-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathregisteration.h
184 lines (168 loc) · 7.15 KB
/
registeration.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// head for registeration writted by @Yixin Fang
#pragma once
#include <iostream>
#include "ICP.h"
#include "io_pc.h"
#include "FRICP.h"
#include "../tool_color_printf.h"
#include "../common_lib.h"
typedef double Scalar;
typedef Eigen::Matrix<Scalar, 3, Eigen::Dynamic> Vertices;
typedef Eigen::Matrix<Scalar, 3, 1> VectorN;
ofstream fout_time;
class Registeration{
public:
Eigen::MatrixXd res_trans;
enum Method{ICP, AA_ICP, FICP, RICP, FR_ICP, PPL, RPPL, SparseICP, SICPPPL} method=RICP;
int dim = 3;
// please see here for mode details
Registeration(int mode_){
std::cout << "Method :\n"
<< "0: ICP\n1: AA-ICP\n2: Our Fast ICP\n3: Our Robust ICP\n4: Our Fast and Robust ICP\n5: ICP Point-to-plane\n"
<< "6: Our Fast and Robust ICP point to plane\n7: Sparse ICP\n8: Sparse ICP point to plane\n"
<< "search radius(< 0.5) for difference detection"<< std::endl;
method = Method(mode_);
std::cout << ANSI_COLOR_GREEN << "register by Method " << mode_ << ANSI_COLOR_RESET << std::endl;
fout_time.open("/home/yixin-f/fast-lio2/src/data_loc/relo_time.txt", ios::out);
}
~Registeration() {}
Eigen::MatrixXd run(const pcl::PointCloud<pcl::PointXYZINormal>::Ptr& source,
const pcl::PointCloud<pcl::PointXYZINormal>::Ptr& target)
{
//--- Model that will be rigidly transformed
Vertices vertices_source, normal_source, src_vert_colors;
read_pcd_online(vertices_source, normal_source, src_vert_colors, source, dim);
//--- Model that source will be aligned to
Vertices vertices_target, normal_target, tar_vert_colors;
read_pcd_online(vertices_target, normal_target, tar_vert_colors, target, dim);
// scaling
Eigen::Vector3d source_scale, target_scale;
source_scale = vertices_source.rowwise().maxCoeff() - vertices_source.rowwise().minCoeff();
target_scale = vertices_target.rowwise().maxCoeff() - vertices_target.rowwise().minCoeff();
double scale = std::max(source_scale.norm(), target_scale.norm());
vertices_source /= scale;
vertices_target /= scale;
/// De-mean
VectorN source_mean, target_mean;
source_mean = vertices_source.rowwise().sum() / double(vertices_source.cols());
target_mean = vertices_target.rowwise().sum() / double(vertices_target.cols());
vertices_source.colwise() -= source_mean;
vertices_target.colwise() -= target_mean;
double time;
// set ICP parameters
ICP::Parameters pars;
// set Sparse-ICP parameters
SICP::Parameters spars;
spars.p = 0.4;
spars.print_icpn = false;
///--- Execute registration
std::cout << "execute registration -> ";
FRICP<3> fricp;
double begin_reg = omp_get_wtime();
double converge_rmse = 0;
switch(method)
{
case ICP:
{
pars.f = ICP::NONE;
pars.use_AA = false;
fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case AA_ICP:
{
AAICP::point_to_point_aaicp(vertices_source, vertices_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case FICP:
{
pars.f = ICP::NONE;
pars.use_AA = true;
fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case RICP:
{
pars.f = ICP::WELSCH;
pars.use_AA = false;
fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case FR_ICP:
{
pars.f = ICP::WELSCH;
pars.use_AA = true;
fricp.point_to_point(vertices_source, vertices_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case PPL:
{
pars.f = ICP::NONE;
pars.use_AA = false;
if(normal_target.size() == 0)
{
std::cout << "Warning! The target model without normals can't run Point-to-plane method!" << std::endl;
exit(0);
}
fricp.point_to_plane(vertices_source, vertices_target, normal_source, normal_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case RPPL:
{
pars.nu_end_k = 1.0/6;
pars.f = ICP::WELSCH;
pars.use_AA = true;
if(normal_target.size()== 0)
{
std::cout << "Warning! The target model without normals can't run Point-to-plane method!" << std::endl;
exit(0);
}
fricp.point_to_plane_GN(vertices_source, vertices_target, normal_source, normal_target, source_mean, target_mean, pars);
res_trans = pars.res_trans;
break;
}
case SparseICP:
{
SICP::point_to_point(vertices_source, vertices_target, source_mean, target_mean, spars);
res_trans = spars.res_trans;
break;
}
case SICPPPL:
{
if(normal_target.size() == 0)
{
std::cout << "Warning! The target model without normals can't run Point-to-plane method!" << std::endl;
exit(0);
}
SICP::point_to_plane(vertices_source, vertices_target, normal_target, source_mean, target_mean, spars);
res_trans = spars.res_trans;
break;
}
}
double end_reg = omp_get_wtime();
time = end_reg - begin_reg;
std::cout << "Registration cost(s): " << time << std::endl;
fout_time << std::fixed << time << std::endl;
// vertices_source = scale * vertices_source;
Eigen::Affine3d res_T;
res_T.linear() = res_trans.block(0,0,3,3);
res_T.translation() = res_trans.block(0,3,3,1);
res_trans.block(0,3,3,1) *= scale;
std::cout << "scale: " << scale << std::endl;
std::cout << "res_trans: " << res_trans << std::endl;
return res_trans;
}
pcl::PointCloud<pcl::PointXYZRGB>::Ptr detectDiff(const pcl::PointCloud<pcl::PointXYZINormal>::Ptr& source_res,
const pcl::PointCloud<pcl::PointXYZINormal>::Ptr& target,
const float& radius)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr result(new pcl::PointCloud<pcl::PointXYZRGB>());
result = detect(source_res, target, radius);
}
};