-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnet.c
237 lines (207 loc) · 7.95 KB
/
net.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/********************************************************************************
* *
* net.c *
* *
* A MultiLayer Deep Neural Network Backpropagation implementation *
* *
* srand(time(NULL)); should be used before net_init() to randomize weights *
* *
********************************************************************************/
#ifndef net
#include "net.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DBG 0
#define LOG_EVERY 100
#define MAX_IT 100000
struct network;
double random_weight() { return (double)rand() / (double)RAND_MAX - 0.5; }
network* net_init(int num_layers, int* nrns_per_layer, char* activation) {
if (num_layers < 1 || nrns_per_layer == NULL || activation == NULL) {
printf("wrong arguments");
return NULL;
}
network* net = (network*)malloc(sizeof(network));
net->num_layers = num_layers;
net->npl = (int*)malloc(num_layers * sizeof(int));
net->neuron = (double**)malloc(num_layers * sizeof(double*));
net->weight = (double***)malloc(num_layers * sizeof(double**));
net->d_out =
(double*)malloc(nrns_per_layer[net->num_layers - 1] * sizeof(double));
net->d_hid = (double**)malloc((net->num_layers - 2) * sizeof(double*));
/*INIT NEURONS*/
for (int i = 0; i < num_layers; i++) { /*for each layer*/
net->npl[i] = nrns_per_layer[i];
net->neuron[i] = (double*)malloc((1 + net->npl[i]) * sizeof(double));
net->neuron[i][0] = 1; /*set bias to 1*/
for (int j = 1; j <= net->npl[i];
j++) { /*for each neuron in layer except bias*/
net->neuron[i][j] = 0;
}
}
/*INIT WEIGHTS*/
for (int i = 1; i < num_layers; i++) { /*for each layer*/
net->weight[i] =
(double**)malloc((1 + net->npl[i - 1]) * sizeof(double*));
for (int j = 0; j <= net->npl[i];
j++) { /*for each neuron in layer except bias*/
net->weight[i][j] =
(double*)malloc((1 + net->npl[i - 1]) * sizeof(double));
for (int k = 0; k <= net->npl[i - 1]; k++)
net->weight[i][j][k] = random_weight();
}
}
/*INIT delta_hidden*/
for (int i = net->num_layers - 2; i > 0; i--) {
net->d_hid[i] = (double*)malloc(net->npl[i] * sizeof(double));
}
return net;
}
float sigmoid(float a) { return 1 / (1 + exp(-a)); }
float sig_der(float a) { return a * (1 - a); }
void forward(network* net, double input[]) {
/*SETTING FIRST LAYER INPUT*/
for (int i = 1; i <= net->npl[0]; i++) {
net->neuron[0][i] = input[i - 1];
}
/*FORWARD PASS*/
for (int i = 1; i < net->num_layers; i++) { /*for each layer except first*/
for (int j = 1; j <= net->npl[i];
j++) { /*for each neuron in layer except bias*/
net->neuron[i][j] = 0;
for (int k = 0; k <= net->npl[i - 1]; k++) {
net->neuron[i][j] +=
net->neuron[i - 1][k] * net->weight[i][j][k];
}
// SIGMOID GOES HERE
net->neuron[i][j] = sigmoid(net->neuron[i][j]);
}
}
}
void net_print(network* net) {
printf("num_layers=%d\n", net->num_layers);
printf("\n NEURONS\n");
for (int i = 0; i < net->num_layers; i++) { /*for each layer*/
printf("npl[%d]=%d\n", i, net->npl[i]);
for (int j = 0; j <= net->npl[i];
j++) { /*for each neuron in layer bias included*/
printf("%f\t", net->neuron[i][j]);
}
printf("\n");
}
