Skip to content

Latest commit

 

History

History
152 lines (123 loc) · 5.43 KB

README.md

File metadata and controls

152 lines (123 loc) · 5.43 KB

torchquantum

A PyTorch-centric hybrid classical-quantum dynamic neural networks framework.

MIT License

News

  • Add a simple example script using quantum gates to do MNIST classification.
  • v0.0.1 available. Feedbacks are highly welcomed!

Installation

git clone https://github.com/Hanrui-Wang/pytorch-quantum.git
cd pytorch-quantum
pip install --editable .

Usage

Construct quantum NN models as simple as constructing a normal pytorch model.

import torch.nn as nn
import torch.nn.functional as F 
import torchquantum as tq
import torchquantum.functional as tqf

class QFCModel(nn.Module):
  def __init__(self):
    super().__init__()
    self.n_wires = 4
    self.q_device = tq.QuantumDevice(n_wires=self.n_wires)
    self.measure = tq.MeasureAll(tq.PauliZ)
    
    self.encoder_gates = [tqf.rx] * 4 + [tqf.ry] * 4 + \
                         [tqf.rz] * 4 + [tqf.rx] * 4
    self.rx0 = tq.RX(has_params=True, trainable=True)
    self.ry0 = tq.RY(has_params=True, trainable=True)
    self.rz0 = tq.RZ(has_params=True, trainable=True)
    self.crx0 = tq.CRX(has_params=True, trainable=True)

  def forward(self, x):
    bsz = x.shape[0]
    # down-sample the image
    x = F.avg_pool2d(x, 6).view(bsz, 16)
    
    # reset qubit states
    self.q_device.reset_states(bsz)
    
    # encode the classical image to quantum domain
    for k, gate in enumerate(self.encoder_gates):
      gate(self.q_device, wires=k % self.n_wires, params=x[:, k])
    
    # add some trainable gates (need to instantiate ahead of time)
    self.rx0(self.q_device, wires=0)
    self.ry0(self.q_device, wires=1)
    self.rz0(self.q_device, wires=3)
    self.crx0(self.q_device, wires=[0, 2])
    
    # add some more non-parameterized gates (add on-the-fly)
    tqf.hadamard(self.q_device, wires=3)
    tqf.sx(self.q_device, wires=2)
    tqf.cnot(self.q_device, wires=[3, 0])
    tqf.qubitunitary(self.q_device0, wires=[1, 2], params=[[1, 0, 0, 0],
                                                           [0, 1, 0, 0],
                                                           [0, 0, 0, 1j],
                                                           [0, 0, -1j, 0]])
    
    # perform measurement to get expectations (back to classical domain)
    x = self.measure(self.q_device).reshape(bsz, 2, 2)
    
    # classification
    x = x.sum(-1).squeeze()
    x = F.log_softmax(x, dim=1)

    return x

Features

  • Easy construction of parameterized quantum circuits in PyTorch.
  • Support batch mode inference and training on CPU/GPU.
  • Support dynamic computation graph for easy debugging.
  • Support easy deployment on real quantum devices such as IBMQ.

TODOs

  • Support more gates
  • Support compile a unitary with descriptions to speedup training
  • Support other measurements other than analytic method
  • In einsum support multiple qubit sharing one letter. So that more than 26 qubit can be simulated.
  • Support bmm based implementation to solve scalability issue
  • Support conversion from torchquantum to qiskit

Dependencies

  • Python >= 3.7
  • PyTorch >= 1.8.0
  • configargparse >= 0.14
  • GPU model training requires NVIDIA GPUs

MNIST Example

Train a quantum circuit to perform MNIST task and deploy on the real IBM Yorktown quantum computer as in mnist_example.py script:

python mnist_example.py

Files

File Description
devices.py QuantumDevice class which stores the statevector
encoding.py Encoding layers to encode classical values to quantum domain
functional.py Quantum gate functions
operators.py Quantum gate classes
layers.py Layer templates such as RandomLayer
measure.py Measurement of quantum states to get classical values
graph.py Quantum gate graph used in static mode
super_layer.py Layer templates for SuperCircuits
plugins/qiskit* Convertors and processors for easy deployment on IBMQ
examples/ More examples for training QML and VQE models

More Examples

The examples/ folder contains more examples to train the QML and VQE models. Example usage for a QML circuit:

# train the circuit with 36 params in the U3+CU3 space
python examples/train.py examples/configs/mnist/four0123/train/baseline/u3cu3_s0/rand/param36.yml

# evaluate the circuit with torchquantum
python examples/eval.py examples/configs/mnist/four0123/eval/tq/all.yml --run-dir=runs/mnist.four0123.train.baseline.u3cu3_s0.rand.param36

# evaluate the circuit with real IBMQ-Yorktown quantum computer
python examples/eval.py examples/configs/mnist/four0123/eval/x2/real/opt2/300.yml --run-dir=runs/mnist.four0123.train.baseline.u3cu3_s0.rand.param36

Example usage for a VQE circuit:

# Train the VQE circuit for h2
python examples/train.py examples/configs/vqe/h2/train/baseline/u3cu3_s0/human/param12.yml

# evaluate the VQE circuit with torchquantum
python examples/eval.py examples/configs/vqe/h2/eval/tq/all.yml --run-dir=runs/vqe.h2.train.baseline.u3cu3_s0.human.param12/

# evaluate the VQE circuit with real IBMQ-Yorktown quantum computer
python examples/eval.py examples/configs/vqe/h2/eval/x2/real/opt2/all.yml --run-dir=runs/vqe.h2.train.baseline.u3cu3_s0.human.param12/

Detailed documentations coming soon.

Contact

Hanrui Wang ([email protected])