or #v86 on irc.libera.chat
v86 emulates an x86-compatible CPU and hardware. Machine code is translated to WebAssembly modules at runtime in order to achieve decent performance. Here's a list of emulated hardware:
- An x86-compatible CPU. The instruction set is around Pentium 4 level,
including full SSE3 support. Some features are missing, in particular:
- Task gates, far calls in protected mode
- Some 16 bit protected mode features
- Single stepping (trap flag, debug registers)
- Some exceptions, especially floating point and SSE
- Multicore
- 64-bit extensions
- A floating point unit (FPU). Calculations are done using the Berkeley SoftFloat library and therefore should be precise (but slow). Trigonometric and log functions are emulated using 64-bit floats and may be less precise. Not all FPU exceptions are supported.
- A floppy disk controller (8272A).
- An 8042 Keyboard Controller, PS2. With mouse support.
- An 8254 Programmable Interval Timer (PIT).
- An 8259 Programmable Interrupt Controller (PIC).
- Partial APIC support.
- A CMOS Real Time Clock (RTC).
- A generic VGA card with SVGA support and Bochs VBE Extensions.
- A PCI bus. This one is partly incomplete and not used by every device.
- An IDE disk controller.
- An NE2000 (RTL8390) PCI network card.
- A VirtIO filesystem.
- A SoundBlaster 16 sound card.
9front — Arch Linux — Android-x86 1.6-r2 — Android-x86 4.4-r2 — BasicLinux — Buildroot Linux — Damn Small Linux — ELKS — FreeDOS — FreeBSD — FiwixOS — Haiku — SkiffOS — ReactOS — Windows 2000 — Windows 98 — Windows 95 — Windows 1.01 — MS-DOS 6.22 — OpenBSD — Oberon — KolibriOS — SkiftOS — QNX
How it works — Networking — Arch Linux guest setup — Windows 2000/XP guest setup — 9p filesystem — Linux rootfs on 9p — Profiling — CPU Idling
Here's an overview of the operating systems supported in v86:
- Linux works pretty well. 64-bit kernels are not supported.
- Damn Small Linux (2.4.31 kernel) works.
- Fedora 30 works.
- All tested versions of TinyCore work.
- Buildroot can be used to build a minimal image. humphd/browser-vm and darin755/browser-buildroot have some useful scripts for building one.
- SkiffOS (based on Buildroot) can cross-compile a custom image.
- Archlinux works. See archlinux.md for building an image.
- Debian works. An image can be built from a Dockerfile, see tools/docker/debian/.
- Ubuntu works up to the latest version that supported i386 (16.04 LTS or 18.04 LTS for some variants).
- Alpine Linux works.
- ReactOS works.
- FreeDOS, Windows 1.01 and MS-DOS run very well.
- KolibriOS works.
- Haiku works.
- Android-x86 has been tested up to 4.4-r2.
- Windows 1, 3.x, 95, 98, ME, NT and 2000 work reasonably well.
- Windows XP, Vista and 8 work under certain conditions (see #86, #208)
- Many hobby operating systems work.
- 9front works.
- Plan 9 doesn't work.
- QNX works.
- OS/2 doesn't work.
- FreeBSD works.
- OpenBSD works with a specific boot configuration. At the
boot>
prompt typeboot -c
, then at theUKC>
promptdisable mpbios
andexit
. - NetBSD works only with a custom kernel, see #350.
- SerenityOS works.
- SkiftOS works.
You can get some information on the disk images here: https://github.com/copy/images.
You need:
- make
- Rust with the wasm32-unknown-unknown target
- A version of clang compatible with Rust
- java (for Closure Compiler, not necessary when using
debug.html
) - nodejs (a recent version is required, v16.11.1 is known to be working)
- To run tests: nasm, gdb, qemu-system, gcc, libc-i386 and rustfmt
See tools/docker/test-image/Dockerfile for a full setup on Debian or WSL.
- Run
make
to build the debug build (atdebug.html
). - Run
make all
to build the optimized build (atindex.html
). - ROM and disk images are loaded via XHR, so if you want to try out
index.html
locally, make sure to serve it from a local webserver. You can usemake run
to serve the files using Python's http module. - If you only want to embed v86 in a webpage you can use libv86.js. For usage, check out the examples. You can download it from the release section.
- If you have docker installed, you can run the whole system inside a container.
- See
tools/docker/exec
to find Dockerfile required for this. - You can run
docker build -f tools/docker/exec/Dockerfile -t v86:alpine-3.14 .
from the root directory to generate docker image. - Then you can simply run
docker run -it -p 8000:8000 v86:alpine-3.14
to start the server. - Check
localhost:8000
for hosted server.
- If you are using an IDE that supports Devcontainers, such as Github Codespaces, VSCode Remote Container extension, or possibly others such as Jetbrains IDEA, you can setup the development environment in a Dev container.
- Follow the instructions from your development environment to setup the container.
- Run the Task "Fetch images" in order to download images for testing.
The disk images for testing are not included in this repository. You can download them directly from the website using:
wget -P images/ https://k.copy.sh/{linux3.iso,linux.iso,linux4.iso,buildroot-bzimage.bin,openbsd-floppy.img,kolibri.img,windows101.img,os8.img,freedos722.img}
Run integration tests: make tests
Run all tests: make jshint rustfmt kvm-unit-test nasmtests nasmtests-force-jit expect-tests jitpagingtests qemutests rust-test tests
See tests/Readme.md for more information.
- Basic
- Programatically using the serial terminal
- A Lua interpreter
- Two instances in one window
- Saving and restoring emulator state
Using v86 for your own purposes is as easy as:
var emulator = new V86({
screen_container: document.getElementById("screen_container"),
bios: {
url: "../../bios/seabios.bin",
},
vga_bios: {
url: "../../bios/vgabios.bin",
},
cdrom: {
url: "../../images/linux.iso",
},
autostart: true,
});
See starter.js.
v86 is distributed under the terms of the Simplified BSD License, see LICENSE. The following third-party dependencies are included in the repository under their own licenses:
- CPU test cases via QEMU
- More tests via kvm-unit-tests
- zstd support is included for better compression of state images
- Berkeley SoftFloat is included to precisely emulate 80-bit floating point numbers
- The jor1k project for 9p, filesystem and uart drivers
- WinWorld sources of some old operating systems
Shoot me an email to [email protected]
. Please report bugs on GitHub.
Fabian Hemmer (https://copy.sh/, [email protected]
)