printf("\nWEIGHTS\n");
for (int i = 1; i < net->num_layers; i++) { /*for each layer except first*/
printf("LAYER %d->%d\n", i - 1, i);
for (int j = 1; j <= net->npl[i];
j++) { /*for each neuron in layer except bias*/
for (int k = 0; k <= net->npl[i - 1];
k++) /*for each neuron in last layer + bais*/
printf("%f,\t", net->weight[i][j][k]);
printf("\n");
}
}
}
double out_err(network* net, double output[]) {
double err = 0;
int out_dim = net->npl[net->num_layers - 1];
for (int i = 1; i <= out_dim;
i++) { /*for all neurons in last layer except bias*/
err += (output[i - 1] - net->neuron[net->num_layers - 1][i]) *
(output[i - 1] - net->neuron[net->num_layers - 1][i]);
}
return err;
}
void delta_out(network* net, double output[]) {
int out_dim = net->npl[net->num_layers - 1];
// double d_out[ out_dim ];
for (int i = 1; i <= out_dim; i++) {
net->d_out[i - 1] =
(output[i - 1] - net->neuron[net->num_layers - 1][i]) *
sig_der(net->neuron[net->num_layers - 1][i]);
}
}
int max_tbl(int tbl[], int len) {
int max;
if (len <= 0) {
printf("EMPTY table provided");
return -1;
}
max = tbl[0];
for (int i = 1; i < len; i++) {
if (tbl[i] > max) max = tbl[i];
}
return max;
}
void delta_hid(network* net) {
int i, j, k;
/* INIT d_hid*/
for (i = net->num_layers - 2; i > 0; i--) {
for (j = 1; j <= net->npl[i]; j++) { /*no bias*/
net->d_hid[i][j - 1] = 0;
}
}
/*compute error d_hid*/
for (i = net->num_layers - 2; i > 0; i--) { /*for all hidden layers*/
for (j = 1; j <= net->npl[i]; j++) { /*for all neurons except bias*/
for (k = 1; k <= net->npl[i + 1];
k++) { /*for all neurons in next layer (error backpropagates)*/
if (i == net->num_layers -
2) /*if propagating from last hidden layer*/
net->d_hid[i][j - 1] +=
net->d_out[k - 1] * net->weight[i + 1][k][j];
else
net->d_hid[i][j - 1] +=
net->d_hid[i + 1][k - 1] * net->weight[i + 1][k][j];
}
net->d_hid[i][j - 1] *= sig_der(net->neuron[i][j]);
}
}
}
int adjust_weights(network* net, double lr) {
int i, j, k;
for (i = net->num_layers - 1; i > 0; i--) { /*for all layers except input*/
for (j = 1; j <= net->npl[i]; j++) { /*for all neurons except bias*/
for (k = 0; k <= net->npl[i - 1];
k++) { /*for all neurons in previous layer bias included
(weight from current to previous)*/
if (i == net->num_layers - 1) /*if adjusting last hidden layer*/
net->weight[i][j][k] +=
lr * net->d_out[j - 1] * net->neuron[i - 1][k];
else
net->weight[i][j][k] +=
lr * net->d_hid[i][j - 1] * net->neuron[i - 1][k];
}
}
}
return 0;
}
int train(network* net, double* input, double* output, int length, double lr,
double err_tgt) {
int in_length = net->npl[0];
int out_length = net->npl[net->num_layers - 1];
double err;
printf("start training\n ");
for (int i = 0; i < MAX_IT; i++) {
err = 0;
for (int j = 0; j < length; j++) {
forward(net, &input[j * in_length]);
/*out_err, delta_out, delta_hidd*/
err += out_err(net, &output[j * out_length]);
delta_out(net, &output[j * out_length]);
delta_hid(net);
adjust_weights(net, lr);
if (DBG) {
printf("delta_out=%f\n", net->d_out[0]);
net_print(net);
}
}
err = err * 1 / (2 * length);
if (i % LOG_EVERY == 0) {
printf("iteration=%d error=%f\n", i, err);
}
if (err <= err_tgt) return i;
}
return 0;
}
#endif