h + 1));
stmmr_pool_free_pos += total_req_size;
} else {
return 0;
}
return stmmr_freep;
}
// Allocations are done in 'quantas' of header size.
// The search for a free block of adequate size begins at the point 'stmmr_freep'
// where the last block was found.
// If a too-big block is found, it is split and the tail is returned (this
// way the header of the original needs only to have its size adjusted).
// The pointer returned to the user points to the free space within the block,
// which begins one quanta after the header.
//
void *stmmr_alloc(stmmr_int_t nbytes) {
stmmr_mem_header_t *p;
stmmr_mem_header_t *prevp;
// Calculate how many quantas are required: we need enough to house all
// the requested bytes, plus the header. The -1 and +1 are there to make sure
// that if nbytes is a multiple of nquantas, we don't allocate too much
//
stmmr_int_t nquantas =
(nbytes + sizeof(stmmr_mem_header_t) - 1) / sizeof(stmmr_mem_header_t) +
1;
// First alloc call, and no free list yet ? Use 'stmmr_base' for an initial
// denegerate block of size 0, which points to itself
//
if ((prevp = stmmr_freep) == 0) {
stmmr_base.s.next = stmmr_freep = prevp = &stmmr_base;
stmmr_base.s.size = 0;
}
for (p = prevp->s.next;; prevp = p, p = p->s.next) {
// big enough ?
if (p->s.size >= nquantas) {
// exactly ?
if (p->s.size == nquantas) {
// just eliminate this block from the free list by pointing
// its prev's next to its next
//
prevp->s.next = p->s.next;
} else// too big
{
p->s.size -= nquantas;
p += p->s.size;
p->s.size = nquantas;
}
stmmr_freep = prevp;
return (void *) (p + 1);
}
// Reached end of free list ?
// Try to allocate the block from the pool. If that succeeds,
// stmmr_get_mem_from_pool adds the new block to the free list and
// it will be found in the following iterations. If the call
// to stmmr_get_mem_from_pool doesn't succeed, we've run out of
// memory
//
else if (p == stmmr_freep) {
if ((p = stmmr_get_mem_from_pool(nquantas)) == 0) {
#ifdef STMMR_DEBUG_FATAL
printf("!! Memory allocation failed !!\n");
#endif
return 0;
}
}
}
}
// Scans the free list, starting at stmmr_freep, looking the the place to insert the
// free block. This is either between two existing blocks or at the end of the
// list. In any case, if the block being freed is adjacent to either neighbor,
// the adjacent blocks are combined.
//
void stmmr_free(void *ap) {
if (NULL == ap) { return; }
stmmr_mem_header_t *block;
stmmr_mem_header_t *p;
// acquire pointer to block header
block = ((stmmr_mem_header_t *) ap) - 1;
// Find the correct place to place the block in (the free list is sorted by
// address, increasing order)
//
for (p = stmmr_freep; !(block > p && block < p->s.next); p = p->s.next) {
// Since the free list is circular, there is one link where a
// higher-addressed block points to a lower-addressed block.
// This condition checks if the block should be actually
// inserted between them
//
if (p >= p->s.next && (block > p || block < p->s.next)) break;
}
// Try to combine with the higher neighbor
//
if (block + block->s.size == p->s.next) {
block->s.size += p->s.next->s.size;
block->s.next = p->s.next->s.next;
} else {
block->s.next = p->s.next;
}
// Try to combine with the lower neighbor
//
if (p + p->s.size == block) {
p->s.size += block->s.size;
p->s.next = block->s.next;
} else {
p->s.next = block;
}
stmmr_freep = p;
}
void *stmmr_realloc(void *ap, stmmr_int_t nbytes) {
if (NULL == ap) {
return stmmr_alloc(nbytes);
} else if (0 == nbytes) {
stmmr_free(ap);
return NULL;
}
stmmr_mem_header_t *block;
block = ((stmmr_mem_header_t *) ap) - 1;
stmmr_int_t expected =
(nbytes + sizeof(stmmr_mem_header_t) - 1) / sizeof(stmmr_mem_header_t) +
1;
if (expected <= block->s.size) {
return ap;
} else {
void *ptrNew = stmmr_alloc(nbytes);
stmmr_int_t originalLength =
(block->s.size - 1) * sizeof(stmmr_mem_header_t);
if (ptrNew) {
memcpy(ptrNew, ap, originalLength);
stmmr_free(ap);
}
return ptrNew;
}
}
void *stmmr_calloc(stmmr_int_t num, stmmr_int_t nbytes) {
stmmr_int_t n = num * nbytes;
void *p = stmmr_alloc(n);
if (NULL != p) { memset(p, 0, n); }
return p;
}
#endif
#endif// STMMR_H