-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathurbansounddataset.py
101 lines (84 loc) · 3.35 KB
/
urbansounddataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Core Code borrowed from https://github.com/musikalkemist/pytorchforaudio/tree/main/09%20Training%20urban%20sound%20classifier
import os
import torch
from torch.utils.data import Dataset
import pandas as pd
import torchaudio
class UrbanSoundDataset(Dataset):
def __init__(self,
annotations_file,
audio_dir,
transformation,
target_sample_rate,
num_samples,
device):
self.annotations = pd.read_csv(annotations_file)
self.audio_dir = audio_dir
self.device = device
self.transformation = transformation.to(self.device)
self.target_sample_rate = target_sample_rate
self.num_samples = num_samples
def __len__(self):
return len(self.annotations)
def __getitem__(self, index):
audio_sample_path = self._get_audio_sample_path(index)
label = self._get_audio_sample_label(index)
signal, sr = torchaudio.load(audio_sample_path)
signal = signal.to(self.device)
signal = self._resample_if_necessary(signal, sr)
signal = self._mix_down_if_necessary(signal)
signal = self._cut_if_necessary(signal)
signal = self._right_pad_if_necessary(signal)
signal = self.transformation(signal)
return signal, label
def _cut_if_necessary(self, signal):
if signal.shape[1] > self.num_samples:
signal = signal[:, :self.num_samples]
return signal
def _right_pad_if_necessary(self, signal):
length_signal = signal.shape[1]
if length_signal < self.num_samples:
num_missing_samples = self.num_samples - length_signal
last_dim_padding = (0, num_missing_samples)
signal = torch.nn.functional.pad(signal, last_dim_padding)
return signal
def _resample_if_necessary(self, signal, sr):
if sr != self.target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, self.target_sample_rate)
signal = resampler(signal)
return signal
def _mix_down_if_necessary(self, signal):
if signal.shape[0] > 1:
signal = torch.mean(signal, dim=0, keepdim=True)
return signal
def _get_audio_sample_path(self, index):
fold = f"fold{self.annotations.iloc[index, 5]}"
path = os.path.join(self.audio_dir, fold, self.annotations.iloc[
index, 0])
return path
def _get_audio_sample_label(self, index):
return self.annotations.iloc[index, 6]
if __name__ == "__main__":
ANNOTATIONS_FILE = "/scratch/ys5hd/Riffusion/music/UrbanSound8K/metadata/UrbanSound8K.csv"
AUDIO_DIR = "/scratch/ys5hd/Riffusion/music/UrbanSound8K/audio/"
SAMPLE_RATE = 22050
NUM_SAMPLES = 22050
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print(f"Using device {device}")
mel_spectrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=SAMPLE_RATE,
n_fft=1024,
hop_length=512,
n_mels=64
)
usd = UrbanSoundDataset(ANNOTATIONS_FILE,
AUDIO_DIR,
mel_spectrogram,
SAMPLE_RATE,
NUM_SAMPLES,
device)
print(f"There are {len(usd)} samples in the dataset.")
signal, label = usd[0]